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ABSTRACT

Noisy labels (NL) and adversarial examples both undermine trained models, but
interestingly they have hitherto been studied independently. A recent adversarial
training (AT) study showed that the number of projected gradient descent (PGD)
steps to successfully attack a point (i.e., find an adversarial example in its proximity)
is an effective measure of the robustness of this point. Given that natural data are
clean, this measure reveals an intrinsic geometric property—how far a point is
from its nearest class boundary. Based on this breakthrough, in this paper, we
figure out how AT would interact with NL. Firstly, we find if a point is foo close
to its noisy-class boundary (e.g., one step is enough to attack it), this point is
likely to be mislabeled, which suggests to adopt the number of PGD steps as a
new criterion for sample selection to correct NL. Secondly, we confirm that AT
with strong smoothing effects suffers less from NL (without NL corrections) than
standard training, which suggests that AT itself is an NL correction. Hence, AT
with NL is helpful for improving even the natural accuracy, which again illustrates
the superiority of AT as a general-purpose robust learning criterion.

1 INTRODUCTION

In practice, the process of data labeling is usually noisy. Thus, it seems inevitable to learn with noisy
labels (Natarajan et al.,|2013). To combat noisy labels, researchers have designed robust label-noise
learning methods, such as sample selection (Jiang et al.| [2018)) and loss/label correction (Patrini et al.
2017;|Nguyen et al.} 2019). Meanwhile, safety-critical areas (e.g., medicine and finance) require deep
neural networks to be robust against adversarial examples (Szegedy et al.;,2014; Nguyen et al., 2015).
To combat adversarial examples, adversarial training methods empirically generate adversarial data
on the fly for updating the model (Madry et al., 2018; Zhang et al., 2019a).

An interesting fact is that, the research community is exploring label-noise learning and adversarial
training independently. For example, Ding et al.| (2020) and [Zhang et al.| (2021b) demonstrated
that the non-robust data that are close to the nearest class boundary are easy to be attacked: their
adversarial variants easily cross over the decision boundary. To fine-tune the decision boundaries
for adversarial robustness, [Ding et al.| (2020) adaptively optimized small margins for non-robust
data, while |Zhang et al.| (2021b) gave more weights on them. However, both methods in adversarial
training explored the adversarial robustness with an implicit assumption that data have clean labels.
Obviously, it is not realistic in practice. To this end, we figure out the interaction of adversarial
training with noisy labels.

We discover that when noisy labels occur in adversarial training (the right panel of Figure[I)), incorrect
data (square points) are more likely to be non-robust (i.e., the predicted labels of their adversarial
variants disagree with the given labels). Specifically, Figure [T] compares the difference between
standard training (ST (Zhang et al.,|2017))) and adversarial training (AT (Madry et al.,|2018))) with
noisy labels. Commonly, a small number of incorrect data (square points) are surrounded by a large
number of correct data (round points). In ST, deep networks shape two small clusters (the left panel of
Figure E]) around the two incorrect data due to memorization effects (Zhang et al.|[2017). In contrast,
AT has strong smoothing effects, i.e., smoothing out the small clusters around incorrect data and
letting incorrect data alone (the right panel of Figure|T).

To explain the above phenomenon in AT, we believe that the adversarial counterparts generated by
(majority) correct data can help to smooth the local neighborhoods of correct data, which encourages
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Figure 1: The results of ST and AT on a binary dataset  Figure 2: The average entropy of mod-
with noisy labels. Dots denote correct data; squares denote  els trained by ST and AT. This value
incorrect data. The color gradient represents the predic-  is calculated on 100 points in each
tion confidence: the deeper color represents the higher = neighborhood of incorrect data, us-
prediction confidence. Left panel: A deep network shapes  ing CIFAR-10 with symmetric-flipping
two small clusters (red and blue ones in cross-over areas)  noise. Both solid and dashed lines rep-
around two incorrect data due to memorization effects in  resent ST and AT, respectively. Note
ST. Right panel: These clusters have been smoothed out  that ST learns incorrect data more de-
in AT. Boxes represent the unit-norm ball of AT. terministically than AT.

deep networks to be locally constant within the neighborhood (Papernot et al.|[2016). Therefore, in
AT, it becomes difficult for deep networks to form small but separated clusters around each incorrect
data. Consequently, these incorrect data are non-robust, which echos the parallel findings that robust
training avoids memorization of label noise (Sanyal et al., 2021)).

Furthermore, we make quantitative comparisons between ST and AT in the presence of label noise.
Zhang et al| (2017) showed that ST indeed overfits noisy labels, which definitely degrade the
generalization performance of deep networks. From Figure 3] it can be seen that the training accuracy
of deep networks on incorrect data is obviously lower than that on correct data in AT. Nonetheless,
the performance gap totally disappeared in ST. Therefore, compared to ST, AT can always distinguish
correct data and incorrect data. Observing Figure ] the test accuracy of deep networks first increases
then decreases in ST. Nonetheless, such a trend has been largely alleviated or totally eliminated in AT.
Therefore, AT can mitigate negative effects of noisy labels, since the smoothing effects of AT can
prevent memorizing such incorrect data.

Moreover, under noisy labels, we realize that AT provides a new measure—how difficult it is to attack
data to generate adversarial variants whose predictive labels are different from the given labels—
which can distinguish correct/incorrect data (Figures and[7(b)) and typical/rare data (Figure 8]
well. This new measure can be approximately realized by the number of projected gradient descent
(PGD) steps (Madry et al.,|2018)), i.e., how many PGD iterations we need to generate misclassified
adversarial variants. Compared with the commonly used measure, i.e., the loss value (Jiang et al.}
2018} Han et al.,[2018)), we find that the number of PGD steps could be an alternative or even better
measure in AT (Figures [7(a) and [7(b)). In addition, we discover that this new measure can easily pick
up rare (atypical) data among typical data (Figure[8), where modern datasets often follow long-tailed
distributions (Feldman & Zhang} [2020).

Main contributions. To sum up, our contributions can be summarized in three aspects as follows.

1. We explore the in-depth interaction of AT with noisy labels. Namely, we take a closer look
at the smoothing effects of AT under label noise (Section [3). Subsequently, we conduct
quantitative comparisons: compared with ST, AT can always distinguish correct and incorrect
data and mitigate negative effects of label noise (Section ).

2. We realize that AT naturally provides a new measure called the number of PGD steps,
i.e., how many PGD iterations are needed to generate misclassified adversarial examples.
Such a new measure can clearly differentiate the correct/incorrect data and typical/rare data
(Section[3).

3. We provide two simple examples of the applications of our new measure: a) we develop a
robust annotator, which can robustly annotate unlabeled (U) data considering that U data
could be adversarially perturbed (Section[6.1)); b) our new measure could be an alternative
to the predictive probability for providing the confidence of annotated labels (Section[6.2).
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2 BACKGROUND AND RELATED WORK

Adversarial training (AT). As one of the primary defenses against adversarial examples (Good+
fellow et al., [2015} |Carlini & Wagner, [2017} |Athalye et al.| 2018)), AT has been widely studied to
improve the adversarial robustness of deep neural networks (DNNs) (Cai et al.,|2018; Wang et al.,
2020bja; Jiang et al., [2020b; |Wu et al., [2020; (Chen et al., 20205 Bai et al., 2021} |Chen et al., [2021}
Tian et al.| [2021)). The key objective of AT is to minimize the training loss on the adversarial variants
of training data. We review the details of AT (Madry et al.,2018) used in this paper.

