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Abstract

The paradigm of weak-to-strong generalization
constitutes the training of a strong AI model on
data labeled by a weak AI model, with the goal
that the strong model nevertheless outperforms
its weak supervisor on the target task of inter-
est. For the setting of real-valued regression with
the squared loss, recent work quantitatively char-
acterizes the gain in performance of the strong
model over the weak model in terms of the misfit
between the strong and weak model. We gen-
eralize such a characterization to learning tasks
whose loss functions correspond to arbitrary Breg-
man divergences when the strong class is convex.
This extends the misfit-based characterization of
performance gain in weak-to-strong generaliza-
tion to classification tasks, as the cross-entropy
loss can be expressed in terms of a Bregman di-
vergence. In most practical scenarios, however,
the strong model class may not be convex. We
therefore weaken this assumption and study weak-
to-strong generalization for convex combinations
of k strong models in the strong class, in the con-
crete setting of classification. This allows us to
obtain a similar misfit-based characterization of
performance gain, up to an additional error term
that vanishes as k gets large. Our theoretical find-
ings are supported by thorough experiments on
synthetic as well as real-world datasets.
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1. Introduction
Weak-to-strong generalization (Burns et al., 2024) posits
that strong AI models can outperform weaker supervisors
when trained on data labeled by them. By virtue of being
larger and more complex models that have presumably also
seen more data in their pretraining lifecycle, the hope is
that strong models will invariably know how to push past
the performance ceiling of their weak supervisors. This
phenomenon is central towards the eventual goal of super-
alignment (OpenAI, 2023), where we expect AI models to
exhibit superhuman skills aligned with human principles
from human supervision. Perhaps encouragingly, recent
studies (Burns et al., 2024; Guo et al., 2024; Ji et al., 2024;
Sun et al., 2024; Yang et al., 2024; Zhang et al., 2024; Liu
& Alahi, 2024) have affirmed that such a phenomenon can
in fact be elicited. Given the extent to which emergent AI
would appear to influence our future going forward, it be-
comes imperative to theoretically understand when and how
weak-to-strong generalization may provably be exhibited.

Towards this, Charikar et al. (2024) recently provided a
mathematical characterization of weak-to-strong generaliza-
tion for real-valued regression. They consider finetuning
the final linear layer of a strong model (keeping other pa-
rameters fixed) to minimize the squared loss on labels given
by a weak model. Using a geometric argument involving
projections onto a convex set, Charikar et al. (2024) show
that a strong model trained in this manner provably attains
smaller loss than the weak model on the target task. More-
over, the quantitative reduction in loss (performance “gain”)
is at least as much as the loss of the strong model on the
weakly labeled data (“misfit” between the strong and weak
model). However, their results are limited to regression,
leaving open whether such a misfit-based characterization
can also be formally shown for other tasks like classification,
one of the primary subjects of study in Burns et al. (2024).

Drawing on the theory of information geometry (Amari,
2016; Ay et al., 2017), we significantly extend the misfit-
based characterization of weak-to-strong generalization be-
yond regression tasks. Our main observation is that the

This notion of misfit is also referred to as “student-supervisor
disagreement” in Burns et al. (2024).
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Pythagorean inequality for the squared loss used in Charikar
et al. (2024) holds more generally for Bregman divergences
(Bregman, 1967). Thus, whenever the loss function in the
learning task is a Bregman divergence of some kind, a cor-
responding misfit-based weak-to-strong generalization in-
equality can be established. For example, since the squared
ℓ2 distance is a Bregman divergence, the result of Charikar
et al. (2024) constitutes a special case of this theory. More
importantly, the standard loss function that is used in classifi-
cation tasks, namely cross-entropy, can also be written down
as a Bregman divergence (namely the Kullback-Leibler (KL)
divergence (Kullback & Leibler, 1951)) plus an additive
entropy term. This implies provable weak-to-strong gener-
alization in the setting of classification (i.e. cross-entropy
loss provably improves), along with a misfit-based charac-
terization of the gain similar to Charikar et al. (2024).

Our approach, however, yields a non-standard recipe: over
a convex class of strong models, minimize the expected
KL divergence with the strong model’s output as the first
argument and weak labels as the second. This ”reverse”
KL is contrary to standard cross-entropy training, where
the labels are the first argument. Our experiments, as well
as concurrent work Yao et al. (2025a), suggest this reverse
direction is better for weak-to-strong training for classifi-
cation tasks. Furthermore, the reduction in loss is at least
the KL divergence between the strong model and the weak
model at the conclusion of weak-to-strong training! Thus,
performance gain can yet again be measured in terms of
the misfit between the strong and weak models, albeit with
the notion of misfit being the KL divergence. Typically,
however, the strong model class fails to be convex. In this
case, we show that suitable approximation can be achieved
by training a convex combination of k strong models.

We validate our theory across synthetic as well as real-world
NLP and vision datasets, and find that when the strong
model is trained according to the stated recipe even with
modest values of k (e.g., 100), its performance gain is faith-
fully characterized by its KL misfit with the weak model.
Additionally, this behavior becomes more apparent as k
increases, further validating our theory.

2. Related Work
Our work is complementary to a growing line of works, each
of which seeks to theoretically explain the phenomenon of
weak-to-strong generalization via a different lens. The work
of Lang et al. (2024) posits that the two crucial properties
governing weak-to-strong generalization are coverage ex-
pansion and pseudolabel correction. The work of Somerstep
et al. (2024) formalizes weak-to-strong generalization as the
problem of transferring a “latent concept” from the weak
model to the strong model. Wu & Sahai (2024) show how
finetuning a linear model on Gaussian features in the over-

parameterized regime provably exhibits weak-to-strong gen-
eralization. Shin et al. (2024) take a data-centric approach,
and propose that data points that contain an overlap of easy
as well as hard patterns most effectively elicit generaliza-
tion. Ildiz et al. (2024) recently provide a high-dimensional
analysis of knowledge distillation from surrogate models.
Our work adopts the geometric viewpoint of Charikar et al.
(2024), which interprets the finetuning of the strong model
with weak labels as a projection of the weak model onto
the strong model class (where the projection corresponds to
minimizing a loss function).

Our work significantly generalizes Charikar et al. (2024) to
more loss functions and non-convex strong model classes,
providing stronger evidence that the gain in weak-to-strong
generalization for many machine learning tasks is typically
characterized by the disagreement between the student and
teacher model (an observation originally made empirically
by Burns et al. (2024)). This aligns well with the general
flavor of results in co-training (Blum & Mitchell, 1998)
and disagreement-based generalization bounds (Dasgupta
et al., 2001; Wang & Zhou, 2017; Yu et al., 2019). Par-
ticularly relevant also is the vast literature on knowledge
distillation (e.g., Hinton (2015); Nagarajan et al. (2023))
and self-distillation (e.g., Wei et al. (2020); Mobahi et al.
(2020); Pareek et al. (2024)). It is worth mentioning that the
work of Lang et al. (2024) draws insights from both Blum
& Mitchell (1998) and Wei et al. (2020).

Concurrent Work. While we primarily focus on relaxing
convexity assumptions in theorems relating misfit and gain,
concurrent works Yao et al. (2025a;b) extend results relax-
ing the realizability assumption from Charikar et al. (2024)
and establish a lower bound on gain by the misfit. It is worth
noting that the results in Yao et al. (2025b) echo our obser-
vation that reverse KL divergence appears to be more suited
for weak-to-strong generalization than forward KL diver-
gence. Concurrent work Medvedev et al. (2025) studies the
impact of early stopping on weak-to-strong generalization
for regression in shallow ReLU networks.

3. Preliminaries
We begin by formally describing the weak-to-strong general-
ization setup, adopting notation from Charikar et al. (2024).

3.1. Weak-to-strong Generalization

The setup constitutes a “strong model” and a “weak model”,
where the strong model is typically a larger, and represen-
tationally more powerful AI model than the weak model.
The weak model plays the role of teacher and the strong
model plays the role of student, in that the strong model is
trying to learn a target function from (potentially inaccurate)
evaluations made by the weak model on data. Abstractly, we

2



Relating Misfit to Gain in Weak-to-Strong Generalization Beyond the Squared Loss

think of the strong and weak models via their representation
maps hs : X → Rds and hw : X → Rdw respectively on
the data domain X . For example, hs could be a deep trans-
former architecture, and hw a shallow architecture. Suppose
g : X → Y is some target function. The only signal that
the strong model gets about g is through evaluations of the
weak model on data. Namely, it sees a dataset labeled by
fw(hw(·)), where fw : Rdw → Y is a finetuning map that
the weak model has obtained, possibly after seeing a differ-
ent batch of data labeled by g itself. Importantly, the labels
that the weak model feeds to the strong model is from a
separately held-out dataset, so that the weak model does not
have access to the true labels for it. The objective of the
strong model then is to obtain a finetuning function fs for
itself that it can compose onto its representation hs, such
that fs(hs(·)) estimates g better than fw(hw(·)).

