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ABSTRACT

Vision-language models offer strong few-shot capability through prompt tuning
but remain vulnerable to noisy labels, which can corrupt prompts and degrade
cross-modal alignment. Existing approaches struggle because they often lack the
ability to model fine-grained semantic cues and to adaptively separate clean from
noisy signals. To address these challenges, we propose NA-MVP, a framework for
Noise-Aware few-shot learning through bi-directional Multi-View Prompt align-
ment. NA-MVP introduces three key innovations: multi-view prompts with un-
balanced optimal transport alignment that enable fine-grained patch-to-prompt
matching while suppressing unreliable regions and reinforcing clean correspon-
dences; a bi-directional prompt design that jointly models clean-oriented and
noise-aware semantics to disentangle useful signals from corrupted ones; and
adaptive sample refinement with optimal transport that employs a learnable thresh-
old to correct mislabeled samples while preserving reliable data. Experiments
on both synthetic and real-world noisy datasets demonstrate that NA-MVP con-
sistently outperforms state-of-the-art baselines, highlighting its effectiveness for
robust few-shot learning under noisy supervision.

1 INTRODUCTION

Vision-language models (VLMs), such as CLIP (Radford et al., 2021), have significantly advanced
multimodal understanding by embedding visual and textual information into a shared semantic
space. This powerful alignment facilitates a wide range of downstream tasks through prompt learn-
ing, which optimizes a set of learnable textual embeddings to guide predictions while keeping the
backbone parameters frozen (Zhou et al., 2022b;a). Prompt learning is particularly attractive in few-
shot and resource-limited settings due to its parameter efficiency, modularity, and rapid adaptability.
Despite these advantages, VLMs remain vulnerable in real-world applications where label noise is
prevalent, which can severely mislead prompt optimization and degrade model robustness.

Recent studies show that prompt learning can be resilient to label noise, motivating its integration
with learning with noisy label methods (Wu et al., 2023). Existing approaches include negative
learning (Sun et al., 2022; Wei et al., 2024) and noisy label selection (Guo & Gu, 2024; Pan et al.,
2025), but they still face key limitations, as illustrated in Figure 1. First, prompt expressiveness
is constrained, since most methods employ only one or two learnable prompts (a positive and a
negative pair) (Wu et al., 2023; Wei et al., 2024), enforcing a single-view alignment that cannot
capture diverse and fine-grained cues. Intuitively, a comprehensive understanding of an image often
depends on observing it from multiple viewpoints. Second, assigning an explicit negative label
to each image imposes a rigid supervision signal tied to a pre-specified counter class, which can
bias prompt learning under asymmetric or class-dependent noise and under-represent the diversity
of corrupted patterns. Third, denoising is typically coarse, with labels refined using confidence-
based rules or pseudo labels that ignore inter-sample dependencies and the global semantic structure,
allowing errors to propagate rather than be selectively suppressed.

To address the challenges of limited prompt expressiveness and inaccurate label refinement, we pro-
pose NA-MVP, a framework tailored for few-shot learning under noisy labels. NA-MVP couples
multi-view, fine-grained patch-to-prompt alignment with Unbalanced Optimal Transport (UOT) to
align local CLIP features with prompts, emphasize semantically relevant regions, and suppress noisy
content. It then adopts a bi-directional prompt architecture in which each class uses clean-oriented
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Figure 1: Limitations of existing prompt learning approaches under noisy labels. Single-view re-
liance: Limited prompts miss diverse visual patterns. Explicit negatives: Fixed negatives impose
rigid supervision. Fixed threshold: Coarse denoising lets noise propagate.

and noise-aware prompts optimized jointly while treating non-target classes as implicit negatives,
enriching semantic coverage and maintaining prompt diversity. Finally, a prompt-guided selective
label refinement module employs a learnable threshold derived from bi-directional alignment signals
to identify likely mislabeled samples, and only those are corrected via classical Optimal Transport,
preserving reliable labels and stabilizing training. Because the multi-view and bi-directional com-
ponents are tightly coupled aspects of our prompt design, we present them together in the method
section. Our main contributions are summarized as follows:

• We propose multi-view prompt learning with Unbalanced Optimal Transport under noisy
labels, achieving fine-grained patch-to-prompt alignment that downweights unreliable re-
gions and strengthens clean matches.

• We introduce a bi-directional prompt design that jointly learns clean-oriented and noise-
aware prompts to provide complementary semantics, maintain diversity, and separate clean
from corrupted signals.

• We develop prompt-guided selective label refinement with classical Optimal Transport,
using a learnable threshold from bi-directional alignment to refine only likely mislabeled
samples while preserving clean labels.

• We validate NA-MVP on multiple benchmarks and noise settings, showing consistent gains
and robustness under noisy supervision.

2 RELATED WORK

Learning with noisy labels. LNL presents a significant challenge in training models that general-
ize well without overfitting to noisy labels. Existing approaches include robust loss functions (Zhang
& Sabuncu, 2018; Wang et al., 2019; Ma et al., 2020; Wei et al., 2023), loss correction (Chang et al.,
2017; Arazo et al., 2019; Xia et al., 2019), robust noise regularization (Wei et al., 2020; 2021; Is-
cen et al., 2022; Ko et al., 2023), and sample selection (Kim et al., 2021; Karim et al., 2022; Feng
et al., 2023; Huang et al., 2023; Li et al., 2023; Xu et al., 2023; Wei et al., 2024). Sample selec-
tion methods often rely on the small-loss criterion, with a risk of mistakenly discarding clean hard
samples and retaining noisy ones. Label correction strategies, like MLC (Zheng et al., 2021) and
SELC (Lu & He, 2022), aim to correct noisy annotations by generating pseudo-labels from model
predictions. However, these methods typically process each sample independently, overlooking the
relationships between data points, which can lead to suboptimal corrections. To better exploit global
structure, recent works (Xia et al., 2022; Feng et al., 2023) use OT to align noisy and clean label
distributions, while CSOT (Chang et al., 2023) further incorporates intra-distribution relationships
for improved pseudo-labeling. Recently, prompt learning has shown promise in noisy settings (Wu
et al., 2023; Wei et al., 2024). For instance, NLPrompt (Pan et al., 2025) uses a prompt-based OT to
distinguish clean and noisy samples by aligning vision-language features. Building on these ideas,
we propose multi-view prompt learning with optimal transport for noisy label learning. By leverag-
ing pre-trained vision-language models, NA-MVP enhances sample selection and feature alignment,
enabling robust training under label noise.
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Prompt Learning in Vision-Language Models. Prompt learning, initially developed in natural
language processing, has become a key technique in VLMs (Jia et al., 2021; Radford et al., 2021;
Yu et al., 2022). Early models like CLIP used hand-crafted prompts, but recent methods focus on
learning continuous prompts. CoOp (Zhou et al., 2022b) introduced learnable prompts in the contin-
uous embedding space, with CoCoOp (Zhou et al., 2022a) further adapting these prompts for each
image, improving generalization to unseen classes. This shift has inspired numerous studies (Shu
et al., 2022; Derakhshani et al., 2023; Khattak et al., 2023a;b; Liu et al., 2023; Roy & Etemad, 2023;
Zhu et al., 2023) to enhance prompt learning. It has been successfully applied to a variety of tasks,
such as robust learning (Wu et al., 2023; Pan et al., 2025; Wei et al., 2024), semantic segmenta-
tion (Lüddecke & Ecker, 2022; Rao et al., 2022), and federated learning (Guo et al., 2023; Yang
et al., 2023; Li et al., 2024). However, learning a single prompt (Zhou et al., 2022b) overlooks the
diversity of visual representations. Recent works (Chen et al., 2022; Lu et al., 2022; Sun et al.,
2022) have explored multiple prompts to address this. For example, CLIPN (Wang et al., 2023) uses
positive and negation prompts for out-of-distribution detection. EMPL (Sun et al., 2022) gener-
ates multiple prompt embeddings through an energy-based distribution, improving open-vocabulary
generalization. In contrast, our method constructs learnable multi-view prompts in a bi-directional
manner, combining clean-oriented and noise-sensitive representations to jointly model reliable se-
mantics and potential label noise patterns. This design enables the model to capture richer class
characteristics and improves its robustness under noisy supervision.

