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Abstract

MaximumManifold Capacity Representations (MMCR) is a recent multi-view self-supervised
learning (MVSSL) method that matches or surpasses other leading MVSSL methods.
MMCR is interesting for at least two reasons. Firstly, MMCR is an oddity in the zoo
of MVSSL methods: it is not (explicitly) contrastive, applies no masking, performs no
clustering, leverages no distillation, and does not (explicitly) reduce redundancy. Secondly,
while many self-supervised learning (SSL) methods originate in information theory, MMCR
distinguishes itself by claiming a different origin: a statistical mechanical characterization
of the geometry of linear separability of data manifolds. However, given the rich connec-
tions between statistical mechanics and information theory, and given recent work showing
how many SSL methods can be understood from an information-theoretic perspective, we
conjecture that MMCR can be similarly understood from an information-theoretic perspec-
tive. In this paper, we leverage tools from high dimensional probability and information
theory to demonstrate that an optimal solution to MMCR’s nuclear norm-based objective
function is the same optimal solution that maximizes a well-known lower bound on mutual
information between views.

Keywords: Self-supervised learning, multi-view self-supervised learning, joint embedding
self-supervised learning, high dimensional probability, information theory

1. Introduction

Multi-view self-supervised learning (MVSSL; also known as Joint Embedding SSL) is a
powerful approach to unsupervised learning. The core idea is to create multiple transforma-
tions, or “views”, of unsupervised data, then use these transformed data in a supervised-like
manner to learn generally useful representations. MVSSL methods are diverse but can be
loosely grouped into a number of different families: (1) contrastive, such as CPC (Oord
et al., 2018), MoCo 1 (He et al., 2020), SimCLR (Chen et al., 2020a), MoCo 2 (Chen et al.,
2020b), CMC (Tian et al., 2020), RPC (Tsai et al., 2021) and TiCo (Zhu et al., 2022);
(2) clustering such as Noise-as-Targets (Bojanowski and Joulin, 2017), DeepCluster (Caron
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et al., 2018), Self-Labeling (Asano et al., 2019), Local Aggregation (Zhuang et al., 2019),
SwAV (Caron et al., 2020); (3) distillation/momentum such as BYOL (Grill et al., 2020),
DINO (Caron et al., 2021), SimSiam (Chen and He, 2021), TiCo (Zhu et al., 2022); (4)
redundancy reduction such as Barlow Twins (Zbontar et al., 2021), VICReg (Bardes et al.,
2022), TiCo (Zhu et al., 2022). Many MVSSL methods either explicitly originate from
information theory (Oord et al., 2018; Bachman et al., 2019) or can be understood from
an information-theoretic perspective (Wang and Isola, 2020; Wu et al., 2020; Shwartz-Ziv
et al., 2023; Gálvez et al., 2023).

Recently, Yerxa et al. (2023) proposed a new MVSLL method named Maximum Mani-
fold Capacity Representations (MMCR) that achieves similar (if not superior) performance
to leading MVSSL methods. MMCR is interesting for at least two reasons. Firstly, MMCR
does not fit neatly into any of the MVSSL families: it is not (explicitly) contrastive, it
applies no masking, it performs no clustering, it leverages no distillation, and it does not
(explicitly) reduce redundancy. Secondly, unlike many MVSSL methods that originate in
information theory, MMCR distances itself, writing that estimating mutual information in
high dimensions has proven difficult and that more closely approximating mutual informa-
tion may not improve representations; MMCR instead claims an origin in the statistical
mechanical characterization of the geometry of linear separability of data manifolds.

In this work, we seek to better understand what solutions the MMCR loss function
incentivizes and how it relates to other well-known MVSSL methods. Our contributions
are specifically as follows:

1. We derive a distribution of embeddings that provably minimizes the MMCR loss with
high probability by leveraging tools from high dimensional probability.

2. We connect this distribution to information theory by showing it maximizes a well-
known variational lower bound on the mutual information between multiple views’
embeddings.

2. Background

Multi-View Self-Supervised Learning (MVSSL) Let fθ : X → Z denote our neural
network with parameters θ. Suppose we have a dataset {xn}Nn=1 and a set of transfor-
mations (sometimes called augmentations, or “views”) T such as color jittering, Gaussian
blur, solarization, etc. For each datum xn in a batch of inputs, we sample K transforma-
tions t(1), t(2), ..., t(K) ∼ T , then transform the datum: t(1)(xn), ..., t

(K)(xn). We feed these
transformed data into the network and obtain embeddings or representations:

z(k)
n

def
= fθ(t

(k)(xn)) ∈ Z. (1)

In practice, Z is commonly RD or the D-dimensional hypersphere SD−1 def
={z ∈ RD : zTz =