Let (X, d,) denote the input feature space X’ with the infinity distance metric din¢(z, z') = ||l —
2'|| 0o, and Be[x] = {2’ € X' | ding(z,2") < €} be the closed ball of radius € > 0 centered at z in X'
S = {(zi,y:)}, is a dataset and (z;, y;) are i.i.d. from an underlying distribution, where z; € X,
yi € Y ={0,1,...,C — 1}, and C denotes the number of classes. The objective function of AT is

min — Zﬂ fo(Z (D

fo€EF N

where Z; is an adversarial variant of input data x; within the e-ball centered at « and fy(-) : X — R€
is a score function. ¢ : R® x Y — R is a loss function which is a composition of a base loss
g : A 1x Y SR (e.g., the cross-entropy loss) and an inverse link function /1 : R¢ — AC-1
(e.g., the soft-max activation), in which A®~1 is the corresponding probability simplex—in other

words, £(fo(-),y) = £a(£L(fo (")), y)-

To generate the adversarial variants  for natural data x, AT employs the PGD method (Madry et al.,
2018). Given a starting point z(?) € X’ and step size a > 0, PGD works as follows:

2l = Mg (2 2 + asign(V,o0 ((fo(x ), 1)), (2)

until a certain stopping criterion is satisfied. In the above equation, ¢ € N, / is the loss function, z(*)
refers to natural data or natural data perturbed by a small Gaussian or uniform random noise, y is the
corresponding label for natural data z, z(*) is an adversarial data point at step ¢, and II BeJwo] (+) is the

projection function that projects the adversarial data back into the e-ball centered at () if necessary.

It is common to use PGD to generate adversarial variants Z in AT methods (Wang et al.,|2019;|Zhang
et al.|[2020). Recently, |Zhang et al.|(2021b) explored adversarial robustness by giving more weights
on the non-robust data with the assumption that all labels are correct. Specifically, the non-robust
data are geometrically close to the class boundaries, which can easily go across the class boundaries
by a small perturbation. To approximate the distance between the data and the class boundaries, they
proposed the geometry-aware projected gradient descent (GA-PGD) to calculate the geometry value
&, which is the least number of iterations that PGD needs to find misclassified adversarial variants
of input data. In this paper, we utilize the geometry value « to represent our proposed measure (i.e.,
the number of PGD steps); we further explore its applications such as selecting correct/incorrect and
typical/rare data (Section[3)), assisting to develop a robust annotator (Section[6.1)) and providing the
annotation confidence (Section[6.2)).

Label-noise learning. We consider a training set with X = (z1,...,2zx) and its associated
labels Y = (y1,...,yn), where y; € ) is the one-hot label for the instance x; and (xz, y;) are
drawn i.i.d. from some unknown distribution. In the setting of label noise, we observe noisy labels
Y= (J1,...,Un) where §; € Y might be different from the correspondmg ground-truth label
y; € Y. In this paper, we mainly focus on typical class-conditional noise: 1) symmetric-flipping
noise (Van Rooyen et al., [2015)), where noisy labels are corrupted at random with the uniform
distribution; 2) pair-flipping noise (Han et al., 2018), where noisy labels are corrupted between
adjacent classes that are prone to be mislabeled. Note that pair-flipping noise is an extremely hard
case of asymmetric-flipping noise (Patrini et al., 2017)).

To combat noisy labels, researchers have designed robust label-noise learning methods, such as
sample selection (Malach & Shalev-Shwartz, 2017} Jiang et al., 2020aj Han et al., |2020a), loss
correction (Han et al.|[2020b; [Liu & Guol 2020), and label correction (Wang et al.| 2018)). Among
them, sample selection is emerging due to its simplicity. The key idea of sample selection is to
back-propagate clean samples (regarded as correct data) during training. Since DNNs learn simple
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Figure 3: The standard accuracy of ST and AT on correct/incorrect training data using CIFAR-10
and MNIST with symmetric-flipping noise. Solid lines denote the accuracy of correct training data,
while dashed lines correspond to that of incorrect training data. Compared with ST, there is a large
performance gap in the standard accuracy of correct/incorrect training data in AT.

patterns first (Zhang et al., 2017} |Arpit et al., 2017), the loss value is used as a general criterion for
selecting clean samples (Han et al., [2018}|Yao et al., | 2020). Specifically, the data with small-loss
values are considered as clean samples, which are used to update the model. In contrast, the data
with large-loss values are considered as noisy samples, which should be discarded or utilized in
another way (Han et al.,|2020a)). Note that this paper proposes a new criterion—the number of PGD
steps—for sample selection (Section [5).

Co-existence of adversarial examples and noisy labels (NL). Some work has previously studied
adversarial examples and noisy labels (NL) jointly. |Alayrac et al.|(2019) empirically showed that
NL negatively affects AT’s performance, but AT’s robust accuracy apparently suffers less than AT’s
natural accuracy. [Sanyal et al.| (2021 empirically found that AT can avoid the memorization of
NL. Damodaran et al.|(2019) proposed to use Wasserstein adversarial regularization to combat NL
for benefiting ST’s generalization. In contrast, we advocate the AT’s smoothing effect by making
quantitative comparisons between AT and ST under NL. Specifically, ST has a memorization effect
that gradually memorizes NL and degrades generalization in the end, while AT has a smoothing effect
that avoids the memorization of NL and combats NL for benefiting generalization. In addition, we
propose a new measure called the number of PGD steps for sample selection, which can differentiate
the correct/incorrect data and typical/rare data, and we provide two exemplar applications for our
new measure. Furthermore, in Appendix [A] we provide extensive comparisons between our study
and the existing literature.

3 SMOOTHING EFFECTS OF ADVERSARIAL TRAINING

In this section, we take a closer look at the smoothing effects of AT with NL. At a high level, we
conduct experiments on a synthetic dataset with incorrect labels, which explicitly show the smoothing
effects of AT (Figure E]) We then use a real-world dataset, CIFAR-10 (Krizhevsky, 2009), with
incorrect labels, which further validates the smoothing effects of AT (Figure[2). As a key result, we
find that AT can smooth out the small clusters around incorrect data (the right panel of Figure|I)),
which leads to incorrect data being non-robust in AT, i.e., they can be easily attacked to flip labels.
The setup and more results can be found in Appendix [B]

In detail, we empirically confirmed that DNNs can memorize random noise in ST (the left panel of
Figure E]), which has been found in previous works (Zhang et al., 2017} |Arpit et al., 2017)). However,
a recent study (Sanyal et al.,|2021) claimed that AT can avoid the memorization of incorrect data
through analyzing model predictions. Going beyond their analysis, we further investigated AT
with noisy labels and provided an in-depth explanation, namely smoothing effects. Specifically, AT
prevents incorrect data from forming small clusters, which should be the primary reason for avoiding
the memorization of incorrect data.