Optimal Transport. OT provides a principled way to compare probability distributions by finding
the most efficient mapping between them at a given cost. It defines the Wasserstein distance (Peyré
et al., 2019) and has been widely adopted in machine learning and computer vision. However, the
high computational complexity of OT was a bottleneck until Cuturi introduced entropic regular-
ization, enabling efficient computation via the Sinkhorn algorithm (Distances, 2013). To improve
flexibility, UOT (Lombardi & Maitre, 2015; Chizat et al., 2018) was introduced, replacing the strict
mass conservation constraint in classical OT with soft penalization terms (Frogner et al., 2015; Lahn
et al., 2023). These advances have enabled OT to support a wide range of applications, including
semi-supervised learning (Taherkhani et al., 2020; Lai et al., 2022; Wang et al., 2022), object de-
tection (Ge et al., 2021; Yang et al., 2021; De Plaen et al., 2023), generative models (Balaji et al.,
2020; Daniels et al., 2021; Choi et al., 2023), domain adaptation (Chang et al., 2022; Wang et al.,
2024), learning with noisy labels (Feng et al., 2023; Chang et al., 2023) and others. Building on
these advances, our method adopts UOT with relaxed mass constraints to align local image fea-
tures with multi-view prompts, allowing the model to focus on reliable features while suppressing
noise. Meanwhile, classical OT with strict mass preservation is used to refine noisy labels by align-
ing global image features with class-level prompts, ensuring reliable label correction. This design
leverages the complementary strengths of both OT variants for robust learning under label noise.

3 METHODOLOGY

Our method consists of two key components: Bi-directional multi-view prompts for noise-aware
alignment, where objects are observed from multiple perspectives. Selective noisy label refinement
with OT, where the refinement is guided by prompts, as shown in Figure 2. We present multi-view
and bi-directional as a unified prompt design, since the two are tightly coupled in how they provide
complementary semantics and generate alignment signals for refinement.

Problem Definition. Let Dnoisy = {(xi, yi)}Di=1 denote the noisy training set with images xi and
labels yi from C classes. However, whether the given label is accurate or not is unknown. We
classify the correctly labeled instances as clean, and the mislabeled ones as noisy. The goal of LNL
is to train a model that maintains high test accuracy while minimizing the influence of label noise.

3.1 BI-DIRECTIONAL MULTI-VIEW PROMPTS FOR NOISE-AWARE ALIGNMENT

To improve robustness under noisy supervision, we propose a bi-directional multi-view prompt
learning strategy that integrates multiple clean-oriented and noise-aware prompts for each class.
Unlike negative learning (Wei et al., 2024), which relies on explicitly labeled negative classes,
our method treats all unlabeled classes as implicit negatives, avoiding the need for additional an-
notations. Clean-oriented prompts focus on capturing class-relevant semantics, while noise-aware
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Figure 2: Overview of the proposed NA-MVP framework. Our framework consists of two key
modules: (1) Bi-directional multi-view prompts for noise-aware alignment, where clean and noise-
aware prompts are encoded separately and aligned with local image features via UOT to obtain
clean and noisy probabilities for noise-aware feature alignment and prediction; (2) Selective noisy
label refinement, where samples are identified as noisy based on a threshold computed from clean
and noisy probabilities, and refined using classical OT on global features to correct labels. The two
modules work together to produce a denoised dataset and robust predictions under noisy supervision.

prompts function as adaptive filters to identify and suppress misleading or noisy signals. These two
types of prompts are jointly optimized to facilitate noise-aware representation learning and enhance
the model’s discrimination between clean and corrupted samples. This bi-directional prompt mech-
anism offers complementary perspectives on the data and serves as the foundation for downstream
label refinement and denoising.

Bi-directional Multi-view Prompt Construction and Feature Encoding. For each class k, we
construct two sets of learnable prompts: clean-oriented prompts {Promptcm,k}Nm=1 and noise-aware
prompts {Promptnm,k}Nm=1, where N denotes the number of prompts for each class. Each prompt
consists of M context tokens followed by a class-specific token:

Promptcm,k = [V c
1 , V

c
2 , . . . , V

c
M ,CLSk] (1)

Promptnm,k = [V n
1 , V

n
2 , . . . , V

n
M ,CLSk] (2)

where V c
i and V n

i are learnable word embeddings, and CLSk denotes the class-specific token. Clean
and noisy prompts are encoded by two separate text encoders ψ(·) and ψn(·) to generate prompt
feature sets Gc

k ∈ RN×d and Gn
k ∈ RN×d, where d is the feature dimension. Given an input image

xi, the image encoder extracts a global feature fi ∈ Rd and a local feature map Fi = {fl}Ll=1 ∈
RL×d, where L = H ×W , with H and W denoting the height and width of the feature map.

Fine-grained Noise-aware Alignment. To align local image features with multi-view prompts
under noisy conditions, we employ UOT for noise-aware multi-view alignment. Unlike classical
OT, UOT relaxes the strict mass conservation constraint, allowing partial alignment and reducing
overfitting to noise. This enables more selective matching between informative visual features and
semantic prompts, preserving prompt diversity and improving alignment robustness.