For the theory in the main body of the paper, we make
two assumptions to avoid measure-theoretic and functional-
analytic complications and to simplify the exposition: (1)
we assume all distributions have finite support, and (2) we
restrict our attention to binary classification rather than c-ary
classification for c > 2. The main results can be generalized
when (1) is relaxed; however, more involved technical ma-
chinery is required (see Appendix A.3). Only minor modifi-
cations are needed when (2) is relaxed (see Appendix A.2).
We now set up some notation.

3.2. Notation

For n ∈ N, we denote [n] := {1, . . . , n}. R+
:= R ∪ {∞}.

For a function class F and a function h, we write F ◦ h
for the set {f ◦ h}f∈F . For function f , we write f ≡ c
if f is constantly c. For p ∈ [0, 1], denote p := 1 − p.
All logarithms have base e. H : [0, 1] → [0, log 2] is the
binary Shannon entropy H(p) := −p log p− p log p. DKL :

[0, 1]2 → R+
is the binary KL-divergence DKL(p∥q) :=

p log p
q+p log

p
q , and XE : [0, 1]2 → R+

is the binary cross-
entropy XE(p∥q) := −p log q − p log q. Note XE(p∥q) =
DKL(p∥q) +H(p). σ : R → (0, 1) is the sigmoid function
σ(x) := ex

1+ex , and σ−1 is its inverse, the logit function.

For a subset S ⊂ Rn, intS denotes its interior, and S its
closure. coS is its convex hull which is the intersection of all
convex sets containing S, and coS is its closed convex hull
which is the intersection of all closed convex sets containing
S. Note coS = coS. The convex hull of a set can be
expressed as the set of all k-convex combinations of points
in S, with k ranging through N. We use cokS to denote all
convex combinations of any k elements of S.

We use capital letters for random variables. These are instan-
tiated by specifying a distribution (e.g., X ∼ PX signifies
random variable X is drawn with probability distribution
PX ). As mentioned earlier, all distributions are assumed

to have finite support. For a function f of a random vari-
able, EX [f(X)] denotes the expectation of f(X) over PX .
When no subscript is attached to E, the expectation is taken
with respect to all random variables in scope. The proba-
bility distribution of a random variable X is written as PX .
For a pair of random variables X,Y jointly distributed, the
conditional distribution of Y given X is notated as PY |X .

3.3. Convexity

We will take for granted many basic results about convex
functions; Ekeland & Temam (1999) is a good reference
for these. For a convex function ψ : Rn → R+

, we write
domψ for {x ∈ Rn : ψ(x) <∞}. A convex function is
proper if domψ ̸= ∅. All convex functions in this paper
will be assumed to be proper. We denote Uψ := intdomψ.
Over Rn, all convex functions with nonempty domain are
continuous over Uψ. When ψ : Rn → R+

is strictly con-
vex and C1(Uψ), ∇ψ is a homeomorphism onto its image,
and plays an important role in the theory of convex duality.
When such a ψ is specified, we denote x∗ := ∇ψ(x) for
x ∈ Uψ. Likewise, for S ⊂ Uψ, S∗ := ∇ψ(S). The
Legendre dual of such a ψ is ψ∗ : Rn → R+

, where
ψ∗(x∗) := ⟨x, x∗⟩−ψ(x) for x ∈ Uψ , and ∞ otherwise. It
is also a strictly convex function that isC1 on Uψ∗ = (Uψ)

∗.
Furthermore, ψ∗∗ = ψ, and ∇ψ∗ = (∇ψ)−1. As such,
When ψ and ψ∗ are distinguished, we call Uψ the primal
space and Uψ∗ the dual space. We refer to ∇ψ as the dual
map, and x∗ the dual of x ∈ Uψ .

3.4. Bregman Divergences

We generalize beyond the squared loss analyzed in Charikar
et al. (2024) via Bregman divergences (Bregman, 1967).

Definition 3.1 (Bregman Divergence). Let ψ : Rn → R+

be a strictly convex and C1(Uψ). Then the ψ-Bregman
divergence, Dψ : Rn × Uψ → R+

is defined

Dψ(x, y) := ψ(x)− ψ(y)− ⟨x− y, y∗⟩
= ψ(x) + ψ∗(y∗)− ⟨x, y∗⟩.

Here, ψ is the generator of Dψ. Intuitively, Dψ measures
how much the linear approximation of ψ at y underestimates
ψ(x). It is always nonnegative, and is 0 if and only if x = y.
The alternative expression for Dψ also reveals an important
property: Dψ(x, y) = Dψ∗(y∗, x∗). Furthermore, Dψ is
strictly convex and differentiable in its first argument.

Table 2 in Appendix A.1 lists some examples of Bregman
divergences. While Bregman divergences are convex in
their first argument, they are not necessarily convex in their
second argument. The logistic cost (Table 2) is an example
of this.

3



Relating Misfit to Gain in Weak-to-Strong Generalization Beyond the Squared Loss

3.4.1. CROSS-ENTROPY AND KL-DIVERGENCE

In binary classification tasks, we work with data X,Y ∼
PX,Y , where input data X ∈ Rd and labels Y ∈ {0, 1}.
Let g : Rd → [0, 1] be the conditional probability function
g(x) := PY |X(1|x). Given some hypothesis class F of
functions Rd → (0, 1), we wish to find an f ∈ F that min-
imizes E[XE(g(X)∥f(X))]. Since g is fixed for a given
classification task, we see that E[XE(g(X)∥f(X))] differs
from E[DKL(g(X)∥f(X))] by the task-dependent constant
E[H(g(X))]. Thus, for classification tasks, applying Breg-
man divergence theory will produce corresponding results
about cross-entropy, modulo a constant.

3.4.2. GEOMETRY OF BREGMAN DIVERGENCES

We would like to use Bregman divergences analogously to
distances like the ℓ2 distance. However, Bregman diver-
gences are not always symmetric. The KL-divergence is a
classic example of a non-symmetric Bregman divergence.
Thus, they are not valid distances. However, they do possess
many geometric properties. We use two properties below
to generalize the main result from Charikar et al. (2024).
Below, ψ refers to a strictly convex, C1(Uψ) function.

Fact 3.2 (Generalized Law of Cosines (Chen & Teboulle,
1993)). Let x, y, z ∈ Uψ . Then

Dψ(x, z) = Dψ(x, y) +Dψ(y, z)− ⟨x− y, z∗ − y∗⟩.

To generalize the Pythagorean inequality for inner product
spaces, we need the following notion

Definition 3.3. Let W ⊂ Uψ. For x ∈ Uψ, de-
fine the forward Bregman projection to be PW(x) :=
argminy∈W Dψ(y, x).

If W is convex and closed then the forward projection exists
and is unique. Existence and uniqueness follow from conti-
nuity, boundedness of sublevel sets (Exercise 1 in (Fawzi,
2022)), and strict convexity of Dψ in its first argument.
The following is a known generalization of the standard ℓ2
Pythagorean inequality to Bregman divergences.

Fact 3.4 (Generalized Pythagorean Inequality (Dhillon,
2007)). Let W ⊂ Uψ be a closed, convex set. Then for
all z ∈ Uψ and x ∈ W

Dψ(x, z) ≥ Dψ(x, PW(z)) +Dψ(PW(z), z)

3.4.3. EXPECTATIONS OF BREGMAN DIVERGENCES

Suppose we have a random variableX ∼ PX with finite sup-
port X . Functions X → Rn form an n|X | dimensional vec-
tor space that we give the L2 norm

√
E [∥f(X)− g(X)∥22].

From strictly convex, C1, ψ : Rn → R+
, we get a con-

vex functional Ψ defined Ψ[f ] := E[ψ(f(X))]. Computing

the dual map, Legendre dual, and Bregman divergence of
Ψ, we get f∗ = ∇ψ ◦ f , Ψ∗[f∗] = Eψ∗(f∗(X)), and
DΨ(f, g) = EDψ(f(X), g(X)). Thus, the previous results
about Bregman divergences also apply to expectations of
Bregman divergences when |X | < ∞. See Appendix Ap-
pendix A.3 for a discussion when X is not finite.

3.4.4. BREGMAN DIVERGENCES IN THE WILD

A long line of literature has established the value of Breg-
man divergences in machine learning. Perhaps the most
well-known application is to the mirror-descent algorithm,
which generalizes the gradient descent algorithm to non-
Euclidean geometries Gupta (2020). This generalization
can lead to improved bounds on regret for online learning
tasks, and unifies several optimization algorithms under one
framework. Similarly, in unsupervised learning, Banerjee
et al. (2005) unifies a wide variety of clustering algorithms
as arising from a particular choices of Bregman divergences.
Furthermore, they show every exponential family for soft-
clusering corresponds to an expectation-maximization al-
gorithm using a Bregman divergence. In statistics, Reid &
Williamson (2011) establish a connection between Bregman
divergences and f -divergences.

In this paper, we are primarily focused on establishing a
misfit-gain inequality (Corollary 4.2) for cross-entropy, and
generalizing it to non-convex classes of strong learners (The-
orem 4.3). However, we frame these theorems and their
proofs (Appendices A.2.1 and A.2.2) through the lens of
Bregman divergence theory to provide a toolbox for re-
searchers looking to apply these results to more specialized
settings.