To justify our smoothing effect, we performed a series of comparison experiments using ST and AT
on a synthetic dataset with incorrect labels. In Figure |l the model trained by ST can overfit the
incorrect data (yellow and black squares), and thus have incorrect predictions (red and blue clusters
in cross-over areas) around incorrect data. While in AT (with smoothing effects), such clusters have
obviously disappeared. The reason is due to the smoothing effects from the adversarial variants
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Figure 4: The standard accuracy of ST and AT on natural test data using CIFAR-10 and MNIST with
symmetric-flipping noise for training. Note that the larger noise rate causes the test accuracy of
ST dropping more seriously due to memorization effects in deep learning, while AT alleviates such
negative effects.

generated from correct data. Namely, the number of correct data is larger than that of incorrect data.
Thus, it is difficult for incorrect data to smooth their neighborhood.

Further, we calculated the entropy values of the model predictions on the CIFAR-10 dataset, which
aims to validate the smoothing effect in practice. Specifically, we randomly selected 100 points in
each neighborhood (within a small e-ball) of the incorrect data and calculated their average entropy
values in training (Figure[2). As a measure of uncertainty (Dai & Chen| [2012), the entropy value was
calculated by the following formula:

HY|X)==>"Y p(z,y) - log p(y|z). 3)

reX yey

The smaller value represents the higher certainty of model prediction (and vice versa), which indicates
that the model learns the data more deterministically. Thus, the higher certainty leads to the higher
possibility of incorrect data forming small clusters in their neighborhoods.

We compared the entropy values of ST and AT. During the training process, under the same noise
rate, the entropy value of AT is always higher than that of ST. After epoch 60, the entropy value of ST
drops very fast, while that of AT remains high. It clearly shows that smoothing effects in AT prevent
the model from learning incorrect data with their neighborhoods deterministically, which further
confirms that it is harder for incorrect data to form small clusters. By observing Figures [I] and [2}
we confirmed that it is difficult for incorrect data in AT to form small clusters due to the smoothing
effects from the adversarial variants of correct data.

4 KNOCK-ON EFFECTS OF ADVERSARIAL TRAINING

In this section, we explore knock-on effects of AT comprehensively. We show the quantitative
differences between ST and AT with noisy labels. First, in terms of training accuracy, we show
that correct/incorrect data can be always distinguishable in AT (Figure[3). Second, in terms of test
accuracy, we demonstrate that AT alleviates negative effects of incorrect data and then improves the
model generalization (Figure[d). Note that we display the experimental results on the CIFAR-10 and
MNIST datasets (LeCun et al.,[1998) with symmetric-flipping noise in this section. More results (e.g.,
pair-flipping noise, the CIFAR-100 dataset, the loss values, and different networks) can be found in

Appendix [C]
4.1 DISTINGUISHABLE CORRECT/INCORRECT DATA

In Figure[3] we plotted the standard accuracy of natural fraining data in ST and AT. In the early stage
of training, there is a clear performance gap between the standard accuracy of ST on correct/incorrect
training data. However, after 60 epochs, the standard accuracy of ST on incorrect training data
increases rapidly, while that of AT on incorrect training data rises relatively slowly. When the training
comes to epoch 100, the standard accuracy of ST on correct/incorrect training data are merged
together. Nonetheless, there is still a large performance gap in AT. Compared to the results on
CIFAR-10, such a gap is more obvious on MNIST.
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4.2 ALLEVIATION OF MEMORIZATION EFFECTS

In Figure 4] we plotted the standard accuracy of natural test data in ST and AT. It shows that AT can
alleviate the negative effects of label noise and then improve the model generalization. Specifically,
the larger noise rate causes the test accuracy of ST to drop more seriously, i.e., memorization
effects (Arpit et al., [2017)). However, AT reduces such negative effects. By checking the standard
accuracy of natural test data, we find that there is no obvious overfitting phenomenon in AT. We also
visualized the loss landscape (Li et al., 2018)) of models trained by ST and AT to further substantiate
the alleviation, which can be found in Appendix

It is worthwhile to observe the results on MNIST: simply using AT can make the model obtain a
performance similar to noise-free training. However, on more complex CIFAR-10, incorrect data
still have a certain negative impact on the model trained by AT. To reduce such an impact, a simple
yet effective method is to use sample selection to filter correct/incorrect data for training (Jiang
et al.| 2018}; |Cheng et al., [2021). Therefore, it is critical to have a measure which can provide the
stratification for correct/incorrect data. Normally, the loss value can be a good candidate in ST.
However, in AT, we can find a better measure such as the number of PGD steps (i.e., geometry value
k). Since the smoothing effects in AT can make incorrect data be non-robust, the geometry value
x—how difficult it is to attack data to let them go across the decision boundary—could be naturally
used as a measure for this task.
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Figure 5: Comparisons of correct/incorrect data in  Figure 6: We choose the model trained by
terms of the loss value (top panel) and the geometry AT using CIFAR-10 with 20% symmetric-
value ~ (bottom panel) on CIFAR-10 with symmetric-  flipping noise. We jointly analyze the ge-
flipping noise in AT. We calculate the mean values in  ometry value » and the loss value, which
each epoch. We clearly demonstrate that the value k  shows that the value x can provide a fine
has a similar trend as loss value in AT; both can be  stratification on typical (i.e., larger x)/rare
used for differentiating correct/incorrect data in AT. (i.e., smaller k) data.

5 NEW MEASURE: GEOMETRY VALUE k

In this section, we show the geometry value x could be a new measure for the data stratification.
First, the geometry value « can differentiate correct/incorrect data in AT (Figures [5} [7(a)] and [7(b)).
Compared with the loss value, which has been widely used in sample selection (Jiang et al., [2018;
Han et al.| 2018} Yu et al. 2019), we show that the geometry value « can have a better performance to
filter incorrect data with different noise types. Second, we demonstrate that the geometry value x can
provide a finer stratification on typical/rare data (Figures|6and[8). We also discussed it with different
configurations (e.g., PGD step number or the e-ball) and more results can be found in Appendix [D]

5.1 GEOMETRY VALUE VS. LOSS VALUE

To combat NL, sample selection methods are very effective. As a common measure in sample
selection, the loss value is used to filter incorrect data. For example, small-loss data can be regarded
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Figure 7: The density of AT on correct/incorrect data using CIFAR-10 with (a) 20% symmetric-
flipping noise and (b) 40% pair-flipping noise. Top panels: the loss value in AT. Bottom panels: the
geometry value « in AT. The geometry value « has a better distinction on correct/incorrect data.

as “correct” data. However, there are two limitations in using the loss value as a measure. First, we
need to adjust different thresholds to obtain a better selection effect, when the dataset has different
noise rates and types (Yao et al., 2020). Second, for pair-flipping noise, the loss value cannot
distinguish correct/incorrect data well (the top panel of Figure [7(b)).

