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Abstract

Machine learning models used for predictive modeling tasks spanning across
personalization, recommender systems, ad response prediction, fraud detection
etc. typically require a variety of tabular as well as sequential activity features
about the user. For tasks like click-through or conversion (purchase) rate prediction
where labeled data is available at scale, popular methods use deep sequence models
(sometimes pre-trained) to encode sequential inputs, followed by concatenation
with tabular features and optimization of a supervised training objective. For tasks
like bot and fraud detection, where labeled data is sparse and incomplete, the
typical approach is to use self-supervision to learn user embeddings from their
historical activity sequence. However, these models are not equipped to handle
tabular input features during self-supervised learning. In this paper, we propose a
novel Transformer architecture that can jointly learn embeddings on both sequential
and tabular input features. Our model learns self-supervised user embeddings using
masked token prediction objective on a rich variety of features without relying on
any labeled data. We demonstrate that user embeddings generated by the proposed
technique are able to successfully encode information from a combination of
sequential and tabular features, improving AUC-ROC for linear separability for a
downstream task label by 5% over embeddings generated using sequential features
only. We also benchmark the efficacy of the embeddings on the bot detection task
for a large-scale digital advertising program, where the proposed model improves
recall over known bots by 10% over the sequential only baseline at the same False
Positive Rate (FPR).

1 Introduction

As deep learning techniques advanced, machine learning models used for predictive modeling tasks
across personalization, recommender systems, ad response prediction, bot and fraud detection etc.
started using a large variety of sequence inputs (like users’ page view history, search query sequences
etc.) alongside traditionally used tabular features. Modeling activity sequences reduces reliance
on engineering complex features by directly operating on granular event level data, while tabular
features help model domain specific feature aggregates and features that are stable in time (like user
logged-in status, account tier etc). For tasks like click-through rate prediction, where large amounts
of labeled data is present, sequential input features are typically encoded using a deep sequence
model like an LSTM [1] or a Transformer [2], and the encoded representation [3] is concatenated
with tabular features before being fed into a fully connected network for supervised training. More
recent techniques also use a separate unsupervised pre-training step for the sequence encoder, instead
of just learning the model end-to-end with the concatenated features. However, for domains like fraud
detection, where large scale and accurate ground truth data is unavailable, supervised modeling and
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fine-tuning based techniques fall short and risk introducing bias contained in the labels. Hence in such
settings, models rely more on self-supervised or unsupervised techniques, motivating us to explore
self-supervised representation learning techniques that model not just sequential or time-series data
but can jointly model tabular features and sequential inputs during the self-supervised embedding
learning phase.

While most of the prior work in self-supervised learning focuses on modeling language, speech,
vision, time-series or tabular features alone using transformer models as the backbone, joint self-
supervised modeling of sequential and tabular features with transformers has four unique challenges.
First, the model needs to be able to take as input, a variety of different types of feature variables,
which can be either categorical, real valued, natural language or a time series. Second, each input
feature needs to contain information about the feature column as transformers treat all inputs as a bag.
Third, alongside the column information to differentiate between features, the sequence or time-series
inputs also need to contain information about the position of the token in the input sequence. A
common positional encoding cannot be used across the sequence and tabular inputs as it would
require pre-defining a position order for the tabular inputs, which maybe sub-optimal. Finally, to
generate the output embedding, a unique task needs to be defined to aggregate contextualized output
representations from the transformer across individual tokens, since the concept of next-sentence
prediction (which is used in BERT [4] for natural language processing) is not defined for joint
sequential and tabular inputs, and mean-pooling [5] of the contextualized output representations
across all inputs is not an option since it would assign disproportionate weight to tokens in long
sequence lengths as compared to tabular features.