3.4.5. FORWARD KL VS. REVERSE KL

Here we provide a brief intuitive explanation of the differ-
ence between forward and reverse KL divergence. We echo
observations made in Kristiadi (2016); Yao et al. (2025a);
readers should refer to these sources for more detailed dis-
cussion.

Roughly, we can think of forward KL as being mass-seeking:
it prioritizes learning a distribution that covers all possibili-
ties dictated by the teacher. On the other hand, reverse KL
is mode-seeking: it prioritizes learning a distribution that
captures the most frequent behavior in the teacher. One can
notice this behavior in how the two loss functions handle
a student that disagrees with the teacher and predicts 0%
probability for an event: forward KL will be +∞ while re-
verse KL will exclude that event from the loss. Conversely
if the teacher predicts 0% probability for an event and the
student disagrees, then forward KL will disregard that event,
reverse KL will become +∞.

In the context of weak-to-strong generalization, it is plausi-
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ble that the (weak) teacher makes errors. Thus, we do not
want our (strong) student to be mass-seeking: it should be
free to disagree with its teacher. Instead, the student should
be mode-seeking as this is likely where most of the signal
from the teacher comes from.

4. Main Results
We are now in a position to state our main results on weak-
to-strong generalization using Bregman divergence theory.

The first result is a direct application of Fact 3.4.

Theorem 4.1 (Bregman Misfit-Gain Inequality). Let ψ :

Rn → R+
be a proper convex function s.t. Uψ ̸= ∅. Let

hs : X → Rds and hw : X → Rdw be the strong and weak
learner representations respectively. Let fw : Rdw → Uψ
be the weak model finetune layer, and g : X → Uψ be
the target function. Let F be a class of functions mapping
Rds → Uψ . If the following hold:

1. (Realizability) ∃f∗ ∈ F s.t. g = f∗ ◦ hs,

2. (Convexity) F is a convex set of functions,

3. (Sequential Consistency) For y ∈ Uψ fixed, if
Dψ(xn, y) → 0, then xn → y,

then for any ϵ > 0, there exists δ > 0 such that for all
fs ∈ F that satisfy

E
[
Dψ (fs(hs(X)), fw(hw(X)))

]
≤ inf
f∈F

E [Dψ (f(hs(X)), fw(hw(X)))] + δ,

we have

E
[
Dψ (g(X), fs(hs(X)))

]
≤ E [Dψ (g(X), fw(hw(X)))]

− E [Dψ (fs(hs(X)), fw(hw(X)))] + ϵ. (1)

Proof Sketch. Because F is convex, we get that F ◦
hs is also convex. Since g ∈ F ◦ hs, by Fact 3.4,
we have that gproj := PF◦hs

(fw ◦ hw) uniquely ex-
ists and satisfies the Bregman Pythagorean inequal-
ity. Now, by continuity of both E[Dψ(·, fw(hw(X)))]
and E[Dψ(g(X), ·)] there exists an ϵ1 > 0 s.t. if
E
[
∥f(hs(X))− gproj(X)∥22

]
< ϵ1, then f almost satisfies

the Pythagorean inequality with error ϵ. Choosing δ suffi-
ciently small, we can apply the Pythagorean inequality to
bound E[Dψ(f(hs(X)), gproj(X))]. Sequential consistency
will then make E

[
∥f(hs(X))− gproj(X)∥22

]
< ϵ1.

Sequential consistency is a common assumption in the litera-
ture when defining Bregman divergences (Reem et al., 2018;
Bauschke & Combettes, 2003; Butnariu et al., 2003), and is

satisfied with very weak assumptions on ψ. Theorem 4.1
generalizes Theorem 1 in Charikar et al. (2024), since ℓ2 is
a Bregman divergence (and clearly sequentially consistent).

As a corollary to Theorem 4.1, we also obtain the misfit-gain
inequality for cross-entropy.
Corollary 4.2 (Cross-Entropy Misfit-Gain Inequality). Let
hs : X → Rds and hw : X → Rdw be the strong and weak
model representations respectively. Let g : X → (0, 1) be
the target function. Let F be a class of functions mapping
Rds → (0, 1). Let fw : Rdw → (0, 1) be the classifier for
the weak model. If the following hold:

1. (Realizability) ∃f∗ ∈ F so that g = f∗ ◦ hs,

2. (Convexity) F is a convex set of functions,

then for any ϵ > 0, there exists δ > 0 such that for all
fs ∈ F that satisfy

E
[
DKL(fs(hs(X))∥fw(hw(X)))

]
≤ inf

f∈F
E [DKL (f(hs(X))∥fw(hw(X)))] + δ,

we have

E
[
XE(g(X)∥fs(hs(X)))

]
≤ E [XE (g(X)∥fw(hw(X)))]

− E [DKL (fs(hs(X))∥fw(hw(X)))] + ϵ. (2)

Proof Sketch. We can first rewrite Equation (2) in terms
of DKL instead of XE by subtracting H(g(X)) from both
sides. Since DKL is sequentially consistent by Pinsker’s
inequality, we can apply Theorem 4.1.

We note that if

fs = argmin
f∈F

E [DKL(f(hs(X))∥fw(hw(X)))] ,

then Equation (2) directly holds with no ϵ term. Such
an fs uniquely exists if F ◦ hs is closed. We refer to
E [DKL(fs(hs(X))∥fw(hw(X)))] as the “misfit” term and
E [XE(g(X)∥fw(hw(X)))] − E [XE(g(X)∥fs(hs(X)))]
as the “gain” term.

In practice, F is usually not convex. For example, when
learning a linear probe (Burns et al., 2024) on top of hs
together with the sigmoid, F∗ is convex, but F itself is
not. Nevertheless, our main observation in this case is that
Theorem 4.2 still applies to coF! By Caratheodory’s theo-
rem, coF = co|X |+1F , and hence we can simply consider
convex combinations of |X |+ 1 functions in F to represent
coF . However, as |X | → ∞, this representation is not com-
putationally tractable. We therefore suggest remedying this
by attempting to project the weak model onto cokF ◦ hs,
and show that the error in the misfit-gain inequality can still
be bounded by a decreasing function in k that is independent
of |X |. Concretely, we show that:
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Theorem 4.3. Let hs, hw, fw, g be as in Theorem 4.2. Let
F be a class of functions mapping Rds → (0, 1). If the
following hold

1. (Realizability) ∃f∗ ∈ F so that g = f∗ ◦ hs,

2. (Regularization) F satisfies

max

Ç
E
ñ
sup
f∈F

1/f(X)

ô
,E
ñ
sup
f∈F

1/f(X)

ôå
<∞,

then for any k ∈ N, there exists δ > 0 such that for all
fs ∈ cokF that satisfy

E
[
DKL(fs(hs(X))∥fw(hw(X)))

]
≤ inf

f∈cokF
E [DKL(f(hs(X))∥fw(hw(X)))] + δ,

we have

E
[
XE(g(X)∥fs(hs(X)))

]
≤ E [XE(g(X)∥fw(hw(X)))]

− E [DKL(fs(hs(X))∥fw(hw(X)))] +O(1/
√
k). (3)

The proof of Theorem 4.3, inspired from the work of Zeevi
& Meir (1997), is more involved, and is a careful application
of the probabilistic method; we defer it to the Appendix as
Theorem A.2 where we prove it in the multi-class setting; in
particular, with c classes, the error term becomes O(

√
c/k).

We note that both Corollary 4.2 and Theorem 4.3 make no
assumption on the weak model, and only the realizability
assumption on the target. Theorem 4.3 makes only a mild as-
sumption on F that can be enforced by regularizing the mod-
els in F (e.g., via an ℓ2 penalty). We emphasize however
that the inequality does not guarantee significant weak-to-
strong generalization for any weak model. If fw ∈ F , then
the fs obtained by either theorems will be fw itself, and the
misfit term becomes 0. However, Corollary 4.2 and The-
orem 4.3 allow us to quantify how much weak-to-strong
generalization we should expect to see. All expectations
involved can be estimated on a hold-out dataset, yielding a
bound on the gain in terms of empirical misfit, modulo esti-
mation error. This quantification is in the loss of the learned
strong model relative to the (realizable) ground truth data.
Since a reasonable loss function is correlated with other
error metrics like accuracy, we should expect to empirically
see improvements in accuracy with increases in loss misfit.
However, a relationship between accuracy and loss misfit is
not theoretically guaranteed.

Theorem 4.3 provides a concrete recipe for weak-to-strong
generalization that allows for a quantitative handle on the
performance gap between the weak and strong model. In
this recipe, we finetune a convex combination of k functions
from F on top of the strong model representation. The
objective of this finetuning is the empirical mean of the

KL divergence between the strong and weak model output.
Importantly, the strong model’s output is in the first argu-
ment of the KL divergence. This is in contradistinction to
the standard weak supervision objective, wherein the weak
supervisor’s output is in the first argument. However, this
distinction provably leads to a performance gain, provided
k is not too small, and the empirical estimates are accurate.
In the next section, we empirically validate this recipe.

