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A B S T R A C T

In addition to the domain shift between different datasets, the diversity of pedestrian ap-
pearance (physical appearance and postures) caused by different camera views also affects
the performance of person re-identification (re-ID). Since existing methods tend to extract the
shared information of the same pedestrian across multiple images, the above diversity issue
has not been effectively alleviated. In addition, while making full use of pedestrian image data
and realizing its value, there are also risks of privacy leakage and data loss. Therefore, this
paper proposes the mutual prediction learning (MPL) and mixed viewpoints for unsupervised
domain adaptation (UDA) person re-ID on blockchain. This method enables the network to
first obtain the ability of MPL on multi-view polymorphic features and further acquire the
reasoning imagination to alleviate the ambiguity caused by morphological differences. In the
process of MPL, the training samples are first divided into different groups and each group
has two sets. Then the corresponding identity classifiers of every two sets are integrated and
applied to the cross-prediction of polymorphic features. Finally, the joint distribution alignment
of domain- and identity-level features is achieved. Furthermore, an adversarial mechanism of
mixed viewpoints is proposed to improve the accuracy of identity matching. The domain-
invariant salient features are extracted and fused with the polymorphic features obtained by
global average pooling (GAP) after domain alignment. Thanks to blockchain technology, the
pedestrian image data of the data owner is also protected. Comparative experimental results
confirm the effectiveness of the proposed solution in person re-ID. The related source codes will
be available at: https://github.com/lhf12278/MPL-MV.

. Introduction

Person re-ID aims to match people across multiple pedestrian images captured by non-overlapping cameras [1–4]. Since person re-
D has been widely used in intelligent monitoring, tracking criminal suspects, and finding missing people, more and more researchers
re joining the related research [5–10]. Some excellent supervised person re-ID methods have been proposed. However, due to the
omain shift between source and target datasets, the performance of existing supervised person re-ID models slumps significantly,

∗ Corresponding authors.
E-mail addresses: kwang@swust.edu.cn (K. Wang), qig@buffalostate.edu (G. Qi).
vailable online 6 May 2022
569-190X/© 2022 Elsevier B.V. All rights reserved.

ttps://doi.org/10.1016/j.simpat.2022.102568

http://www.elsevier.com/locate/simpat
http://www.elsevier.com/locate/simpat
https://github.com/lhf12278/MPL-MV
mailto:kwang@swust.edu.cn
mailto:qig@buffalostate.edu
https://doi.org/10.1016/j.simpat.2022.102568
http://crossmark.crossref.org/dialog/?doi=10.1016/j.simpat.2022.102568&domain=pdf
https://doi.org/10.1016/j.simpat.2022.102568


Simulation Modelling Practice and Theory 119 (2022) 102568S. Li et al.
Fig. 1. The morphological differences of the same person across different camera views. The images shown in each column contain the same person captured
from two different camera views.

when they are directly applied to real-world scenes. Therefore, UDA person re-ID has attracted considerable attention, and a lot of
effective algorithms have been proposed [11–16].

Although UDA person re-ID has made great progress, existing methods still face great challenges in real-world applications due
to the ambiguity of pedestrian appearance. Moreover, most of existing UDA person re-ID methods only focus on the influence of the
domain shift between source and target domains. Actually, the morphological inconsistency of the same pedestrian across different
camera views as another key factor also affects the performance of person re-ID. As shown in Fig. 1, the appearance of pedestrians
(such as physical appearance and postures) varies greatly from different perspectives. Existing posture-invariant feature learning
methods tend to extract the shared features across multiple images that are not affected by any pedestrian posture. Although these
methods can alleviate the morphological differences caused by different postures, the complementary information in different forms
of pedestrians is ignored, resulting in the extracted features cannot fully describe the appearance of pedestrians. If the feature
extraction network can have a certain prediction learning ability, morphological features from the input single-view images can be
predicted, which can effectively alleviate the adverse effects on the recognition performance caused by morphological differences.

In addition, pedestrian image data is one of the important privacy information of pedestrians. Data breaches can cause
unnecessary damage, so people are reluctant to share pedestrian image data. Lack of sufficient data often leads to poor performance
of deep learning models [17]. As an emerging technology, blockchain has the characteristics of decentralization, tamper resistance,
immutability, non-repudiation and traceability [18]. It has been widely used in medical data sharing and protection [19–21], cloud
data protection [22–24] and so on. Therefore, blockchain technology can also provide data protection for deep learning-based person
re-ID, and promote the development of person re-ID methods.

This paper proposes an MPL and mixed viewpoints for UDA person re-ID (MPLMV) on blockchain, which cannot only provide
technical support for preventing the leakage of pedestrian image data, but also alleviate the ambiguity of features through the
inference and prediction of multi-view and polymorphic features. To reduce computational complexity, the proposed solution divides
the training samples into different groups according to camera views. The grouping of the training samples ensures the mutual
prediction between different camera views can be realized. Each group has two sample sets to ensure that the MPL can be applied
to two sets of camera views. The classifiers corresponding to two sample sets in the same group are first integrated, and then a
cross-classification mechanism ensures the feature encoder realizes the mutual prediction of the complementary features from the
same pedestrians between two different sets. This design not only achieves the mutual prediction of polymorphic features, but
also realizes the joint distribution alignment of domain- and identity-level features. Therefore, the discrepancy between different
domains is effectively eliminated. In addition, an adversarial mechanism of mixed viewpoints is proposed to exploit the distinctive
features of pedestrians to further enhance the discriminability of the obtained features. The domain-invariant salient features are
first extracted, and then merged with polymorphic features obtained by GAP after domain alignment.

Overall, this paper has three main contributions as follows.

• An MPL is proposed to alleviate the issues of identity matching caused by the morphological differences of pedestrians from
different perspectives. This method can simultaneously realize the joint distribution alignment of domain- and identity-level
features during the implementation of MPL.

• An adversarial mechanism of mixed viewpoints is proposed to extract and fuse the domain-invariant salient features with
global features to describe pedestrian appearance. This mechanism effectively improves the discriminability of discriminators
and promotes the extraction of domain-invariant salient features.

• A blockchain-based UDA person re-ID method is proposed. Thanks to blockchain technology, data users cannot directly access
pedestrian image data, which effectively ensures the safety of pedestrian image data of data owners. In addition, the proposed
MPLMV neither requires any pseudo-label prediction nor relies existing additional model assistance, so it has important
practical significance for person re-ID.

The rest of this paper is organized as follows. Section 2 discusses existing work; Section 3 presents the proposed method in detail;
Section 4 analyzes the comparative experimental results; and Section 5 concludes this paper.
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2. Related work

Since the proposed solution belongs to UDA person re-ID, this section discusses three typical types of UDA-person re-ID
ethods, including clustering and pseudo-label prediction (CPLP)-based methods [25–29], AMA-based methods [30–32], and
omain adaptation feature learning (DAFL)-based methods [33–38].

.1. CPLP-based UDA person re-ID

CPLP usually uses a clustering algorithm to predict the pseudo labels of target samples, and further optimizes the re-ID model in
supervised way. Existing clustering methods tend to introduce noisy labels. Therefore, some pseudo-label refinery methods were
roposed [26,28,39]. Particularly, Yang et al. [26] designed an asymmetric co-teaching framework to select data that may have
lean labels to resist noisy labels. Ge et al. [39] presented an unsupervised framework with mutual mean-teaching (MMT). Zhao
t al. [40] developed a noise resistible mutual-training method to suppress the noise marked in pseudo labels. Luo et al. [41] first
eparated the target data according to camera perspectives, and then predicted and refined the sample labels across the camera
iews so that the confident labels became more reliable. Zeng [28] integrated hierarchical clustering with hard-batch triplet loss to
mprove the pseudo-label prediction of existing methods. To solve the non-convergence issues of existing cluster-based pseudo-label
rediction methods in practical applications, Ji et al. [42] proposed an attention-driven two-stage clustering method. Since each
ample in the target datasets participating in the model training has a positive sample, which provides a great help for the correct
rediction of pseudo labels. However, it is common that pedestrians are only captured by a single camera in real-world monitoring
cenes. Due to the interference from the isolated pedestrians captured by a single camera, the performance of CPLP-based UDA
erson re-ID methods may drop dramatically, when they are applied to real-world scenes.