In this paper, we present a novel Transformer architecture to address the above mentioned challenges
with joint self-supervised modeling of tabular and sequential features. The proposed transformer
model architecture can accept both tabular features and sequences as inputs where individual tabular
features as well as features describing the sequence can be categorical, real valued or in natural
language. We differentiate the feature columns by the usage of column embeddings at the time
of input, alongside the usage of positional encodings to preserve the sequential information. The
model uses masked token prediction (also known as masked language modeling or MLM in the
literature) as the self-supervised training objective. We supplement masked token prediction with an
auxiliary self-supervised task that uses contrastive learning to generate the final output embedding.
We demonstrate the effectiveness of the architecture by learning self-supervised user embeddings
for a large-scale digital advertising service based on their ad click activity sequences, and multiple
tabular features about the user and benchmarking the efficacy of the learnt embeddings based on
linear separability over a downstream label (purchases) as well as on the bot detection task for the ad
service.

The paper is structured as follows: Section 2 describes the related work, Section 3 outlines the
modeling framework and the self-supervised training objective. This is followed by description of
experiments and results in Section 4 and we conclude in Section 5.

2 Related Work

Deep Sequence Modeling Deep learning techniques have demonstrated state-of-the-art results in
sequence models and have alleviated the need of engineering complex features for sequential inputs.
While earlier deep learning models used LSTM [1] to model sequences, in recent years, Transformer
[2] models have achieved state-of-the-art results primarily because of their use of self-attention, as
against the inherent sequential nature of LSTMs. Since the self-attention mechanism leads to inputs
being treated as bag instead of ordered sequences, transformer models additionally require positional
encodings [2, 6] at the time of input.

Self-supervised learning Pre-training of models using self-supervised learning has achieved state-
of-the-art results across multiple domains. The core idea of self-supervision is to learn representations
(embeddings) of the inputs using a deep learning model, trained on a proxy task constructed from
unlabeled data which is usually available in large volumes. Pre-training the model on proxy tasks
allows it to capture various important characteristics and features about the input data in an embedding,
which can be fine-tuned with labeled data downstream in supervised settings, or used for clustering
or in a linear classifier in few-shot settings. Earliest form of self-supervision was seen in denoising
autoencoders [7], which used a simple fully connected network to reconstruct tabular inputs perturbed
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with noise. In natural language processing, next word prediction using deep autoregressive techniques
[8] is popularly used to pre-train models on an unsupervised input corpus. In computer vision,
convolutional networks were pre-trained to predict masked patches [11, 12] or different augmentations
[13] of input images. More recently, Transformer models have been successfully applied for self-
supervised learning in natural language (using next-token prediction in GPT [9] or masked token
prediction in BERT [4]), computer vision (using masked image patch prediction [14]) as well as
tabular data (using masked token prediction or replaced token detection in TabTransformer [15] and
TabNet [10]) domains. While there are some initial works on self-supervised representation learning
for multi-modal inputs [16, 17], self-supervision across sequential and tabular data, to the best of our
knowledge, remains a relatively under-explored area.

Digital advertising Self-supervised learning has been applied for click-through rate (CTR) pre-
diction by pre-training a large-transformer model using masked language modeling objective [18],
treating all input features as a single input string. For conversion rate (CVR) prediction, next event
prediction has been used to pre-train deep sequence models on users’ historic ad activity, representa-
tions from which are concatenated with the tabular features during supervised fine-tuning [20]. For
ad fraud and robot detection, attempts to model users’ ad activity history using supervised proxy
labels are known to give biased models due to imprecise labels. More recent techniques in ad fraud
detection eliminate the dependency on proxy labels by using the self-supervised objective of next
event prediction on users’ ad activity history to learn user embeddings [20]. However, none of the
above methods learn jointly across sequential and tabular inputs explicitly during the self-supervised
learning phase.

3 Modeling Framework

In this section, we describe the enhancements in the input encoding strategy to accommodate tabular
and sequential inputs in Transformers and outline the self-supervised training objective to generate
user embeddings.