In Figure[5] we compared the geometry value « and loss value of correct/incorrect data in the training
process. We found that the value x can be used to differentiate incorrect data from correct data, since
it has a similar trend to the loss value in AT. To further compare two measures in distinguishing
correct/incorrect data, we plotted the density maps of two measures on the CIFAR-10 dataset with
different noise types in Figures and[7(b)] To compare the two measures in a meaningful way,
we performed the min-max normalization (Tax & Duin| [2000) on both the loss value and geometric
value x, which scales the range of values in [0, 1].

For symmetric-flipping noise (Figure [7(a)), although the loss value can distinguish correct data from
incorrect data during the training process, the geometric value x has a better distinction between
correct and incorrect data. Specifically, the top panels of Figure show that there are a large
number of correct/incorrect data with the same loss value, which requires a carefully designed
threshold to select the correct data from incorrect data. In contrast, correct/incorrect data can be well
divided using the value « in the bottom panels of Figure We can easily select correct/incorrect
data with high purity. More obviously, for pair-flipping noise, the loss value of correct/incorrect data
overlaps in the top panels of Figure[7(b)] However, the value « in the bottom panels of Figure [7(b)]
still provides a good discrimination on correct/incorrect data.

In addition, we found that the geometry value x can provide a fine stratification on typical/rare data.
First, we jointly analyzed the value ~ and the loss value in AT (Figure [6), where we stratified correct
data via k. Secondly, by inspecting the semantic information with different x, we found that the
value « can represent whether the data is relatively typical or rare (Figures[8(a)]and B(b)). Moreover,
we plotted a bivariate graph of the loss value and the value « in Figure[6] In this figure, we mainly
focused on the correctly classified data (blue scattered dots), since the wrongly classified data (orange
scattered dots) had been clearly discriminated by big loss values. Note that, for small-loss (correct)
data, the value x can further subdivide such data into typical and rare types.

5.2 DISTINGUISHABLE TYPICAL/RARE DATA

From the macro perspective, the loss value can be regarded as a measure to classify correct and
incorrect data (Jiang et al.l 2018]). Namely, small-loss data can be regarded as correct data, and
vice versa. However, such stratification is a bit rough, which motivates us to seek a micro measure
called the geometry value « (the number of PGD steps) in AT. To justify our findings in Figure 6]
we visualized the semantic information of CIFAR-10 (Figure and MNIST (Figure[8(b)) under
different . We found that images with large x (rightmost) are prototypical and easier to recognize
from the viewpoint of human perception, while images with small s (or x = 0) seem to be rarer (or
incorrect). These rare images have atypical semantic information, such as some strange shapes (“8”
with k£ = 14 in Figure [§(b)) or confusing backgrounds (“deer” with x = 2 in Figure [§(a)). More
results about the images with different « can be found in Appendix [D]
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Figure 8: The geometry value x w.r.t. images in CIFAR-10 and MNIST with 20% and 10% symmetric-
flipping noise. The leftmost of each subfigure is the given label (i.e., deer and plane or 3 and 8) of
all images on the right. We randomly select four examples with the different  in each class. As the
geometric value x increases from left (x = 0) to right (x = 10 or 40), the semantic information of
images is more typical and recognizable.

Algorithm 1: Robust Annotation Algorithm.

Input :network fy, training dataset S = {(z;,y;)}? ., learning rate », number of epochs T,
batch size m, number of batches M, threshold for geometry value K, threshold for loss
value L.
Output : robust annotator fj.
forepoch=1,...,T do
for mini-batch=1, ..., M do
Sample: a mini-batch {(z;,y;)}7™, from S.
for i = I,...,m (in parallel) do
Calculate: «; and ¢; of (x;,y;).
if x; < K and ¢; > L then
| Update: y; « argmax; fo(z).

end
Generate: adversarial data ; by PGD method.
end
Update: 0 < 0 — nVo{l(fo(Z:),y:)}
end
end

6 APPLICATIONS OF GEOMETRY VALUE k

In this section, we provide two applications of our new measure—the geometry value « (the number
of PGD steps). Since the value  can differentiate correct/incorrect data in AT (Section @, in the
presence of label noise, we can use it to detect noisy labels and correct labels (Figure[9). Meanwhile,
as it can have a fine stratification for typical/rare data (Section[5.2)), we can provide the confidence of
annotated labels according to the value « (Figure[I0).

Regardless of ST or AT, high-quality training data are always essential for acquiring a good
model (Deng et al., 2009), but the labeling process of high-quality data requires a lot of human
resources. To deal with such a problem, many methods used ST to facilitate a standard annotator to
annotate large-scale unlabeled (U) data (Carmon et al., 2019} |Alayrac et al.| 2019). However, this
standard annotator fails when U data are adversarially manipulated.

In practice, label-noise issues widely exist in real-world training datasets, and learning with NL seems
inevitable. Meanwhile, the existence of adversarial examples (Szegedy et al.,[2014;|Goodfellow et al.,
2015) also poses a threat to annotate U data. Therefore, we design a robust annotation algorithm
(Algorithm|[T) to assign reliable labels for U data even in the presence of adversarial manipulations
and noisy training labels (Section [6.1). Compared to human beings, the standard annotator cannot
give the information whether the label assignment for U data is reliable. Nonetheless, our new
measure could be an alternative to the predictive probability for providing the confidence of annotated
labels (Section[6.2)). The detailed experimental setups can be found in Appendix



Under review as a conference paper at ICLR 2022

The test U data with PGD-20 attack

100

Zoom-out results

(%)

Accuracy

04 06 08 0 ) 7 0.9 1.0

00 0. 0. 0.7 08
Ratio of adversarial corrupted U data Ratio of adversarial corrupted U data

Figure 9: The accuracy of four approaches as-
signing correct labels to adversarial U data from
CIFAR-10. Left panel: the full results. Right
panel: the zoom-out results (without standard
annotator). Our robust annotator has a satisfac-
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6.1 ROBUST ANNOTATOR

We can construct a robust annotator to assign labels for U data. Here, we consider a real-world
scenario, namely, existence of label noise in training data and adversarial manipulations in U data.
Our robust annotator has a better labeling performance than the standard annotator, since we use the
value ~ and the loss value jointly to select incorrect training data. We re-annotate high-quality pseudo
labels for these incorrect data, and adversarially train on the whole data. Then, our robust annotator
can reliably assign labels.

In Figure[9] we tested the accuracy of assigning correct labels to U data in the presence of adversarial
manipulations. We compared four methods, namely, our robust annotator with 20% symmetric-
flipping noise (red line), the PGD-based annotator with 20% symmetric-flipping noise (orange line),
the PGD-based annotator without noise (oracle, black dashed line), and the standard annotator without
noise (blue line). On normal U data (i.e., zero adversarial ratio), the standard annotator has better
performance of labeling. However, when U data is subject to certain adversarial manipulations (i.e.,
ratio above 0.2), the labeling quality of the standard annotator decreases sharply, but that of our robust
annotator still remains satisfactory. An extreme case is that, when all U data (ratio 1.0) are added to
adversarial manipulations, labels assigned by the standard annotator become completely unreliable,
but our labels assigned by the robust annotator are still better than the PGD-based annotator with
20% symmetric-flipping noise.