.2. AMA-based UDA person re-ID

Additional model assistance (AMA)-based methods usually first use the additionally pre-trained models, such as style transfer
odels and pedestrian pose extraction models, to enable the person re-ID models to overcome the ambiguity of pedestrian

ppearance features caused by image style differences or pedestrian posture differences. Then, they further improve the performance
f person re-ID models. Particularly, in PTGAN [30], SPGAN [31] and ATNet [32], the labeled source-domain samples are first
ransferred to target domain, and then the transferred source-domain samples are used in supervised training. However, these
ethods ignore the intra-domain changes of target domain, resulting in the recognition performance cannot be further improved.
hong et al. [43] did a comprehensive study on the intra-domain changes of target domain, and proposed to assign three basic
nvariances, sample invariance, camera invariance, and neighborhood invariance to the person re-ID model. To alleviate the impact
f the inconsistency of pedestrian postures and the domain discrepancy on the recognition performance, Li et al. [44] applied
posture extraction model to extract the posture information of pedestrians, and used the adversarial generation mechanism to

btain the invariant features of postures after domain alignment. Although AMA-based UDA person re-ID methods can achieve
ood recognition performance, they need to use an additional model to perform the specific preprocessing on the training data in
he model training process, which seriously affects their application efficiency in practical scenes.

.3. DAFL-based UDA person re-ID

The domain-adaptation based feature extraction is usually dedicated to learn the transferable features to resolve the domain
iscrepancy. In particular, Wang et al. [35] developed a deep learning based person re-ID method to transfer the labeled information
f existing datasets to a new unlabeled target domain. Wu et al. [36] proposed a consistency loss of camera-aware similarity to learn
he distribution of consistent pairwise similarity for matching within and across cameras. Yang et al. [33] proposed a patch-based
nsupervised learning framework to learn features from patches rather than from the entire image. Qi et al. [34] proposed an
daptive framework of unsupervised camera-aware domain to solve the domain differences between different camera views in
ross-domain person re-ID. DAFL-based person re-ID has high training efficiency and strong scalability, so they are in line with
he needs of real-world scenes. However, due to the lack of the fine-tuning of pseudo-label prediction and the additional model
ssistance, they only show relatively low recognition performance.

. Proposed method

.1. Blockchain and MPLMV workflow

In order to prevent pedestrian image data from leaking pedestrian privacy during use, this paper proposes a blockchain-based
DA person re-ID method. Considering the characteristics of decentralization, tamper resistance, and traceability, blockchain can
e used as a database to store pedestrian image data. As shown in Fig. 2, the proposed method consists of a blockchain database
built by ethereum) and MPLMV. MPLMV is trained by acquiring pedestrian image data from a blockchain database. The users
f the blockchain database are categorized into data owners and data users. Data owners can upload pedestrian image data to
3

he blockchain database. Each data owner only has permission to view and download his/her own data. Data users first request
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Fig. 2. The Blockchain and MPLMV workflow.

pedestrian image data from the blockchain database to obtain vouchers for using the data, then call the model for training through
the vouchers, and finally obtain the trained model.

Specifically, data users select the corresponding type of pedestrian image data in the blockchain database according to their
own needs to complete the transactions. The smart contract of the blockchain database sends the vouchers of the corresponding
pedestrian data to the data users. MPLMV then fetches data from the blockchain database with vouchers sent by the data users and
starts training. After training, the final model is sent to the data users. In the whole process, data users can get their own satisfactory
models, and data owners do not need to worry about the leakage of pedestrian image data.

3.2. MPLMV

Let 𝑆 = {(𝑥𝑠,𝑖, 𝑦𝑠,𝑖, 𝑐𝑠,𝑖)|
𝑛𝑠
𝑖=1} be the labeled source-domain sample set, where the subscript 𝑠 means the corresponding sample is from

the source-domain sample set 𝑆, 𝑛𝑠 is the total number of pedestrian images in the sample set 𝑆, and 𝑥𝑠,𝑖 is the 𝑖th image, 𝑦𝑠,𝑖 and 𝑐𝑠,𝑖
denote the corresponding identity label and camera label of 𝑥𝑠,𝑖, respectively. Suppose there are 𝐾 identities in 𝑆, 𝑦𝑠,𝑖 ∈ {1, 2,… , 𝐾}.
Similarly, the defined target-domain data 𝑻 = {(𝑥𝑡,𝑖, 𝑐𝑡,𝑖)|

𝑛𝑡
𝑖=1} contains 𝑛𝑡 pedestrian images. Fig. 3 shows the overall process of the

proposed solution. The whole framework consists of mutual prediction learning (MPL), domain-invariant salient features learning
(DISFL), and alignment and fusion of domain-invariant salient features and multi-view polymorphic features (AFDSF+MPF). MPL is
used to make the feature encoder 𝑬1 have a certain reasoning ability. So, it can predict and extract polymorphic features from the
input single-view pedestrian images and avoid extracting the common features. The extraction of domain-invariant salient features
is applied to compensate the information loss caused by GAP in multi-view polymorphic feature extraction. In the whole process, the
source-domain samples are used to train the multi-view polymorphic feature encoder 𝑬1, domain-invariant salient feature encoder
𝑬2, and pedestrian ID classifier 𝑾 𝑖𝑑1 with both cross entropy loss and triplet loss as follows.

𝑳𝑖𝑑 = − 1
𝑛𝑏

𝑛𝑏
∑

𝑖=1
𝑞𝑠,𝑖 log(𝑾 𝑖𝑑1(𝑬1(𝑥𝑠,𝑖))) + 𝑞𝑠,𝑖 log(𝑾 𝑖𝑑1(𝑬2(𝑥𝑠,𝑖))), (1)

𝑳𝑡𝑟𝑖 =
1
𝑛𝑏

𝑛𝑏
∑

𝑖=1
[𝑚 + ‖𝑬1(𝑥𝑠,𝑖) − 𝑬1(𝑥

𝑝
𝑠,𝑖)‖2 − ‖𝑬1(𝑥𝑠,𝑖) − 𝑬1(𝑥𝑛𝑠,𝑖)‖2]+

+ [𝑚 + ‖𝑬2(𝑥𝑠,𝑖) − 𝑬2(𝑥
𝑝
𝑠,𝑖)‖2 − ‖𝑬2(𝑥𝑠,𝑖) − 𝑬2(𝑥𝑛𝑠,𝑖)‖2]+,

(2)

where 𝑚 is set to 0.03 empirically, 𝑛𝑏 represents the batch size, 𝑥𝑛𝑠,𝑖 and 𝑥𝑝𝑠,𝑖 are the hard-negative and hard-positive samples of 𝑥𝑠,𝑖
respectively, [⋅]+ = 𝑚𝑎𝑥(⋅, 0) is the hinge loss, 𝑞𝑠,𝑖 ∈ R𝐾×1 is a one-hot vector, and only the element at 𝑦𝑠,𝑖 is 1.

3.2.1. Mutual prediction learning
The encoder 𝑬1 obtained by minimizing the loss in Eqs. (1) and (2) does not have the ability to extract the domain-invariant

features. It is possible to introduce an adversarial mechanism like [34] to make 𝑬1 have the ability to extract the domain-invariant
features. However, this method tends to extract the common information of the same pedestrian from different perspectives,
which ignores the complementarity of polymorphic features from different perspectives and thereby reduces the discriminability
of pedestrian appearance features. In fact, due to the differences from different perspectives, the same pedestrian often shows
4
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Fig. 3. The proposed MPLMV. It consists of MPL, DISFL and AFDSF+MPF. MPL is used to prompt the encoder 𝑬1 to extract the multi-view polymorphic features.
The DIFSL is achieved by using the mixed perspectives at domain level. In AFDSF+MPF, the multi-view polymorphic and domain-invariant salient features are
aligned and combined to obtain the complete descriptions of pedestrian appearance.

the inconsistent appearance features from different perspectives. If 𝑬1 can predict the corresponding features related to other
perspectives from a single-view pedestrian image, it is conducive to the extraction of relatively complete pedestrian features. Inspired
by the latest advances in UDA [45–47], this paper proposes a new adversarial learning mechanism to achieve the MPL among
different perspectives.