3.1 Encoding Input Features

Each user entity is defined by a set of tabular features and the click activity sequence over a specified
aggregation time window. The click activity sequence is a multi-dimensional time series of clicks
made by the user, where each click in the sequence is defined by multiple features. Each of the tabular
and sequential features can be either categorical, real valued or in natural language. Formally,

U = [T1, T2, ..., Tp, X1, X2, ...., Xi, ..., Xn] (1)
Xi = [F1(i);F2(i); ...;Fk(i)] (2)

where each user U is defined by p tabular features [T1,...,Tp] and a sequence of n clicks [X1,...,Xn],
where each click event Xi is defined by k features [F1, F2,...,Fk].

We do not model the input as a single string as defined in [18, 19], since it inherently removes any
ordinal information contained in numerical inputs and forces the network to model basic arithmetic
operations over strings, and is not a natural way of modeling different features. Instead, each
categorical and natural language feature in tabular as well as the sequential input is mapped to an
embedding before being provided as input to the Transformer based encoder network. Categorical
features are mapped from their one-hot representation to a dense embedding using a linear transform.
Natural language features are represented as a bag-of-words by summing up embeddings of the
constituent words [21]. These embedding functions are trained end-to-end with the model objective.
All numerical feature inputs are log scaled and concatenated at the time of input. Formally, let E(x)
be the embedding function for individual features:

E(x) =


W.x if x is a categorical feature
ln(x) if x is a numerical feature∑d

i=1 xi if x is a natural language input of d words with embedding xi

(3)

For each event in the sequential input, embeddings of the individual features are concatenated to
generate the input embedding for the event. Let R(Xi) be the embedding of each input event Xi in
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the sequence,
R(Xi) = Concat(E(F1(i)), ..., E(Fk(i))) (4)

To embed the tabular inputs meaningfully, we follow the technique used in DLRM [22], where the
features are split into two categories - numerical and non-numerical. All non-numerical features are
embedded separately using the embedding function E as described above, and a single embedding
is constructed for all numerical tabular features using a two layer feed forward network (FFN). Let
[T1,...,Tm] be the list of non-numerical tabular features and [Tm+1,...,Tp] be the list of numerical
tabular features. We obtain m+ 1 input embeddings (represented by R) for tabular features.

R(Ti) = E(Ti) if i <= m (5)
R(Tm+1,p) = FFN(Concat(E(Tm+1), ..., E(Tp))) (6)

Hence, the feature input representation If to the transformer becomes,

If = [R(T1), R(T2), ..., R(Tm), R(Tm+1,p), R(X1), ..., R(Xn)] (7)

3.2 Positional and Column Embeddings

Since transformers treat inputs as a bag, we need to enrich the input feature representations with
information about the feature column and additionally for sequential inputs, information about the
position of the event in the sequence. We cannot use positional encodings described in [2] for tabular
features as that would require us to define an arbitrary ordering over the tabular features, which may
be sub-optimal. Hence, we use learnable column embeddings as described in TabTransformers [15]
for each input feature column in If . All sequential time-steps share the same column embedding
while all tabular inputs in If get different column embeddings. However, for encoding positional
information within the sequence inputs, all time-steps in the sequential input get different learnable
positional encodings while all tabular inputs share a single learnable positional encoding. The final
input to the transformer is as follows:

I =[P (0) + C(1) +R(T1),

.....

P (0) + C(m) +R(Tm),

P (0) + C(m+ 1) +R(Tm+1, p),

P (1) + C(0) +R(X1),

.....

P (n) + C(0) +R(Xn)]

(8)

where P (i) and C(i) refer to the positional and column embeddings respectively.