Specifically, we treat Fi and Gk as discrete distributions and compute the cost matrix Ck = 1 −
F⊤
i Gk ∈ RL×N by using the cosine similarity. The UOT problem is then formulated as:

dUOT(k) = min
T∈Π(µ,ν)

⟨Ck, T ⟩ (3)

Π(µ, ν) =
{
T ∈ RL×N

+ | T1N ≤ µ, T⊤1L = ν
}

(4)

where µ ∈ RL and ν ∈ RN represent marginal probability vectors satisfying ∥µ∥1 ≥ ∥ν∥1 = θ,
with θ ∈ [0, 1] controlling the degree of partial matching. The relaxed constraints in UOT allow
for partial alignment between image features and prompt embeddings, rather than enforcing full
correspondence. This is particularly helpful under label noise, where forcing all features to align
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may introduce irrelevant or incorrect information. To efficiently solve the UOT problem, we apply
the Sinkhorn distance with entropic regularization:

dUOT(k) = min
T∈Π(µ,ν)

⟨Ck, T ⟩+ ϵ⟨T, log T ⟩, (5)

This formulation can be interpreted as a Kullback-Leibler (KL) projection (Benamou et al., 2015),
where the feasible set is defined by two convex constraints:

dUOT(k) = min
T∈Π(µ,ν)

ϵ KL(T | e−Ck/ϵ) (6)

C1
def.
=

{
T ∈ RL×N

+ | T1N ≤ µ
}
, C2

def.
=

{
T ∈ RL×N

+ | T⊤1L = ν
}

(7)

To solve Eq. 6, we use a fast implementation of Dykstra’s algorithm, which scales the iterative
KL projection between C1 and C2 using matrix-vector multiplications. The optimization proceeds
iteratively, initializing Q = exp(−Ck/ϵ) and ν(0) = 1N . After a few iterations, the transport plan
T ∗ is computed as:

T ∗ = diag(µ(t))Qdiag(ν(t)) (8)

where t is the iteration number. In each iteration, the scaling factors are updated as µ(t) =
min(1L/Qµν

(t−1),1L) and ν(t) = 1N/Q
T
ν µ

(t) with Qµ = Q/diag(µ)1L×N and Qν =
QT /diag(ν)1L×N . Once the T ∗ is obtained, we use it to compute the alignment UOT distance
and optimize learnable vectors in the bi-directional multi-view prompts{Promptc/nm }Nm=1. Overall,
by relaxing the strict mass conservation constraint, UOT enables partial and adaptive alignment
between local features and multi-view prompts. This noise-aware alignment allows the model to
attend to semantically reliable features while down-weighting noisy or irrelevant features, thereby
preserving prompt diversity and enhancing robustness under label noise.

Image-Text Bi-directional Prompt Loss. We further stabilize this process with an auxiliary
Image-Text Bi-directional Prompt (ITBP) Loss. The design of ITBP follows the bi-directional con-
trastive loss introduced in CLIPN (Wang et al., 2023), but its role in our framework is fundamentally
different. While CLIPN leverages this loss for out-of-distribution detection, ITBP in our setting is
employed to explicitly separate clean and noisy semantics. Concretely, it encourages image features
to align more closely with clean prompts while simultaneously pushing them away from corre-
sponding noisy prompts and unrelated negatives. This adaptation strengthens the effectiveness of
the bi-directional multi-view prompt design under noisy label supervision.

3.2 PROMPT-GUIDED SELECTIVE LABEL REFINEMENT WITH OT

Adaptive Noise Identification via Bi-directional Prompt Alignment. To adaptively identify
noisy labels, we measure the alignment between the local image feature Fi and the clean prompt Gc

k
as well as the noise-aware prompt Gn

k , yielding similarities sci,k and sni,k; we then derive an adaptive
threshold ϕi,k by applying a softmax to these similarities:

ϕi,k =
exp(sni,k/τ)

exp(sci,k/τ) + exp(sni,k/τ)
, (9)

where τ is a temperature parameter controlling the sharpness of the threshold. Then, we classify
sample xi as clean if its similarity to the clean prompts exceeds this threshold:

Dclean =
{
(xi, yi) | sci,k > ϕi,k, k = yi

}
. (10)

Samples that do not meet this condition are considered noisy. Rather than discarding these noisy
samples, we refine their labels using a pseudo-labeling strategy based on classical OT. In this way,
the bi-directional prompt framework not only identifies noisy samples but also re-integrates them
with corrected supervision. The clean and noisy prompts are jointly optimized with the model
parameters, enabling continuous refinement and better adaptation to the evolving feature space.

Label Refinement via Classical Optimal Transport. Classical OT is a powerful tool for aligning
distributions, and it has been effectively used for generating pseudo-labels by matching samples to
class distributions while preserving the global structure of the sample distribution through equality
constraints. Here, we adopt classical OT to refine noisy labels in the context of noisy label learning.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Given a noisy training set Dnoisy = {(xi, yi)}Di=1, we extract global image features F ∈ RD×d, and
the prompt features G ∈ RC×d using a pre-trained vision-language model. Next, we compute the
similarity matrix between the image and prompt features, G ·F⊤. We use the negative logarithm of
this matrix as the cost matrix. To ensure proper alignment, we impose uniform marginal distributions
across both the samples and the classes. The OT problem is then formulated as:

dOT(µ, ν) = min
T∈Π(µ,ν)

⟨− log(G · F⊤),T ⟩ (11)

Π(µ, ν) =
{
T ∈ RC×D

+

∣∣ T1D = µ, T⊤1C = ν
}

(12)
where 1C is the vector of ones with length C, representing the total probability mass of the noisy
label distribution, and 1D is the vector of ones with length D, representing the total probability
mass of the sample distribution. These constraints ensure that the total probability mass is conserved
across both the samples and the labels. Once the optimal transport plan T ∗ is computed, the pseudo-
label for each image xi is obtained by selecting the class with the highest transport mass:

ỹi = argmax
j
T ∗
ij (13)

This process generates refined labels by using the transport plan T ∗ to assign the most probable
class for each image. To further improve reliability, we integrate the adaptive threshold ϕi,k defined
earlier to identify potentially mislabeled samples. Only those samples whose similarity to clean
prompts falls below the threshold are considered for refinement, ensuring that clean samples remain
unaltered while noisy instances are corrected:

Drefinement =
{
(xi, ỹi) | sci,k < ϕi,k, k = yi

}
. (14)

The selective mechanism, built on the bi-directional multi-view prompt learning framework, enables
the model to isolate and correct corrupted labels effectively. This not only improves the label quality
but also enhances the robustness of the model under noisy supervision. Ultimately, the denoised
training set is constructed by combining reliable clean samples with the refined noisy ones:

Ddenoised = Dclean ∪ Drefinement. (15)
By training on Ddenoised, the model benefits from both trustworthy clean supervision and corrected
noisy labels, leading to more stable convergence and improved generalization performance.

3.3 TRAINING DETAILS

Training Schedule. To improve robustness, we delay the label refinement process and only start
modifying labels after Tsup epochs. Details of the full training procedure are provided in Ap-
pendix A. In the early phase, the model is trained on the noisy dataset with the Generalized Cross-
Entropy (GCE) loss (Zhang & Sabuncu, 2018) combined with the ITBP loss:

Lsup = Lgce + λi · Litbp, (16)
where λi controls the strength of auxiliary supervision. Once the refinement process is activated,
noisy samples identified by our prompt-guided mechanism are selectively corrected, and training
continues on the updated dataset with GCE loss. This delayed refinement allows the model to first
acquire stable representations before adapting to cleaner supervision. A detailed sensitivity study on
the effect of λi is reported in the Appendix C.4.