5. Experiments
We conduct experiments on synthetic data similar to
Charikar et al. (2024), and also NLP and vision datasets
considered originally in the work of Burns et al. (2024).

5.1. Synthetic Data Experiments

We follow the setup in Charikar et al. (2024) for the synthetic
experiments. We assume that the target g takes the form
f(h⋆(·)) for some ground-truth representation map h⋆ and
finetuning function f ∈ F . We set h⋆ : R8 → R16 to a
randomly initialized MLP with 5 hidden layers and ReLU
activations, where the hidden size is 16. We choose F to be
the set of c-class logistic regression models on R16. Namely,

F = {x 7→ σ(Wx) :W ∈ R(c−1)×16},
where σ(z∗1 , . . . , z

∗
c−1) := softmax([0, z∗1 , . . . , z

∗
c−1]).

The marginal P of the data is N (0, ν2I); we set ν = 100.

Pretraining. The class of strong and weak model repre-
sentations, Hs and Hw, are respectively set to the class
of 8-layer and 2-layer MLPs mapping R8 → R16, again
with ReLU activations and hidden layer size 16. To ob-
tain hs and hw, we first randomly sample T = 10 maps
f (1), . . . , f (T ) from F , and generate data {x(i)j , y

(i)
j }Nr

j=1

for each, where Nr = 2000. Here, every x(i)j ∼ P , and

y
(i)
j = f (i)(h⋆(x

(i)
j )). Thereafter, the parameters of hs and

hw are obtained by performing gradient descent to optimize
the cross-entropy loss:

hk = argmin
h∈Hk

1

TNr

T∑
i=1

Nr∑
j=1

XE(y
(i)
j ∥f (i)(h(x(i)j )))

for k ∈ {w, s}. (4)

Weak Model Finetuning. Next, we finetune the weak
model on M = 100 fresh finetuning tasks f (1), . . . , f (M)

from F . To do so, we again generate {x(i)j , y
(i)
j }Nf

j=1 for

every i ∈ [M ], where Nf = 2000, each x(i)j ∼ P and

y
(i)
j = f (i)(h⋆(x

(i)
j )). The weak model representation hw

that was obtained in the pretraining step is held frozen,
and the parameters in the final linear layer are obtained via
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gradient descent to minimize the cross-entropy loss:

f (i)w = argmin
f∈F

1

Nf

Nf∑
j=1

XE(y
(i)
j ∥f(hw(x(i)j ))). (5)

Weak-to-Strong Supervision. For each finetuning task
above, we obtain data labeled by the weak supervisor as
follows. For every i ∈ [M ], we generate {x̃(i)j , ỹ

(i)
j }Nf

j=1,

where x̃(i)j ∼ P and ỹ(i)j = f
(i)
w (hw(x̃

(i)
j )). This data is fed

to the strong model, which goes on to learn:

f (i)s = argmin
f1,...,fk∈F

λ∈(0,1)k:
∑

a λa=1

1

Nf

Nf∑
j=1

DKL

(
k∑
a=1

λaz
(i,j)
a

∥∥∥∥ỹ(i)j
)
,

where z(i,j)a = fa(hs(x̃
(i)
j )). (6)

Namely, we optimize over a convex combination of k lo-
gistic regression heads. Importantly, observe that the order
of arguments in DKL in Equation (6) above is flipped from
that in Equation (5), in keeping with the recipe given by
Theorem 4.3. We set k = 100.

Evaluation. To evaluate that the inequality given by The-
orem 4.3 holds, for each task i ∈ [M ], we estimate the three
expectations in Equation (3) from a new sample of size Nf .
Our result says that upto an error term of O(

√
c/k),

E [XE(g(X)∥fw(hw(X)))]− E [XE(g(X)∥fs(hs(X)))]

≥ E [DKL(fs(hs(X))∥fw(hw(X)))] . (7)

In Figure 1, we plot the LHS on the y-axis and the RHS
on the x-axis, for the experiment above performed with
c = 2, 10, 50, 100. We can observe that Equation (7) is
exhibited more or less with equality, for both the binary
(c = 2) as well as multiclass cases (c > 2). We do note that
the plot gets noisier as c grows to 100. These plots show the
same trend as for the squared loss in Charikar et al. (2024).

5.2. NLP Tasks

Next, we consider four real-world NLP classification
datasets: BoolQ (Clark et al., 2019), SciQ (Welbl et al.,
2017), CosmosQA (Huang et al., 2019) and Amazon Polar-
ity (McAuley & Leskovec, 2013). We work with models
in the gpt2 family (Radford et al., 2019), where the weak
model is fixed to be gpt2, and the strong model is chosen

These are four of the five datasets considered in the code-
base provided by OpenAI (Ecoffet et al., 2023) for their weak-
to-strong generalization paper. We chose to not include the fifth
(Anthropic/HH-RLHF (Bai et al., 2022; Ganguli et al., 2022))
since the results of Burns et al. (2024) on this dataset are extremely
noisy (see the plot in Ecoffet et al. (2023)), e.g., no model seems
to be doing better than random guessing.

from gpt2-medium, gpt2-large and gpt2-xl. For
each dataset, we first finetune the linear probe of the weak
model (by minimizing cross-entropy) on 50% of the training
data with ground-truth labels. We then compute weak labels
given by the trained model on the remaining 50% of the
training data. We then optimize a convex combination of
k = 100 logistic regression heads on top of the strong model
to minimize the reverse objective as in Equation (6). We
add an ℓ2 regularization penalty (with coefficient 0.1) on the
linear weights in the objective to help with regularization,
and to better align with the requirements of Theorem 4.3.
Finally, we estimate each of the terms in Equation (7) from
the test data. The obtained results are shown in Figure 2.

Firstly, we see weak-to-strong generalization (in terms of
the loss) for all the datasets: the test loss of the strong model
is always smaller than the test loss of its weak supervisor.
Next, we see a clear trend on all four datasets: as we range
the strong model from gpt2-medium to gpt2-large
to gpt2-xl, the misfit onto the weak model increases, and
concurrently, the loss on the test data decreases. In fact,
for CosmosQA, Amazon Polarity and SciQ, in addition to
the test loss decreasing, we observe that the test accuracy
is non-decreasing too (note again that our result does not
claim anything about accuracy per se).

We remark that our accuracies are inferior to those reported
in the experiments by Burns et al. (2024) on these datasets.
One reason for this is that we only ever tune the logistic
regression heads of models (in both weak model training,
as well as weak-to-strong training), whereas Burns et al.
(2024) allow full finetuning that includes the representation
layer parameters.

5.3. Vision Tasks

We next perform experiments on image classification
datasets. Following Burns et al. (2024), we fix the weak
supervisor to be AlexNet (Krizhevsky et al., 2012). For the
strong model, we consider ResNet-50 (He et al., 2016) and
ViT-B/8 (Dosovitskiy, 2020) based on DINO representations
(Caron et al., 2021). Having fixed these representations, we
finetune a convex combination of k = 100 logistic heads
on top of the strong model on the weakly labeled data. We
consider two datasets: CIFAR-10 (Krizhevsky et al., 2009)
and ImageNet (Russakovsky et al., 2015), and obtain the
same plots as we did for the NLP datasets in Figures 3a, 3b.
Again, we clearly observe that as the misfit of the strong
model onto the weak labels increases, both, the test loss de-
creases as well as the test accuracy increases! Interestingly,
we observe that our weak-to-strong accuracy on ImageNet
for ViT-B/8 is better than the corresponding weak-to-strong
accuracy reported for the same experiment in Table 3, Burns
et al. (2024) (namely 64.2% respectively). We note that the
only difference in our setup is the weak-to-strong training
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Figure 1. Synthetic data experiments. The Gain and Misfit closely track each other. For c = 100, we see that the correlation between
misfit and gain weakens, suggested also by the O(

√
c/k) error term from Theorem A.2.
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Figure 2. Weak model (gpt2) is trained once on true labels and thereafter fixed. Each strong model is trained on the weak labels (on a
held-out set separate from that which weak model was trained on) for 10 random initializations of the k-convex combination of logistic
regression heads; we plot the average test loss/misfit across these 10 runs, along with the standard deviations as the error bars.

of the linear probe: while Burns et al. (2024) adopt standard
cross-entropy minimization on a single logistic head, we em-
ploy the reverse KL minimization on a convex combination
of k heads, as suggested by our theory.

5.4. Varying k

Recall that with a convex combination of k logistic heads,
the upper bound on the difference between misfit and gain
in Theorem A.2 scales as O(

√
c/k); in particular, as k in-

creases, the upper bound becomes smaller. As our next
experiment, for each dataset, we fix the strong model to
be the largest one (gpt2-xl for NLP, and ViT-B/8 for Vi-
sion), and vary k in {1, 10, 50, 100}. For each dataset, we
plot the difference between misfit and gain against k; the
plots are shown in Figure 4 in Appendix A.4. We observe
that for all datasets but ImageNet, the difference between
misfit and gain consistently decreases as k increases; fur-
thermore, beyond a point, increasing k does not decrease
the discrepancy by much. This can also be seen in Figure 3c,
which collates the plots for all datasets (except ImageNet)
in a single figure. We suspect that the trend does not show
up for ImageNet because c = 1000, and hence c dominates
in the error term for the values of k that we consider.

