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Abstract

In this work, we address causal structure learning in the presence of unobserved confounders.
Such causal structures can be represented by Acyclic Directed Mixed Graphs (ADMGs),
where observed cause-effect relations are depicted by directed edges and unobserved con-
founded relations by bidirected edges. Prior methods for causal structure learning with
unobserved common causes have primarily focused on search-based approaches, and more
recently on flow-based generative models. We propose a novel generative method based
on a variant of the Variational Autoencoder (VAE) with dual latent spaces to represent
the directed cause-effect relations and the bidirected unobserved confounded relations, as-
sociating two trainable adjacency matrices. To enhance the learning process, we introduce
a causality constraint combined with the concept of a causal annealing strategy during
training, guiding the learning toward meaningful causal structures. Experimental results
show that our method achieves competitive performance in identifying both observed and
latent causal relationships on synthetic datasets. Furthermore, we demonstrate that the
learned causal structure significantly improves downstream causal inference performance on
real-world data. 1

1 Introduction

Learning cause–effect relationships without known causal structures is fundamental to causal reasoning. In
many real-world scenarios, unobserved common causes distort statistical associations among features, making
structure learning more challenging. For example, in human mobility, external factors such as weather can
jointly influence departure time and destination, acting as latent confounders that bias inferred relations.

This work aims to learn causal structures among features in the presence of unobserved (latent) confounders,
without relying on prior structural knowledge. Further, we demonstrate the applicability of the proposed
method for the causal inference task on a real-world dataset, leveraging the learned causal relationships.

Prior studies on causal structure identification under unobserved confounding have predominantly employed
score-based approaches, using criteria such as the Bayesian Information Criterion (BIC), and constraint-
based methods relying on conditional independence tests.

Subsequently, the causal structure discovery has been reformulated as a continuous optimization problem
enforcing acyclicity constraints (Zheng et al., 2018) via differentiable function with gradient-based techniques,
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excluding the need for a combinatorial search. However, these continuous optimization based methods assume
causal sufficiency and do not consider unobserved variables.

Recently, the bow-free constraint (Bhattacharya et al., 2021) applied to Acyclic Directed Mixed Graphs
(ADMGs) (Richardson & Spirtes, 2002). ADMG has been utilized to represent both direct causal relation-
ships, and unobserved confounding relations. The observed cause-effect relations are represented by directed
edges. The unobserved confounders are represented by bidirected edges between the variables which have
unobserved common cause that influences both variables. The bow-free constraint prevents overlapping
directed and bidirected edges between the same pair of variables. Specifically, if there is a directed edge
Vi → Vj , then there cannot also be a bidirected edge Vi ↔ Vj . This concept, integrated into Structural
Causal Models (SCMs) (Pearl, 2009), has recently been explored in neural ADMG contexts.

We follow ADMG structure estimation assumptions with latent confounding from prior work (Ashman et al.,
2023). The framework assumes a nonlinear additive-noise SCMs, where each variable is modelled as a nonlin-
ear function of its direct causes combined with independent noise and exogenous latent confounders. These
assumptions support estimation of directed and bidirected edges from observational data, however observa-
tionally equivalent structures may still arise.While these assumptions enable plausible causal interpretations,
they do not guarantee exact recovery of the ground-truth SCM, and a discussion on causal guarantees is
provided in Appendix D.

We represent the directed cause–effect relationship by the directed adjacency matrix A(Observed) or AD, which
captures directed, asymmetric, observed cause-effect relationships. The unobserved common cause
association with different pair of variables is represented by the bidirected adjacency matrix A(Unobserved) or
AB which captures bidirected, symmetric, unobserved confounded associations.

Our approach employs a Variational Auto Encoder (VAE) (Doersch, 2021; Kingma & Welling, 2013) based
causally constrained generative framework designed to estimate unobserved causal structures within the
ADMG formalism. We denote this model as G-ADMG-CL (Generative Acyclic Directed Mixed Graph
based Causal Structure Learning). Detection of unobserved confounders is enabled under the bow-free
ADMG assumption (Ashman et al., 2023), using a nonlinear additive-noise SCM. The framework captures
both nonlinear cause–effect relationships and latent confounding through trainable adjacency matrices
AD and AB.Overall, the learned adjacency matrices provide interpretable causal representations that jointly
encode observed and latent relationships, enabling structure discovery under confounding. The proposed
framework is characterized by the following components:

• A VAE-based architecture that disentangles observed and unobserved causal relations through dual
latent spaces.

• Separate latent spaces are dedicated to directed cause–effect relationships and unobserved con-
founded relations, governed by AD and AB , respectively.

• A causally aware objective function that enforces acyclicity for observed relations, bow-free
constraints for confounded edges, and entropy-sparsity regularization to balance structural variability
while preserving the asymmetric/symmetric nature of AD and AB .

• A causal annealing strategy that gradually increases the causal-regularization weight from 0 to
1 until the causal transition epoch (CTE), prioritizing reconstruction and KL-divergence opti-
mization during early training before activating full causal constraints.

We evaluate G-ADMG-CL on synthetic data generated from nonlinear SCMs and real-world data demon-
strating effective causal structure learning under latent confounding.

2 Related Work
Causal structure learning is a fundamental problem with wide applications across scientific and real-world
domains. Estimating causal relationships in the presence of unobserved confounders is both more realistic
and more challenging. We review key existing approaches, with a particular focus on methods that attempt
to model latent confounding and capture both directed and bidirected dependencies.

2



Published in Transactions on Machine Learning Research (January/2026)

Score-based and constraint-based methods: Classical approaches to causal discovery (Hasan et al.,
2023; Zanga et al., 2023) include constraint-based and score-based methods. Constraint-based methods, such
as the PC and FCI algorithms (Spirtes et al., 2000), rely on conditional independence testing to infer causal
graphs, while score-based methods search for graph structures that optimize predefined scoring criteria such
as the BIC. However, these methods typically assume access to a fully observed variable set or struggle with
indistinguishability in equivalence classes under hidden confounding.

Differentiable DAG learning (no latent confounding): The NOTEARS framework (Zheng et al., 2018)
introduced a differentiable acyclicity constraint based on the trace of a matrix exponential, enabling gradient-
based optimization for DAG structure learning. This approach has been extended by neural methods such
as DAG-GNN (Yu et al., 2019b) and N-DAG-G (Geffner et al., 2022), which integrate deep architectures
for end-to-end causal discovery. While effective for fully observed systems, these methods assume causal
sufficiency and cannot represent latent confounding or bidirected edges. (Zecevic et al., 2021) relate graph
neural networks to structural causal models on graph-structured data, offering a causal interpretation of
message passing but without explicit modelling of latent confounders.

Handling unobserved confounders: Several methods explicitly attempt to model latent confounding.
Fast Causal Inference (FCI) (Spirtes et al., 2000) is a constraint-based method capable of detecting latent
variables through conditional independence tests, but it cannot distinguish between equivalence classes with
identical independencies. Repetitive Causal Discovery (RCD) (Maeda & Shimizu, 2020) handles linear non-
Gaussian models and introduces bidirected edges to represent unobserved common causes. CAM-UV (Maeda
& Shimizu, 2021) extends the Causal Additive Model (CAM) to latent-variable settings by using HSIC-
based independence tests (Gretton et al., 2007) combined with a scoring procedure. More recently, Gonzales
& Valizadeh (2024) proposed a score-based global search over augmented DAGs that can handle latent
confounding, but is restricted in scalability.

Ancestral graphs and bow-free constraints: To more explicitly model both directed and bidirected
edges under latent confounding, recent works have extended the causal discovery framework to ADMGs.
The approach in (Bhattacharya et al., 2021) introduces a differentiable objective incorporating acyclicity,
ancestral constraints, a c-tree penalty, and the bow-free constraint, targeting linear Gaussian additive noise
models. These constraints help ensure identifiability and interpretability in the learned graphs. None of
these methods utilizes a generative model.

Flow-based methods: Despite these advances, most existing methods are either search-based or rely on
structural constraints but do not leverage a generative modelling perspective. A notable exception is (Ash-
man et al., 2023), which introduces a flow-based auto-regressive model for estimating ADMG structures
with nonlinear relationships. Their method supports both bow-free (N-BF-ADMG-G) and general ADMG
settings (N-ADMG-G), and is capable of modelling latent confounders. However, it lacks latent-variable
disentanglement and does not optimize for structure recovery through generation-based objectives.