6.2 CONFIDENCE SCORES

For a given data point, the geometry value x can provide a confidence score, which represents the
reliability of label annotations. The measure value x can distinguish between typical data (correctly
labeled with high probability) and rare data (wrongly labeled with high probability) in U data. In
the left panel of Figure [T0] we plotted the accuracy of correctly predicted data with the value k.
The larger  corresponds to higher prediction accuracy, which shows that the value « can indeed
represent the reliability of label annotations. In the right panel of Figure[T0] we further investigated
the number of correctly predicted data with the value x. Most of the data have the value x = 10,
which corresponds to a high prediction accuracy. Meanwhile, a small part of the data have the value
k € [0, 6], which corresponds to a low prediction accuracy. Since the number of data with value
K € [7,9] is small, the standard deviation of the accuracy is large.

7 CONCLUSION

In this paper, we explored the interaction of adversarial training (AT) with noisy labels. We took a
closer look at smoothing effects of AT, and further investigated positive knock-on effects of AT. As a
result, AT can distinguish correct/incorrect data and alleviate memorization effects in deep networks.
Since smoothing effects can make incorrect data non-robust, the geometry value « (i.e., the number
of projected gradient descent steps) could be a new measure to differentiate correct/incorrect and
typical/rare data. Moreover, we gave two applications of our new measure, i.e., the robust annotator
and confidence scores. With the robust annotator, we can assign reliable labels for adversarial U data.
With confidence scores, we can know the reliability of label annotations.
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A  DETAILED DISCUSSIONS ON THE DIFFERENCES WITH THE EXISTING
STUDIES

This section discusses the difference between our work and other related studies that focused on
either improving adversarial training (AT) or learning with noisy labels (NL) in ST. Our work focuses
on figuring out the in-depth interaction of (canonical) adversarial training with (generalized) noisy
labels.

Improving adversarial training (AT). Some studies focused on improving the AT’s performance
by leveraging additional unlabelled (U) data (Carmon et al.,[2019; [Najafi et al., 2019; Alayrac et al.,
2019; Zhang et al.| [2019b). The main points are leveraging additional U data in AT that can achieve
both higher robust accuracy and higher standard accuracy. The ablation study of (Alayrac et al.
2019) provided an analysis on the impact of symmetric-flipping noise for model robustness, which
simulates the unreliable annotation of U data. By comparison, our study claims that AT itself an
NL correction. We conduct experiments on the generalized setting of NL, i.e., with different kinds
of label noise (e.g., symmetric-flipping noise and pair-flipping noise) and different noise rates (e.g.,
[0.1,0.4]).

For benefiting adversarial robustness, Zhang et al.| (2021al) proposed to inject NL over the training
process. They assume that the training set is noise-free, and they inject NL on the fly as AT’s
regularization method. By comparison, our settings and motivations are different. We assume the
training set is label-noisy and find that AT can naturally mitigate the negative effect of NL in the
training set. We focus on the understanding of AT’s smoothing effects on NL.

Learning with noisy labels (NL) in ST. Damodaran et al.|(2019) focused on learning with NL in
ST and designed a Wasserstein Adversarial Regularization (WAR) as a correction method. They
added the WAR into standard training (ST) to combat with the NL. The authors also provided analysis
for their proposed correction method. Specifically, they explained WAR as a label interpolation
that uses the prediction of the adversarial data to interpolate the original label for the natural data.
By comparison, we identified and illustrated the inherent reason for AT’s NL correction, i.e., the
smoothing effect of the AT. Due to AT’s smoothing effect, the predictions of the adversarial data are
more trustworthy and can be used to interpolate the noisy labels.

Kaneko et al.|(2019) focused on robust label noise learning in the generation task. They proposed a
robust GAN to combat with NL. Specifically, they introduced a noise transition model as an auxiliary
classifier for discriminator, which is similar to the forward correction method in label noise learning.
Their proposal conduct adversarial learning (AT) for generating images. By comparison, we leverage
AT for defending adversarial examples and meanwhile correcting NL.

Sanyal et al.|(2021)) found NL in ST causes the significant adversarial vulnerability. Besides, they
found NL widely exists even in some standard datasets (e.g., MNIST and CIFAR-10) and identified
NL as one of the causes for adversarial vulnerability in ST. In terms of AT, they empirically found
that AT can avoid the memorization of NL by conducting the experiments using symmetric-flipping
noise on AT. By comparison, we figure out why AT can avoid the memorization of NL, i.e., AT’s
smoothing effect. Furthermore, we conduct extensive experiments across different noise types (e.g.,
asymmetric-flipping noise) on AT and make comprehensive comparisons with ST.

To sum up, our main point is understanding the interaction of AT with NL, which is different from the
previous studies. Specifically, we have shown the AT’s smoothing effects on NL and identified that
AT itself an NL correction. Therefore, compared with ST, AT can avoid the memorization of NL and
make correct (clean) data and incorrect (noise) data always distinguishable. Besides the discoveries,
we proposed a new measure—PGD steps that can stratify correct/incorrect and typical/rare data in
AT, which may provide a new perspective for sample selections.

B THE SMOOTHING EFFECTS OF ADVERSARIAL TRAINING

In this section, We provide the detailed setup and more results on the synthetic binary dataset and
the real-world dataset (CIFAR-10) with noisy labels, which demonstrate the smoothing effects of
adversarial training (AT).

13
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Figure 11: The results of standard training (ST) and adversarial training (AT) on a binary dataset
with noisy labels. Dots denote correct data, while squares denote incorrect data. The color gradient
represents the prediction confidence: the deeper color represents higher prediction confidence. In
the leftmost panel, deep networks shapes two small clusters (red and blue ones in cross-over areas)
around two incorrect data due to memorization effects in ST. As the number of PGD iterations
increases, the smoothing effects in AT gradually strengthens, and two small clusters gradually shrink
until they disappear in the rightmost panel. Namely, these clusters have been smoothed out in AT
(PGD-4). Boxes represent the norm ball of AT.

Experimental setup. To construct synthetic binary dataset, we randomly generate 23 points (i.e.,
(a,b), where a € (0,1) and b € (0, 1)) with binary labels (i.e., “0” and “1”) on a two-dimensional
plane. Among all data , we choose two points to assign incorrect labels. For the binary classification,
we build a simple network contains 5 linear layers and 4 ReLU (Nair & Hinton| [2010) layers. We
train the simple network in ST and AT using Adam with the initial learning rate=0.001 for 1000
iterations. In AT, we set the perturbation bound € = 0.08 and the PGD step size a = 0.02.