Inference. During inference, both clean and noise-aware prompt alignments are incorporated into
the prediction. Specifically, we measure the alignment of the local image feature Fi with the clean-
oriented prompt feature Gc

k and the noise-aware prompt feature Gn
k . The similarities between the

image feature and these prompts are computed using the UOT-based distance, as defined in Eq. 3,
such that:

sci,k = 1− dUOT(Fi,G
c
k), (17)

sni,k = 1− dUOT(Fi,G
n
k ), (18)

where higher values of sci,k and sni,k indicate stronger semantic similarity with the clean and noise-
aware prompts, respectively. The final probability of assigning label k to image xi is defined as:

p(y = k | xi) = (1− pnik) · pcik (19)

pcik =
exp(sci,k/τ)∑C
j=1 exp(s

c
i,j/τ)

, pnik =
exp(sni,k/τ)

exp(sci,k/τ) + exp(sni,k/τ)
(20)
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Here, pcik represents the probability derived from the alignment with the clean prompt, while pnik
reflects the probability from the alignment with the noise-aware prompt. This bi-directional multi-
view strategy encourages the model to prioritize clean samples while adaptively down-weighting
potential noisy ones, leading to more stable and accurate learning under noisy supervision.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. To evaluate the robustness of our method under label noise, we conduct experiments
on five widely-used synthetic noisy datasets: Caltech101 (Fei-Fei et al., 2004), DTD (Cimpoi
et al., 2014), Flowers102 (Nilsback & Zisserman, 2008), OxfordPets (Parkhi et al., 2012), and
UCF101 (Peng et al., 2018). Following (Pan et al., 2025), we utilize two types of label noise:
symmetric noise (Sym) and asymmetric noise (Asym). For symmetric noise, labels in the training
set are randomly flipped to other classes with equal probability; for asymmetric noise, labels are
flipped to semantically similar neighboring classes. In addition, we also evaluate on a real-world
noisy dataset, Food101N (Lee et al., 2018), which inherently contains label noise without requiring
synthetic corruption. A detailed introduction of each dataset can be found in the Appendix B.1.

Implementation Details. We follow the experimental protocol of CoOp (Zhou et al., 2022b) to
ensure fair comparison. The model is optimized using SGD with an initial learning rate of 0.002,
a momentum of 0.9 and a weight decay of 5×10−4. Unless otherwise specified, ResNet-50 is used
as the image encoder and a Transformer with 63M parameters as the text encoder. For each dataset,
we adopt a 16-shot training setup and evaluate on the full clean test set. The default number of
training epochs is set to 50. We employ 16 shared context tokens appended with the class token. All
reported results are averaged over three runs with different random seeds, and the best accuracy is
highlighted in bold. All experiments are conducted on a single NVIDIA GeForce RTX 4090 GPU.
More implementation details can be found in the Appendix B.2.

4.2 PERFORMANCE COMPARISON

We compare our method with strong baselines, including CoOp (Zhou et al., 2022b),
CoOp+GCE (Wu et al., 2023), JoAPR (Guo & Gu, 2024) and NLPrompt (Pan et al., 2025). Among
them, CoOp serves as a standard prompt learning baseline, while CoOp+GCE, JoAPR and NL-
Prompt are specifically designed to address label noise in the few-shot prompt learning scenario.
These comparisons allow us to comprehensively assess the effectiveness and robustness of our
method in both synthetic and real-world noise settings. As shown in Table 1, our proposed NA-
MVP consistently achieves the best overall performance across all five datasets. Furthermore, in
scenarios with high levels of noise, our method exhibits a substantial performance advantage, high-
lighting its robustness in severely corrupted environments. These results demonstrate that NA-MVP
effectively mitigates the impact of label noise and generalizes well under challenging settings.

Table 2: Test accuracy on Food101N.

Method 4-shot 8-shot 16-shot 32-shot

NLPrompt 70.57 73.93 76.46 76.87
NA-MVP 76.10 76.27 76.90 77.03

We further evaluate our method on the
real-world noisy dataset Food101N. Table 2
presents the test accuracy under different few-
shot settings. Across all scenarios, NA-MVP
consistently outperforms NLPrompt, achieving
the best overall performance. Notably, as the
number of shots decreases, NLPrompt’s performance drops significantly, while NA-MVP remains
stable and robust. These results highlight the effectiveness of NA-MVP in few-shot learning with
real-world noise, underscoring its practicality for deployment.

4.3 ABLATION STUDIES AND MORE ANALYSIS

We conduct a comprehensive ablation study to quantify the contributions of each core component
in our proposed NA-MVP framework. Specifically, we investigate the impact of (1) bi-directional
multi-view prompt learning, (2) UOT for local feature alignment, and (3) label refinement with OT
and ϕi,k, as shown in Table 3.
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Table 1: Comparison of methods under symmetric and asymmetric noise on five datasets.(%)

Dataset Method Noise rate: Sym Noise rate: Asym
0.125 0.25 0.375 0.5 0.625 0.75 0.25 0.5

Caltech101

CoOp 86.43 81.03 76.73 70.90 61.33 46.90 75.23 49.43
GCE 92.00 90.90 90.80 89.30 86.70 79.03 91.20 85.80

JoAPR 88.32 87.85 87.00 87.03 84.55 80.15 82.79 69.02
NLPrompt 91.73 91.13 90.77 89.93 88.30 86.70 91.17 89.27
NA-MVP 92.07 92.10 91.60 91.30 90.07 89.37 91.47 89.53

DTD

CoOp 56.00 49.57 43.30 34.37 27.83 17.27 47.75 29.63
GCE 61.00 59.83 56.80 50.73 43.60 33.67 57.57 43.97

JoAPR 55.02 53.95 51.57 49.12 44.24 35.90 49.23 38.33
NLPrompt 62.97 61.23 59.17 55.17 49.03 39.80 60.60 50.80
NA-MVP 63.73 63.13 61.63 58.50 52.93 48.63 62.33 52.10

Flowers102

CoOp 88.93 83.50 77.93 70.10 55.60 37.17 74.70 42.60
GCE 88.80 88.33 86.73 84.07 78.37 70.37 86.37 69.93

JoAPR 84.90 84.70 79.75 77.13 69.65 64.20 79.57 55.47
NLPrompt 93.87 92.57 92.73 89.90 84.77 76.80 93.40 81.10
NA-MVP 94.20 93.30 92.00 90.47 85.07 76.47 91.37 78.43

OxfordPets

CoOp 76.50 66.73 60.33 47.03 35.77 24.60 66.20 38.73
GCE 85.63 84.60 83.67 79.23 71.40 53.17 83.03 68.07

JoAPR 83.17 82.05 80.62 79.05 73.72 60.97 76.82 62.85
NLPrompt 86.17 86.00 85.33 83.17 80.03 70.77 84.97 77.53
NA-MVP 88.50 88.40 88.23 88.13 86.93 86.23 87.53 79.33