3 Methodology
Task overview: In this section, we elaborate the two tasks. First, causal structure learning in the
presence of both observed cause–effect and unobserved confounded relations, using the proposed G-ADMG-
CL model. Second, we extend this framework to prediction and causal inference (denoted G-ADMG-
CL+P), where the learned causal graph supports downstream estimation of treatment effects, such as the
Average Treatment Effect (ATE). This extension integrates the inferred structural knowledge into the decoder
to enable structure-aware prediction and causal inference.

Method overview: We propose G-ADMG-CL, a causality-constrained VAE to jointly learn both directed
and bidirected causal relationships in the presence of latent confounding. The key innovations in our method
are the introduction of dual latent spaces, causality constraint optimization, and a causal annealing strategy
to guide causality learning. Our approach disentangles observed cause–effect interactions from unobserved
confounded associations using these dual latent spaces. To guide structure learning, we propose a causality-
aware objective that incorporates acyclicity, bow-free constraints, and structural regularization. We introduce
a novel causal annealing strategy that gradually enforces causal constraints during training, enabling more
stable and accurate graph recovery. The goal of our method is to learn both edge types simultaneously
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while ensuring that the resulting structure supports robust ADMG structure estimation, is interpretable,
and aligned with the true underlying causal mechanisms.

Causal structure learning: VAE is a popular generative model for learning disentangled latent represen-
tation (Higgins et al., 2017). Its probabilistic formulation allows incorporating constraints in the latent space
while learning and optimizing the loss function. The functional components of this method are illustrated
in Figure 1.

Figure 1: Functional components of the proposed model, featuring dual latent spaces ZD and ZB guided by
the trainable adjacency matrices AD and AB for causal structure learning.

Functional components: The encoder maps the input data into two disentangled latent spaces: the
directed latent space ZD representing observed causal relations, and the bidirected latent space ZB repre-
senting unobserved confounded relations. These latent representations are used to learn two corresponding
trainable adjacency matrices, AD and AB . Causal constraints are incorporated during training to guide the
learning process to ensure meaningful structural recovery. The learned adjacency matrices are fed into the
decoder/generator to reconstruct or generate the predicted data, and to obtain the inferred causal structure,
integrating both observed cause-effect and unobserved confounded relations. The predicted data is further
utilized for causal inference tasks. Additionally, the proposed causal annealing approach further guides the
causal structure learning to enforce causal constraints during training.

Detailed methodology:

Encoder: The encoder uses dual latent spaces to learn the observed and unobserved cause–effect relation-
ships. The directed latent space zdirected (≡ zD) learns the observed causal relationship, and the bidirected
latent space zbidirected (≡ zB) addresses unobserved or confounded relationship. Latent space represen-
tations for both latent spaces are obtained by computing mean µdirected (≡ µD), µbidirected (≡ µB), and
log-variance log σ2

directed, log σ2
bidirected respectively. Latent variables are sampled using the reparameteriza-

tion trick: first ϵ is element-wise sampled from N (0, 1) and then are computed using Eq. 2. We compute
µdirected_guided_Adjacency (≡ µDAD

) and µbidirected_guided_Adjacency (≡ µBAB
) using Eq. 1 to guide zD and zB

using the directed cause–effect relationships encoded in AD and the unobserved confounded relationships
encoded in AB . The aim is to obtain the causally structured latent variables, improving reconstruction and
making the trained model more interpretable by following the cause–effect relationships.

The encoder comprises two fully connected layers (128 and 64 units) with ELU activations; dropout is applied
for regularization.

µDAD
= µdirected ·AD, µBAB

= µbidirected ·AB . (1)

zD = µDAD
+ ϵD ⊙ exp

(
0.5 · log σ2

D

)
, zB = µBAB

+ ϵB ⊙ exp
(
0.5 · log σ2

B

)
, (2)

Decoder: The decoder combines the causally guided dual latent spaces [zD, zB] from the encoder and
reconstructs the given input from the combined latent spaces, retaining the causal and unobserved confounded
relationship among the variables. This reconstructed outcome is further exploited for the prediction task.
The decoder consists of two fully connected layers with 64 and 128 units, respectively, using LeakyReLU
activations and dropout for regularization.
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Generator: The decoder is employed to generate new data samples by passing the latent samples sampled
from a Gaussian distribution.

Loss function (Ltotal) (Eq. (3)): This comprises three components. The first two components are already
well-studied in VAE-based models. We introduce a novel third component, the causal mixed graph loss(
LCausal_ADMG

)
weighted by the λcausal.

The loss function follows the structure of an ADMG. The adjacency matrices AD and AB are learned end-
to-end and are parameterized via trainable weight matrices W1 and W2, respectively. Using this causality
constraint,

(
LCausal_ADMG

)
the training process enforces the structural regularization aligned properties of

ADMGs, and learn causal relationships in the presence of unobserved confounders.

Total Loss:
Ltotal = Lreconstruction + λKL

(
LKL_directed + LKL_bidirected

)
+ λcausal

(
LCausal_ADMG

)
(3)

1. Reconstruction loss: Lreconstruction = ∥x− x̂∥2
2, the mean-squared error (MSE) between input (x)

and reconstructed data (x̂), standard for Gaussian VAEs.

2. KL divergence loss: This is for latent space regularization, where, LKL_directed (Eq. (4)) for the
directed, and LKL_bidirected (Eq. (5)) for the bidirected KL divergence. We apply KL annealing (Fu
et al., 2019), kl_weight (λKL) (a gradually increasing weight) to multiply the KL divergence term
to counter KL-vanishing during the initial training phase and focus primarily on minimizing the
reconstruction error.

λKL · LKL_directed = λKL ·KL (qϕ(zdirected|X) ∥ pθ(zdirected|X)) , (4)
λKL · LKL_bidirected = λKL ·KL (qϕ(zbidirected|X) ∥ pθ(zbidirected|X)) (5)

3. Causal mixed graph loss (LCausal_ADMG): This is for causal structure regularization, with the
causal regularization weight λcausal as shown in Eq. (6), comprises the following components:
LCausal_ADMG = λcycleLcycle(AD) + λbowLbow(AD, AB)

+ λentropy(AD)Lentropy(AD) + λentropy(AB)Lentropy(AB)
+ λasymmetry(AD)Lasymmetry(AD) + λsymmetry(AB)Lsymmetry(AB)

+ λsparsity(AD)Lsparsity(AD) + λsparsity(AB)Lsparsity(AB). (6)

• Acyclicity: Lcycle (Eq. (7)) applies acyclic constraints on AD to prevent cyclic causal structures
among directed latent variables. Minimizing Lcycle enforces acyclicity by penalizing non-zero
trace(eAD ).

• Bow-free: Lbow (Eq. (8)) penalizes simultaneous directed and bidirected edges, restricting vari-
able pairs from sharing both cause-effect and unobserved confounded relations. Lbow(AD, AB)
ensures the bow-free property by suppressing such dual connections.

• Entropy: Lentropy(AD) and Lentropy(AB) (Eq. (9)) maintain variability in latent spaces to
enforce steady learning.

• Symmetry–Asymmetry: Lasymmetry(AD) ensures non-existence of both AD[i, j] and AD[j, i],
while Lsymmetry(AB) ensures simultaneous existence of AB [i, j] and AB [j, i], as AD is asymmetric
and bidirected edges in AB are symmetric (Eq. (10)).

• Sparsity: Reduces noise in both directed AD and bidirected AB adjacency matrices (Eq. (11)).

Lcycle =
∣∣trace(eAD )− d

∣∣ , (d : dimensionAD, AB) (7)

Lbow = α ·

 1
n

∑
i,j

AD[i, j]2
 · β ·

 1
n

∑
i,j

AB [i, j]2
 (8)
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Lentropy(AD) = −
∑

i

p
(AD)
i log p

(AD)
i , Lentropy(AB) = −

∑
i

p
(AB)
i log p

(AB)
i

p
(AD)
i = |AD[i]|∑

j |AD[j]| , p
(AB)
i = |AB [i]|∑

j |AB [j]|

(9)

Lasymmetry(AD) = ∥AD ⊙A⊤
D∥1, Lsymmetry(AB) = ∥AB −A⊤

B∥2
F (10)

Lsparsity(AD) = ∥AD∥1, Lsparsity(AB) = ∥AB∥1 (11)

Causal annealing: We introduce causal annealing, a learning strategy designed to systematically control
the influence of the causal regularisation within the total loss during training, where we keep λcausal a
gradually increasing between 0 to 1 until the causal transition epoch (CTE). At CTE λcausal becomes
1 and remains 1 for the rest of the learning cycle. It helps to learn the data characteristics associated with
the reconstruction and KL divergence components, and then apply the causality constraints. Algorithm 2
describes the causal annealing. The proposed causal annealing has two schedules, one is the default hard
mode, where λcausal remains 0 for e < CTE, and switches to 1 at CTE. To avoid abrupt changes in the
gradient behavior and prevent abrupt instability at transition a relaxed schedule is introduced. In this
relaxed schedule, a relaxed transition epoch et is defined, during which λcausal starts to linearly increase
from 0 at et to 1 at the CTE.