1}. Given that this work will later touch on information theory, we need notation to refer to

the random variables; we use Z
(k)
n to denote the random variable for the embedding whose

realization is z
(k)
n , and X

(k)
n to denote the random variable for the transformed datum whose

realization is t(k)(xn).
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Maximum Manifold Capacity Representations (MMCR) MMCR (Yerxa et al.,
2023) originates from classical results regarding performance of linear binary classifiers
(Cover, 1965; Gardner, 1987, 1988). Consider N points in dimension D, with arbitrarily
assigned binary class labels; what is the probability that a linear binary classifier will be
able to successfully classify the points? Statistical mechanical calculations reveal that in
the thermodynamic limit (N,D → ∞; N/D → α ∈ (0,∞)), a phase transition occurs
at capacity αc = 2. More precisely, if α < αc, the linear binary classifier will succeed
with probability 1; but if α > αc, the classifier will succeed with probability 0. MMCR is
based on an extension of this result from points to manifolds (Chung et al., 2018). MMCR
proceeds in the following manner: MMCR takes the embeddings output by the network and

normalizes them to lie on the hypersphere: z
(1)
n , ...,z

(K)
n ∈ SD−1. Then, MMCR compute

the average embedding per datum:

µn
def
=

1

K

∑
k

z(k)
n . (2)

Next, MMCR forms a N ×D matrix M where the n-th row of M is µn and defines the loss:

LMMCR
def
= −∥M∥∗

def
= −

rank(M)∑
r=1

σr(M), (3)

where σr(M) is the r-th singular value of M and ∥ · ∥∗ is the nuclear norm (trace norm,
Schatten 1-norm). Minimizing the MMCR loss means maximizing the nuclear norm of the
mean matrix M . The authors of MMCR note that no closed form solution exists for singular
values of an arbitrary matrix, but when N = 2, D = 2, a closed form solution exists that
offers intuition: ∥M∥∗ will be maximized when (i) the norm of each mean is maximized i.e.,
∥µn∥2 = 1 (recalling that 0 ≤ ∥µn∥ < 1 since the representations live on the hypersphere),
and (ii) the means µ1,µ2 are orthogonal to one another. While we commend the authors for
working to offer intuition, it is unclear to what extent the N = 2, D = 2 setting sheds light
on MMCR in general, as MMCR was theoretically derived and numerically implemented in
the large data and high dimensionality regime.

3. An Information Theoretic Understanding of MMCR

In this section, we prove and intuitively explain two properties of MMCR that shed light on
it as well as relate it to other MVSSL methods. We specifically consider MMCR’s regime
of large dataset size N and high embedding dimension D. We contribute two results:

1. The MMCR loss LMMCR is minimized by (a) making each mean µn = 1
K

∑
k z

(k)
n lie

on the surface of the hypersphere, and (b) making the distribution of means as close
to uniform on the hypersphere as possible.

2. This configuration of means maximizes a well-known variational lower bound on the
mutual information between embeddings (Gallager, 1968) that was recently used to
study and unify several multi-view SSL (MVSSL) families (Gálvez et al., 2023).
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Figure 1: Numerical simulations confirm that a network achieving perfect recon-
struction and perfect uniformity achieves the lowest possible MMCR
loss. Away from the N = D threshold, uniform random vectors achieve the theo-
retically derived upper bound on the nuclear norm (i.e. lower bound on LMMCR).

More formally, we begin by adapting two useful definitions from relevant prior works
(Wang and Isola, 2020; Gálvez et al., 2023):

Definition 1 (Perfect Reconstruction)

We say a network fθ achieves perfect reconstruction if ∀x ∈ X ,∀ t(1), t(2) ∈ T , z(1) =
fθ(t

(1)(x)) = fθ(t
(2)(x)) = z(2).

Definition 2 (Perfect Uniformity) Let p(Z) be the distribution over the network repre-
sentations induced by the data sampling and transformation sampling distributions. We say
a network fθ achieves perfect uniformity if the distribution p(Z) is the uniform distribution
on the hypersphere.

We will show that a network that achieves both perfect reconstruction and perfect uni-
formity obtains the lowest possible MMCR loss by first showing that LMMCR has a lower
bound and then showing that such a network achieves this bound.

Proposition 3 Suppose that ∀n ∈ [N ],µTnµn ≤ 1. Then, 0 ≤ ||M ||∗ ≤

{
N if N ≤ D√
ND if N ≥ D

.