UCF101

CoOp 69.03 63.40 58.23 49.73 40.83 26.30 58.07 34.43
GCE 74.00 73.63 72.57 69.37 66.00 57.07 71.87 67.97

JoAPR 70.80 69.22 68.15 64.80 61.82 57.52 63.98 49.67
NLPrompt 74.83 73.40 72.83 70.33 68.10 60.53 73.58 65.97
NA-MVP 75.33 74.03 72.30 70.93 68.43 63.93 73.40 65.40

Effectiveness of Multi-view Prompts. To validate the role of bi-directional multi-view prompt
learning, we compare the following variants: Our baseline is CoOP with one prompt. Negative
Label: Employs one clean and one noisy prompt per class, while explicitly assigning a negative
label to each image. Bi-directional Single Prompt: Employs one clean and one noisy prompt per
class, while treating non-target classes as implicit negatives. Bi-directional Multi-view Prompts: Our
complete design using multiple clean and noisy prompts. As shown in Table 3 (a)-(d), employing
both clean and noisy prompts already outperforms the single-prompt baseline, confirming that bi-
directional supervision provides stronger robustness. However, the explicit negative-label strategy is
less effective than our implicit negative design, as rigid counter-class assignments cannot generalize
well under noisy conditions. Further introducing multi-view prompts enhances robustness, as it
enriches semantic coverage and models intra-class diversity.

Table 3: Ablation studies on DTD. (%)
Method/Noise Ratio 25% 50% 75% Avg

(a) CoOp 59.83 50.73 33.67 48.08
(b) (a)+ Negative label 59.53 52.53 34.40 48.82
(c) (a)+ Bi-directional 60.13 53.73 35.03 49.63
(d) (c)+ Multi-view 62.73 55.13 37.63 51.83

(e) (d)+UOT 62.50 57.70 42.33 54.18
(f) (d)+OT 62.30 56.80 41.00 53.37
(g) (d)+KL Divergence 62.27 56.43 39.10 52.60

(h) (e)+OT refinement 59.60 54.77 45.77 53.38
(i) (h)+ϕi,k 63.13 58.50 48.63 56.75

Effectiveness of UOT for Patch-to-
Prompt Alignment. To assess the im-
pact of UOT for local feature align-
ment, we compare it with different dis-
tribution alignment methods, OT: En-
forces full mass matching between lo-
cal features and prompts. KL Diver-
gence: Minimizes divergence between
prompt and image patch distributions.
UOT: Introduces relaxed marginal con-
straints to focus on semantically relevant
regions. As reported in Table 3 (e)-(g),
UOT achieves the best performance in
all noise ratios. KL divergence struggles
to handle multi-modal distributions from
diverse prompts, and OT suffers from over-constrained mass transport, often forcing irrelevant align-
ments. In contrast, UOT provides the necessary flexibility to softly align multiple local features to
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Figure 3: Test accuracy under varying label
noise rates using different numbers of multi-
view prompts N ∈ {1, 2, 4, 8}.

Figure 4: Visualization of bi-directional multi-
view prompts. (a) The image; (b) The learned
multi-view clean prompts; (c) The learned
multi-view noisy prompts.

diverse prompt semantics. In addition, we provide further comparisons with other matching methods
like NBNN (Boiman et al., 2008) in Appendix C.3.

Effectiveness of Label Refinement. We investigate the effectiveness of the proposed pseudo-label
refinement strategy by comparing different variants of the global-level label correction mechanism:
Refine by OT (w/o ϕi,k): this variant adopts a full label refinement strategy using OT, equivalent
to using the label detection strategy used in NLPrompt and OT-Filter as noisy label identification
strategy. Refine by OT (w/ϕi,k): partial refinement guided by ϕi,k. As shown in Table 3, while
full refinement improves performance under high noise levels, it can hurt accuracy when noise is
low by mistakenly altering correct labels. In contrast, our selective refinement strategy (w/ ϕi,k)
consistently achieves better performance by focusing on likely noisy samples. Additional analysis
of label refinement quality is provided in the Appendix C.2.

Analysis of Multi-view Prompts. To investigate the effect of the number of multi-view prompts,
we evaluate NA-MVP under different numbers of multi-view prompts (N ∈ {1, 2, 4, 8}) across
various noise rates on DTD and OxfordPets. As shown in Figure 3, performance improves as N
increases from 1 to 4, confirming the benefit of diverse semantic views. However, further increasing
to N = 8 results in diminishing or even negative returns, suggesting that excessive prompts may
cause redundancy. Thus, we adopt N = 4 as the default, balancing robustness and efficiency. We
also analyze the effect of imbalanced numbers of clean and noisy prompts in Appendix C.1.

We also visualize the transport plan T ∗ for four noisy and four clean prompts on the OxfordPets
dataset in Figure 4. The heatmaps reveal that noisy and clean prompts attend to different object
attributes, highlighting that T ∗ captures discriminative patterns helpful for noisy label learning.
Visualizations of failure cases are also provided in Appendix C.6.

We provide additional materials in the appendix, including method details, motivation analysis for
noisy label identification, comparisons with other baselines, as well as hyper-parameter studies,
generalization of NA-MVP, and computation cost evaluation.

5 CONCLUSION

In this paper, we presented NA-MVP, a framework for few-shot learning under noisy labels that in-
tegrates multi-view prompt learning with optimal transport. NA-MVP employs bi-directional multi-
view prompts to capture both clean and noisy semantics, leverages Unbalanced Optimal Transport
for fine-grained patch-to-prompt alignment, and applies classical Optimal Transport with a learnable
threshold for selective label refinement. Experiments on diverse synthetic and real-world bench-
marks show that NA-MVP achieves consistent improvements over strong baselines, especially in
high-noise regimes. By coupling prompt learning with optimal transport, our approach offers a prin-
cipled and effective solution for noise-robust few-shot learning. In future work, we plan to extend
this framework to more challenging forms of noisy data, such as open-world supervision and com-
plex real-world annotation noise, with potential applications in domains like medical imaging, video
understanding, and cross-modal retrieval where robust few-shot learning is critical.