We chose to not include ImageNet in this plot as the plot for
ImageNet was significantly off scale, and was skewing the y-axis.

5.5. Enforcing the Realizability Assumption

Finally, while the plots in Figure 2 and Figure 3a, 3b do il-
lustrate that the gain in performance is directly proportional
to the misfit as expected, our theory would also additionally
suggest that the gain should quantitatively be at least the
misfit (up to an error term decreasing in k). This does not
quite hold in the plots—we can observe that the misfit is
consistently larger than the difference between the weak
model and strong model loss. One significant reason for
this is that our result assumes realizability; namely, the
target task should be exactly representable by the strong
model. We verified that this does not actually hold in our
experiments—even if we train the strong models on data
with ground-truth labels, we see a non-trivial test loss at
the end of training. To isolate this cause of discrepancy,
we can consider evaluating the test losses of the weak and
strong models (two terms on the LHS of equation 7) with
respect to the best possible strong model (that is trained on
true labels) instead of the ground-truth target function. This
simply ensures that the realizability assumption holds. If we
evaluate the quantities thus, consolidate the numbers across
all the different NLP and vision datasets, and plot them with
axes as in Figure 1, we obtain Figure 3d. Note how this plot
is more aligned to the plots in Figure 1, with the misfit more
faithfully capturing the quantitative gain in performance.
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Figure 3. (a), (b) Weak model (AlexNet) is trained once on true labels and thereafter fixed; we report numbers averaged over 10 runs of
weak-to-strong training. (c) We observe that the difference between misfit and gain decreases as k increases, and also that the decrease
slows down with increasing k. (d) The test loss of the weak and strong model is measured not with respect to the ground truth test data,
but instead with respect to the predictions of the best strong model on the test data. This is done to ensure realizability.

CosmosQA Amazon Polarity BoolQ SciQ CIFAR-10 ImageNet
Forward Reverse Forward Reverse Forward Reverse Forward Reverse Forward Reverse Forward Reverse

Test Accuracy 0.6378 0.6407 0.8963 0.8984 0.6140 0.6141 0.6171 0.6254 0.8981 0.9005 0.7133 0.6986
XE(gt, strong) 0.6147 0.6141 0.2788 0.2570 0.6464 0.6476 0.6439 0.6436 0.4052 0.3361 1.4042 1.4742

Gain 0.0368 0.0372 0.0717 0.0934 0.0706 0.0694 0.0264 0.0266 0.1772 0.2447 0.5217 0.4517
Misfit 0.6093 0.0613 0.3717 0.1444 0.6319 0.0980 0.6558 0.0961 1.1024 0.3185 3.9392 1.6401

Table 1. Comparison of Forward XE and Reverse KL.

5.6. Comparing Forward XE and Reverse KL

Finally, we empirically compare the performance of the for-
ward and reverse KL loss in weak-to-strong supervision. For
the experiments in Section 5.2, in the weak-to-strong train-
ing phase, instead of finetuning a convex combination of
k = 100 logistic regression heads on the reverse KL diver-
gence objective (i.e., DKL(strong,weak) in Equation (6)),
we instead finetune these on the forward cross-entropy loss
(i.e., XE(weak, strong)) with the same ℓ2 regularization.
The latter is the more standard form of finetuning, while the
former arises from our theory. Table 1 shows the compar-
ison for the test accuracy of the strong model, as well the
cross-entropy loss between the ground truth and the strong
model. The comparison is indeed quite interesting—we can
see that the strong model that is finetuned on the reverse KL
objective shows better final test accuracy for nearly all the
datasets! Namely, we do not see significant performance
degradation (in fact, we see improvement in nearly all cases)
with reverse KL compared to the standard setup.

We also computed the gain and misfit terms in the
Pythagorean inequality equation 7, where for the reverse
KL experiment, we compute the reverse misfit that we
propose (i.e., DKL(strong,weak)), whereas in the stan-
dard forward XE experiment, we compute the misfit as
XE(weak, strong) — the “natural” misfit that one might
consider. We see in the standard setup that the Pythagorean
inequality is completely off (gain and misfit don’t quanti-
tatively align), whereas the reverse misfit is more represen-

tative of the gain, as confirmed by our theory. Again, this
indicates a clear “directionaliy” in the Pythagorean inequal-
ity for weak-to-strong generalization in the classification
setting! Note that it is plausible that in practice, running
standard forward XE(weak, strong) minimization might
lead to a minimizer that is close to the minimizer of the
reverse DKL(strong,weak).

6. Conclusion and Future Work
The theory in Section 4 establishes a connection between
misfit of the strong learner to its weak supervisor, and
the generalization gain of the strong learner over its weak
teacher. Experiments in Section 5 confirm this connection.
However, these results raise several questions. Firstly, the
empirical results seem tighter than expected. Can the error
term in Theorem 4.3 be improved, thereby more accurately
explaining the empirical results? Secondly, can we use our
geometric insights to improve weak-to-strong generaliza-
tion beyond the standard framework? Finally, while our
experiments focused on linear probes (Burns et al., 2024),
Theorem 4.3 applies to significantly larger classes of mod-
els. How tightly does Theorem 4.3 hold in these different
settings, and can the ideas from this work be applied there
to encourage better alignment?

The seminal work of Burns et al. (2024) exhibited the phe-
nomenon of weak-to-strong generalization. We hope our
work sheds some light on the mechanisms at play and pro-
vides theoretically justified modifications to the framework.
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A. Appendix
A.1. Common Bregman Divergences and their Generator Functions

Name Generator Divergence Dual Map Legendre Dual

L2 Loss ψ(x) = 1
2x

2 Dψ(x, y) =
1
2 (x− y)2 x∗ = x ψ∗(x∗) = 1

2 (x
∗)2

KL Divergence ψ(p) = −H(p) Dψ(p, q) = DKL(p∥q) p∗ = σ−1(p) ψ∗(p∗) = log(1 + ep
∗
)

Logistic ψ(x) = log(1 + ex) Dψ(x, y) = DKL(σ(y)∥σ(x)) x∗ = σ(x) ψ∗(x∗) = −H(x∗)
Itakura-Saito ψ(x) = − log x Dψ(x, y) =

x
y − log x

y − 1 x∗ = 1/x ψ∗(x∗) = 1− log x∗

Table 2. Examples of different univariate generator functions and their Bregman divergences.

A.2. Generalizing the Misfit Inequality to Multiple Classes

Here we expand on the modifications needed to generalize the results discussed in Section 4 to the multi-class setting. There
is both a coordinate-dependent and coordinate-independent approach to generalizing the misfit inequality. Below we detail
the coordinate-dependent approach as it is easier to understand. Later we discuss the coordinate-independent approach
which is more in line with the approach taken by softmax regression.

Again we make the simplifying assumption that our input data X ∼ PX has finite support X .

A.2.1. MULTI-CLASS KL DIVERGENCE AS A BREGMAN DIVERGENCE

In the binary-classification setting, we are learning models that output a probability distribution on {0, 1} given the input X .
While such a distribution is written with two probability values p and 1− p in [0, 1], it suffices to only know one of the two
probability values to determine the other. Thus we can represent our space of models on data X by the (finite-dimensional)
function space [0, 1]X . This motivated framing KL-Divergence as a Bregman divergence generated by the univariate
convex function ψ(p) := p log p+ (1− p) log(1− p). In binary-classification, we tend to interpret the output of a model
f ∈ [0, 1]X as the probability of the positive class; however, this choice was largely arbitrary. This arbitrariness is the
coordinate-dependence of this formulation. However, had we chosen the output of f : X → [0, 1] to be the probability
of the negative class, we would have obtained the same Bregman divergence by the symmetry of ψ. The rigidity of the
Bregman divergence to this arbitrariness is the coordinate-independence of the underlying theory.

In the c-class setting for c > 2, positive probability distributions are represented by c-dimensional vectors p ∈ ∆c−1, where
∆c−1 is the (open) c− 1-dimensional probability simplex:

∆c−1 :=

{
p ∈ (0, 1)c :

c∑
i=1

pi = 1

}
.

Now, for p ∈ ∆c−1, knowing c− 1 of the c probabilities is sufficient to determine the cth probability. Making the arbitrary
choice of dropping the redundant c-th coordinate, we get the set

▲c−1 :=

{
p ∈ (0, 1)c−1 :

c−1∑
i=1

pi < 1

}
,

parameterizing positive probability distributions on [c]. Thus, we can represent our space of models on data X by the
(finite-dimensional) function space

{
f : X →▲c−1

}
.

Using this parameterization, we can express the negative Shannon entropy as

ψ(p) := p1 log p1 + · · · pc−1 log pc−1 +

(
1−

c−1∑
i=1

pi

)
log

(
1−

c−1∑
i=1

pi

)
.