Proof Let σ1, . . . , σmin(N,D) denote the singular values of M , so that ∥M∥∗ =
∑min(N,D)

i=1 σi.
The lower bound follows by the fact that singular values are nonnegative. For the upper
bound, we have

min(N,D)∑
i=1

σ2
i = Tr

[
MMT

]
=

N∑
n=1

µTnµn ≤ N.
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Then, by Cauchy-Schwarz on the sequences (1, . . . , 1) and
(
σ1, . . . , σmin(N,D)

)
, we get

min(N,D)∑
i=1

σi ≤

√√√√√
min(N,D)∑

i=1

1

min(N,D)∑
i=1

σ2
i

 ≤
√

min(N,D)N =

{
N if N ≤ D√
ND if N ≥ D

.

Proposition 4 Let fθ achieve perfect reconstruction. Then, ∥µn∥2 = 1 ∀n.

Proof Because fθ achieves perfect reconstruction, ∀n, ∀t(1), t(2), z(1)
n = z

(2)
n . Thus µn =

(1/K)
∑

k z
(k)
n = (1/K)

∑
k z

(1)
n = z

(1)
n , and since ∥z(1)

n ∥2 = 1, we have ∥µn∥2 = 1.

Theorem 5 Let fθ : X → SD be a network that achieves perfect reconstruction and perfect
uniformity. Then fθ achieves the lower bound of LMMCR with high probability. Specifically:

∥M∥∗ =

{
N(1−O(N/D)) if N ≤ D√
ND(1−O(D/N)) if N ≥ D

with high probability in min(N,D).

We defer the proof to Appendix A but offer intuition here. To show the inequality in
Proposition 3 is roughly tight, we need to show the singular values σi are all roughly equal to
each other. When N ≪ D, since M has few rows µn, they are almost perfectly orthogonal
to each other, so all N singular values will be ≈ ∥µn∥ = 1. When N ≫ D, since M has
many rows, for any x ∈ RD the sum ∥Mx∥22 =

∑
n(µ

T
nx)

2 will be concentrated, so M scales
all vectors roughly equally, and therefore its D singular values are all roughly equal to each
other. We confirm this via numerical simulations (Fig. 1); for code, see Appendix B.

We now turn to addressing why perfect reconstruction and perfect uniformity matter
from an information theoretic perspective. The results here for MVSSL are known, e.g.,
(Wang and Isola, 2020; Gálvez et al., 2023), but we repeat them to make the connection
with MMCR. For input datum X, consider the mutual information between the learned
embeddings of two different views Z(1) = t(1)(X) and Z(2) = t(2)(X); the mutual informa-
tion must be at least as great as the sum of two terms: the ability of one embedding to
“reconstruct” the other, plus the entropy of the embeddings:

I[Z(1);Z(2)] ≥ Ep(Z(1),Z(2))[log q(Z
(1)|Z(2))]︸ ︷︷ ︸

Reconstruction

+ H[Z(1)]︸ ︷︷ ︸
Entropy

, (4)

where q(Z(1)|Z(2)) is a variational distribution because the true distribution p(Z(1)|Z(2)) is
unknown.

Theorem 6 Let fθ : X → SD be a network, the number of views per datum be constant,
and Q be the variational family of distributions on the hypersphere. Then fθ maximizes the
mutual information lower bound Eqn. 3 if and only if fθ achieves perfect reconstruction and
perfect uniformity.
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Proof Perfect reconstruction maximizes reconstruction term. Perfect uniformity maxi-
mizes entropy since the maximum entropy is achieved with the uniform distribution over
the support (Cover and Thomas, 2006).

Theorem 7 Let fθ∗ be a network that achieves perfect reconstruction and perfect unifor-
mity, let the number of views per datum K be a constant, and let Q be the variational
family of distributions on the hypersphere. Then fθ∗ is both a minimizer of LMMCR and a
maximizer of the variational lower bound of mutual information Eqn. 3.

Proof The proof follows by Theorem 5 and Theorem 6.

4. Discussion

In this work, we leveraged tools from high dimensional probability to prove that in the
large data and high dimensional regime, the MMCR loss is minimized with high probability
by a network achieving perfect reconstruction and perfect uniformity. These two proper-
ties together are known to maximize a well-known variational lower bound on the mutual
information between multi-view embeddings.
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Appendix A. Proof of Theorem 5

Recall that LMMCR = −∥M∥∗ is minimized when ∥M∥∗ is maximized and that ∥M∥∗ is
upper bounded by

√
ND if N > D and N if N < D (Proposition 3). We want to show

a network that achieves perfect reconstruction and perfect uniformity achieves this upper
bound on the nuclear norm (equivalently, lower bound on the MMCR loss).

Following the proof of Proposition 3, let σ1, . . . , σmin(N,D) denote the singular values of
M , so that ∥M∥∗ =

∑
i σi. By Proposition 4, we have

∑
i

σ2
i = Tr

[
MMT

]
=

N∑
n=1

µTnµn = N.