9
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A METHOD DETAILS

Algorithm 1 The training process of NA-MVP
1: Input: Noisy dataset Dnoisy, pretrained CLIP model f , ψ(·) and ψn(·), number of prompts N ,

entropy parameter ϵ, total training epochs T , number of supervised epochs Tsup

2: Output: Optimized prompt parameter set Ω = {ωc
m, ω

n
m}

N
m=1 t = 1, 2, . . . , T each mini-batch

Bt ⊂ Dnoisy t > Tsup
3: Identify noisy samples using threshold ϕ(pn, pc) and construct Ddenoised
4: Extract local feature map Fi = {fl}Ll=1 ∈ RL×d for each xi ∈ Bt using f
5: Generate prompt feature sets Gc

k ∈ RN×d and Gn
k ∈ RN×d for each class k

6: Compute cost matrices Cc
k = 1− FiG

c
k
⊤, Cn

k = 1− FiG
n
k
⊤ using cosine similarity

7: Solve UOT using Dykstra’s algorithm:

T c∗
k = diag(µ(t)) exp(−Cc

k/ϵ)diag(ν(t)), Tn∗
k = diag(µ(t)) exp(−Cn

k /ϵ)diag(ν(t))

8: Compute UOT-based distances:dcUOT(k) = ⟨Cc
k, T

c∗
k ⟩, dnUOT(k) = ⟨Cn

k , T
n∗
k ⟩

9: Compute final prediction probabilities:p(y = k | xi) = (1− pni,k) · pci,k t > Tsup
10: Compute L = Lgce using clean samples from Ddenoised
11: Compute L = Lgce + λi · Litbp using full dataset Dnoisy
12: Update prompt parameters Ω with loss L via SGD
13: Ω

Algorithm 2 Fast Implementation of Dykstra’s Algorithm
Input: Cost matrix C, marginal vectors µ, ν, entropic regularization parameter ϵ

1: Initialize: Q← exp(−C/ϵ), ν(0) ← 1ν , ∆ν ←∞, ϵ← 10−3

2: Compute: Qµ ←
Q

diag(µ)1|µ|×|ν|
, Q⊤

ν ←
Q⊤

diag(ν)1|µ|×|ν|
n = 1, 2, . . .

3: µ(n) ← min

(
1|µ|

Qµν(n−1)
, 1|µ|

)
4: ν(n) ←

1|ν|

Q⊤
ν µ

(n)

5: ∆ν ←
∥∥ν(n) − ν(n−1)

∥∥∆ν < ϵ
6: break
7: T ∗ = diag(µ(n))Q diag(ν(n))

Training Process We detail the training process of NA-MVP in Algorithm 1, which includes a
supervised phase and a denoising phase.

Optimal Transport. OT is a powerful framework for mapping one probability distribution to an-
other while minimizing the associated transportation cost. Given two distributions µ ∈ Rm

+ and
ν ∈ Rn

+, and a cost matrix C ∈ Rm×n, the OT problem aims to find the optimal transport plan T
that minimizes the following objective:

dOT(µ, ν) = min
T∈Π(µ,ν)

⟨C,T ⟩ (21)

Π(µ, ν) =
{
T ∈ Rm×n

+

∣∣ T1n = µ, T⊤1m = ν
}

(22)

where ⟨·, ·⟩ represents the Frobenius dot-product, and 1m, 1n denote the vectors of ones of lengthm
and n, respectively. Since solving OT exactly is computationally expensive, the entropy-regularized
version is often used:

dOT(µ, ν) = min
T∈Π(µ,ν)

⟨C,T ⟩+ ϵ⟨T , logT ⟩ (23)

where ϵ > 0 controls the strength of regularization. The added entropy term ⟨T , logT ⟩ promotes
smoother transport plans and allows for efficient optimization via the Sinkhorn algorithm (Distances,
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2013). The optimization process can be completed in a few iterations, with the solution T ∗ being
computed as:

T ∗ = diag(µ(t)) exp(−C/ϵ)diag(ν(t)), (24)

where t denotes the iteration number and in each iteration, the marginal distributions µ(t) =
µ/

(
exp(−C/ϵ)ν(t−1)

)
and ν(t) = ν/

(
exp(−C/ϵ)µ(t)

)
.

Fast Implementation of Dykstra’s Algorithm To efficiently solve the entropically regularized
UOT problem defined in Eq. 3, we adopt a fast matrix-scaling variant of Dykstra’s algorithm. The
full procedure is detailed in Algorithm 2.

Generalized Cross-Entropy Loss. To support the training objectives described in Eq. (26)–(27),
we provide a detailed explanation of the Generalized Cross-Entropy (GCE) loss (Zhang & Sabuncu,
2018), denoted as Lgce. This loss serves as the primary supervision signal for training, especially in
the presence of label noise.

The GCE loss is a noise-robust surrogate to the standard cross-entropy (CE) and mean absolute error
(MAE) losses. Given a training sample (x, y) where y ∈ {1, 2, . . . , C} is the ground-truth label and
p = f(x) ∈ ∆C−1 is the softmax output over C classes, the GCE loss is defined as:

Lgce(x, y) =
1− pqy
q

, 0 < q ≤ 1, (25)

where py denotes the predicted probability for class y, and q is a tunable hyper-parameter that
governs the degree of robustness. Following prior works, we fix q = 0.5 throughout all experiments,
which offers a good trade-off between noise robustness and optimization stability.

B EXPERIMENTAL DETAILS

B.1 DATASET DETAILS

We selected six representative visual classification datasets as benchmarks. The detailed statistics of
each dataset are shown in Table 4, including the original task, the number of classes, and the sizes
of training and test samples.

Table 4: The detailed statistics of datasets used in experiments.
Dataset Task Classes Training Size Testing Size
Caltech101 (Fei-Fei et al., 2004) Object recognition 100 4,128 2,465
DTD (Cimpoi et al., 2014) Texture recognition 47 2,820 1,692
Flowers102 (Nilsback & Zisserman, 2008) Fine-grained flowers recognition 102 4,093 2,463
OxfordPets (Parkhi et al., 2012) Fine-grained pets recognition 37 2,944 3,669
UCF101 (Peng et al., 2018) Video action recognition 101 7,639 3,783
Food101N (Lee et al., 2018) Fine-grained food recognition 101 310,009 30,300

B.2 IMPLEMENTATION DETAILS

All input images are resized to 224 × 224 and divided into 14 × 14 patches of dimension 768.
For the Unbalanced OT problem in Eq. 6, we set the entropic regularization weight to ϵ = 0.1
and the marginal relaxation parameter to θ = 0.9. The loss balancing coefficient λi is set to 0.1.
The maximum number of iterations in Algorithm 2 is set to 100, with early stopping applied when
∆ν < 0.01. We use 16 shared context tokens appended to the class token, each of dimension 512.
Prompts are randomly initialized and inserted at the ”end” token position. Batch sizes are set to 32
for training and 100 for testing. The total number of training epochs is 50, with 20 for the supervised
phase and 30 for semi-supervised refinement. Warm-up is set to 1 epoch for all datasets, except for
the Flowers dataset, which adopts a 20-epoch warm-up. All experiments are conducted on a single
NVIDIA GeForce RTX 4090 GPU.
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(a) Clean samples (b) Noisy samples

Figure 5: Behavioral differences of pc and ϕ on clean vs. noisy samples in Caltech101.

Table 5: Experimental results under imbalanced numbers of prompts on DTD and OxfordPets.
Datasets DTD OxfordPets
Noise rate 25% 50% 75% Avg. 25% 50% 75% Avg.