Algorithm 1 Causal Relationships Learning: G-ADMG-CL
1: Input: Data: X ∈ Rn×d with unobserved confounder
2: Output: Reconstructed data X̂, Directed (AD), Bidirected (AB) adjacency matrices

— Encoder Block —
3: Initialize trainable adjacency matrices: (Once at start of training)
4: Directed adjacency matrix: W1 ∼ N (0, 1)d×d

5: Bidirected adjacency matrix: W2 ∼ N (0, 1)d×d

6: Compute directed latent statistics:
7: µD, log σ2

D ← FC layers on X
8: µDAD

← µD ·W1
9: Compute bidirected latent statistics:

10: µB , log σ2
B ← FC layers on X

11: µBAB
← µB ·W2

— Reparameterization —
12: Sample structure aware latent variables using reparameterization:
13: zD ← µDAD

+ ϵD ⊙ exp(0.5 · log σ2
D), ϵD ∼ N (0, 1)

14: zB ← µBAB
+ ϵB ⊙ exp(0.5 · log σ2

B), ϵB ∼ N (0, 1)
15: Concatenate latent representations: z← [zD, zB ]

— Decoder Block —
16: X̂← Decoder(z)

— Adjacency Matrix Estimation (Per-epoch latent-to-adjacency decoding via W1, W2)—
17: AD ← f(zD) = zDW1, AB ← f(zB) = zBW2

— Learning and Optimization —
18: Optimize with causal constraints: as defined in Eq. (3) during training
19: Ltotal = Lreconstruction + λKL(LKL_directed + LKL_bidirected) + λcausalLCausal_ADMG

— Learned Causal Structure —
20: Return AD, AB for evaluation and X̂

Algorithm 1 presents G-ADMG-CL, which learns causal structures with unobserved confounders based on
ADMG, without assuming a known causal graph. The objective function enforces acyclicity and the bow-free
property, ensuring AD remains asymmetric and AB symmetric, while balancing randomness and sparsity.
This method supports applications such as conditional and counterfactual data generation, providing inter-
pretable results through its dual latent spaces and learned adjacency matrices.
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Algorithm 2 Causal Annealing During Training
1: Input: Total epochs E, causal transition epoch CTE, linear transition start epoch et, anneal mode

("hard" or "linear")
2: Output: Causal regularization schedule λcausal for each epoch
3: Initialize λcausal ← 0
4: for epoch e = 1 to E do
5: if anneal_mode == "hard" then
6: if e < CTE then
7: λcausal ← 0
8: else
9: λcausal ← 1

10: end if
11: else
12: if e < et then
13: λcausal ← 0
14: else if e < CTE then
15: λcausal ←

e− et

CTE − et
16: else
17: λcausal ← 1
18: end if
19: end if
20: Update model parameters using λcausal
21: end for

In contrast, other VAE-based causal models, such as CausalVAE (Yang et al., 2021), learn disentangled
causal representations consistent with a prespecified causal graph under the assumption of causal sufficiency,
but they do not perform causal structure discovery or model latent confounding via bidirected edges. (Leeb
et al., 2021) study how to probe causal relations in the latent space of auto-encoders using interventional
assays, focusing on analyzing and manipulating learned representations rather than recovering an ADMG.
Notably, none of these approaches employ a causal annealing strategy like ours.

Causal Inference: We further employ our method to the prediction task as G-ADMG-CL+P to conduct the
causal inference using learned dual latent spaces, [zD, zB]. The learned directed cause-effect and unobserved
confounded relationships from the latent spaces reduce the variability in the average treatment effect (ATE)
(Eq. 12), the difference in the expected effect when the treatment or cause is applied depending on both
observed and unobserved confounders.

ATE = E[Y (1)]− E[Y (0)], (12)

where Y (1), Y (0) represent the outcomes with and without applying the treatment (or cause), respectively.

4 Data

To evaluate our method under varying levels of structural complexity and confounding we consider two
synthetic datasets: Fork Collider (FC) and Erdős–Rényi (ER) and one real-world dataset IHDP for causal
structure identification and causal inference tasks. Additionally, we conduct an early evaluation on the Sachs
protein-signaling data (Sachs et al., 2005) elaborated in Appendix F.

Fork Collider (FC):

We synthesize 4000 samples of this data using the Eq. 13 of the SCM following (Ashman et al., 2023). The
causal graph and adjacency matrices are depicted in Figure 2a. Variables X2, X3 and X3, X4 have bidirected
edges, where u1 and u2 are the respective confounders influencing these pair of variables. The bidirected
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edges are represented by the dotted line, and the directed edges are shown by the solid line.

T = [u1, u2, ϵ1, ϵ2, ϵ3, ϵ4, ϵ5]T ∼ N (0, I),
x1 = ϵ1,

x2 =
√

6 exp(−u2
1) + 0.1ϵ2,

x3 =
√

6 exp(−u2
1) +

√
6 exp(−u2

2) + 0.2ϵ3,

x4 =
√

6 exp(−u2
2) +

√
6 exp(−x2

1) + 0.1ϵ4,

x5 =
√

6 exp(−x2
1) + 0.1ϵ5.

(13)

Erdős–Rényi (ER): We evaluate our method on two ER based synthetic graph configurations: ER(4,6,4)
and ER(12,50,10), with unobserved confounders, where (d, e, m) denote observed nodes, directed, and bidi-
rected edges, respectively, each simulated with 4000 samples. The first configuration, ER(4,6,4), contains
d = 4 variables, e = 6 directed edges, and m = 4 bidirected edges representing a compact graph with
moderate confounding. The second, ER(12,50,10), includes d = 12 variables, e = 50 directed edges, and
m = 10 bidirected edges, modelling a more complex and densely connected structure. These settings are
designed to evaluate the scalability and robustness of our model in recovering both observed and latent
causal relationships under increasing graph density and confounding.

Data are generated using the Eq. (18) (Appendix A), following the ER-based ADMG simulation procedure
described in (Ashman et al., 2023). The corresponding causal graphs and adjacency matrices are illustrated
in Figure 3a. Notably, in these ER settings, directed (solid) and bidirected (dotted) edges often overlap
reflecting realistic scenarios where a pair of variables possessing direct cause–effect relationship may be
influenced by the unobserved common cause.

IHDP: IHDP (Infant Health and Development Program) is a real-world dataset originally introduced by
(Hill, 2011) comprising measurements of infants and their mothers, collected during a randomized experiment.
We adopt the IHDP dataset (Louizos et al., 2017), for the causal inference task, where the goal is to estimate
the effect of home visits by specialists (cause) on the cognitive development of infants (effect). The dataset is
used with 10 replicates, each consisting of a 70% train (IHDP_train) and 30% test (IHDP_test) split, with
a fixed size of 747 individuals per replicate. It includes 19 binary covariates and 6 continuous covariates (e.g.,
birth weight, head circumference), all normalized before training. To incorporate unobserved confounding,
treated individuals with non-white mothers are excluded. Outcomes are simulated based on Setting B
(log-linear response surfaces), and Gaussian exogenous noise is applied.

5 Results

We evaluate the proposed G-ADMG-CL model across both synthetic and real-world datasets to assess its
ability to recover causal structure in the presence of latent confounders and to support causal inference.

5.1 Performance Measure

We evaluate model performance using the following metrics:

F1 Score: The harmonic mean of precision and recall, computed over predicted vs. ground-truth edges
(directed and bidirected separately). It is defined as:

F1 = 2 · Precision · Recall
Precision + Recall (14)

RMSE-ATE: Measures the error in causal inference by computing the root mean squared error between
the predicted average treatment effect (ATE_P) and ground-truth ATE over n samples:

RMSE-ATE =

√√√√ 1
n

n∑
i=1

(ATE_Pi −ATEi)2 (15)
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5.2 Evaluation of G-ADMG-CL

We evaluate the performance of the learned causal structure across different datasets by comparing it with
various established state-of-the-art methods. F1 scores are used to measure the performance. The F1D, F1B
represent the F1 scores obtained for directed cause-effect relationships and for the bidirected unobserved
confounded relations among the variables, respectively.

We compare our method against the following state-of-the-art approaches:

• FCI: Constraint-based method using independence tests to detect confounders.

• CAM-UV: Additive noise model with HSIC tests for hidden variables.