3.3 Self-Supervised Training

3.3.1 Masked Token Prediction

Similar to masked language modeling (MLM) used in BERT, we use masked token prediction
as the self-supervised training objective. We randomly mask a fraction of the time-steps of the
sequential input and a similar fraction of the tabular features for every user and train the transformer
to reconstruct the masked input. For masked sequential inputs, all features for a time-step are masked
and predicted using multiple output heads over the shared representation at the output layer of the
transformer. For the prediction, we assume all features of the masked time-step are independent given
the input data.

p(Xi|mask(I), θ) = p(F1(i), F2(i), ..., Fk(i)|mask(I), θ) =
k∏

j=1

p(Fj(i)|mask(I), θ) (9)

where θ are the parameters of the model. For numerical tabular inputs, only a subset of the features
are masked and multiple output heads are used for prediction of the masked values. To compute the
prediction loss over masked features, we use mean-square error and cross entropy loss for numerical
and low-cardinality categorical features respectively. Since computing the full probability distribution
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Figure 1: Model Architecture

using softmax for high cardinality and natural language features is expensive, contrastive predictive
coding [11, 12] is used, which classifies the ground truth value of the masked feature against a set
of randomly chosen negative examples directly in the embedding space. The dot product between
the predicted embedding and the target embedding (ground truth or negative samples) represents the
logits, using which the cross entropy is computed. We do not apply weighing in the loss terms for
different features.

3.3.2 Extracting Final Embedding

Transformers generate contextualized representations for the individual input tokens and require
additional steps to generate a single embedding representing the entire input. Similar to BERT, we
append a special [CLS] token as another tabular feature for every user and the output corresponding
to the [CLS] token is considered as the final user embedding. We train this by adding a contrastive
loss term [13] to the mask prediction loss, where embeddings of two different masked samples of the
same user are considered as positive examples and embeddings for different users are considered as
negative examples.

Jcontrastive = − log
eQ(Ui,m1

)TQ(Ui,m2
)

eQ(Ui,m1 )
TQ(Ui,m2 ) +

∑
l e

Q(Ui,m1
)TQ(Ul,m1

)
(10)

where Q represents the output embedding corresponding to the [CLS] token, Ui,m1 and Ui,m2

represent two differently masked inputs for a user i and {l} represents the set of users forming the
negative samples.

The overall proposed architecture is illustrated in Figure 1.

4 Experiments

4.1 Downstream Tasks

We train the model over a month of user interaction data for a large-scale advertising program to learn
user embeddings and evaluate the performance of the learnt representations on two downstream tasks
- first, where accurate labels are known for training a classifier and another where no task specific
fine-tuning is possible due to lack of labels. User account level features like logged-in status, account
tier, email domain, account creation date, numerical aggregates like total distinct devices etc. are
used as tabular inputs and the click activity sequence is defined by features like time since last click,
search query, placement, product attribute etc.
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4.1.1 Linear Separability in Classification

One way to analyze the quality of unsupervised or self-supervised embeddings is to evaluate their
performance on a downstream supervised classification task. In this experiment, we benchmark the
user embeddings on the user conversion (purchase) prediction task based on linear separability. We
train a linear binary classifier on the learnt users embeddings to predict if the user makes a purchase,
and evaluate the efficacy based on AUC-ROC. Higher AUC-ROC implies that the embeddings have
better linear separation and few-shot capability with respect to the downstream supervised label.

4.1.2 Click bot detection

Due to absence of accurate ground truth labels for robotic users, supervised techniques fall short in
bot and fraud detection scenarios. While labeling individual samples accurately may not be possible,
multiple domain-knowledge based heuristics can be applied to reliably evaluate if a given group of
users are robotic. Hence, self-supervised user embeddings are clustered into groups using k-means
and clusters of users based on these heuristics are marked as robotic.

We calibrate the heuristics to achieve a fixed False Positive Rate (FPR), which refers to the fraction of
genuine human traffic invalidated by the algorithm. Since we do not have ground truth labels, FPR is
approximated by using purchasing users as a proxy for the distribution of human labels. The fraction
of purchasing clicks that were marked as robotic is computed as FPR. For a fixed operating point
FPR, we compute the robotic recall for the algorithms over a highly precise set of bot traffic events
identified using domain knowledge and manual investigations.