This method first divides both source- and target-domain samples participating in training into the approximately equal parts
𝐺𝑗
𝑠 = {𝐺𝑗

𝑠,1, 𝐺
𝑗
𝑠,2} and 𝐺𝑗

𝑡 = {𝐺𝑗
𝑡,1, 𝐺

𝑗
𝑡,2} according to the corresponding camera IDs. 𝐺𝑗

𝑠∕𝑡,1 and 𝐺𝑗
𝑠∕𝑡,2 represent pedestrian image sets of

the first and second sample sets in the 𝑗th group, respectively. According to the principle of the approximate equality, the camera
numbers in the first and second sets are

⌊ 𝑉𝑠∕𝑡
2

⌋

and
⌈ 𝑉𝑠∕𝑡

2

⌉

respectively, where ⌊⋅⌋ and ⌈⋅⌉ represent rounding down and up, and 𝑉𝑠∕𝑡

represents the number of cameras in the source/target domain. As shown in Fig. 4, to realize the MPL between two camera views,
each camera ID of ⌈⋅⌉−1 in 𝐺𝑗

𝑠∕𝑡,1 or 𝐺𝑗
𝑠∕𝑡,2 is exchanged with any one of the other set to form a new group. In this way, the samples

in source and target domains should have
⌈

𝑉𝑠
2

⌉

and
⌈

𝑉𝑡
2

⌉

groups, respectively. Finally, 𝐺𝑗
𝑠 and 𝐺𝑗

𝑡 are randomly combined to form

a group. The final number of groups is max
{⌈

𝑉𝑠
2

⌉

,
⌈

𝑉𝑡
2

⌉}

.

To realize the domain alignment at identity level, both camera classifier and pedestrian identity classifier are integrated into one
classifier, which is conducive to the joint alignment of identity and domain information [45]. Since each group corresponds to an
integrated classifier, a total number 𝑛𝑤 = max

{⌈

𝑉𝑠
2

⌉

,
⌈

𝑉𝑡
2

⌉}

of the integrated classifiers is needed in the MPL. The output of the 𝑗th

classifier 𝑾 𝑗 is the identity probability of the 𝑗th sample group. Assuming that the number of source-domain identities categorized
into the first and second sets is at most 𝐾 in the 𝑗th group, so the output dimension of the integrated classifier 𝑾 𝑗 is 2𝐾, where the
former 𝐾 dimension represents the identity categories of the first set, and the last 𝐾 dimension represents the identity categories
of the second set. In the MPL, 𝑾 𝑗 is optimized by minimizing the loss in Eq. (3).

𝑳𝑐𝑙𝑎1 = − 1
𝑛𝑏

𝑛𝑤
∑

𝑗=1

𝑛𝑏
∑

𝑖=1
𝑞𝑗𝑠,𝑖 log(𝑾 𝑗 (𝑬1(𝑥𝑠,𝑖))

+ 𝑞𝑗𝑡,𝑖 log([𝑝
𝑗,1
𝑡,𝑖 𝑾 𝑗 (𝑬1(𝑥𝑡,𝑖)), 𝑝

𝑗,2
𝑡,𝑖 𝑾 𝑗 (𝑬1(𝑥𝑡,𝑖))])),

(3)

where 𝑞𝑗𝑡,𝑖 is the label of 𝑥𝑡,𝑖 in the 𝑗th group. When 𝑥𝑡,𝑖 ∈ 𝐺𝑗
𝑡,1, 𝑝

𝑗,1
𝑡,𝑖 = [𝟏𝑇𝐾 , 𝟎

𝑇
𝐾 ] and 𝑞𝑗𝑡,𝑖 = [1, 0], where 𝟏𝐾 ∈ R𝐾×1 is a 𝐾-dimensional

one vector, 𝟎𝐾 ∈ R𝐾×1 is a 𝐾-dimensional 0 vector, and 𝑇 is the transpose of a vector. In 𝑝𝑗,1𝑡,𝑖 , the superscript 1 indicates 𝑝𝑗,1𝑡,𝑖
𝑗,2 𝑗,2
5

corresponds to the first 𝑘-dimension of 𝑾 𝑗 output, and the superscript 2 in 𝑝𝑡,𝑖 indicates 𝑝𝑡,𝑖 corresponds the last 𝑘-dimension of
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Fig. 4. Illustration of group division. It assumes that both target and source domains have six and eight cameras respectively. In each group {𝐺𝑗
𝑠 , 𝐺𝑗

𝑡 }, the
cameras (such as the purple block 4) of source domain in the first set are first exchanged with any one (such as the purple block 2) of source domain in the
second set, and then the same operation is applied to the cameras of target domain. Finally, a new group is formed.

𝑾 𝑗 output. When 𝑥𝑡,𝑖 ∈ 𝐺𝑗
𝑡,2, 𝑝

𝑗,2
𝑡,𝑖 = [𝟎𝑇𝐾 , 𝟏

𝑇
𝐾 ] and 𝑞𝑗𝑡,𝑖 = [0, 1]. 𝑞𝑗𝑠,𝑖 is the label of 𝑥𝑠,𝑖 in the 𝑗th group. When 𝑥𝑠,𝑖 ∈ 𝐺𝑗

𝑠,1, 𝑞
𝑗
𝑠,𝑖 = [𝟏𝑇𝑖 , 𝟎

𝑇
𝐾 ],

where 𝟏𝑖 ∈ R𝐾×1 as a 𝐾-dimensional one-hot vector represents the true label vector of 𝑥𝑠,𝑖, and only the element at 𝑦𝑠,𝑖 is 1. When
𝑥𝑠,𝑖 = 𝐺𝑗

𝑠,2, 𝑞
𝑗
𝑠,𝑖 = [𝟎𝑇𝐾 , 𝟏

𝑇
𝑖 ].

With the strong joint classification ability of 𝑾 𝑗 , the proposed solution optimizes the encoder 𝑬1 by minimizing the loss function
shown in Eq. (4), which prompts the encoder 𝑬1 to predict and learn the features of another set of samples, so that the encoder 𝑬1
has the MPL ability as follows.

𝑳𝑐𝑙𝑎2 = − 1
𝑛𝑏

𝑛𝑤
∑

𝑗=1

𝑛𝑏
∑

𝑖=1
𝑞𝑗,2𝑠,𝑖 log(𝑾 𝑗 (𝑬1(𝑥1𝑠,𝑖))) + 𝑞𝑗,1𝑠,𝑖 log(𝑾 𝑗 (𝑬1(𝑥2𝑠,𝑖)))

+ 𝑞𝑗,1𝑡,𝑖 log([𝑝𝑗,1𝑡,𝑖 𝑾 𝑗 (𝑬1(𝑥2𝑡,𝑖)), 𝑝
𝑗,2
𝑡,𝑖 𝑾 𝑗 (𝑬1(𝑥2𝑡,𝑖))])

+ 𝑞𝑗,2𝑡,𝑖 log([𝑝𝑗,1𝑡,𝑖 𝑾 𝑗 (𝑬1(𝑥1𝑡,𝑖)), 𝑝
𝑗,2
𝑡,𝑖 𝑾 𝑗 (𝑬1(𝑥1𝑡,𝑖))]),

(4)

where 𝑥1𝑠,𝑖 ∈ 𝐺𝑗
𝑠,1, 𝑥

2
𝑠,𝑖 ∈ 𝐺𝑗

𝑠,2, 𝑥
1
𝑡,𝑖 ∈ 𝐺𝑗

𝑡,1, 𝑥
2
𝑡,𝑖 ∈ 𝐺𝑗

𝑡,2, 𝑞
𝑗,2
𝑠,𝑖 = [𝟎𝑇𝐾 , 𝟏

𝑇
𝑖 ], 𝑞

𝑗,1
𝑠,𝑖 = [𝟏𝑇𝑖 , 𝟎

𝑇
𝐾 ], 𝑞

𝑗,1
𝑡,𝑖 = [1, 0], 𝑞𝑗,2𝑡,𝑖 = [0, 1].