Result. In Figure[T1] We plot the classification results in the two-dimensional plane for both ST and
AT. We use different PGD iterations to generate adversarial examples, which shows the smoothing
process dynamically. In ST, deep network will shape two small clusters around two incorrect data due
to memorization effects. While in AT, these small clusters will gradually shrink until they disappear,
as the smoothing effects in AT strengthens (i.e., from PGD-1 to PGD-4).

Neighborhoods of incorrect data Neighborhoods of incorrect data
2.25 2.25
\ \
2.00 \f\\ 200 NN
— ~ — -
=17 Seo =17 ~o
) ===o @ S=—a
= 1.50 S~~~ = 1.50 S<
ju ] —~—— s ~ -
© 1 ox =~ 1 or S
&0 1.25 f a0 1.25
= = Noise rate: 0:2-(ST) =
=100 = Noise rate: 02 (AT) Z 1o
10.75 Noise rate: 0.4 (ST) 1075
0.50 Noise rate: 0.4 (AT) 0.50
20 10 60 80 100 20 10 60 80 100
Epochs Epochs
(a) Random direction (b) Adversarial direction

Figure 12: The average entropy of models trained by ST and AT. This value is calculated on 100
points in each neighborhood of incorrect data, using CIFAR-10 with symmetric-flipping noise. Both
solid and dashed lines represent ST and AT, respectively. Note that ST learns incorrect data more
deterministically than AT.

Result. In Figure[T2] we plot the entropy values of the model predictions on the CIFAR-10 dataset.
In Figure[I2(a)} we randomly select 100 points in each neighborhood (within a small e-ball, where
€ = 0.031) of the incorrect data and calculate their average entropy values in training using the
models trained by ST and AT. In Figure[T2(b)] we generate the adversarial variant for each incorrect
data by PGD-1 attack with e = 0.031 and calculate the average entropy values in training. The
detailed training settings can be found in Appendix [C.I] On the whole, compared with ST, the
entropy values in AT are always higher. It demonstrates that AT did not learn incorrect data with their
neighborhoods deterministically, which confirms that the smoothing effects in AT prevent incorrect
data from forming small clusters during training.
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C KNOCK-ON EFFECTS OF ADVERSARIAL TRAINING

In this section, we provide more complementary experiments and analysis for the positive knock-on
effects of AT. First, we show the results of standard training and test accuracy on CIFAR-10 and
MNIST datasets with different noise rates and types (Appendix [C.I)). Second, we show the analysis
of the natural data and adversarial data in AT (Appendix [C.2)). Third, we use different networks to
investigate positive knock-on effects of AT with noisy labels (Appendix [C.3). Finally, we show the
results of loss value with different noise rates and types (Appendix [C.4).

C.1 TRAINING ACCURACY AND TEST ACCURACY
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Figure 13: The standard accuracy of ST and AT on correct/incorrect training data using CIFAR-10
and MNIST with symmetric-flipping noise. Solid lines denote the accuracy of correct training data,
while dashed lines correspond to that of incorrect training data. Compared with ST, there is a large
performance gap in the standard accuracy of correct/incorrect training data in AT.
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Figure 14: The standard accuracy of ST and AT on correct/incorrect training data using CIFAR-10 and
MNIST with pair-flipping noise. Solid lines denote the accuracy of correct training data, while dashed
lines correspond to that of incorrect training data. Compared with ST, there is a large performance
gap in the standard accuracy of correct/incorrect training data in AT.

Experimental setup. We conduct our experiments on two datasets with different noise rates (e.g.,
[0.1,0.4]) and different noise types (e.g., symmetric-flipping noise and pair-flipping noise). We
use the method in (Han et al., [2018)) to generate noisy training data. For the CIFAR-10 dataset, we
normalize it into [0, 1]: Each pixel is scaled by 1/255. We perform the standard CIFAR-10 data
augmentation: a random 4 pixel crop followed by a random horizontal flip. For the MNIST dataset,
we normalize it into [0, 1]. We train ResNet-18 in ST and AT using SGD with 0.9 momentum for
100 epochs on CIFAR-10 dataset. The initial learning rate is 0.1 divided by 10 at Epoch 30 and
60 respectively. The weight decay=0.0005. For MNIST dataset, we use SmallCNN (Zhang et al.,
2019a), and set the initial learning rate as 0.01. The rest of the settings remain the same as training
on CIFAR-10. In AT, we set the perturbation bound ¢ = 0.031, the PGD step size o« = 0.007, and
PGD step numbers K = 10. For standard evaluation, we obtain standard accuracy on natural training
data according to correct/incorrect labels and natural test data with all correct labels. For the robust
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evaluation, we obtain robust accuracy on adversarial training and adversarial test data. The adversarial
test data are generated by PGD-20 attack with the same perturbation bound ¢ = 0.031 and the step
size & = 0.031/4, which keeps the same as|[Wang et al.|(2019). All PGD generation have a random
start, i.e, the uniformly random perturbation of [—e, €] added to the natural data before PGD iterations.

Result 1. In Figures[[3]and[T14] we plot the standard accuracy of correct/incorrect training data with
different noise rates and types. On the whole, compared with ST, correct/incorrect training data can be
always distinguishable in AT regardless of noise rates and types. Compared with symmetric-flipping
noise, AT has a better performance on distinguishing correct/incorrect data with pair-flipping noise.
Note that, under the same noise rates, the standard accuracy on incorrect training data in AT with
pair-flipping noise is lower than that with symmetric-flipping noise.
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Figure 15: The standard accuracy of ST and AT on natural test data, where training data using
CIFAR-10 and MNIST with symmetric-flipping noise. Note that the larger noise rate causes the test
accuracy of ST dropping more seriously due to memorization effects in deep learning, while AT
alleviates such negative effects.
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Figure 16: The standard accuracy of ST and AT on natural test data, where training data using
CIFAR-10 and MNIST with pair-flipping noise. Note that the larger noise rate causes the test accuracy
of ST dropping more seriously due to memorization effects in deep learning, while AT alleviates such
negative effects.

Result 2. In Figures[I5]and [I6] we plot the standard accuracy of natural test data with different noise
rates and types. On the whole, AT can alleviate the negative effects of label noise due to memorization
effects in deep learning. Under each noise type, as the noise rate increases, standard accuracy of
ST on natural test data drops more seriously in the later stage of training (e.g., after 60 epochs in
CIFAR-10). In AT, we only observe that the larger noise rate causes the lower standard accuracy
on natural test data, while the overfitting phenomenon is not obvious. Compared with CIFAR-10,
both symmetirc-flipping and pair-flipping noise have more serious negative effects on MNIST, while
simply using AT can alleviate these effects to a greater extent. In Figure we also visualize the
loss landscape (Li et al., 2018) of models trained by ST and AT on CIFAR-10. Such visualization
can further substantiate that AT mitigates negative effects of label noise via the lens of the model
generalization. Namely, the loss landscape w.r.t. weight space of an adversarially trained model (i.e.,
AT) is smoother and flatter than that of a model using ST.
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(a) ST (b) AT

Figure 17: The loss landscape w.r.t weight space of models trained by ST and AT using CIFAR-10
with 20% symmetric-flipping noise. The red/blue colors denote large/small values, which reflect
the relative position in the loss landscape. Note that the loss landscape of a model trained by AT is
smoother and flatter than that by ST, which reflects the better model generalization by AT.