• RCD: Learns linear non-Gaussian models with bidirected edges.

• DCD: Additive causal discovery with structural regularization.

• N-DAG-G: Neural DAG learner assuming no hidden confounding.

• N-ADMG-G: Flow-based ADMG learner capturing latent confounders.

• N-BF-ADMG-G: Flow-based model for ADMGs with bow-free constraints.

Unlike these approaches, our method leverages dual latent space learning with causality constraints to jointly
model both directed and bidirected causal relationships. Additionally, we implement a causal annealing
strategy that enhances performance and training stability, leading to more reliable estimation of latent con-
founding structures. Together, these innovations promote more effective disentanglement of causal directions
and latent confounders, leading to consistent performance gains in both F1D and F1B scores.

We determine the significant edges by applying a best (optimal) thresholding technique presented in Ap-
pendix B (Algorithm 3) to binarize the learned adjacency matrices AD and AB . Appendix B also provides
sensitivity analysis of the best threshold (threshold–F1 score sensitivity curves) and a comparison between
optimal and adaptive thresholding (Algorithm 4), supporting robust and fully data-driven binarization of
both AD and AB . When ground truth is absent, adaptive thresholding serves as a fully data-driven alterna-
tive.

(a) Ground truth causal graph and adjacency matrices. (b) Learned causal graph and adjacency matrices.

Figure 2: Comparison of ground-truth (left) and learned (right) causal graphs for FC. Solid: directed; dashed:
bidirected; red: incorrect edges. Adjacency matrices: ground-truth: AD, AB ; learned: ADL, ABL.

In case of FC, we train the model with 5000 epochs using ADAM optimizer with ExponentialDecay (Good-
fellow et al., 2016) learning rate scheduling. We apply KL annealing with kl_weight (a gradually increasing
weight) until epoch 50 to multiply the KL divergence term to counter KL-vanishing during the initial training
phase and focus only on reconstruction error minimization. The causal transition epoch (CTE) is set to 150
to learn the data distribution and input characteristics well before applying the causal regularization. The
full configuration details are available in the Appendix E (Table 9), along with their sensitivity analysis.

The learned causal graph and adjacency matrices are shown in Figure 2b. All directed cause-effect relations
are correctly identified by the proposed method. For bidirected confounding, the model correctly detects the
edge between X3 and X4, the more complex confounding pattern, since X4 participates in multiple causal
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dependencies, having both a directed and bidirected influence, but misses the ground-truth bidirected edge
X3 ↔ X2 and instead introduces a spurious edge X3 ↔ X1, representing a close confounding approximation
and demonstrating the model’s ability to infer approximate latent structures even in challenging scenarios.
A red edge signifies a relationship absent in the ground truth.

For ER, each dataset ER(4,6,4), and ER(12,50,10) we train the proposed model using the ADAM opti-
mizer with appropriate learning rate scheduling (either ExponentialDecay or CosineDecay), KL annealing
to gradually increase the kl_weight to 1.5, and dataset-specific regularization coefficients. The complete
configuration details, including learning schedules, latent dimensions, and regularization parameters, are pro-
vided in the Appendix E (Table 9). Figure 3a shows the ground-truth ER(4,6,4) causal graph and Figure 3b

(a) Ground truth causal graph and adjacency matrices. (b) Learned causal graph and adjacency matrices.

Figure 3: Comparison of ground-truth (left) and learned (right) causal graphs for ER(4,6,4). Solid: directed;
dashed: bidirected; red: incorrect edges. Adjacency matrices: ground-truth: AD, AB ; learned: ADL, ABL.

shows the corresponding learned structure. CTE plays an important role in the training process.

The comparative results are summarized in Table 1, demonstrating that our method delivers consistently
competitive performance and, in certain scenarios, outperforms state-of-the-art approaches across multiple
datasets. To assess robustness, we further evaluate our method on multiple independently sampled ER
graphs (Appendix C), reporting mean ± std performance over five independent runs in Table 1. A detailed
analysis of worst-case bidirected performance (including ER(12,50,10)), together with limitations and failure
modes, is provided in Appendix G. For fairness and reproducibility, we retain the best-reported values for
all baseline methods.

Table 1: F1 score comparison (F1D: directed, F1B: bidirected) across FC and ER

Method FC ER(4,6,4) ER(12, 50, 10)
F1D F1B F1D F1B F1D F1B

FCI 0.00 0.75 0.50 0.40 0.25 0.33
CAM-UV 0.80 0.67 0.30 0.25 0.38 0.36
RCD 0.00 0.54 0.35 0.35 0.45 0.20
DCD 0.00 0.67 0.25 0.20 0.32 0.18
N-DAG-G 0.50 0.00 0.60 0.00 0.55 0.00
N-ADMG-G 0.49 0.99 0.75 0.60 0.60 0.38
N-BF-ADMG-G 0.64 0.93 0.78 0.80 0.60 0.40
Proposed (G-ADMG-CL) 1.0 (0.00) 0.50 (0.00) 0.84 (0.05) 0.89 (0.03) 0.53 (0.05) 0.41 (0.05)

For the FC dataset, the proposed model achieves perfectly stable recovery with F1D = 1.0(0.00) and F1B =
0.50(0.00) across all runs. The bidirected score of 0.50 corresponds to a close confounding approximation (X3
paired with X1 instead of X2), reflecting subtle latent-dependency ambiguity rather than model instability.
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For the ER dataset, our method achieves the highest F1D score of 0.92 and the highest F1B score of 0.89 on
the ER(4,6,4) graph (Figure 3), effectively recovering both directed and bidirected causal relationships. Av-
eraged across multiple runs, the method attains an F1D score of 0.84 and an F1B score of 0.89 on ER(4,6,4).
On the more complex ER(12,50,10) graph, the model attains a competitive average F1D score of 0.53 (best:
0.58), and an F1B score of 0.41 (best: 0.45), outperforming all baseline methods in detecting unobserved
confounded relationships. These findings demonstrate the robustness of the proposed methodology in dense
and high-dimensional confounding scenarios.

For the protein–signaling dataset (Sachs), Appendix F presents preliminary structure-estimation results
showing the applicability of G-ADMG-CL in a complex biochemical system.

Ablation study: We perform ablation study for the causal relationships learning task.

LCausal_ADMG: The ablation study on causal mixed graph loss LCausal_ADMG, presents the significance of
the proposed causal constraint applied to the loss function of G-ADMG-CL.

FC: We observe that removing causal constraint LCausal_ADMG causes a significant reduction in the perfor-
mance in FC. As a next step to establish the importance of the different components of causal mixed graph
loss like bow-free constraint λbow, symmetry/asymmetry constraints of adjacency matrices, we set their value
to zero to remove their influence. We alter the value of λcycle to a high value to judge its sensitivity, as
depicted in Table 2. This study establishes that all these components significantly impact performance and
play a significant role in causal structure learning.

ER: We observe that removing LCausal_ADMG causes a significant reduction in the performance as depicted
in Table 2. As a next step to establish the importance of the different components of this causal mixed
graph loss we perform the same steps as performed in FC. We notice that the symmetry constraint of AB

plays an important role. ER data has overlapping directed and bidirected edges where bow-free constraint
aims to ensure non overlapping directed and bidirected edges which reduces the impact of the bow effect.
This study also reflects that our method performs well in the presence of overlapping directed and bidirected
edges, that is, when variables have both a direct cause-effect relationship and are influenced by a common
unobserved confounder.

The additional ablation study in Appendix E.2 shows that strong bow-free regularisation and moderate
sparsity improve recovery of both directed and bidirected structures, while excessive regularisation can
degrade performance.

Table 2: Ablation study of LCausal_ADMG and its components using F1 score

Method FC ER(4,6,4)
F1D F1B F1D F1B

Proposed with Ltotal 1.0 0.50 0.92 0.89
Ltotal − LCausal_ADMG 0.50 0.31 0.86 0.78
LCausal_ADMG − Lbow 0.44 0.5 0.86 0.88
LCausal_ADMG − Lsymmetry(AB) 0.66 0.25 0.86 0.82
LCausal_ADMG − Lasymmetry(AD) 0.66 0.5 0.92 0.89
LCausal_ADMG : λcycle = 10 0.57 0.40 0.92 0.89

Ablation study on causal annealing: This study presents the sensitivity of the proposed causal an-
nealing applied to the G-ADMG-CL, the causally constrained VAE. We compare the baseline G-ADMG-CL
without annealing, (λcausal = 0) against G-ADMG-CL with hard causal annealing (λcausal =1). Table 3
presents an ablation study to evaluate the impact of causal annealing.