The above process is shown in Fig. 5. After obtaining the optimized encoder 𝑬1, the loss of Eq. (3) is minimized to further
optimize the classifier 𝑾 𝑗 . This can ensure that the two sets of samples in one group are correctly classified. In the optimization
of 𝑬1, if the network tends to extract the common features of the same pedestrian from different perspectives, the classifier 𝑾 𝑗 is
not able to correctly classify them. This issue can be solved by minimizing the loss function shown in Eq. (4). In addition, since
the classifier 𝑾 𝑗 of a specific group can simultaneously identify two sets of samples in the same group, and perform the mutual
prediction of category between two sets of this group, the features in the two sets achieve the joint alignment at both domain and
identity levels. Therefore, the features extracted by 𝑬1 are domain-invariant and can be used to realize the cross-domain recognition.

3.2.2. Domain-invariant salient feature learning
To prevent the excessive information loss, GAP is used to extract features in the MPL. GAP keeps the global information, but

weakens the salient features on the feature map, which causes the distinguishing information of pedestrians fails to play a role in
the matching of pedestrian identity. To solve this issue, a domain-invariant salient feature extraction framework is proposed. Similar
to the traditional domain-invariant feature extraction methods [34], adversarial learning is used between the camera classification
𝑾 𝑐 and feature encoder 𝑬2 to ensure the domain invariance of the learned features. In this process, the distinguishing ability of
𝑾 𝑐 is the key to obtain the domain-invariant features.

To improve the distinguishing ability of 𝑾 𝑐 , inspired by mixup [48–50], the output features of the first two layers of 𝑬2 are
first extracted, and then randomly mixed. The mixed features are fed into the subsequent feature extraction layer of 𝑬2 to train 𝑾 𝑐 .
Specifically, the mixed features are expressed as follows.

𝒇𝑚𝑖𝑥,𝑖 = 𝛾𝑬2(𝑙2)(𝑥𝑠,𝑖) + (1 − 𝛾)𝑬2(𝑙2)(𝑥𝑡,𝑖), (5)

where 𝛾 is the ratio of the source-domain feature map to the mixed feature map 𝒇𝑚𝑖𝑥,𝑖, 𝛾 is set to 0.25, 0.5, or 0.75 empirically, 𝑬2(𝑙2)
is the output feature map of the middle layer of the encoder 𝑬2. The corresponding camera label of the mixed feature 𝒇𝑚𝑖𝑥,𝑖(𝛾, 𝑥𝑠,𝑖, 𝑥𝑡,𝑖)
is as follows.

(6)
6

𝑐𝑚𝑖𝑥,𝑖 = 𝛾𝑐𝑠,𝑖 + (1 − 𝛾)𝑐𝑡,𝑖,
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Fig. 5. Mutual prediction learning module. It shows the adversarial learning process of encoder 𝑬1 and classifier 𝑾 𝑗 . In the first stage, the classifier 𝑾 𝑗 is
optimized by 𝐿𝑐𝑙𝑎1. In the second stage, 𝑾 𝑗 is fixed and encoder 𝑬1 is optimized by 𝐿𝑐𝑙𝑎2.

where 𝑐𝑠,𝑖 and 𝑐𝑡,𝑖 are the camera labels of 𝑥𝑠,𝑖 and 𝑥𝑡,𝑖, respectively. Both 𝑐𝑠,𝑖 and 𝑐𝑡,𝑖 are one-hot vector.
In the above process, the output dimension of 𝑾 𝑐 is 𝑛𝑒 = 𝑛𝑠,𝑐+𝑛𝑡,𝑐+1, where 𝑛𝑠,𝑐 is the number of cameras in source domain, and

𝑛𝑡,𝑐 is the number of cameras in target domain. In the adversarial learning of 𝑬2 and 𝑾 𝑐 , the features of source- and target-domain,
and mixed samples are applied to the supervised training of 𝑾 𝑐 . In this process, the used loss function is shown in Eq. (7).

𝑳𝑐𝑎𝑚𝐼𝐷 = − 1
𝑛𝑏

𝑛𝑏
∑

𝑖=1
𝑐𝑠,𝑖 log(𝑾 𝑐 (𝒇 2

𝑠,𝑖)) + 𝑐𝑡,𝑖 log(𝑾 𝑐 (𝒇 2
𝑡,𝑖))

+ 𝑐𝑚𝑖𝑥,𝑖 log(𝑾 𝑐 (𝒇𝑚𝑖,𝑖)),

(7)

where 𝒇 2
𝑡,𝑖 = 𝑬2(𝑥𝑡,𝑖), 𝒇 2

𝑠,𝑖 = 𝑬2(𝑥𝑠,𝑖), and 𝒇𝑚𝑖,𝑖 is the output of subsequent feature extraction layer of 𝑬2. When 𝑾 𝑐 is updated,
the parameters are fixed to further optimize 𝑬2. The extracted features of source- and target-domain, and mixed samples can be
classified into an additional class by 𝑾 𝑐 to realize the domain alignment of these features. The loss function used in this process is
shown in Eq. (8).

𝑳𝑒𝑐𝑎𝑚 = − 1
𝑛𝑏

𝑛𝑏
∑

𝑖=1
𝑐𝑛𝑒 log(𝑾 𝑐 (𝒇 2

𝑠,𝑖)) + 𝑐𝑛𝑒 log(𝑾 𝑐 (𝒇 2
𝑡,𝑖))

+ 𝑐𝑛𝑒 log(𝑾 𝑐 (𝒇𝑚𝑖,𝑖)),

(8)

where 𝑐𝑛𝑒 denotes the label of the additional class and 𝑐𝑛𝑒 is a one-hot vector.

3.2.3. Alignment and fusion of salient and multi-view polymorphic features
Multi-view polymorphic features and domain-invariant salient features describe pedestrians from different aspects of their

appearance, so these two types of features have a certain complementarity. Consequently, the combination of features is conducive
to improving the accuracy of pedestrian identity matching. However, these two types of features are extracted by different encoders,
and there is no feature alignment between them. So, it is difficult to directly add or concatenate them to use. To address this issue,
the fusion of features 𝒇𝑚𝑒𝑟

𝑠,𝑖 = 𝑬1(𝑥𝑠,𝑖) + 𝑬2(𝑥𝑠,𝑖) by minimizing the losses in Eq. (9)(10).

𝐿𝑓𝑢𝑠 = − 1
𝑛𝑏
∑

𝑞𝑠,𝑖 log(𝑾 𝑖𝑑2(𝒇𝑚𝑒𝑟
𝑠,𝑖 )), (9)
7
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Table 1
The settings of different person Re-ID datasets in performance comparison. Ped: Number of pedestrians; Img: Number of images; Cam: Number of cameras.

Datasets Ped Training Gallery (Testing) Probe (Testing) Cam

Ped Img Ped Img Ped Img

Market1501 1501 751 12936 750 19732 750 3368 6
Duke 1812 702 16522 1110 17661 702 2228 8
MSMT17 4101 1041 32621 3060 82161 3060 11659 15
Market1501(S1) 1367 617 3197 750 19732 750 3368 6
Duke(S2) 1255 553 5300 702 17661 702 2228 8
MSMT17 (S2) 2831 1790 15356 1041 29721 1041 2900 15
PRID2011 749 400 500 349 349 100 100 2
GRID 1025 525 650 500 500 125 125 6

𝐿𝑓𝑢𝑠𝑡𝑟𝑖 =
1
𝑛𝑏

𝑛𝑏
∑

𝑖=1
[𝑚 + ‖𝒇𝑚𝑒𝑟

𝑠,𝑖 − 𝒇 𝑝,𝑚𝑒𝑟
𝑠,𝑖 ‖2 − ‖𝒇𝑚𝑒𝑟

𝑠,𝑖 − 𝒇 𝑛,𝑚𝑒𝑟
𝑠,𝑖 ‖2]+, (10)

where 𝑾 𝑖𝑑2 is an identity classifier, 𝒇 𝑛,𝑚𝑒𝑟
𝑠,𝑖 and 𝒇 𝑝,𝑚𝑒𝑟

𝑠,𝑖 are the hard-negative and hard-positive samples of 𝒇𝑚𝑒𝑟
𝑠,𝑖 .