Its dual map is the logit function σ−1 :▲c−1 → Rc−1 with respect to the c-th probability

p∗ := σ−1(p) =

Å
log

pi
pc

ãc−1

i=1

,
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where we abuse notation slightly for consistency with the binary class case. Then, we can compute the Legendre dual of ψ as

ψ∗(p∗) = log

(
c∑
i=1

ep
∗
i

)
,

where p∗c := 0. ψ∗ is the log-sum-exp function, and its gradient is the softmax function σ. So similar to the binary case,
softmax regression learns models in the dual (logit) space X → Rc−1, and applies σ to convert the outputs to primal
(probability) values.

Since ψ is strictly convex and C1 on▲c−1, it determines a Bregman divergence Dψ(p, q) := ψ(p)−ψ(q)−⟨p− q,∇ψ(q)⟩
for p, q ∈▲c−1. Substituting our choice of ψ, we get that Dψ(p, q) is the multi-class KL divergence:

Dψ(p, q) =

c∑
i=1

pi log
pi
qi

= DKL(p∥q),

taking pc := 1 −
∑c−1
i=1 pi and qc := 1 −

∑c−1
i=1 qi. Using this Bregman divergence, we can state the multi-class misfit

analogs of the results Corollary 4.2 and Theorem 4.3 in Section 4. We first include a proof of Theorem 4.1 in more detail
than in the main body of the paper.

Theorem 4.1. Let ψ : Rn → R+
be a proper convex function s.t. Uψ ̸= ∅. Let hs : X → Rds and hw : X → Rdw

be the strong and weak learner representations respectively. Let fw : Rdw → Uψ be the weak model finetune layer, and
g : X → Uψ be the target function. Let F be a class of functions mapping Rds → Uψ . If the following hold:

1. (Realizability) ∃f∗ ∈ F s.t. g = f∗ ◦ hs,

2. (Convexity) F is a convex set of functions,

3. (Sequential Consistency) For y ∈ Uψ fixed, if Dψ(xn, y) → 0, then xn → y.

Then for any ϵ > 0, there exists δ > 0 such that for all fs ∈ F that satisfy

EX
[
Dψ (fs(hs(X)), fw(hw(X)))

]
≤ inf
f∈F

EX [Dψ (f(hs(X)), fw(hw(X)))] + δ,

we have

EX
[
Dψ (g(X), fs(hs(X)))

]
≤ EX [Dψ (g(X), fw(hw(X)))]− EX [Dψ (fs(hs(X)), fw(hw(X)))] + ϵ. (8)

Proof. First note that convexity of F implies convexity of F ◦ hs := {f ◦ hs : f ∈ F}: for any f1, f2 ∈ F , λ ∈ [0, 1], and
x ∈ X , we have

λf1(hs(x)) + (1− λ)f2(hs(x)) = (λf1 + (1− λ)f2)(hs(x)) ∈ F ◦ hs.

Since g ∈ F ◦ hs, by Fact 3.4, we have that gproj := PF◦hs
(fw ◦ hw) uniquely exists and

EX [Dψ(g(X), gproj(X))] ≤ EX [Dψ(g(X), fw(hw(X)))]− EX [Dψ(gproj(X), fw(hw(X)))] .

Now we approximate gproj sufficiently well using F ◦ hs. By continuity of both EX [Dψ(·, fw(hw(X)))] and
EX [Dψ(g(X), ·)], there exists ϵ1 > 0 s.t. if EX

[
∥g(X)− fs(hs(X))∥22

]
≤ ϵ1, then

EX [Dψ(g(X), fs(hs(X)))] ≤ EX [Dψ(g(X), fw(hw(X)))]− EX [Dψ(fs(hs(X)), fw(hw(X)))] + ϵ.

By sequential consistency, there exists δ > 0 s.t. if x, y ∈ Uψ are s.t. Dψ(x, y) ≤ δ, then ∥x − y∥22 ≤ ϵ1. Let
pmin := minx∈X PX(x) > 0. Let fs ∈ F be s.t.

EX [Dψ(fs(hs(X)), fw(hw(X)))] ≤ inf
f∈F

EX [Dψ(f(hs(X)), fw(hw(X)))] + pminδ.
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By definition of gproj, we have that

EX [Dψ(gproj(X), fw(hw(X)))] = min
g2∈F◦hs

EX [Dψ(g2(X), fw(hw(X)))]

= inf
f∈F

EX [Dψ(f(hs(X)), fw(hw(X)))] ,

where the last equality follows by continuity of EX [Dψ(·, fw(hw(X)))]. Then, applying Fact 3.4 again, this time to
fs ◦ hs ∈ F ◦ hs instead of g, we have that

EX [Dψ(fs(hs(X)), gproj(X))] ≤ EX [Dψ(fs(hs(X)), fw(hw(X)))]− EX [Dψ(gproj(X), fw(hw(X)))] ≤ pminδ.

Then, for all x ∈ X , Dψ(fs(hs(x)), gproj(x)) ≤ δ. Thus,

ϵ1 ≥ sup
x∈X

[
∥fs(hs(x))− gproj(x)∥22

]
≥ EX

[
∥fs(hs(X))− gproj(X)∥22

]
.

Thus,

EX [Dψ(g(X), fs(hs(X)))] ≤ EX [Dψ(g(X), fw(hw(X)))]− EX [Dψ(fs(hs(X)), fw(hw(X)))] + ϵ.

Like in the binary case, the multi-class misfit-gain inequality follows as a corollary to Theorem 4.1.

Corollary A.1 (Multi-Class Misfit-Gain Inequality). Suppose hs : X → Rds is the strong learner hidden representation
and hw : X → Rdw is the weak learner representation. Let fw : Rdw →▲c−1 be the classifier for the weak model, and let
g : X → ∆c−1 be the target function. Let F be a class of functions mapping Rds →▲c−1. If the following hold:

1. (Realizability) ∃f∗ ∈ F so that g = f∗ ◦ hs,

2. (Convexity) F is a convex set of functions,

then for any ϵ > 0, there exists δ > 0 so that for all fs ∈ F such that

EX [DKL(fs(hs(X))∥fw(hw(X)))] ≤ inf
f∈F

EX [DKL(f(hs(X))∥fw(hw(X)))] + δ,

we have

EX [XE(g(X)∥fs(hs(X)))] ≤ EX [XE(g(X)∥fw(hw(X)))]− EX [DKL(fs(hs(X))∥fw(hw(X)))] + ϵ. (9)

Proof. First note that by subtracting EX [H(g(X))] from both sides of equation 9, we get

EX [DKL(g(X)∥fs(hs(X)))] ≤ EX [DKL(g(X)∥fw(hw(X)))]− EX [DKL(fs(hs(X))∥fw(hw(X)))] + ϵ,

so it suffices to prove this latter inequality. But this inequality follows from Theorem 4.1 after noting DKL is sequentially
consistent by Pinsker’s inequality.

A.2.2. PROOF OF THEOREM 4.3 FOR MULTIPLE CLASSES

Next we prove Theorem 4.3 for the multi-class setting. From this result we will recover the Theorem 4.3 for binary
classification. Recall that for a set S in a vector space V , cokS is defined as

cokS :=

{
y ∈ V : ∃x1, . . . , xk ∈ S, p ∈ ∆k−1 s.t. y =

k∑
i=1

pixi

}
.

Theorem A.2. Let hs, hw, fw, g be as in Corollary A.1. Let F be a class of functions mapping Rds → ▲c−1. If the
following hold:
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1. (Realizability) ∃f∗ ∈ F so that g = f∗ ◦ hs,

2. (Regularization) F is s.t. max
i∈[c]

EX
[
supf∈F 1/fi(X)

]
<∞.

Then for any k ∈ N, there exists δ > 0 so for all fs ∈ cokF such that

EX [DKL(fs(hs(X))∥fw(hw(X)))] ≤ inf
f∈cokF

EX [DKL(f(hs(X))∥fw(hw(X)))] + δ,

we have

EX [XE(g(X)∥fs(hs(X)))] ≤ EX [XE(g(X)∥fw(hw(X)))]− EX [DKL(fs(hs(X))∥fw(hw(X)))] +O(

…
c

k
). (10)

The proof will come down to determining how large we need to make k to get satisfactory bounds on both

EX [DKL(gproj(X)∥fw(hw(X)))]− EX [DKL(fs(hs(X))∥fw(hw(X)))] ,

EX [DKL(g(X)∥gproj(X))]− EX [DKL(g(X)∥fs(hs(X)))] ,

where gproj := Pco(F◦hs)(fw ◦ hw). We will see the first of the two terms is controlled by the Jensen approximation gap of
ψ for a Bregman divergence Dψ . The second term is more difficult to bound from general Bregman theory. We will instead
bound it in specifically for KL divergence, leaving it open what conditions are necessary to get a satisfactory bound for
general Bregman divergences.

For a random variable Z ∼ PZ , we let Z
(n)

denote the empirical mean of n i.i.d. samples of Z.