FC: In this dataset, we observe that using baseline G-ADMG-CL reduces the performance for directed
relationships on the FC dataset (F1D = 0.50) significantly. In contrast, G-ADMG-CL with annealing
achieves the highest directed F1D = 1.00 performance.

11



Published in Transactions on Machine Learning Research (January/2026)

Table 3: Ablation study of causal annealing using F1 score

Method FC ER(4,6,4)
F1D F1B F1D F1B

G-ADMG-CL
(with Causal Annealing) 1.0 0.50 0.92 0.89
G-ADMG-CL
(without Causal Annealing) 0.50 0.50 0.75 0.80

ER: For ER, we notice that using baseline G-ADMG-CL reduces the performance for directed relationships
on the ER dataset (F1D = 0.75) significantly, and (F1B = 0.80). In contrast, G-ADMG-CL with annealing
achieves the highest directed F1D on ER (0.92) and maintains strong bidirected performance (0.89). All
ablation experiments are conducted using the best-performing configuration.

In addition to employing hard causal annealing, early evaluations are conducted using a linear causal-
annealing schedule on the ER(12,50,10) graph, as detailed in Appendix E.2.1. Overall, linear scheduling
demonstrates comparable effectiveness to hard causal annealing.

5.3 Causal Inference
We demonstrate the applicability of our method to a causal inference task using the IHDP dataset.
While we refer to the causal inference extension of our model as G-ADMG-CL+P, we report results and
comparisons using the core model name G-ADMG-CL, consistent with baseline naming conventions. We
first train the model using IHDP_train to obtain the learned directed and bidirected latent representations.
The model is trained for 5000 epochs using the ADAM optimizer, with ExponentialDecay as the learning
scheduler. The initial learning rate is set at 0.001, with decay_steps=1000, and decay_rate = 0.90. To
address KL vanishing, we apply KL annealing, where the KL divergence term is multiplied by a gradually
increasing kl_weight until it reaches 1.5 at epoch 20, allowing the model to focus on reconstruction error
minimization during early training. The dimensionality of both latent spaces zD and zB is set to 50, as this
data is relatively complex. We consider λcycle = 1, λbow = 5, λentropy(AD) = 0.01, λentropy(AB) = 0.001,
λasymmetry(AD) = 0.05, λsymmetry(AB) = 4.75. The causal transition epoch (CTE) is set to 1000 to ensure
that the G-ADMG-CL learns the data distribution and input characteristics well before applying the causal
regularization.

We apply the trained model, G-ADMG-CL, to the IHDP_test for obtaining the predicted outcome ytreated_P,
ycontrol_P as shown in Eq. (16), Eq. (17) using the decoder reconstructed output as described in the
methodology.

model = G-ADMG-CL(IHDP_train) (16)
ytreated_P, ycontrol_P = model.predict(IHDP_test) (17)

Table 4 shows that the proposed method outperforms existing state-of-the-art methods by achieving the
Table 4: Causal inference results using the IHDP dataset

Method RMSE-ATE
FCI 0.13
CAM-UV 0.15
RCD 0.14
DCD 0.16
N-DAG-G 0.12
N-BF-ADMG-G 0.10
G-ADMG-CL 0.031

lowest RMSE-ATE. Since the IHDP does not provide a ground-truth causal graph, the ATE serves as the
most reliable metric for comparing causal structure learning performance.
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For completeness, Appendix H provides a consolidated overview of the supplementary experimental analyses,
including threshold selection, ER reproducibility, hyperparameter sensitivity, causal annealing behaviour,
and early evaluation on the Sachs protein–signaling dataset.

6 Conclusion

We propose a novel VAE-based generative method for learning causal relationships under latent confound-
ing. A key novelty of our architecture is the use of dual latent spaces, which separately encode directed
cause–effect relationships and bidirected latent confounded influences an ability not present in existing VAE-
based causal discovery methods. These latent representations associate with the trainable adjacency ma-
trices AD and AB , enabling ADMG-based structure learning. We introduce the causal mixed-graph loss
LCausal_ADMG to enforce acyclicity and capture bidirected dependencies. Another contribution is the causal
annealing mechanism, which progressively activates causal constraints during training and is absent in prior
causal structure learning approaches. Ablation studies confirm the importance of both components. Our
method, G-ADMG-CL, achieves competitive or improved performance over established baselines, and the
learned structure improves causal inference on real data.

Future work includes exploring annealing schedules (CTE effects) and analyzing directed–bidirected edge
coexistence in complex graphs. Another direction is modelling complex and hierarchical confounders to
improve bidirected recovery under densely confounded graphs. We aim to extend the evaluation of our
method to physics-based simulators such as TriFinger (Wüthrich et al., 2021) and Meta-World (Yu et al.,
2019a), which exhibit rich nonlinear dynamics and multi-object dependencies, providing a challenging testbed
for causal structure learning.
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Appendix

Overview

This appendix provides supplementary analyses and experimental details that support and extend the find-
ings presented in the main paper, organized as follows:

• ER data synthesis (Appendix A): This section describes the ER graph construction, sampling
protocol, and the nonlinear SCM used for training and evaluation.

• Threshold selection and sensitivity analysis (Appendix B): This section first presents the
thresholding algorithms used to binarize the learned adjacency matrices, followed by a sensitivity
analysis showing that directed recovery is robust to threshold variation and that adaptive thresh-
olding provides a fully data-driven alternative when ground truth is unavailable.

• Additional results on ER (Appendix C): This section reports reproducibility analysis for the
ER(4,6,4) and ER(12,50,10) settings, presenting performance across multiple independently sampled
graphs.

• ADMG estimation and causality disclaimer (Appendix D): This section clarifies the as-
sumptions underlying ADMG estimation and the limitations of recovering true latent confounding
structures.

• Hyperparameter sensitivity and training configurations (Appendix E): This section com-
prises the following: Appendix ( E.1) reports the hyperparameter settings used for the synthetic
datasets. Appendix E.2 presents an additional ablation study on the regularisation coefficients,
while Appendix E.2.1 analyses the effect of linear causal annealing, highlighting the impact of bow-
free constraints, sparsity, and annealing schedules.

• Additional experiment: Sachs protein–signaling dataset (early results) (Appendix F):
This section reports preliminary structure-estimation results on the Sachs dataset, illustrating the
applicability of the method to real biochemical data with nonlinear dependencies.

• Discussion on limitations (Appendix G): This section analyses the scope and boundary con-
ditions of the method.

• Summary of experimental results (Appendix H): This section provides a consolidated
overview of the additional experimental studies reported in the Appendix, including threshold anal-
yses, ER reproducibility experiments, hyperparameter ablations, causal annealing schedules, and
real-world evaluation.

A ER Data Synthesis

ER Configuration: The ER-based graphs are generated using three parameters: d, e, and m.

• d: the number of observed variables or nodes in the causal graph,

• e: the number of directed edges representing direct cause-effect relationships,

• m: the number of bidirected edges modeling unobserved confounding between variables.

For example, ER(4,6,4) denotes a 4-variable graph with 6 directed edges and 4 bidirected edges. Similarly,
ER(12,50,10) corresponds to a larger graph with 12 variables, 50 directed edges, and 10 bidirected edges.
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These settings allow us to evaluate how the model performs under increasing structural complexity and the
presence of latent confounders. We use the Eq. 18 to generate ER data.

AD ∼ ER
(

d,
e

d(d− 1)

)
, diag(AD) = 0

AD[i, j] =
{

1 if there is a directed edge from i to j,

0 otherwise.

AB [i, j] ∼ Bernoulli
(

m

d(d− 1)

)
, diag(AB) = 0

AB = triu(AB , 1) + triu(AB , 1)⊤,

: triu extracts the elements above the diagonal,
ϵ ∼ N (0, 0.12), u ∼ N (0, 0.12),

Xi =
∑

p∈PaD(i)

f(Xp) +
∑

q∈PaB(i)

g(uq) + ϵi. (18)

B Threshold Selection and Sensitivity Analysis

In this section, we present the threshold selection method. We also describe the procedure for identifying
the optimal threshold to obtain the best F1 score for the learned adjacency matrices.