Now, by the equality version of Cauchy–Schwarz on the sequences (1, . . . , 1) and
(
σ1, . . . , σmin(N,D)

)
,

we have ∑
i

σi =

√√√√min(N,D)

(∑
i

σ2
i −

∑
i

(
σi −

∑
j σj

min(N,D)

)2
)
. (5)

So if we can bound this “variance” of the singular values
∑

i

(
σi −

∑
j σj

min(N,D)

)2
, we can show

that ∥M∥∗ closely matches the upper bound obtained in Proposition 3.
To do this, let us consider matrix

√
DM . The vectors µn are uniform over the D-

dimensional hypersphere SD, so its rows
√
Dµn have mean zero, are isotropic, and (by

Example 5.25 in Vershynin et al. (2012)) are sub-gaussian with parameter ∥
√
Dµn∥ψ2 =

O(1).1 Therefore,

• If N ≤ D, then (using the fact that ∥µn∥2 = 1 for all n ∈ [N ]) we can to apply
Theorem 5.58 in Vershynin et al. (2012) on the transpose of

√
DM , obtaining that for

any t ≥ 0, the singular values of
√
DM are within

√
D±O(

√
N) + t with probability

at least 1 − 2 exp(−Ω(t2)). Setting t to a large enough multiple of
√
N , they are all

within
√
D±O(

√
N) with probability at least 1−2 exp(−N). Consequently, with the

same probability, the singular values of M are all within ±O(
√

N/D) of each other,

and we get
∑

i

(
σi −

∑
j σj

min(N,D)

)2
≤ N · O

(√
N/D

)2
= O(N2/D). Plugging this into

Eqn. 5, we get ∥M∥∗ ≤
√

N(N −O(N2/D)) =
√
N(1−O(N/D)).

• If N ≥ D, then we can apply Theorem 5.39 in Vershynin et al. (2012) on
√
DM ,

obtaining that for any t ≥ 0, the singular values of
√
DM are within

√
N±O(

√
D)+ t

with probability at least 1 − 2 exp(−Ω(t2)). Setting t to a large enough multiple
of

√
D, they are all within

√
N ± O(

√
D) with probability at least 1 − 2 exp(−D).

Consequently, with the same probability, the singular values ofM are all within ±O(1)

of each other, and we get
∑

i

(
σi −

∑
j σj

min(N,D)

)2
≤ D · O(1)2 = O(D). Plugging this

into Eqn. 5, we get ∥M∥∗ ≤
√

D(N −O(D)) =
√
ND(1−O(D/N)).

1. Here, ∥ · ∥ψ2 denotes the sub-gaussian norm (intuitively, the “effective standard deviation”
of a sub-gaussian random variable). For a scalar random variable X, it is defined as
∥X∥ψ2 supp≥1 p

−1/2(E[|X|p])1/p (Definition 5.7 in Vershynin et al. (2012)), and for a random vector

u ∈ RD, it is defined as ∥u∥ψ2 supv∈SD ∥uTv∥ψ2 (Definition 5.22 in Vershynin et al. (2012)).
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Appendix B. Python Code for Perfect Reconstruction and Perfect
Uniformity Embeddings

To test our claim that networks which achieve perfect reconstruction and perfect uniformity
achieve the nuclear norm upper bound, we sample a uniform distribution of embeddings
and measure the nuclear norm relative to our claimed upper bound. Python code for our
simulations is included below:

import pandas as pd
import numpy as np

N l i s t = np . l og space ( s t a r t =1, stop=4, num=11). astype ( int )
D l i s t = np . l og space ( s t a r t =1, stop=4, num=11). astype ( int )
r epea t s = np . arange ( 5 ) . astype ( int )
un i f o rm d i s t r i b u t i o n nu c l e a r n o rm da t a l i s t = [ ]

for N in N l i s t :
for D in D l i s t :

print ( f ”N: {N}\tD : {D}” )
for repeat in r epea t s :

embeddings = np . random . normal ( l o c =0, s c a l e =10.0 , s i z e =(N, D) )
embeddings /= np . l i n a l g . norm( embeddings , ax i s =1, keepdims=True )
row = {

”Spectrum” : ”uniform” ,
”Number o f Data Mani fo lds (N) ” : N,
”Embedding Dimens iona l i ty (D) ” : D,
”Repeat” : repeat ,
”Nuclear Norm” : np . l i n a l g . norm( embeddings , ord=”nuc” ) ,

}
un i f o rm d i s t r i b u t i o n nu c l e a r n o rm da t a l i s t . append ( row )

un i f o rm d i s t r i bu t i on nuc l e a r no rm d f = pd . DataFrame (
un i f o rm d i s t r i b u t i o n nu c l e a r n o rm da t a l i s t

)
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