4.2 Hyperparameters

For sequential input, we model we truncate the sequence at latest 100 events. The Transformer
uses a stack of 4 encoder blocks with 8 attention heads each and a hidden state dimension of 256.
The hidden state is mapped to 128 dimensions using a linear transform at the output layer. 20% of
sequential as well tabular inputs are masked during pre-training. The loss is computed and optimized
over a mini-batch size of 4096 using Adam [23] optimizer with a learning rate of 2e-4 for 3 epochs.
The model trains on over 50 million examples, on 8 NVIDIA V100 GPUs with synchronous weight
updates for 18 hours using TensorFlow.

4.3 Baseline

We do not build a sequence embedding + tabular feature concatenation baseline as concatenation
based approaches do not work when tabular features are of high cardinality - the tabular input size
explodes due to the one-hot representation for the high cardinality feature. Embedding such high
cardinality features without using self-supervision is challenging in cases where fine-tuning is not
performed, as in the case of robot detection task. We also do not show ablations with original
Transformer positional embeddings since they require us to define an ordering over the tabular
features. Since number of such orderings are combinatorially large, defining an arbitrary ordering
would be sub-optimal. Removing positional encodings would collapse the activity sequence into a
bag and removing column embeddings would remove distinction among different tabular features.

Instead, we benchmark the proposed transformer model (Sequence + Tab MLM) with joint sequential
and tabular inputs against transformers trained on sequential input only to verify if tabular features
influence the final user embedding. For the sequential input only baselines, we use a model trained
using next token prediction objective (Sequence GPT) and another model trained using masked token
prediction (Sequence MLM). For Sequence GPT, output representation from the last time-step is used
as the user embedding. We do not benchmark the model against next token prediction applied on
sequential and tabular features because it would need a pre-defined ordering over the tabular features
to make the autoregressive predictions. For Sequence MLM, the final user embedding is the output
representation corresponding to the [CLS] token, trained using the auxiliary contrastive loss term as
described in the previous section.

The zero-shot ability of the model is demonstrated by evaluating on linear separability only (as
against full fine-tuning) and robot detection task where embeddings are directly clustered to identify
bot clusters.
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4.4 Results

Table 1 shows the relative AUC-ROC for the linear classifier trained on the learnt embeddings for the
conversion prediction task and the robotic recall with models calibrated at a fixed FPR.

Table 1: Relative Performance Comparision
Model AUC Robotic Recall (%) at Fixed FPR

Sequence MLM x y (undisclosed, relative comparisons only)
Sequence GPT 0.99 x 1.07 y
Sequence + Tab MLM 1.05 x 1.10 y

4.5 Discussion

Results in Table 1 are inconclusive in establishing if masked token prediction works better than next
token prediction for sequence only models, and we point the readers to sequence modeling literature
which explores this topic in depth [24, 25]. We conclude that Sequence + Tab MLM technique is
successfully able to model tabular as well as sequential features, leading to better linear separability
based on conversions and higher robotic recall at the same FPR when compared to sequence only
MLM model. AUC improvement demonstrates that tabular features were successfully encoded in the
learnt embedding. Since activity sequence features capture behavioral patterns and are key towards
distinguishing between bot and human users, improvement in bot recall demonstrates that sequential
input continues to remain encoded in the user embedding in the proposed Sequence + Tab MLM
architecture.

5 Conclusion and Future Work

We presented that masked token prediction using Transformers can be extended to learn self-
supervised representations across sequential and tabular features, further positioning Transformers
as the unified backbone model that can be applied not only on individual modalities but across
modalities. We also showed that the framework can be used to learn self-supervised user embeddings
based on a variety of features, which can be applied to multiple downstream tasks.

In future work, we plan to extend the framework to support modeling of extremely long sequence
lengths, so that more granular event data can be used to model user behavior. Since our current tabular
features are relatively simple, we plan to experiment with more complex feature aggregates and
support pre-trained embeddings as inputs. As with the recent trends, we also plan to experiment with
significantly larger transformer models to further improve the quality of the learnt representations.
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