B.1 Algorithm for Optimal Threshold Selection

To obtain the best-directed (F1D) and bidirected (F1B) adjacency F1 scores, we employ the method described
in Algorithm 3. Figure 4 illustrates the variation of F1 scores with respect to the threshold values to obtain

Algorithm 3 Optimal Threshold Selection for F1 score
1: Input: Ground truth adjacency matrix A, learned adjacency matrix W , set of thresholds T
2: Output: Best threshold t∗, maximum F1 score F1max
3: F1max ← 0, t∗ ← 0
4: for each threshold t ∈ T do
5: Wbin ← I(|W | ≥ t) ▷ Binarize W at threshold t
6: a← flatten(A) ▷ Convert matrix A to vector
7: w← flatten(Wbin) ▷ Convert Wbin to vector
8: F1t ← F1_score(a, w)
9: if F1t > F1max then

10: F1max ← F1t

11: t∗ ← t
12: end if
13: end for
14: return t∗, F1max

the optimal threshold selection for ER(12, 50, 10). Figure 4a shows the best-obtained F1 score for the directed
adjacency matrix AD, while Figure 4b depicts the best-obtained F1 score for the bidirected adjacency matrix
AB . The optimal (best) threshold, corresponding to the peak F1 value in each curve, is selected as described
in Algorithm 3. The optimal threshold selection plots for the directed and bidirected adjacency matrices
on the FC dataset are shown in Figure 5, highlighting the threshold values that yield the highest F1 score
for each edge type.
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(a) Obtained best F1 score for learned AD . (b) Obtained best F1 score for learned AB .

Figure 4: Optimal threshold selection for ER(12, 50, 10).

(a) Obtained best F1 score for learned for AD. (b) Obtained best F1 score for AB .

Figure 5: Optimal threshold selection for FC.

Sensitivity analysis of thresholding: This sensitivity analysis is conducted on a random ER graph
ER(12, 50, 10). Once trained, the threshold parameter is varied to analyze F1 score stability.

The model is evaluated across multiple threshold ranges, as shown in Table 5. Reported are the best-directed
(AD) and bidirected (AB) F1 scores with their corresponding optimal thresholds (τD, τB). The final row
shows mean ± standard deviation across all settings.

In this example, across all threshold ranges, the directed-edge (AD) F1 scores exhibit a mean of 0.517±0.006,
confirming stable directed structure learning with only minor numerical fluctuation. Although their standard
deviation is slightly higher than that of the bidirected edges, the corresponding optimal thresholds (τD =
0.04± 0.01) remain narrowly concentrated, demonstrating strong robustness to threshold perturbation.

For the bidirected edges (AB), the mean F1 score of 0.346± 0.005 shows slightly lower numerical variation
but a wider threshold spread (τB = 0.34± 0.11), reflecting moderate sensitivity due to latent confounding.

Overall, these results confirm that the learned adjacency matrices remain quantitatively stable under thresh-
old variation, with directed relations showing consistent robustness and bidirected ones exhibiting moderate
sensitivity linked to confounding effects.

In Figure 6 each pair of subplots shows the variation of F1 scores with changing binarization thresholds for
(top) directed edges (AD) and (bottom) bidirected edges (AB). Directed F1 score remains consistently
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Table 5: Threshold sensitivity analysis on ER(12, 50, 10).

Count Threshold Range Best F1D τD Best F1B τB

1 0.01–0.50 0.507 0.05 0.341 0.33
2 0.02–0.50 0.519 0.02 0.348 0.57
3 0.03–0.50 0.519 0.03 0.352 0.25
4 0.04–0.50 0.519 0.04 0.341 0.33
5 0.01–0.60 0.522 0.04 0.348 0.24

Mean ± SD — 0.517 ± 0.006 0.04 ± 0.01 0.346 ± 0.005 0.34 ± 0.11

(a) 1: AD (b) 2: AD (c) 3: AD (d) 4: AD (e) 5: AD

(f) 1: AB (g) 2: AB (h) 3: AB (i) 4: AB (j) 5: AB

Figure 6: Optimal threshold selection for threshold sensitivity analysis on ER(12, 50, 10).

around 0.5 across small threshold shifts (0.02–0.05), while bidirected F1 score peaks near 0.3 for thresholds
between 0.25–0.33, confirming stable causal discovery under latent confounding. In all experiments, the best
threshold is selected by varying over a fixed grid of candidate values shared across datasets, without any
manual per-dataset tuning.

B.2 Adaptive Thresholding

In realistic scenarios where the ground-truth causal graph is unavailable, the adaptive threshold mechanism
(Algorithm 4) offers a principled alternative for threshold selection. However, since state-of-the-art methods
typically report their best-obtained performance, we also compare against their best-achieved results to
ensure fairness. As shown in Table 6, adaptive thresholding yields consistent F1 scores across runs, that are
broadly consistent with best-threshold selection. The directed structure (AD) demonstrates high stability
(mean F1D = 0.508 vs. 0.536), while the bidirected component (AB) shows moderate variability due to
sensitivity to latent confounding density.

Table 6: Comparison of adaptive vs. best threshold F1 scores for directed (AD) and bidirected (AB) for
different ER(12,50,10) graphs.

Run Adaptive F1D Adaptive F1B Best F1D Threshold (τD) Best F1B Threshold (τB)
1 0.508 0.304 0.516 0.12 0.333 0.29
2 0.492 0.348 0.507 0.05 0.341 0.33
3 0.525 0.304 0.586 0.05 0.308 0.26

Mean 0.508 0.319 0.536 0.07 0.327 0.29
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Algorithm 4 Adaptive Thresholding for Unsupervised Binarization
1: Input: Learned adjacency matrix W , spread threshold η, scaling factor τ
2: Output: Binary adjacency matrix Wbin
3: Wabs ← |W | ▷ Take element-wise absolute value
4: wmax ← max(Wabs), wmed ← median(Wabs)
5: s← wmax

(wmed + 10−8) ▷ Compute spread ratio

6: if s ≤ η then
7: θ ← wmed
8: else
9: θ ← τ · wmax

10: end if
11: Wbin ← I(|W | ≥ θ) ▷ Binarize adjacency matrix
12: return Wbin

Reliability verification on thresholding methods: To ensure robustness of the proposed structure
learning, we further performed reliability testing on the FC dataset, which has a fixed causal graph. We
compared three thresholding strategies: absolute value cutoff (|W |max ≥ 0.45), adaptive thresholding, and
best threshold search and observed consistent results across all settings. This confirms that the learned
adjacency patterns remain stable under different thresholding criteria and that the proposed G-ADMG-CL
framework yields reproducible causal structures across multiple evaluation protocols.

C Additional Results on ER

In this section we provide reproducibility analysis for the ER(4, 6, 4) and ER(12, 50, 10) configurations.
Each run corresponds to a new random graph sampled under the respective ER settings. Table 7 and Table 8
report F1 scores across five such runs. Notably, the bidirected recovery remains relatively stable across

Table 7: Additional results for ER(4,6,4) dataset with five independent graphs.

Run F1D F1B

1 0.800 0.933
2 0.800 0.842
3 0.857 0.880
4 0.800 0.889
5 0.920 0.889
Mean ± Std 0.835 ± 0.051 0.887 ± 0.031

Table 8: Additional results for ER(12, 50, 10) with five independent graphs.

Run F1D F1B

1 0.576 0.316
2 0.589 0.450
3 0.538 0.414
4 0.510 0.450
5 0.452 0.424
Mean ± Std 0.533 ± 0.049 0.411 ± 0.052

runs, highlighting the robustness of our model in consistently capturing latent confounding even in dense,
high-dimensional graphs such as ER(12,50,10).
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D ADMG Estimation and Causality Disclaimer

ADMGs provide a principled framework for representing causal structure under latent confounding; how-
ever, learning a causal graph from observational data alone is fundamentally limited (Peters et al., 2017;
Pearl & Bareinboim, 2014). Continuous-optimization approaches cannot guarantee recovery of the exact
ground-truth SCM, since multiple ADMGs may induce the same observational distribution (Markov equiv-
alence) (Spirtes et al., 2000), and the placement of latent confounders may remain ambiguous.

In alignment with prior work (Ashman et al., 2023), we follow ADMG structure estimation assumptions
that allow for latent confounding, offering identifiability criteria for ADMGs in nonlinear additive-noise
SCMs, although it does not ensure the structural identifiability of the underlying magnified SCM. Within
this framework, each variable is represented as a nonlinear function of its direct causes, combined with
independent noise and exogenous latent confounders, with no interaction effects between the observed and
latent.

While these assumptions provide theoretical grounding, practical recoverability may still be limited when
real data violate the additive-noise or independence conditions. Accordingly, the proposed method learns one
ADMG structure that is consistent with the observed data; however, it does not constitute definitive causal
proof, rather, the learned graph should be interpreted as a plausible causal hypothesis obtained through
robust ADMG estimation, supported by the data and the adopted modelling assumptions.

E Hyperparameter Sensitivity and Training Configurations

E.1 Training Configurations for Synthetic Datasets

We present the training configuration table for the synthetic data FC and ER below Table 9.