Definition A.3. Let φ : Rd → R+
be a proper, convex function. The Jensen approximation gap of φ is

Gap(n;φ) := sup
Z∼PZ on domψ

EZ∈domψ

E
[
φ(Z

(n)
)
]
− φ(E [Z]).

Lemma A.4. Let ψ : Rd → R+
be the generator for Bregman divergence Dψ . Let S ⊂ Uψ and let w ∈ Uψ . Then for any

k ∈ N and y ∈ coS, we have that there exists x ∈ cokS s.t.

Dψ(x,w) ≤ Dψ(y, w) + Gap(k;ψ).

Note that in the finite-dimensional case Caratheodory’s theorem does tell us that cod+1S = coS. However, we should
imagine d≫ k. In the infinite-dimensional case, Caratheodory’s theorem does not hold, so we need to use the approach
from the lemma above. The proof of the lemma applies probabilistic method in a way similar to (Zeevi & Meir, 1997).

Proof. Let y ∈ coS. Then there exist n ∈ N, z1, . . . , zn ∈ S, and (p1, . . . , pn) ∈ ∆n−1 s.t. y =
∑n
i=1 pizi. Note that p

is a probability distribution on [n]. Let Z ∼ PZ be a random variable on {z1, . . . , zn} with PZ(zi) := pi. Then EZ = y.
Now observe

EDψ(Z
(k)
, w)−Dψ(y, w) = E

[
ψ(Z

(k)
)− ψ(w)− ⟨Z(k) − w,∇ψ(w)⟩

]
− ψ(y) + ψ(w) + ⟨y − w,∇ψ(w)⟩

= E
[
ψ(Z

(k)
)
]
− ⟨EZ(k)

,∇ψ(w)⟩ − ψ(y) + ⟨y,∇ψ(w)⟩

= E
[
ψ(Z

(k)
)
]
− ψ(y)

≤ Gap(k;ψ).

So there exist i1, . . . , ik ∈ [n] and x := 1
k

∑k
j=1 zij ∈ cokS s.t.

Dψ(x,w)−Dψ(y, w) ≤ EDψ(Z
(k)
, w)−Dψ(y, w) ≤ Gap(k;ψ).
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From here, we now turn to bounding the Jensen approximation gap of the negative Shannon entropy function. While there is
a extensive literature on bounding Jensen gaps (Abramovich & Persson, 2016; Gao et al., 2020; Ullah et al., 2021; Konenkov,
2024), we find that a simple method inspired by (https://math.stackexchange.com/users/955195/small deviation) is sufficient
to get our desired bound.

Lemma A.5. Let S ⊂▲c−1 be a set s.t. a := (supp∈S(1/pi))
c
i=1 is finite in all its coordinates (here pc := 1−

∑c−1
i=1 pi).

Let ψ :▲c−1 → R+
be the negative Shannon entropy function and let ψ

∣∣
coS

be ψ restricted to coS. Then for any k ∈ N,
we have

Gap(k;ψ
∣∣
coS

) ≤ 1

8k

c∑
i=1

ai

Ñ
1−

c∑
j=1

1

ai

é2

≤ 1

8k

c∑
i=1

ai.

Proof. First note that it suffices to assume S is convex. Indeed for any q ∈ coS, note that ai ≥ 1
qi

for all i ∈ [c], since
x 7→ 1

x is convex.

So assume S is convex. It is more convenient to consider the extension of ψ to all Rc>0 := {x ∈ Rc : xi > 0 ∀i ∈ [c]}. We
call this extension ψ̃ : Rc>0 → R and define it as

ψ̃(x) :=

c∑
i=1

xi log xi.

Let ι :▲c−1 → ∆c−1 be the map defined

ι(p1, . . . , pc−1) := (p1, . . . , pc−1, 1−
c−1∑
i=1

pi).

Then ψ
∣∣
S
= ψ̃ ◦ ι

∣∣
S

. So Gap(k;ψ
∣∣
S
) = Gap(k; ψ̃ ◦ ι

∣∣
S
), and it suffices to bound the Jensen approximation gap of ψ̃ on

ι(S).

To that end, let Z ∼ PZ be a random variable on ι(S). Since ι(S) is bounded and convex, EZ is well-defined and in ι(S).

Let Z
(k)

be the empirical mean of k i.i.d. samples drawn from PZ . Note that (∇2ψ̃(x))ij = δij
1
xi

for i, j ∈ [c], where δij
is the Kroenecker delta. So ψ̃(x)− 1

2

∑c
i=1 aix

2
i is concave as a function of x ∈ ι(S). By Jensen’s inequality, we have

E

[
ψ̃(Z

(k)
)− 1

2

c∑
i=1

ai(Z
(k)

i )2

]
≤ ψ̃(EZ(k)

)− 1

2

c∑
i=1

ai(EZ
(k)

i )2

⇒E
[
ψ̃(Z

(k)
)
]
− ψ̃(EZ(k)

) ≤ 1

2

c∑
i=1

ai

(
E
[
(Z

(k)

i )2
]
− (EZi)2

)
⇒E

[
ψ̃(Z

(k)
)
]
− ψ̃(EZ(k)

) ≤ 1

2k

c∑
i=1

aiVar [Zi] .

Since each Zi ∈ (1/ai, 1−
∑c
j=1,j ̸=i 1/aj), Popoviciu’s inequality tells us

Var [Zi] ≤
1

4

Ñ
1−

c∑
j=1,j ̸=i

1

aj
− 1

ai

é2

=
1

4

Ñ
1−

c∑
j=1

1

aj

é2

≤ 1

4
.

As Z was arbitrary, we have that

Gap(k;ψ
∣∣
S
) = Gap(k; ψ̃ ◦ ι

∣∣
S
) ≤ 1

8k

c∑
i=1

ai

Ñ
1−

c∑
j=1

1

ai

é2

≤ 1

8k

c∑
i=1

ai.
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As a corollary, we bound the “functional” Jensen approximation gap:

Corollary A.6. Let X ∼ PX be a random variable on finite set X . Let F ⊂ (▲c−1)X be a class of functions s.t.
ρi := EX

[
supf∈F (1/fi(X))

]
< ∞ for all i ∈ [c] (where fc := 1 −

∑c−1
i=1 fi). Let ψ : ▲c−1 → R+

be the negative

Shannon entropy function and let Ψ : (▲c−1)X → R+
be defined Ψ[f ] := EX [ψ(f(X))]. Let Ψ

∣∣
coF be Ψ restricted to

coF . Then for any k ∈ N, we have

Gap(k; Ψ
∣∣
coF ) ≤

1

8k

c∑
i=1

ρi.

Proof. Note that EX
î
Gap(k;ψ

∣∣
F(X)

)
ó
≥ Gap(k; Ψ

∣∣
F ). Thus,

Gap(k; Ψ
∣∣
F ) ≤ EX

[
1

8k

c∑
i=1

sup
f∈F

1/fi(X)

]
=

1

8k

c∑
i=1

ρi.

To complete the proof of Theorem A.2, we need one more bound:

Lemma A.7. Let p, q ∈ ∆c−1. Then

max
i∈[c]

| log pi − log qi| ≤
√

2DKL(p∥q)
mini∈[c](pi, qi)

.

Proof. Observe that

max
i∈[c]

| log pi − log qi| ≤ max
i∈[c]

(max(1/pi, 1/qi)|pi − qi|) (Mean-Value Theorem)

≤ max
i∈[c]

(1/pi, 1/qi)

c∑
i=1

|pi − qi|

≤ max
i∈[c]

(1/pi, 1/qi)
»
2DKL(p∥q) (Pinsker’s Inequality)

=

√
2DKL(p∥q)

mini∈[c](pi, qi)
.

Numerical calculations we did when c = 2 suggest the bound in Lemma A.7 can be improved to

max
i∈[c]

| log pi − log qi| ≤
 

2DKL(p∥q)
mini∈[c](pi, qi)

.

However, the dependence on mini∈[c](pi, qi) does appear to be necessary. We leave it for future work to tighten this bound.

With these lemmas, we can now prove the main result for the multi-class setting when our strong class is not convex.

Proof of Theorem A.2 and 4.3. Similarly to the proof of Corollary A.1, it suffices to prove the inequality

EX [DKL(g(X)∥fs(hs(X)))] ≤ EX [DKL(g(X)∥fw(hw(X)))]− EX [DKL(fs(hs(X))∥fw(hw(X)))] +O(

…
c

k
)

instead.

Let ρi := EX
[
supf∈F 1/fi(X)

]
for i ∈ [c]. By Corollary A.6 and Lemma A.4, we have that for all f (conv) ∈ coF ,

inf
f∈cokF

EX [DKL(f(hs(X))∥fw(hw(X)))] ≤ EX
î
DKL(f

(conv)(hs(X))∥fw(hw(X)))
ó
+

1

8k

c∑
i=1

ρi.
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Thus,

inf
f∈cokF

EX [DKL(f(hs(X))∥fw(hw(X)))] ≤ inf
f∈coF

EX [DKL(f(hs(X))∥fw(hw(X)))] +
1

8k

c∑
i=1

ρi.