3.2.4. Network structure and optimization
Network structure: ResNet50 [51] pre-trained on ImageNet [52] is used as the backbone of 𝑬1 and 𝑬2. The GAP layer of 𝑬2

is replaced by the global maximum pooling layer. 𝑾 𝑗 contains a dropout operation and four fully-connected layers. The dropout
parameter is 0.5. The channels of the fully-connected layers are 1000, 1000, 1000, 𝑎𝑛𝑑 2𝐾, respectively. The first three fully-connected
layers are followed by BN layer and ReLu layer. 𝑾 𝑐 is composed of six fully-convolutional layers and a fully-connected layer. The
channels of the fully-convolutional layers are 1024, 512, 256, 128, 64, 𝑎𝑛𝑑 32, respectively. Each fully-convolutional layer is followed
by the BN layer and ReLu layer. The channels of the fully-connected layer are 𝑛𝑒.

Optimization: In the training, the total objective is shown as follows.

𝐿𝑓𝑢𝑙𝑙 = 𝐿𝑖𝑑 (𝑬1,𝑬2,𝑾 𝑖𝑑1) + 𝐿𝑡𝑟𝑖(𝑬1,𝑬2) + 𝐿𝑓𝑢𝑠𝑡𝑟𝑖(𝑬1,𝑬2)

+ 𝐿𝑓𝑢𝑠(𝑬1,𝑬2,𝑾 𝑖𝑑2) + 𝜉1(𝐿𝑐𝑎𝑙1(𝑾 𝑗 ) + 𝐿𝑐𝑎𝑙2(𝑬1))

+ 𝜉2(𝐿𝑐𝑎𝑚𝐼𝐷(𝑾 𝑐 ) + 𝐿𝑒𝑐𝑎𝑚(𝑬2)),

(11)

where 𝜉1, 𝜉2 ≥ 0 as the weights to balance the importance of the related loss items. Encoders 𝑬1 and 𝑬2 participate in the whole
training process involving the optimization of 𝐿𝑖𝑑 (𝑬1,𝑬2,𝑾 𝑖𝑑1), 𝐿𝑡𝑟𝑖(𝑬1,𝑬2), 𝐿𝑓𝑢𝑠(𝑬1,𝑬2,𝑾 𝑖𝑑2) and 𝐿𝑓𝑢𝑠𝑡𝑟𝑖(𝑬1,𝑬2). In the 70th
epoch, the classifier 𝑾 𝑐 is added to the training process. 𝐿𝑐𝑎𝑚𝐼𝐷(𝑾 𝑐 ) and 𝐿𝑒𝑐𝑎𝑚(𝑬2) are minimized to assist 𝑬2 in extracting the
domain-invariant salient features. At the 80th epoch, the classifier 𝑾 𝑗 is added to the training process. An MPL is performed by
minimizing 𝐿𝑐𝑎𝑙1(𝑾 𝑗 ) and 𝐿𝑐𝑎𝑙2(𝑬1) to assist 𝑬1 in extracting the multi-view polymorphic features.

4. Experiments

4.1. Datasets and evaluation protocol

This paper uses eight challenging public datasets, Market1501 [53], DukeMTMC-reID (Duke) [54], MSMT17 [55], Market1501
(S1), Duke (S2), MSMT17 (S2), PRID2011 [56], and GRID [57] to test the performance of the proposed method. The detailed settings
of these datasets used in experiments are shown in Table 1, and the details of each dataset are given as follows.

Market1501 consists of 32,668 images of 1,501 pedestrians captured by six non-overlapping cameras. The training set contains
12,936 images of 751 pedestrians, and each pedestrian appears in at least two camera views. The gallery set contains 19,732
images of the remaining 750 pedestrians. In the testing phase, 3,368 images of 750 pedestrians in the probe set are used to match
all pedestrian images in the gallery set.

Duke contains 36,411 pedestrian images captured by eight non-overlapping cameras. The training set contains 16,522 images
of 702 pedestrians, and each pedestrian is captured by at least two cameras. The gallery set contains 17,661 images of 1,110
pedestrians, in which 408 pedestrian images are interference images. The probe set contains 2,228 images of 702 identities.

MSMT17 is a large-scale dataset for person re-ID. It consists of 126,441 images of 4,101 pedestrians captured by 15 non-
overlapping cameras. The training set contains 32,621 images of 1,041 pedestrians, and each pedestrian appears in at least two
camera views. The testing set contains 93,820 images of 3,060 pedestrians, in which 11,659 images are selected as the probe set
and the remaining 82,161 images are used as the gallery set.

Market1501 (S1) uses the pedestrian samples in the training set of Market1501 to simulate a real-world scene based on the
assumption that the pedestrians from adjacent camera views are not exactly same. As shown in Fig. 6, it assumes that the number
of pedestrians from each camera view moving to an adjacent camera is 25% of the total pedestrians from the camera view on a
straight road, which means that the pedestrians from the adjacent camera views are not completely overlapped. According to this
ratio, the training set contains 3,197 images of 617 pedestrians. The testing set still follows the original protocol of Market1501.
8

The probe and gallery sets contain 3,368 and 19,732 images, respectively.
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Fig. 6. Real-world scene setting 1 (S1) simulated by Market1501 dataset samples. The data of Market1501 dataset is captured by six cameras. It assumes that
six cameras are installed at six different intersections and the number of pedestrians from each camera perspective moving to an adjacent camera perspective
is about 25% of the total pedestrians from the camera perspective.

Fig. 7. Real-world scene setting 2 (S2) simulated by Duke and MSMT17 dataset samples. The subfigure (a) shows a monitoring network scene simulated using
the Duke dataset samples collected by eight cameras, and the subfigure (b) shows a monitoring network scene simulated using the MSMT17 dataset samples
collected by 15 cameras. It assumes that the scenes shown in subfigures (a) and (b) are the street networks composed of multiple intersections. Each intersection
has a camera that can monitor all pedestrians from different directions. The number of pedestrians from each camera perspective moving to an adjacent camera
perspective is about 25% of the total pedestrians from the camera perspective.

Duke (S2) uses the training samples of Duke dataset to simulate the video surveillance networks in a real-world urban street
scene as shown in Fig. 7(a). It assumes that the number of pedestrians from each camera view moving to an adjacent camera is 25%
of the total pedestrians from the camera view, which is same as the settings of Market1501(S1). It means that the pedestrians from
the adjacent cameras are not exactly same. When the camera interval increases, the number of overlapping pedestrians decreases,
which is in line with the real-world street scenes. According to this assumption, the training set of the newly constructed dataset
Duke (S2) contains 5,300 images of 553 pedestrians. The testing set still follows the original protocol of Duke. The main difference
from Duke is that some pedestrians are only captured by one camera installed at the boundary of the video surveillance networks
(such as cameras 1,2,4,7,3,6,8).

MSMT17 (S2) uses the testing samples of MSMT17 to simulate the appearance of pedestrians from the cameras installed at
different intersections in the real-world urban street monitoring scenes as shown in Fig. 7(b). Since the testing set of the original
MSMT17 has more data samples than its training set, a new training set is constructed by applying the settings of S2 to the testing
set of the original MSMT17, and the original training set is directly used as the testing set according to the protocol of [58].

PRID2011 is composed of 1,134 images of 934 pedestrians captured by cameras A and B. 385 and 749 pedestrians appeared
under the views of cameras A and B, respectively. But, only 200 pedestrians appeared under both camera views at the same time.
In this paper, 100 pairs of pedestrian images that appeared under both camera views at the same time and 300 interference images
are selected as the training set, the remaining images of 100 pedestrians captured by camera A are used as the probe set, and the
remaining images of 100 pedestrians captured by camera B and 249 interference images are used as the gallery set.

GRID contains 250 pedestrian image pairs captured by eight non-overlapping cameras and 775 interference images. Two images
of each pedestrian image pair were captured by different cameras. 125 pedestrian image pairs and 400 interference images are
randomly selected for training. The remaining 125 pedestrian image pairs are used for testing, of which 125 images with different
pedestrian identities are used as the probe set, and the remaining 125 pedestrian images and 375 interference images are used as
the gallery set.