Table 9: Training configurations for FC, ER(4,6,4), and ER(12,50,10) experiments. Hyperparameters include
KL annealing, learning rate schedules, and regularization weights (λ) for entropy, symmetry, cycle, and bow-
free constraints.

Setting FC ER(4,6,4) ER(12, 50, 10)
Epochs 5000 3000 2000
Optimizer ADAM ADAM ADAM
Learning Rate Schedule ExponentialDecay CosineDecay ExponentialDecay
Initial Learning Rate 0.001 0.001 0.001
Decay Steps 1000 1000 64
Decay Rate 0.90 – 0.98
Minimum Learning Rate (α) – 1× 10−5 –
KL Annealing End Epoch 50 100 800
Final kl_weight 1.5 1.5 1.5
Latent Dimension zdir: 24, zbidir: 24 24 36
λcycle 1 7 5
λbow 5 5 5
λentropy(AD) 0.005 0.001 0.001
λentropy(AB) 0.01 0.01 0.001
λasymmetry(AD) 0.05 0.05 0.05
λsymmetry(AB) 0.5 1.5 1.75
λsparsity(AD) 0.001 0.001 0.001
λsparsity(AB) 0.02 0.001 0.001
Causal Transition Epoch (CTE) 150 150 1000
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E.2 Additional Ablation Study

λbow sensitivity: We first tune λbow to enforce bow-freeness.

We performed an ablation over the bow-free coefficient λbow on the FC data, varying it in [1.0, 5.0], depicted
in Figure 7. The F1D increased with λbow and peaked at λbow ∈ {4.0, 5.0} (F1D = 1.0), confirming that a
sufficiently strong bow-free constraint is beneficial. We therefore fix λbow = 5.0 in all main experiments and
report the sensitivity curve.

Figure 7: Sensitivity of F1D to the bow-free regularization coefficient (λbow) on the FC dataset. The model
achieves the highest F1D at λbow ∈ {4, 5}, confirming that moderate penalization yields optimal separation
between directed and bidirected dependencies.

Sparsity sensitivity: We further analyze the effect of the sparsity coefficient λsparse on the bidirected
weight matrix W2 using the FC dataset. As shown in Table 10, the directed-edge accuracy (F1D) remains
consistently perfect across all values, while the bidirected F1B improves slightly with higher sparsity, peaking
at λsparse ∈ {0.02, 0.03} (F1B = 0.5). Higher sparsity (0.04) begins to prune true directed edges. This indi-
cates that moderate sparsity encourages better disentanglement of confounded relations without degrading
directed structure recovery.

Table 10: Effect of sparsity coefficient on structure recovery (FC dataset).

λsparse F1D F1B

0.005 1.0 0.4
0.01 1.0 0.4
0.02 1.0 0.5
0.03 1.0 0.5
0.04 0.8 0.5

Guidelines for setting structural hyperparameters: In practice, we tune λbow first to ensure bow-
freeness, then adjust λsparse and λentropy. For datasets with structured and sparse confounding (e.g., FC), a
moderate increase in λ

(B)
sparse helps suppress weak spurious links while keeping F1D stable. Excessively large

λcycle should be avoided, as it can remove genuine directed dependencies.

For the directed adjacency AD, we keep the entropy weight low to avoid randomization of edges, and use
sparsity with a balanced ratio between sparsity and entropy:

ρD ≜
λ

(D)
sparse

λ
(D)
entropy
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This keeps AD parsimonious without injecting noise; excessively high sparsity or entropy can hamper the
recovery of true directed relations.

For the bidirected adjacency AB, the choice of sparsity depends on the nature of the latent confounding.
When confounding is sparse and structured (e.g., FC), a higher λ

(B)
sparse improves disentanglement of true

bidirected edges. However, for dense and randomly distributed confounding patterns (as in ER(12,50,10)), a
smaller sparsity weight is preferred, because strong sparsity prunes true confounding edges and destabilizes
symmetry, leading to degraded F1 performance. Thus, sparsity must be tuned per dataset rather than using
a global value.

Symmetry–asymmetry balance: To preserve the structural properties of ADMGs, the symmetry regu-
larization on AB must dominate the asymmetry penalty on AD:

λ
(B)
symmetry > λ

(D)
asymmetry.

This enforces a clean separation between directed and bidirected components, preventing leakage of asym-
metric patterns into AB and avoiding spurious symmetric patterns in AD. In practice, we choose
λ

(B)
symmetry ∈ [1.0, 5.0] and λ

(D)
asymmetry ∈ [0.05, 0.1], maintaining a stable ratio that empirically improves

identifiability.

In practice, we first tune λbow to enforce bow-freeness, then choose (λ(D)
sparse, λ

(D)
entropy) with ρD≈1 and a small

absolute entropy weight, and finally adjust (λ(B)
sparse, λ

(B)
entropy) to control the density of AB when graphs are

potentially complex.

A more exhaustive sparsity–sensitivity analysis across a wider range of graph families and real-world datasets
is beneficial, and we identify this as an important direction for future work.

Over-sparsification effect: While moderate sparsity (λsparse ∈ [0.01, 0.03]) preserves perfect directed
recovery on FC (F1D = 1.0) and slightly improves F1B , a higher value (λsparse = 0.04) reduces F1D to 0.8,
indicating over–sparsification. This confirms a trade-off: excessive sparsity can prune true directed edges.
Accordingly, λ

(D)
sparse ≤ 0.03 and recommend separate sparsity terms for directed and bidirected components,

tuning λ
(B)
sparse independently when confounding is complex.

Practical observation during training: In real-world scenarios, the true causal structure is unknown,
and direct F1-based evaluation is infeasible. In such cases, monitoring the evolution of the learned adjacency
matrices AD and AB during training provides useful qualitative guidance. Stable directed adjacency patterns
with low entropy indicate convergence toward interpretable causal relations, whereas excessive sparsity or
rapidly fluctuating weights suggest over-regularization or noisy learning. Hence, users can rely on the relative
stability and sparsity of AD and AB as proxies to tune λsparse and λentropy when ground truth graphs are
unavailable.

E.2.1 Linear Causal Annealing (Initial Study on ER(12,50,10))

In addition to hard causal annealing (used in all main experiments), we conducted preliminary tests with a
linear causal–annealing schedule on the more complex ER(12,50,10) graph, where the causal-regularization
weight is kept at 0 for the first 500 epochs, then increased linearly over 1000 epochs, and finally fixed at 1.
Across two independent batches of experiments linear causal annealing yields directed-edge F1 values in
the range 0.45–0.57 and bidirected-edge F1 in the range 0.26–0.40. These values are comparable to those
obtained under hard annealing, indicating that the linear schedule does not provide a systematic performance
benefit under the current configuration.

Overall, the linear schedule yields performance very similar to that of hard causal annealing, with no
significant or systematic improvement. This suggests that the proposed hard annealing scheme is already
sufficiently stable for structure learning in practice. However a more exhaustive exploration of nonlinear
annealing schedules (e.g., cosine or exponential warm-up) is a promising direction for future work but remains
outside the scope of the current revision.
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F Additional Experiment: Sachs Protein-Signaling Dataset (Early Results)

We further conducted preliminary experiments on the well-known Sachs protein-signaling dataset (Sachs
et al., 2005), which models biochemical interactions among 11 observed variables (PKC, P38, Jnk, PKA,
Raf, Mek, Erk, Plcg, PIP2, PIP3, Akt). The original dataset does not explicitly include latent confounders,
but in practice, unmeasured experimental factors may introduce confounding effects. The dataset remains
a widely used real-world benchmark for real-world causal structure discovery.

Sachs provides a curated directed graph but does not define ground-truth bidirected edges. Following prior
causal-discovery practice, we construct a minimal heuristic reference set capturing known co-regulation
patterns purely for qualitative assessment. Thus, F1B should be interpreted as an indicator of latent-
dependency capture, not as strict accuracy.

Ground-truth edges: The directed edges used for evaluation are:

PKC→ {P38, Jnk, Raf, Mek}, PKA→ {Jnk, Raf, Mek, Erk, Akt},
Raf→ Mek, Mek→ Erk, Plcg→ PIP2, PIP2→ PIP3, PIP3→ Akt.

Heuristic shallow bidirected reference edges (used only for qualitative comparison):

{PKC↔ Jnk, PKC↔ PIP3, Raf↔ Erk, Mek↔ Akt}.

As an early evaluation result on the Sachs dataset, the proposed G-ADMG-CL model achieves a directed-edge

Table 11: Recovered directed and bidirected edges on the protein–signalling network using G-ADMG-CL
(evaluated against the ground-truth adjacency AD used in our implementation).