N=1 62.36 57.33 47.24 55.64 88.27 87.23 85.26 86.92
N=2 62.86 57.17 47.40 55.81 88.20 87.59 85.50 87.10
N=4 63.13 58.50 48.63 56.75 88.40 88.13 86.23 87.59
N=8 62.76 57.07 47.37 55.73 88.57 87.63 85.73 87.31

B.3 NOISY LABEL IDENTIFICATION MOTIVATION

To validate the intuition behind our noisy label identification strategy, we conduct a case study on the
Caltech101 dataset. Samples are grouped into clean and noisy subsets based on their ground-truth
annotations. We visualize the epoch-wise average values of the clean prompt confidence pc and the
adaptive threshold ϕ for both groups.

As shown in Figure 5, clean samples exhibit consistently high values of pc, while their correspond-
ing ϕ remains close to zero. In contrast, noisy samples demonstrate the opposite pattern: ϕ is
significantly larger than pc, especially in the early training phase. These trends confirm that our
bi-directional alignment framework provides a meaningful signal to distinguish between clean and
noisy labels. Moreover, the observed dynamics further justify the design of our selective noisy la-
bel refinement strategy introduced in Section 3.2, which integrates soft thresholding with OT-based
pseudo-label correction.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 ANALYSIS OF THE NUMBER OF MULTI-VIEW PROMPTS

To investigate the effect of imbalanced numbers of clean and noisy prompts, we conduct experiments
by fixing the number of clean prompts to 4 while varying the number of noisy prompts (N = 1, 2,
4, 8). The evaluation is performed under different noise rates on the DTD and OxfordPets datasets.
The results clearly show that the best performance is achieved when the number of noisy prompts
equals the number of clean prompts (i.e., N=4). This trend is particularly evident under higher noise
rates, indicating that a balanced prompt configuration enhances model robustness to noise.

C.2 EFFECTIVENESS OF SELECTIVE REFINEMENT WITH ϕi,k

To further analyze the effectiveness of our proposed selective label refinement guided by ϕi,k, we
compare the evolution of noisy label ratio over training epochs under different settings. As shown
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(a) Noise rate = 25% (b) Noise rate = 50% (c) Noise rate = 75%

Figure 6: Comparison of OT refinement and selective refinement with ϕi,k under different noise
rates on Caltech101 and OxfordPets datasets.

Table 6: The accuracy comparison on OxfordPets Dataset.
Method/Noise rate 12.5% 25% 37.5% 50% 62.5% 75%

DEFT (Wei et al., 2024) 88.83% 88.23% 88.10% 86.73% 84.10% 75.87%
NA-MVP 88.50% 88.40% 88.23% 88.13% 86.93% 86.23%

in Figure 6, we visualize the noisy rate curves during training on Caltech101 and OxfordPets under
three synthetic noise levels: 25%, 50%, and 75%. We compare the baseline OT refinement strat-
egy with our selective refinement method guided by ϕi,k. Across all datasets and noise settings,
we observe that the noisy rate decreases more significantly and remains consistently lower when
using ϕi,k-guided refinement. This indicates that our method effectively filters out potentially clean
samples from aggressive relabeling, preventing overcorrection and improving the quality of pseudo-
labels. These findings further demonstrate that ϕi,k improves label correction reliability by enabling
a more conservative and noise-aware refinement process.

Additionally, we conducted further experiments on the OxfordPets dataset to compare our method
with DEFT (Wei et al., 2024). DEFT selects clean samples using the rule: pclean

ik > 0.5. The results,
summarized in Table 6, show that NA-MVP consistently outperforms DEFT across all noise levels,
particularly under higher noise ratios. These results reinforce the effectiveness of our method in
handling noisy data, especially in scenarios with high noise levels, where our adaptive approach
offers a significant improvement over the baseline methods.

C.3 COMPARISON WITH OTHER METHODS

Comparison with PLOT PLOT (Chen et al., 2022) utilizes OT to align image and prompt features
for few-shot classification and inspired us to identify noisy labels from multi-view. While PLOT has
shown great promise, our method, NA-MVP, improves upon this by integrating multi-view prompt
learning and a UOT-based denoising strategy, particularly effective in high-noise conditions. To
validate NA-MVP, we compared it with PLOT under various noise levels. As shown in Table 7, NA-
MVP consistently outperforms PLOT in all datasets and noise settings, with a particularly significant
advantage under higher noise conditions. These results emphasize the robustness of our framework
in handling noisy labels, supporting the effectiveness of our approach in noisy regimes.

Comparison with unsupervised methods Although few-shot learning generally outperforms un-
supervised methods, we recognize the importance of empirically evaluating whether learning from
noisy few-shot labels can yield meaningful improvements. In this regard, we compared NA-MVP
with two recent unsupervised methods: MetaPrompt (Mirza et al., 2024) and LaFTer (Mirza et al.,
2023). As shown in Table 8, NA-MVP outperforms both MetaPrompt and LaFTer across most
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Table 7: The accuracy comparison across datasets and noise levels.

Dataset Method Noise rate: Sym Noise rate: Asym
0.125 0.25 0.375 0.5 0.625 0.75 0.25 0.5

Caltech101 PLOT 90.03 88.10 85.13 84.10 75.90 62.70 81.17 50.80
NA-MVP 92.07 92.10 91.60 91.30 90.07 89.37 91.47 89.53

DTD PLOT 60.27 56.87 50.77 44.67 36.53 23.57 52.80 32.03
NA-MVP 63.73 63.13 61.63 58.50 52.93 48.63 62.33 52.10

Flowers102 PLOT 91.63 89.00 84.67 77.10 66.80 47.57 76.20 40.60
NA-MVP 94.20 93.30 92.00 90.47 85.07 76.47 91.37 78.43

OxfordPets PLOT 84.57 79.43 74.70 64.60 52.10 41.50 73.87 44.47
NA-MVP 88.50 88.40 88.23 88.13 86.93 86.23 87.53 79.33

UCF101 PLOT 73.30 69.37 65.27 59.13 51.50 40.93 61.33 36.43
NA-MVP 75.33 74.03 72.30 70.93 68.43 63.93 73.40 65.40

Table 8: Performance comparison with unsupervised medthods.
Method OxfordPets DTD UCF101 Flowers102

MetaPrompt (Mirza et al., 2024) 88.10 50.80 67.90 73.90
LaFTer (Mirza et al., 2023) 82.70 46.10 68.20 71.00
NA-MVP (25% noise) 88.40 63.10 74.00 93.30
NA-MVP (50% noise) 88.13 58.50 70.93 90.47
NA-MVP (75% noise) 86.23 48.63 63.93 76.47

datasets. Even at higher noise levels (50% and 75%), our method remains competitive or superior.
These results demonstrate that learning from a small amount of noisy supervision, when appro-
priately modeled, can be more effective than training with no labeled data. This underscores the
practical value of noisy few-shot learning in real-world low-resource scenarios.

Comparison with NBNN We also compared NA-MVP with NBNN (Boiman et al., 2008), a
widely used set-to-set matching method with cosine similarity as a distance metric. Our exper-
iments on the Caltech101 and OxfordPets datasets show that NA-MVP consistently outperforms
NBNN across different noise levels, particularly under higher noise conditions. The results in Table
9 indicate that UOT-based matching in NA-MVP provides a more robust and adaptive alignment be-
tween prompts and image features, especially when class distributions are corrupted or ambiguous.