Evaluation Metrics: Cumulative Matching Characteristics (CMC)[59] and mean Average Precision (mAP)[60] as two objective
evaluation indicators are used to evaluate the performance of the proposed model and comparative models.

4.2. Implementation details

In the training phase, the image size is set to 256 × 128. Similar to Luo’s solution [61], data enhancement in this paper is
achieved through random cropping, flipping, and color dithering. In the experiments, the batch size 𝑛 is set to 16, all the networks
9
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Table 2
The performance comparisons of different methods on Duke → Market1501 and Market1501 → Duke. The CMC and mAP rates (%) of each method are reported.
‘‘–’’ means no data reported and the bold values indicate the best results.

Settings Duke→ Market1501 Market1501→ Duke

Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10 mAP

Methods Methods with CPLP

HHL [64] 62.2 78.8 84.0 31.4 46.9 61.0 66.7 27.2
PCB-PAST [27] 78.4 – – 54.6 72.4 – – 54.3
UDA-TP [65] 75.8 89.5 93.2 53.7 68.4 80.1 83.5 49.0
ACT [26] 80.5 – – 60.6 72.4 – – 54.5
MEB-NET [66] 89.9 96.0 97.5 76.0 79.6 88.3 92.2 66.1
MMT [39] 87.7 94.9 96.9 71.2 78.0 88.8 92.5 65.1
SPCL [67] 90.3 96.2 97.7 76.7 82.9 90.1 92.5 68.8
DG-Net++ [68] 82.1 90.2 92.7 61.7 78.9 87.8 90.4 63.8

Methods Methods with MAM

CamSty [69] 58.5 78.2 84.3 27.4 48.4 62.5 68.9 25.1
SBSGAN [70] 58.5 – – 27.3 53.5 – – 30.8
ATNet [32] 55.7 73.2 79.4 25.6 45.1 59.5 64.2 24.9
ECN [43] 75.1 87.6 91.6 43.0 63.3 75.8 80.4 40.4
PDA-Net [44] 75.2 86.3 90.2 47.6 63.2 77.0 82.5 45.1
LVRP [71] 63.9 81.1 86.4 33.9 36.3 54.0 61.6 17.9

Methods Methods without CPLP and MAM

ECN [43] 58.0 69.9 75.6 27.7 39.7 53.0 58.1 23.6
CaNE [72] 57.2 73.0 80.0 27.4 – – – –
DG-Net++ [68] 52.2 70.7 77.0 28.6 53.2 68.7 73.8 36.3
CBN [73] 72.7 – – 43.0 58.7 – – 38.2
SNR [74] 66.7 – – 33.9 55.1 – – 33.6
MMCL [75] 66.6 – – 35.3 58.0 – – 40.2
CAC [76] 69.4 82.8 87.3 36.9 57.5 71.2 75.3 37.0
AADFL [77] 71.8 85.9 90.1 39.6 64.1 77.2 81.4 43.1
TALMVR [11] 73.1 70.7 – 40.0 63.5 76.6 – 41.3
Proposed 75.3 88.1 91.9 43.1 65.4 77.8 81.1 43.3

use the Adam optimizer, and the weight decay is set to 0.0005. The initial learning rates of 𝑬1 and 𝑬2 are set to 0.0002, and a total
of 150 epochs is performed on model training. When the source domain is Market1501, the learning rates of 𝑾 𝑗 and 𝑾 𝑐 are set
o 0.0002. When the source domain is Duke, the initial learning rates of 𝑾 𝑗 and 𝑾 𝑐 are set to 0.00012 and 0.0003, respectively.

hen the source domain is MSMT17, the initial learning rate is set to 0.0002. In the 0∼10th epoch, the learning rate is adjusted
inearly by the warm-up strategy [62]. At the 20th and 70th epochs, the learning rate is decreased by 10%. Hyperparameters 𝜉1
nd 𝜉2 are set to 1 in the experiments, and all the experiments in this paper are implemented in the pytorch[63] framework on a
ingle 2080TI GPU with i9-9900K 3.6 GHz CPU and 64 GB RAM. During the testing process, the cosine similarity is used to match
edestrian identities.

.3. Comparison to the state-of-the-art methods

To verify the effectiveness, the proposed solution is compared with CPLP-based, MAM-based, and DAFL-based methods on
arket1501 → Duke and Duke → Market1501. A → B means that datasets A and B are the source and target domains, respectively.
s shown in Table 2, the proposed method are compared with CPLP-based methods HHL [64], PCB-PAST [27], UDA-TP [65],
CT [26], MEB-NET [66], MMT [39], SPCL [67] and DG-Net++[68], MAM-based methods CamSty [69], SBSGAN [70], ATNet [32],
CN [43], PDA-Net [44] and LVRP [71], and DAFL-based methods ECN (without additional model assistance) [43], CaNE [72],
G-Net++ (without self-training) [68], CBN [73], SNR [74], MMCL [75], CAC [76] and AADFL [77]. According to Table 2, the
roposed method is significantly better than other similar methods without using any pseudo-label prediction and relying on any
dditional model assistance. Specifically, compared with the sub-optimal DAFL-based methods, Rank-1 and mAP obtained by the
roposed method is 2.2% and 3.1% (1.3% and 0.2%) higher than the second best one TALMVR (AADFL) on Duke → Market1501
Market1501 → Duke), respectively. The reason is that the proposed method can extract multi-view and polymorphic features by
PL, which makes the learned features more discriminative.

As shown in Table 2, ECN obtained 75.1% /43.0% (63.3% /40.4%) Rank-1/mAP recognition accuracy on Duke → Market1501
Market1501 → Duke). PDA-Net achieved 75.2%/47.6% and 63.2%/45.1% Rank-1/mAP recognition accuracy on the same tasks.
owever, the performance of this type of methods depends on additional models, such as ECN relies on the style transfer model,
DA-Net relies on the style transfer model [78,79] and pose estimation model [80]. The introduction of additional models seriously
ffects the efficiency of the corresponding recognition algorithms. Due to open access of source codes, only the complete source
odes of ECN can be downloaded. For the remaining solutions, either partial source codes are available or there is no access to
ource codes. So, the proposed solution is only compared with ECN on Market1501 → Duke and Market1501→ MSMT17. As shown
n Table 3, on Market1501 → Duke, the training time of the proposed method is about 11 h, while the ECN training model takes
10
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Table 3
The performance comparisons between the proposed method and ECN.

Settings Market1501 → Duke Market1501 → MSMT17

Methods Rank-1 Time/h Rank-1 Time/h

ECN [43] 63.3 ≈ 90 25.3 ≈ 420
Proposed 65.4 ≈ 11 39.4 ≈ 20

Table 4
The performance comparisons of different methods on Market1501 → MSMT17, Duke → MSMT17, MSMT17 → Market1501, and MSMT17 → Duke. The CMC
and mAP rates (%) of each method are reported. ‘‘–’’ means no data reported and the bold values indicate the best results.

Settings Market1501→ MSMT17 Duke→ MSMT17

Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10 mAP

PTGAN [30] 10.2 – 24.4 2.9 11.8 – 27.4 3.3
ECN [43] 25.3 36.3 42.1 8.5 30.2 41.5 46.8 10.2
CAC [76] 29.3 40.2 45.9 10.5 37.0 49.9 55.6 13.3
AADFL [77] 30.5 42.6 48.8 11.4 38.6 50.8 56.1 14.0
TALMVR [11] 30.9 43.5 – 11.2 39.0 51.5 – 14.2
Proposed 39.4 51.6 56.8 15.1 44.2 56.8 61.9 16.4

Settings MSMT17→ Market1501 MSMT17→ Duke

Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10 mAP

CASCL [36] 65.4 80.6 86.2 35.5 59.3 73.2 77.8 37.8
CaNE [72] 59.1 75.4 – 30.3 60.7 74.7 – 39.1
CAC [76] 72.7 85.1 88.8 41.0 68.0 80.3 84.3 47.4
TALMVR [11] 74.6 87.6 – 43.0 68.4 81.0 – 49.0
Proposed 75.8 87.9 92.0 44.5 69.9 81.3 85.3 48.8

about 90 h. The reason is that each camera style transfer in the dataset requires a special training. The more cameras are involved
in the dataset, the longer training time is (such as the large-scale dataset MSMT17 shown in Table 1). In contrast, the proposed
method does not use any additional model assistance to improve its performance, so its efficiency is higher. In addition, without
using any additional model assistance, the performance of the proposed method is more competitive than AMA-based methods, so
the proposed method can meet the needs of practical applications effectively.