We also conduct experiments on a harder dataset, i.e., CIFAR-100. The smoothing effect of AT is not
significant as that on CIFAR-10 or MNIST but can also be found on this dataset. Specifically, there is
a larger performance gap in the standard accuracy of correct/incorrect training data in AT (e.g., 24%
-30%) than ST (e.g., 0.15% -0.25%), and the test accuracy of ST dropping more seriously (e.g., 2%
-16%) than AT (e.g., 1% -7%).

C.2 NATURAL DATA AND ADVERSARIAL DATA
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Figure 18: The standard/robust accuracy of AT on natural training data, adversarial training data
(PGD-10), adversarial test data (PGD-20) using the CIFAR-10 dataset with symmetric-flipping noise.

Result. In Figure[I8] we plot the standard and robust accuracy on natural data and adversarial data
(e.g., PGD-10 training data and PGD-20 test data) using CIFAR-10 with symmetirc-flipping noise.
Different from ST, each natural training data will generate a corresponding adversarial data in AT.
We also check the difference in robust accuracy between correct and incorrect adversarial data during
training. We found that AT can also distinguish correct/incorrect adversarial data over the whole
training process. However, we find that the difference between correct and incorrect adversarial data
(right panel in Figure[I9(a)) is smaller than that between incorrect and correct natural data (left panel

in Figure [[9(a)).
C.3 DIFFERENT NETWORKS

Result. In Figure we plot the standard accuracy on natural training/test data using ResNet-
10, ResNet-18, ResNet-26 and ResNet-34 trained by ST and AT. We conduct the experiments
using CIFAR-10 dataset with 20% symmetric-flipping noise. The training settings keep the same
as Appendix We find that, using different networks, AT still has a better performance on
distinguishing correct/incorrect data compared with ST and can alleviate the negative effects of label
noise.

Result. In Figure[20}, we plot the standard accuracy on natural test data using a large deep network,
Wide-ResNet (e.g.,WRN-32-10 (Zagoruyko & Komodakis| 2016)), trained by ST and AT. We
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Figure 19: The standard accuracy of AT on natural training/test data using the CIFAR-10 dataset with
20% symmetric-flipping noise. We conduct the experiments using ResNet-10, ResNet-18, ResNet-26
and ResNet-34.
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Figure 20: The standard accuracy of AT on natural test data using the CIFAR-10 dataset with
symmetric-flipping and pair-flipping noise. We conduct the experiments using WRN-32-10.

conduct the experiments using the CIFAR-10 dataset with different noise rates and types. We train the
network for 120 epochs and set the weight decay=0.0002, the rest of the settings keep the same as
Appendix [C.T] We find that AT can still alleviate negative effects of label noise due to memorization
effects of deep networks. Particularly, compared with the symmetric-flipping noise, AT has a better

performance on avoiding memorization of pair-flipping noise, which can be confirmed by Figures T3]
and

C.4 THE LOSS VALUE
Result. In Figures2T|and[22] we check the loss value of correct/incorrect training data with different

noise rates and types. On the whole, compared with ST, correct/incorrect training data can also be
more distinguishable in AT using the loss value, regardless of noise rates and types.
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Figure 21: The loss value of ST and AT on correct/incorrect training data using CIFAR-10 and MNIST
with symmetric-flipping noise. Solid lines denote the loss value of correct training data, while dashed

lines correspond to that of incorrect training data. Compared with ST, there is a large gap in the loss
value of correct/incorrect training data in AT.
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Figure 22: The loss value of ST and AT on correct/incorrect training data using CIFAR-10 and MNIST
with pair-flipping noise. Solid lines denote the loss value of correct training data, while dashed lines

correspond to that of incorrect training data. Compared with ST, there is a large gap in the loss value
of correct/incorrect training data in AT.
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D NEW MEASURE: GEOMETRY VALUE Kk

In this section, we provide more experimental results of the geometry value  vs. that of the loss
value, and provide more visualization about the specific semantic information corresponds to our new
measure. First, we calculate the loss value and geometry value x of correct/incorrect data in AT with
different noise rates and types (Appendix [D.I). Second, we display more visualization results on
CIFAR-10 and MNIST datasets to show the relationship between the geometry value « and image data
(Appendix [D.2)). Moreover, we also discuss the geometry value x with different PGD configurations

(Appendix [D.3).
D.1 GEOMETRY VALUE VS. LOSS VALUE

Result. In Figures[23]and [24] we plot the density maps of two measures on CIFAR-10 dataset
with symmetric-flipping and pair-flipping noise. We calculate the loss value of natural data and the
geometry value in AT using 5 checkpoints at different epochs (e.g., Epoch20, Epoch40, Epoch60,
Epoch80, Epoch100), which trained with the same settings in Appendix|[C.I] We perform the min-max
normalization (Tax & Duin| [2000) on both loss value and geometric value x, which scales the range
of values in [0, 1]. On the whole, it is clear that the geometry value « has a stable performance of
distinguishing correct/incorrect data under different noise rates and types. Specifically, under the
pair-flipping noise with the large noise rate (e.g., Noise rate: 0.4), the loss value cannot differentiate
correct/incorrect data well, while the geometry value x can still have a satisfied distinguishing
performance.

D.2 DISTINGUISH RARE AND TYPICAL DATA

Result. In Figures[25]and[26] we visualize more results about the semantic information of images
corresponding to different x using CIFAR-10 and MNIST datasets. For obtaining the geometry value
K, we use the GA-PGD method proposed by (Zhang et al.| [2021b)), which calculates the least number
of iterations that PGD needs to find the mis-classified adversarial variants of input data. On CIFAR-10,
it is calculated by PGD-10 attack with the perturbation bound ¢ = 0.031 and the step size oo = 0.007.
On MNIST, the geometry value « is calculated by PGD-40 attack with the perturbation bound € = 0.3
and the step size « = 0.01. In general, the geometry value « can represent whether the data is
relatively typical or rare.

About Rare and Incorrect Data. In AT, the incorrect data are actually far away from the decision
boundary, because AT’s smoothing effect prevents memorizing the incorrect data (see Figure [I)).
Therefore, it nearly requires O steps. Rare data are near the decision boundary and requires a few
steps (e.g., 1 or 2) to find its misclassified adversarial variants.

D.3 IMPACT OF PGD CONFIGURATIONS

Specifically, we plot more results as Figure [ with different step size a Figure[27)and the e-ball 28]
To be specific, we keep the same setting adopted in|Madry et al.| (2018)) (i.e., step size &« = 2.5 X €/n,
where n is the step number). With the same e-ball, we can find that the smaller step size « (i.e., with
the larger step number n) can provide a nuanced stratification compared with the larger one, which
means that the data with similar loss values can have more different s values. With the same step
size «, a small ball radius e can not well stratify the data since the PGD attack may never be able to
successfully attack some examples.