Let g(proj) := Pco(F◦hs)(fw ◦ hw). Since

EX
î
DKL(g

(proj)(X)∥fw(hw(X)))
ó
= inf
f∈coF

EX [DKL(f(hs(X))∥fw(hw(X)))] ,

we have that

inf
f∈cokF

[EXDKL(f(hs(X))∥fw(hw(X)))] ≤ EX
î
DKL(g

(proj)(X)∥fw(hw(X)))
ó
+

1

8k

c∑
i=1

ρi.

Applying Corollary A.1, for any ϵ > 0, if fs ∈ cokF is s.t.

EX [DKL(fs(hs(X))∥fw(hw(X)))] ≤ inf
f∈cokF

EX [DKL(f(hs(X))∥fw(hw(X)))] + ϵ,

then

EX
î
DKL(g(X)∥g(proj)(X))

ó
≤ EX [DKL(g(X)∥fw(hw(X)))]− EX

î
DKL(g

(proj)(X)∥fw(hw(X)))
ó

≤ EX [DKL(g(X)∥fw(hw(X)))]− inf
f∈cokF

EX [DKL(f(hs(X))∥fw(hw(X)))] +
1

8k

c∑
i=1

ρi

≤ EX [DKL(g(X)∥fw(hw(X)))]− EX [DKL(fs(hs(X))∥fw(hw(X)))] + ϵ+
1

8k

c∑
i=1

ρi.

Now it remains to bound the left-hand side. First observe that, by applying to Corollary A.1 to fs ◦ hs instead of g, we have

EXDKL(fs(hs(X))∥g(proj)(X)) ≤ EXDKL(fs(hs(X))∥fw(hw(X)))− EXDKL(g
(proj)(X)∥fw(hw(X)))

≤ 1

8k

c∑
i=1

ρi + ϵ.

Now we apply Lemma A.7. First note that∣∣∣EX îDKL(g(X)∥g(proj)(X))
ó
− EX [DKL(g(X)∥fs(hs(X)))]

∣∣∣ ≤ EX
î
|DKL(g(X)∥g(proj)(X))−DKL(g(X)∥fs(hs(X)))|

ó
≤ EX

[
c∑
i=1

gi(X)| log g(proj)
i (X)− log fs,i(hs(X))|

]

≤ EX
ï
max
i∈[c]

| log g(proj)
i (X)− log fs,i(hs(X))|

ò
Using Lemma A.7, we then have

∣∣∣EX îDKL(g(X)∥g(proj)(X))
ó
− EX [DKL(g(X)∥fs(hs(X)))]

∣∣∣ ≤ EX

√2DKL(fs(hs(X))∥g(proj)(X))

min
i∈[c]

(fs,i(X), g
(proj)
i (X))


≤ EX

ï
max
i∈[c]

ρi

…
c

4k
max
i∈[c]

ρi + ϵ

ò
≤
Å
max
i∈[c]

ρi

ã3/2… c

4k
+ ϵ2,
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where ϵ2 → 0 as ϵ→ 0. Incorporating this estimation into

EX
î
DKL(g(X)∥g(proj)(X))

ó
≤ [EXDKL(g(X)∥fw(hw(X)))]− EX [DKL(fs(hs(X))∥fw(hw(X)))] + ϵ+

1

8k

c∑
i=1

ρi,

we have

EX [DKL(g(X)∥fs(hs(X)))] ≤ EX [DKL(g(X)∥fw(hw(X)))]− EX [DKL(fs(hs(X))∥fw(hw(X)))]

+ ϵ+
1

8k

c∑
i=1

ρi +

Å
max
i∈[c]

ρi

ã3/2… c

4k
+ ϵ2.

Since we are free to choose ϵ as small as we want, we can make ϵ = o(1/
√
k), ensuring that the error term is O(

√
c/k).

Therefore, for every k ∈ N, there exists δ > 0 s.t. for all fs ∈ cokF for which

EX [DKL(fs(hs(X))∥fw(hw(X)))] ≤ inf
f∈cokF

EX [DKL(f(hs(X))∥fw(hw(X)))] + δ,

we have

EX [DKL(g(X)∥fs(hs(X)))] ≤ EX [DKL(g(X)∥fw(hw(X)))]− EX [DKL(fs(hs(X))∥fw(hw(X)))] +O
(»

c/k
)
.

As noted below Lemma A.7, numerical calculations of the optimal bound for Lemma A.7 for c = 2 suggests that our

constant term in the O
Ä√

c/k
ä

error term can be improved from

Ç
max
i∈[c]

ρi

å3/2

2 to
max
i∈[c]

ρi

2 . We leave it for future work to
derive this bound rigorously, and determine if the decay rate of the error term in Corollary A.1 is asymptotically tight.

A.2.3. A BRIEF NOTE ON THE COORDINATE-INDEPENDENT APPROACH

As noted in Appendix A.2.1, the Bregman divergence DKL for multiple classes is derived by arbitrarily choosing to drop
the redundant c-th class. What if we had chosen to drop the i-th class instead, for i ∈ [c]? We can capture the fact that
the underlying theory is invariant under such a choice by the use of smooth manifolds, specifically affine manifolds. A
manifold M is a topological space (satisfying some additional technical properties) equipped with a collection of coordinate
charts {(Ui, φi)}i∈I , where Ui is an open subset of M and φi : Ui → Rn is a topological embedding, s.t. {Ui}i∈I is
an open cover of M . For a manifold M and a pair of charts (U1, φ1) and (U2, φ2), for open U1 ⊂ U2, we call the map
φ2 ◦ φ−1

1 : φ1(U1 ∩ U2) → φ2(U2) a transition function. A manifold is smooth if all its transition functions are smooth as
functions in the sense of usual multivariate calculus. A manifold is affine if all its transition functions are affine maps.

We can extend the notion of convexity to an affine manifold M by declaring a function ψ :M → R+
to be convex at p ∈M

if there exists a chart (U,φ) containing p such that ψ ◦ φ−1 is convex as a function from φ(U) ⊂ Rn to R+
. Because all

transition functions are affine, if ψ is convex at p ∈ M with respect to one chart, it is convex with respect to all charts
containing p. Thus, our definition of convexity does not rely on a specific choice of coordinates.

One can then check that Bregman divergences can be defined in a similar way that is independent of the coordinate charts.
DKL will arise when use the affine charts φi : ∆c−1 →▲c−1 defined by φi(p) := (p1, . . . , pi−1, pi+1, . . . , pc) for each
i ∈ [c]. The calculations we did in the previous section were manipulating DKL with the specific chart φc.

This coordinate-independent approach is employed in Information Geometry. We refer the interested reader to (Amari, 2016;
Ay et al., 2017) for a more in-depth treatment of this approach.

A.3. Generalizing beyond Input Data Distributions with Finite Support

A major simplifying assumption in this work is that the input data distribution PX has finite support. When PX has infinite
support or is continuous, function spaces of models become subsets of infinite-dimensional Banach spaces, and more care
needs to be taken to justify the calculations we did in the previous sections.
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Figure 4. For all datasets except ImageNet, we observe that the difference between misfit and gain decreases as k increases, and also that
the decrease slows down with increasing k. Since ImageNet has c = 1000 classes, and we only consider values of k till 100, we suspect
that the c term dominates in the O(

√
c/k) error.

The fundamentals of convex analysis in infinite-dimensional vectors spaces can be found in (Ekeland & Temam, 1999). In
addition many works address the topic of Bregman divergences in infinite-dimensional spaces, with (Bauschke et al., 2003;
Reem et al., 2018) being good comprehensive overviews on the topic. Below we briefly summarize the steps needed to
complete the generalization.

Given an arbitrary probability measure PX on X let X ∼ PX . Suppose we have strictly convex ψ : Rd → R+
that is

C1(Uψ). As described in Section 3, ψ generates a Bregman divergenceDψ . In Section 3.4.3, we showed that the expectation
of a Bregman divergence is itself a Bregman divergence of the convex functional Ψ[f ] := EX [ψ(f(X))]. When our
function space is infinite-dimensional, we need a weaker notion of a C1 function. The appropriate notion is that of a
Legendre function defined in (Bauschke et al., 2003), extending the finite-dimensional notion from (Rockafellar, 1997).
Existence and uniqueness of Bregman projections then follows from weak lower-semicontinuity of DΨ and boundedness of
the sublevel sets of DΨ. Theorem 4.1 follows in much the same way, but we need sequential consistency of DΨ instead
of just Dψ. Fortunately, Pinsker’s inequality still establishes that EXDKL is sequentially consistent with respect to Lp

topologies on X →▲c−1 for p <∞. This then completes the generalization Corollary A.1. Many of the details in our proof
of Theorem 4.3 in Appendix A.2.2 generalize directly due to convenient properties of convex functions. For example, we
can swap expectations when passing the Jensen gap of ψ to a bound on the gap of Ψ because the gap is always nonnegative
by Jensen’s theorem, and Tonelli’s theorem allows us to swap the order of the expectations.

A.4. Plots for Varying k

See Figure 4.
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