To further verify the effectiveness and scalability, the performance of the proposed method is evaluated on Market1501 →
MSMT17, Duke → MSMT17, MSMT17 → Duke, and MSMT17 → Market1501. Since the data size of Market1501 and Duke is much
maller than MSMT17, the extended experiment is quite in line with actual needs. As shown in Table 4, the recognition accuracy of
ank-1 and mAP obtained by the proposed method outperforms that of AADFL and TALMVR. On the tasks, the proposed method
lso shows better performance than CASCL, PTGAN, ECN and CaNE. The effectiveness of the proposed method is further verified.

The CPLP-based methods can achieve higher recognition performance by refining the model with pseudo labels. Particularly,
he Rank-1 and mAP recognition accuracy of SPCL reach 90.3%/82.9% and 76.7%/68.8% on Duke → Market1501/Market1501 →

Duke, respectively. The performance of SPCL is far better than the proposed method, because each target-domain sample of SPCL
participating in the training has the corresponding positive samples. However, a certain number of isolated pedestrians may appear in
the real-world scenes, which are captured by only one camera in a local area of camera networks. The negative samples composed of
these isolated pedestrians may play a negative role in improving the performance of CPLP-based methods. In contrast, the proposed
method is not restricted by any isolated pedestrians, so it has higher practical significance. To test the proposed method, Market1501
(S1), Duke (S2), and MSMT17 (S2) that simulate the real-world street scenes are selected as the target domains, and Market1501
and Duke are used as the source domains, respectively. In the comparative experiments, the results of all comparative methods were
obtained by using the source codes published by the original authors. The hyperparameter settings of both the proposed method and
comparative methods employed the original data used in the corresponding papers under the old protocols, and these parameters
were no longer adjusted under the new protocol dataset.

The performance of CPLP-based methods and the proposed method is further verified. According to Table 5, UDA-TP, ACT,
MMT, MEB-NET, and SPCL that have good performance on the original protocols show lower performance. When Duke was
used as the source domain, the Rank-1 and mAP recognition accuracy of MMT only reached 59.7%/39.0% and 33.7%/17.3% on
the Market1501(S1)/MSMT17(S2) dataset, respectively. However, the proposed method reached 71.2%/50.8% Rank-1 recognition
accuracy and 39.6%/21.9% mAP recognition accuracy on the Market1501(S1)/MSMT17(S2) dataset, which is far higher than the
performance of MMT. When Market1501 was used as the source domain and Duke(S2)/MSMT17(S2) was employed as the target
domain, the proposed method obtained 63.2%/45.0% Rank-1 recognition accuracy and 42.0%/19.9% mAP recognition accuracy,
which is better than the methods based on clustering pseudo-label prediction. This further confirms the effectiveness of the proposed
method and its superiority to the CPLP-based methods.

In addition, compared with the original protocols of Market1501 and Duke, Market1501 (S1) and Duke (S2) reduced the number
of samples in the training dataset under the new protocols and the isolated pedestrian samples appeared at the same time, when
the testing protocols remain unchanged. After reducing the size of training dataset, all the methods showed the varying degrees of
11

performance degradation. As shown in Table 6, in comparison with the performance on the original datasets, the Rank1 and mAP
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Table 5
The performance comparisons of different methods on Duke → Market1501(S1), Market1501 → Duke(S2), Duke → MSMT17(S2) and Market1501 → MSMT17(S2).

he CMC and mAP rates (%) of each method are reported. ‘‘–’’ means no data reported and the bold values indicate the best results.
Settings Duke→ Market1501(S1) Market1501→ Duke(S2)

Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10 mAP

UDA-TP [65] 56.6 72.2 77.5 30.6 42.9 57.2 63.2 27.7
ACT [26] 51.5 67.0 72.5 26.0 30.3 42.3 48.9 18.0
MEB-NET [66] 57.3 73.0 79.1 33.4 44.2 59.1 65.4 30.7
MMT-500 [39] 59.7 75.1 80.9 33.7 45.4 61.0 67.6 30.8
MMT-700 [39] 57.3 73.5 80.2 32.0 45.2 60.5 67.0 30.5
MMT-900 [39] 58.4 74.3 80.3 32.5 43.9 61.0 67.1 30.8
SPCL [67] 14.1 26.1 33.0 5.6 13.2 21.5 25.3 5.5
Proposed 71.2 85.7 89.9 39.6 63.2 75.1 79.3 42.0

Settings Duke→ MSMT17(S2) Market1501→ MSMT17(S2)

Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10 mAP

UDA-TP [65] 23.3 35.1 41.0 9.8 14.5 25.0 31.2 6.0
ACT [26] 15.2 24.2 29.4 6.4 9.5 18.3 24.1 4.0
MEB-NET [66] 33.9 46.5 52.2 15.9 26.1 37.3 43.5 12.0
MMT-500 [39] 35.8 47.6 53.4 15.3 27.4 39.7 45.7 11.6
MMT-1000 [39] 36.5 50.4 55.9 16.3 30.7 43.9 50.9 13.7
MMT-1500 [39] 39.0 51.0 57.8 17.3 33.2 45.2 51.9 14.5
MMT-2000 [39] 37.8 51.7 57.5 17.2 33.9 47.5 54.9 15.4
SPCL [67] 19.8 31.7 37.7 8.8 18.8 30.4 36.6 9.0
Proposed 50.8 62.6 67.7 21.9 45.0 57.9 63.2 19.9

Table 6
Comparison of the performance changes (%) of different methods from Duke → Market1501 and Market1501 → Duke to Duke → Market1501(S1) and Market1501
→ Duke(S2), respectively. The CMC and mAP rates (%) of each method are reported. ‘‘–’’ means no data reported and the bold values indicate the best results

Settings Duke→ Market1501 And Market1501(S1) Market1501→ Duke And Duke(S2)

Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10 mAP

UDA-TP [65] 19.2 17.3 15.7 23.1 25.5 22.9 20.3 21.3
ACT [26] 29.0 – – 34.6 42.1 – – 36.5
MEB-NET [66] 32.6 23.0 18.4 42.6 35.4 29.2 26.8 35.4
MMT-500 [39] 28.0 19.8 16.0 37.5 31.4 27.0 24.6 32.3
MMT-700 [39] 29.5 21.1 16.7 37.0 32.8 28.3 25.5 34.6
MMT-900 [39] 28.4 20.6 16.3 33.7 33.5 27.1 25.4 32.3
SPCL [67] 76.2 70.1 64.7 71.1 69.7 68.6 67.2 63.3
Proposed 4.1 2.4 2.0 3.5 2.2 2.7 1.8 1.3

recognition accuracy of the CPLP-based methods dropped more than 19% on both Duke → Market1501(S1) and Market1501 →
Duke(S2). For the CPLP-based methods, Rank1 dropped by 19.2% at the lowest and 76.2% at the highest, and mAP dropped by
23.1% at the lowest and 71.1% at the highest on Duke → Market1501 (S1). The Rank1/mAP recognition accuracy of the proposed
method only dropped by 4.1%/3.5%.

Moreover, for the CPLP-based methods, Rank-1 dropped by 25.5% at the lowest and 69.7% at the highest, and mAP dropped
by 21.3% at the lowest and 63.3% at the highest on Market1501 → Duke (S2), while Rank-1 and mAP recognition accuracy of
the proposed method only dropped by 2.2% and 1.3%, respectively. In contrast, the performance of the CPLP-based methods was
considerably reduced. In addition to the decrease in the number of training samples, the isolated pedestrian images only appearing
in one camera view as another important reason cause the significant performance degradation of the CPLP-based methods, which
indicates the performance of the CPLP-based methods is easily affected by unmatched samples. The proposed method does not
rely on any matched samples, so its performance is less affected. So, this also confirms that the proposed method has more robust
practical applicability.