Edge Type Recovered Edge
Directed Edges
Correct PKC → Jnk
Correct PKA → Mek
Correct PKA → Erk
Correct PKA → Akt
Correct PIP3 → Akt
Spurious Jnk → Erk
Spurious Mek → PIP3
Spurious Plcg → Raf
Spurious PIP3 → P38
Spurious Mek → PIP3
Spurious Akt → Plcg
Bidirected Edges
Correct (heuristic) Raf ↔ Erk
Spurious P38 ↔ Jnk
Spurious PIP2 ↔ P38
Spurious PKC ↔ Akt
Spurious PKC ↔ Plcg
Spurious Mek ↔ Plcg
Spurious Multiple weak cross-links

recovery of F1D = 0.387 at threshold 0.41 and a bidirected-edge recovery of F1B = 0.117 at threshold 0.05
after training for 150 epochs with CTE = 50. For these experiments, we set the structural regularisation
weights to λcycle = 1 and λbow = 5. A stronger sparsity weight is applied to the bidirected component
(λsparsity(AB) = 0.1) because increased sparsification helps suppress spurious bidirected links while preserving
the directed structure, whereas a lower weight (λsparsity(AD) = 0.001) is used for the directed component,
following the hyperparameter guidelines in Appendix E. To assess binarisation on real data. Figure 8 presents
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(a) Directed (W1 vs AD) F1 score vs threshold. (b) Bidirected (W2 vs AB) F1 score vs threshold.

Figure 8: Optimal threshold analysis on the Sachs protein–signaling dataset

the optimal threshold curves for the Sachs dataset, and Table 11 reports the corresponding structure–recovery
metrics.

These preliminary findings suggest that the proposed G-ADMG-CL framework is generalizable to real-
world biochemical systems.

G Discussion on Limitations

Shallow vs. complex confounded associations: The model reliably captures structured shallow con-
founding, including nodes that simultaneously participate in both directed causal and latent confounded
relations, exemplified by the FC variable x4. Recovering such mixed-role variables demonstrates the capac-
ity of G-ADMG-CL to capture observed and unobserved causal relations within a unified ADMG framework.
The method further maintains robust directed recovery in dense, high-dimensional settings, as evidenced
by the ER(12,50,10) graph where it achieves an average F1D = 0.53, outperforming existing ADMG learners
under comparable conditions. Performance degradation may arise under extremely dense overlapping con-
founding where many variables share entangled latent causes, while directed edges remain stable, indicating
graceful degradation of AB estimation.

Case study on ER(12,50,10): To examine latent confounding recovery in detail, we analyze one rep-
resentative ER(12,50,10) graph, where the model achieves F1D = 0.584 and F1B = 0.308. Shallow con-
founding denotes pairwise hidden causes (e.g., X2 ↔ X5), whereas complex confounding arises when
multiple variables share overlapping latent dependencies. As shown in Table 12, the proposed method recov-
ers most shallow confounding relations (e.g., X1 ↔ X9, X5 ↔ X6). In multi-variable settings (e.g., among
X5, X10, X11), additional weak bidirected links appear, explaining the moderate F1B = 0.308 despite high
recall.

Worst-case bidirected performance: Across multiple independently sampled ER graphs, when con-
founding signals are weak, diffuse, or overlap with directed edges, bidirected recovery enters a worst-case
regime. The ER(12,50,10) setting (F1B = 0.308) is representative of this behaviour, where densely entangled
latent structures make it difficult to distinguish true shared confounders from residual dependence. Directed-
edge recovery remains stable, while bidirected estimation degrades gradually, providing an empirical lower
bound on the ability to recover complex latent confounding from observational data alone.

Limitations and failure modes: As with other continuous optimization-based causal discovery ap-
proaches, such as NOTEARS and DAG-GNN, our framework does not ensure unique recovery of the true
underlying structural causal model across all possible data-generating processes. Rather, its objective is to
achieve precise estimation of ADMGs.
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Table 12: Comparison of ground truth vs. learned confounding relations at τB = 0.26

Pair (Xi ↔ Xj) GT Learned Match
X1 ↔ X9 1 1 ✓
X1 ↔ X12 1 1 ✓
X5 ↔ X6 1 1 ✓
X5 ↔ X7 1 1 ✓
X5 ↔ X10 1 0 ×
X6 ↔ X2 1 1 ✓
X6 ↔ X3 1 1 ✓
X7 ↔ X5 1 1 ✓
X7 ↔ X8 1 1 ✓
X7 ↔ X12 1 1 ✓
X9 ↔ X1 1 1 ✓
X10 ↔ X5 1 0 ×
X10 ↔ X11 1 1 ✓
X11 ↔ X10 1 1 ✓
X12 ↔ X1 1 1 ✓
X12 ↔ X7 1 1 ✓

Total Correct 16 14 87.5%

As outlined below following practical failure modes may affect the recoverability of both the directed adja-
cency matrix AD and the bidirected adjacency matrix AB .

1. Weak causal effects: When directed causal effects are small relative to noise, the induced statistical
dependencies become insufficient for reliable detection, reducing the recoverability of edges in AD.

2. Near-deterministic relationships: Extremely strong or near-deterministic functional relation-
ships can collapse latent variability, leading to edge misclassification or spurious bidirected connec-
tions in AB .

3. Overlapping latent confounders: When multiple latent confounders induce similar covariance
patterns, the model may attribute confounding to incorrect variable pairs. In such cases, true
bidirected edges in AB may be misinterpreted as weak directed edges in AD, producing ambiguity
between the two edge types.

4. Highly correlated parents: If several parents of a child variable exhibit strong correlation, the
resulting dependence patterns may be statistically indistinguishable without interventions, creating
unavoidable ambiguity in both AD and AB .

These limitations reflect inherent challenges of observational causal discovery.

H Summary of Experimental Results

In addition to the robustness demonstrated in the main paper, this section provides a consolidated summary
of the experimental studies and analyses reported in the Appendix.

• Threshold sensitivity and adaptive thresholding (Appendix B): We conduct sensitivity
analysis on optimal (best) threshold selection to analyze F1 score stability. Directed structure
recovery is robust to threshold variation, whereas bidirected recovery is more sensitive. Adaptive
thresholding provides a fully data-driven alternative that performs comparably to best-threshold
selection when ground truth is unavailable. We further verify threshold reliability using absolute-
value cutoff, adaptive thresholding, and best-threshold selection, observing consistent results across
all settings on the FC dataset.
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• Additional results on ER graphs (Appendix C): Reproducibility analysis for the ER settings
is described in this section, illustrating the consistent capture of latent confounding even in dense,
high-dimensional settings, such as ER(12,50,10).

• Additional ablation study (Appendix E.2): We conduct an additional ablation study on
the regularisation coefficients to analyse hyperparameter sensitivity. Increasing the bow-free regu-
larisation coefficient λbow improves directed edge recovery, with optimal results at λbow ∈ {4.0, 5.0};
λbow = 5.0 is used in subsequent experiments. For sparsity (λsparse), moderate values ∈ {0.02, 0.03}
enhance bidirected F1 without harming directed accuracy, while higher sparsity (0.04) removes true
edges, revealing a trade-off between interpretability and robustness. Separate sparsity terms for di-
rected and bidirected matrices are recommended, particularly under complex confounding. Practical
guidelines include tuning λbow first, balancing sparsity and entropy for directed edges, and setting
bidirected sparsity according to dataset-specific confounding. Symmetry regularisation should dom-
inate asymmetry penalisation to ensure clear separation of dependency types. Monitoring adjacency
matrix evolution during training provides useful diagnostics when ground truth is unavailable.
Overall, strong bow-free regularisation and moderate sparsity support accurate graph recovery,
whereas excessive regularisation degrades performance.

• Causal annealing schedules (Appendix E.2.1): Linear causal annealing achieves performance
comparable to hard annealing across ER settings, indicating robustness w.r.t the annealing strategy.

• Additional experiment on Sachs protein–signaling dataset (early results(Appendix F)):
An early evaluation is performed on the Sachs protein–signaling dataset, the model recovers mean-
ingful directed relationships consistent with known biological pathways, while bidirected edges are
interpreted qualitatively due to the absence of ground-truth confounding annotations.

• Shallow vs. complex confounding and worst-case analysis (Appendix G): The analysis in-
dicates that the model captures shallow and structured confounding, including variables with both
directed and bidirected roles (e.g., FC x4). Performance degradation may arise under extremely
dense overlapping confounding, while directed edge recovery remains robust and bidirected estima-
tion degrades gracefully.
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