Back to the proposed geometry value x, the key idea behind it is to approximate the distance from a
specific sample to the decision boundary. A small step size can provide a nuanced approximation of
the distance. Thus, it may be able to provide a nuanced stratification. Since the « value is captured by
the adversarial attacks, a large radius e-ball is needed to provide the sufficient attacking strength for a
successful adversarial attack to reach the decision boundary. Our previous experimental results have
shown that the parameters of PGD in Madry et al.|(2018) (widely considered in related literature)
is an appropriate choice to realize the correct/incorrect or typical/atypical data stratification in the
benchmarked MNIST and CIFAR-10 datasets.
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Figure 23: The density of AT on correct/incorrect data using CIFAR-10 with symmetric-flipping noise.
Top panels: the loss value in AT. Bottom panels: the geometry value « in AT. Note that the geometry
value  has a better distinction on correct/incorrect data.
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Figure 24: The density of AT on correct/incorrect data using CIFAR-10 with pair-flipping noise. Top
panels: the loss value in AT. Bottom panels: the geometry value x in AT. Note that the geometry
value « has a better distinction on correct/incorrect data.
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Figure 25: The geometry value x w.r.t. images in CIFAR-10 with 20% symmetric-flipping noise.
The leftmost is the given label of all images on the right. We randomly selected four examples with
the different x (v = 0, k € (0,5), k € (5,10), x = 10) in each class. As the geometric value x
increases from left (x = 0) to right (x = 10), the semantic information of images is more typical and
recognizable.
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Figure 26: The geometry value k w.r.t. images in MNIST with 10% symmetric-flipping noise. The
leftmost is the given label of all images on the right. We randomly selected four examples with
the different k (k = 0, k € (0,20), k € (20,40), k = 40) in each class. As the geometric value x

increases from left (x = 0) to right (x = 40), the semantic information of images is more typical and
recognizable.
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Figure 27: The geometry value x under the different PGD step numbers n with the e = 8/255 and
the step size « = 2.5 x ¢/n. Note that the smaller step size « (i.e., with the larger step number n)

can provide a nuanced stratification compared with the larger one.
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Figure 28: The geometry value s under the different e-ball with the step numbers n = 8 and the
step size @ = 2.5 x €/n. Note that a small ball radius € can not well stratify the data since the PGD
attack may never be able to successfully attack some examples (i.e., even n steps it can not find a
misclassified variant).
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E APPLICATIONS OF GEOMETRY VALUE k

In this section, we provide the detailed experimental setups for robust annotator and confidence
scores. First, we provide the detailed version of Algorithm [I](i.e., Algorithm [2) and the details to
implement the experiment in Figure [9] (Appendix [E.I). Second, we provide the details to implement
the experiment in Figure [I0] (Appendix [E.2).

Motivation. Both the two applications are of much significance for obtaining high-quality labeled
data. First, since the co-existence of noisy labels and adversarial examples is very realistic, we
need to consider training the annotator from noisy training data, and make it robust to adversarial
manipulation in unlabeled data. Second, since the label annotations are not always correct, we need
the confidence score to show whether the annotation is trustworthy or not.

E.1 ROBUST ANNOTATOR

In Figure 9] we compare four methods on the CIFAR-10 dataset, namely, our robust annotator with
20% symmetric-flipping noise, the PGD-based annotator with 20% symmetric-flipping noise, the
PGD-based annotator without noise, and the standard annotator without noise.

Algorithm 2: Robust Annotator Algorithm (in detail).

Input :network fy, training dataset S = {(z;, y;) i1, learning rate 7, number of epochs T,
batch size m, number of batches M, threshold for geometry value K, threshold for loss
value L.
Output : robust annotator fy.
for epoch=1,...,T do
for mini-batch=1, ..., M do
Sample: a mini-batch {(z;,y;)}", from S;
for i = I,...,m (in parallel) do
Calculate: x; and ¢; of (z;,y;) by GA-PGD method (Zhang et al., | 2021b) and
U(fo(xi),yi), respectively.;
if k; < K and ¢; > L then
| Update: y; < argmax; fo(z).;

end
Generate: adversarial data ©; by PGD method (Madry et al.,[2018).;
end
Update: 0 < 0 — nVo{((fo(Z:),y:)}-
end
end

Choice of Thresholds. As for the choice of the thresholds in learning with noisy labels, we can
use some existing methods to estimate the noise rate of a dataset and then we can set the dynamic
thresholds based on the two values of the training data (e.g., greater than or equal to the top 20%
largest values).

Experimental setup. To generate the noisy training data, we randomly assign the wrong label for
a part of correct training data using the method in (Han et al., 2018). For the CIFAR-10 dataset,
we normalize it into [0, 1]: Each pixel is scaled by 1/255. We perform the standard CIFAR-10 data
augmentation: a random 4 pixel crop followed by a random horizontal flip. For all annotators, we
train WRN-32-10 (Zagoruyko & Komodakis} 2016)) for 120 epochs using SGD with 0.9 momentum.
The initial learning rate is 0.1 reduced to 0.01, 0.001 and 0.0005 at epoch 60, 90 and 110. The weight
decay is 0.0002. For standard annotator, we use natural data to update the model. For our robust
annotator and the PGD-based annotator, we generate the adversarial data to update the model, the
perturbation bound €., = 0.031, the PGD step is fixed to 10, and the step size is fixed to 0.007. All
PGD generation have a random start, i.e, the uniformly random perturbation of [—e, €] added to the
natural data before PGD iterations. For our robust annotator, we use the same generation method with
PGD-based annotator as previous mentioned before Epoch 40. After that, we use our Algorithm [2|to
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train our robust annotator. We set the threshold for geometry value K = 2 and the threshold for loss
value L to the loss value of 20% - m largest natural data in each mini-batch, where the m = 128 is
batch size. We use the model predictions of the selected natural data as their new label to generate
the adversarial data. As for the evaluations, we select a part of natural test data on the test set of
CIFAR-10 to add adversarial manipulations by PGD-20 attack. The perturbation bound €;.s; = 0.031,
the step number is 20, and the step size v = €;5¢/4, Which keeps the same asWang et al.| (2019). We
use the natural and adversarial test data to check the performance of annotators on assigning correct
labels for the U data. Note that, the experiments are conducted using Tesla V100-SXM2, which takes
about 8 hours for each individual trial.

E.2 CONFIDENCE SCORES

In Figure[I0] we plot the accuracy and number of correctly predicted U data w.r.t the geometry value
K.

Experimental setup. We train ResNet-18 model in AT with 20% symmetric-flipping noise on
the CIFAR-10 dataset. The training settings keep the same as Appendix [C.I] We use the model
checkpoint at Epoch 35 for assigning labels and we randomly select 2000 test data in CIFAR-10
as unlabeled data. We run the test with 5 repeated times with different random seeds for selecting
different test data. In the left panel of Figure[I0] we calculate the mean and standard deviation value
of accuracy. In the right panel of Figure |10} we show the number of correctly/wrongly predicted data
in one of the experiments.
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