Since the size of the data collected by the monitoring system in real-world scenes is often quite large, this undoubtedly brings
great challenges to the matching of pedestrian identities in person re-ID models. In order to improve the matching efficiency of
pedestrian images, an image can be extracted from each pedestrian image sequence to participate in the matching of pedestrian
images. In this case, each pedestrian has only one image under each camera view. To test the performance of both the proposed
method and CPLP-based methods in this protocol, GRID and PRID2011 datasets containing interference images are selected as the
target domains, and Market1501 and Duke datasets are used as the source domains, respectively. According to Table 7, UDA-TP,
ACT, MMT, and SPCL that perform well on large-scale datasets show lower performance.

When Market1501 was used as the source domain, the Rank-1 and mAP recognition accuracy of MMT only reached 32.0%
(31.0%) and 40.3% (39.8%) on GRID (PRID2011), respectively. However, the Rank-1 and mAP recognition accuracy of the proposed
method reached 49.3% (53.9%) and 57.4% (62.5%), respectively. When Duke was used as the source domain, the Rank-1 and
mAP recognition accuracy of MMT only reached 32.8% (25.0%) and reached 41.3% (33.9%) on the GRID (PRID2011) dataset,
12

respectively. The proposed method obtained 40.6% (54.8%) Rank-1 and 47.9% (63.7%) mAP on GRID (PRID2011), which is far
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Table 7
Comparative experiment results of different methods on PRID2011 and GRID datasets. The CMC and mAP rates (%) of each method are reported and the bold
values indicate the best results.

Settings Market1501→ GRID Duke→ GRID

Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10 mAP

UDA-TP [65] 28.0 50.4 59.2 38.8 27.2 44.8 55.2 35.6
ACT [26] 14.4 31.2 42.4 23.4 13.6 25.6 30.4 20.4
MMT [39] 32.0 48.0 53.6 40.3 32.8 49.6 55.2 41.3
SPCL [67] 13.6 24.0 35.2 20.2 8.0 20.8 33.6 15.7
Proposed 49.3 65.2 73.0 57.4 40.6 55.0 63.0 47.9

Settings Market1501→ PRID2011 Duke→ PRID2011

Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10 mAP

UDA-TP [65] 12.0 23.0 35.0 19.5 22.0 47.0 55.0 33.3
ACT [26] 14.0 26.0 38.0 22.2 13.0 31.0 40.0 21.9
MMT [39] 31.0 48.0 57.0 39.8 25.0 41.0 54.0 33.9
SPCL [67] 4.0 10.5 16.5 8.6 16.7 31.1 39.6 7.6
Proposed 53.9 72.7 80.0 62.5 54.8 75.7 82.4 63.7

Table 8
The ablation study of the proposed method. The CMC and mAP rates (%) of each method are reported.

Methods Duke → Market1501 Market1501→ Duke

Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10 mAP

B(Baseline) 64.8 78.6 83.7 32.9 46.3 62.4 68.7 27.0
B+MPL 72.1 85.5 90.5 40.8 62.3 75.5 79.8 41.6
B+DISFL 71.9 86.2 90.3 39.6 60.5 73.0 77.6 38.0
B+MPL+DISFL 75.3 88.1 91.9 43.1 65.4 77.8 81.1 43.3

higher than the performance of MMT. There are two main reasons to cause the poor performance of the CPLP-based methods. The
target-domain samples involved in the model training contain interference images, and each pedestrian has only one image under
each camera view, which bring great challenges for the correct prediction of pseudo-labels based on clustering methods. In contrast,
the proposed method shows better performance, which further confirms the effectiveness of the proposed method and its superiority
to the clustering pseudo-label prediction methods.

4.4. Ablation study

The proposed method consists of three parts, MPL, DIFSL and AFDSF+MPF. In this section, the role of each part is analyzed to
rove its effectiveness.
Effectiveness of MPL In the proposed method, ResNet50 with average pooling is used as the baseline (B), and both cross-entropy

oss and triplet loss are applied to the optimization process. B+MPL is obtained by adding MPL to the baseline and compared with
he baseline to verify the effectiveness of MPL. According to Table 8, B+MPL improves the recognition accuracy of Rank-1 from
4.8% (46.3%) to 72.1%(62.3%) and mAP from 32.9% (27.0%) to 40.8%(41.6%) on Duke → Market1501 (Market1501 → Duke),
espectively. The above results show that multi-view MPL makes the network be able to extract multi-view and polymorphic features
rom single-view pedestrian images.
Effectiveness of DISFL. In AFDSF+MPF, the fused salient features are provided by DISFL. Here it only verifies the performance

f the domain-invariant salient feature learning branch for the subsequent ablation study. As shown in Table 8, the Rank-1 accuracy
f domain-invariant salient feature learning is 71.9% and 60.5% and the recognition accuracy of mAP reaches 39.6% and 38.0%
n Duke → Market1501 and Market1501 → Duke, respectively. The above results show that DISFL has extracted the significant
dentity information of pedestrians.
Effectiveness of AFDSF+MPF. To use the discriminative features extracted by DISFL, the multi-view polymorphic features

xtracted by MPL are fused with the domain-invariant salient features after alignment, which is called B+MPL+DISFL in Table 8.
ompared with MPL, the accuracy of Rank-1/mAP increased by 3.2%/2.3% (3.1%/1.7%) on Duke → Market1501 (Market1501

Duke). Compared with DISFL, the accuracy of Rank-1/mAP increased by 3.4%/3.5% (4.9%/5.3%) on Duke → Market1501
Market1501 → Duke). The above results show effectiveness of AFDSF+MPF.

.5. Parameter analysis

This paper involves two hyperparameters 𝜉1 and 𝜉2. In the influence analysis of the two hyperparameters, a parameter is fixed
o analyze the influence of another parameter on the experimental performance. During this process, all the experiments were
onducted on Duke → Market1501 and Market1501 → Duke.
The influence of 𝜉1. In Eq. 12, the 𝜉1 mainly adjusts the role of 𝐿𝑐𝑙𝑎1 and 𝐿𝑐𝑙𝑎2. Fig. 8(a) and (c) show the influence of 𝜉1 on

ank-1 and mAP when the values of 𝜉 are different on Duke → Market1501 and Market1501 → Duke. Specifically, on Rank-1,
13
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Fig. 8. Effect analysis on hyperparameters 𝜉1 and 𝜉2.

the developed method reaches the optimal performance at 𝜉1 = 1, while on mAP, the developed method achieves the pleasing
performance when 𝜉1 ∈ [0.75, 1]. When 𝜉1 ∈ [1, 2], the recognition accuracy of Rank-1 and mAP dropped. Therefore, 𝜉1 = 1 is a good
choice.

The influence of 𝜉2. In Eq. 12, the 𝜉2 adjusts the role of 𝐿𝑐𝑎𝑚𝑒𝐼𝐷 and 𝐿𝐸𝑐𝑎𝑚. The 𝜉1 is fixed, and the value of 𝜉2 is selected within
the range of [0.01, 4]. On Duke → Market1501 and Market1501 → Duke, the changes of Rank-1 and mAP with different values of 𝜉2
are shown in Fig. 8(b) and (d). When 𝜉2 = 1, the proposed method can obtain the best performance on both tasks. So, it is reasonable
to set 𝜉2 to 1.

5. Conclusion

This paper proposes a novel UDA person re-ID method, which consists of blockchain, MPL, DISFL, and AFDSF+MPF. In the
proposed method, blockchain provides pedestrian image data security services. MPL prompts the networks to have a certain ability
to predict and extract multi-view polymorphic features of pedestrians, and also plays a positive role in extracting the complete
appearance features of pedestrians. The discriminative features of pedestrians are effectively extracted by the learning of domain-
invariant salient features. After aligning and fusing with the multi-view polymorphic features, the description ability of features
is effectively improved, which promotes the improvement of recognition performance. The proposed method requires neither any
clustering and pseudo-label prediction nor any additional model assistance, so it has considerable practical significance. Comparative
experimental results confirm its effectiveness and superiority to the similar state-of-the-art methods.
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