Table 9: Performance comparison on Caltech101 and OxfordPets.
Dataset Method 12.5% 25.0% 37.5% 50.0% 62.5% 75.0%

Caltech101 NBNN 88.87 88.57 88.43 87.20 84.17 85.67
NA-MVP 92.07 92.10 91.60 91.30 90.07 89.37

OxfordPets NBNN 87.47 86.00 85.53 83.07 82.50 80.67
NA-MVP 88.50 88.40 88.23 88.13 86.93 86.23

C.4 PARAMETER STUDY

Parameter Study of the Auxiliary Loss Weight λi We study the effectiveness of the auxiliary loss
weight λi, which controls the contribution of the ITBP loss during supervised training. As shown
in Table 10, we evaluate λi ∈ {0.01, 0.05, 0.1, 0.5} across DTD, OxfordPets, and UCF101 under
different noise levels. In particular, λi = 0.1 consistently delivers the best or competitive results
under different conditions. Therefore, we adopt λi = 0.1 as the default setting in all experiments.
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Table 10: Impact of the loss balancing coefficient λi under different noise rates.
Datasets DTD OxfordPets UCF101
Noise rate 25% 50% 75% 25% 50% 75% 25% 50% 75%

λi=0.01 62.36 57.96 48.09 88.37 87.93 85.43 73.53 70.57 61.87
λi=0.05 62.03 58.10 48.39 88.53 88.37 85.90 73.60 71.09 62.90
λi=0.1 63.13 58.50 48.63 88.40 88.13 86.23 74.03 70.93 63.93
λi=0.5 62.96 57.33 47.19 88.33 87.50 85.33 73.63 69.13 60.74

Table 11: Performance under different noise rates and θ values.
Noise rate/θ 0.5 0.6 0.7 0.8 0.9 1.0

25.00% 61.87 62.83 63.30 63.80 63.13 63.37
50.00% 57.57 58.73 58.07 58.67 58.80 58.30
75.00% 47.43 48.30 47.67 47.13 48.63 46.30

Parameter Study of the parameter θ in UOT To investigate the effect of the parameter θ in
unbalanced OT, which regulates the mapping size of prompts on the feature map, we conducted
additional experiments on the DTD dataset under varying noise rates and θ values ranging from
0.5 to 1.0. As shown in Table 11, we observe that performance varies with θ, and optimal results
are typically achieved when θ is within the range of 0.8–0.9 across different noise levels. This
indicates that optimal alignment between multi-view prompts and the feature map is achieved when
approximately 80%–90% of patch tokens are involved in the prompt interaction. Consequently, we
adopt θ = 0.9 as the default setting in all our main experiments to ensure a good balance between
sufficient prompt supervision and robustness under noise.

C.5 EXPERIMENTS ON WATERBIRDS DATASET

To further assess robustness, we conducted experiments on the Waterbirds dataset (Sagawa et al.)
under multiple levels of label noise. The Waterbirds dataset is a common benchmark for studying
spurious correlations, as its backgrounds (water or land) are strongly associated with class labels
and often occupy a large portion of the image. This makes it suitable for evaluating sensitivity
to background–foreground imbalance or noisy supervision. As shown in Table 12, accuracy de-
creases as the noise level increases, yet NA-MVP consistently outperforms NLPrompt across all
settings. These results suggest that NA-MVP is relatively robust to mislabeled data and performs
well on datasets with both small and large background regions, benefiting from its unbalanced opti-
mal transport formulation, which enables the model to downweight irrelevant or misleading signals.

Table 12: Accuracy comparison on the Waterbirds dataset.
Method / Noise rate 12.5% 25% 37.5% 50% 62.5% 75%

NLPrompt 74.23 72.47 71.50 68.43 64.80 58.27
NA-MVP 75.27 74.40 72.07 69.27 65.47 59.23

C.6 ANALYSIS OF FAILURE CASES

To better understand the limitations of our method, we further visualize failure cases on the Oxford-
Pets dataset, as shown in Figure 7. The figure illustrates attention maps of several learned clean and
noisy prompts. We observe that in these cases the model fails to clearly distinguish between clean-
and noise-oriented prompts. For example, the bottom-right clean prompt in (b2) and the bottom-right
noisy prompt in (b3) exhibit highly similar activation patterns, indicating that the intended separa-
tion between clean and noisy supervision is not well preserved. Moreover, the heatmaps reveal that
many prompts predominantly focus on background regions rather than the object of interest. This
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Figure 7: Visualization of failure cases on OxfordPets. (a1) & (b1): The image; (a2) & (b2): The
learned multi-view clean prompts; (a3) & (b3): The learned multi-view noisy prompts.

Table 13: The generalization of NA-MVP.
Method/Noise rate 12.5% 25% 37.5% 50% 62.5% 75%

VPT 57.50 55.37 50.70 45.03 36.93 25.27
VPT+Ours 68.43 66.93 66.10 63.57 60.00 53.80
MaPLe 63.27 55.00 49.07 40.20 32.67 19.93
MaPLe+Ours 69.70 67.50 65.37 62.83 56.47 45.83

misalignment reduces the effectiveness of prompt-feature alignment, leading to incorrect label pre-
dictions. Such cases highlight that the current design may overfit to spurious background cues when
discriminative foreground signals are weak or ambiguous, suggesting the need for more flexible and
accurate prompt learning mechanisms in future work.

C.7 GENERALIZATION OF NA-MVP

To further demonstrate the generalization capability of our NA-MVP framework, we apply it to two
representative prompt-tuning methods beyond CoOp: VPT (Jia et al., 2022) and MaPLe (Khattak
et al., 2023a). As shown in Table 13, NA-MVP consistently improves their performance on the DTD
dataset under various symmetric noise levels, demonstrating its strong generalization.

C.8 COMPUTATION COST EVALUATION

We compare the inference time of NA-MVP with the baseline method CoOp and NLPrompt on
OxfordPets. As reported in Table 14, NA-MVP achieves the fastest inference time of 5.778 seconds,
which is 25.2% faster than CoOp and 79.6% faster than NLPrompt. These results demonstrate
that NA-MVP maintains competitive computational efficiency despite its multi-view prompt design.

Table 14: The time cost comparison.
Settings CoOp NLPrompt NA-MVP

Training Time (s) 1.875 4.394 6.285
Inference Time (s) 7.719 28.276 5.778

While NA-MVP requires more training time, the in-
crease remains within a practical range. Given the
consistent performance improvements across vary-
ing noise levels, the method offers a reasonable
trade-off between computational cost and robust-
ness, making it suitable for real-world applications
where label noise is prevalent.

D LLM USAGE

Standard editing tools, including large language models, were used occasionally to polish the pre-
sentation of the manuscript (e.g., grammar, spelling, and word choice). Their use was limited to
light language refinement, and they did not contribute to the conceptual development, methodology,
experiments, or analysis of this work.
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