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Abstract— Although the multi-fingered hand brings more
possibilities for human-like dexterous manipulation, it also in-
troduces serious challenges in interacting with the dynamic and
uncertain physical environments. Compared with two-fingered
parallel grippers, the multi-fingered hands have more joints
and diverse interaction postures. This makes the operation no
longer limited in the one-dimensional opening/closing degree,
but can realize flexion/extension, adduction/abduction, and
rotating in three-dimensional space, which are more dexterous
and closer to human manipulation. However, how to precisely
capture these dexterous motions and map them to a robotic
hand is extremely challenging for existing technologies. In this
abstract, we propose a hand telerobotic system with a highly
under-actuated hand exoskeleton and an Allegro Hand towards
dexterous manipulation data acquisition. Meanwhile, we design
a joint mapping method with joint-space reconstruction and a
Cartesian mapping method with an auxiliary frame to ensure
the human hand motion can be correctly and precisely mapped
to the robotic hand. To enhance system adaptability in complex
tasks, we further design a hybrid mapping method combining
the Joint-Cartesian space to improve the adaptability of our
system. Compared with existing works, our system is able to
capture the full states of humans hands and replicate them
on the robotic hand, especially for the adduction/abduction
motions. Three dexterous manipulation tasks with grasping,
rotating, screwing and tapping actions are designed to validate
the dexterity of our system.

I. INTRODUCTION

Making robots have the humanoid dexterous manipulation
ability is the most essential and central goal in robotics
development [1]. Multi-fingered robotic hands are the key
to achieving this goal and unlocking the robot’s potential for
dexterous manipulations. As the multi-fingered hands have
more joints and more contact points in interactions, they
can complete complex manipulation (e.g., using tools and
rotation operation in hand) and provide stable and reliable
grasping capabilities. While these features also bring many
challenges to the planning and control of multi-fingered
hands. Higher degrees of freedom (DoF) greatly make tradi-
tional model-based control impossible. Thus learning-based
method based on large amount of dexterous manipulation
data becomes a promising solution. However, how to acquire
the dexterous manipulation data with multi-fingered hands is
non-trivial.
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Fig. 1. Illustration of the human-to-robot gap. The compar-
ison of (a) human hand, (b) Allegro Hand and (c) Shadow
Hand. It is obvious that the Allegro Hand’s fingers are much
larger than human and the Shadow Hand has a huge driven
box, which bring negative effects to the Arm-Hand system.

At present, there are three paradigms for acquiring dex-
terous manipulation data, namely: data generation based on
simulation platform, data collection from human demonstra-
tion, and data collection from teleoperation demonstration.
The most common method is to generate manipulation data
through simulation platform [2] [3] and learn through deep
reinforcement learning [4] or reinforcement learning with
domain knowledge [5]. However, this method cannot get rid
of the data generated by the simulation environment, which
means that the sim-to-real gap makes it difficult to directly
transfer the trained model to the real robotic hand.

The second paradigm is to acquire data from human
demonstration, in which the tasks are fulfilled by the human
beings directly. Compared with the data generated by sim-
ulation, the demonstrated data in this paradigm is real data
generated in the physical environment based on video [6] [7]
or visual and tactile fusion [8] [9], which can greatly reduce
the sim-to-real gap. But this will introduce a new human-
to-robot gap. The current multi-fingered robotic hands are
very different from human hands in configuration, which
makes it difficult to replicate the manipulation skills learned
from human demonstration on multi-fingered robotic hands
directly. The comparison of multi-fingered robotic hands and
human hand is shown in Fig. 1.

In order to solve those gaps in dexterous manipulation,
using the telerobotic system to acquire data becomes a more
efficient method. To achieve an excellent teleoperation effect
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Fig. 2. Block diagram of our combined Joint-Cartesian mapping method. The two sub-problems, measurement of the motions
on the human side and the combined mapping method to the robotic hand, are both addressed in our framework.

and get a high-quality dataset, two key subproblems need
to be addressed: the measurement of the motions on the
human side and the mapping method of movements on the
robotic hand. For the first subproblem, current visual tracking
[10] [11] and kinesthetic teaching [12] methods are unsta-
ble and susceptible to environmental interference. Motion
capture based on tactile gloves [13] or exoskeletons [14] is
more accurate and intuitive. But they could only capture
flexion/extension motion, which is not enough to realize
dexterous manipulation. For the second subproblem, there
are joint mapping methods for power grasping [15]–[17] and
Cartesian mapping methods for precise manipulation [18]–
[20]. But those mapping method only focus on mapping
joints or fingertips motion, which lacks adaptivity and cannot
perform complex manipulation task even if full states of
hands motion can be captured.

To solve the above problems, we design a telerobotic
system and test it in three different dexterous manipulation
tasks:
• Full State Motion Capture of Human Hands: A

highly underactuated hand exoskeleton is used to cap-
ture human hands motion. And we design a joint
mapping method with joint-space reconstruction, which
can obtain the precise finger joints to the robotic hand,
especially for adduction/abduction motion.

• Precise Mapping Method and Adaptive Mapping
Framework: We design a Cartesian mapping method
with an auxiliary frame to ensure the human hand
motion can be precisely mapped to robotic hand. And
we design a hybrid mapping framework as shown in Fig.
2 to combine the Joint-Cartesian space to map complex
motions adaptively.

• System Dexterity Verification: We design three dex-
terous manipulation tasks with grasping, screwing, and
tapping motions to validate the dexterity of our teler-
obotic system. The successful completion of the tasks
demonstrates the adaptability, dexterity and accuracy of
our system.

What’s more, the control frequency of the telerobotic sys-
tem is at the kilohertz level, which brings agile teleoperation.
Thus, we can map complex human fingers motion (e.g.,
adduction/abduction) to the multi-fingered hand and acquire
manipulation data. The acquired data can use directly in
learning-base algorithm without the gap in sim-to-real and
human-to-robot.

II. PROPOSED METHOD

A. Exoskeleton Design

Fig. 3. The highly under-actuated hand exoskeleton used for
tracking the position and orientation of human hand.

Based on the HEXOTRAC [21], we design a hand ex-
oskeleton with the abilities for full-space motion capture of
human fingertips and reconstruction of finger configuration.
The general assembly of the hand exoskeleton is shown in
Fig. 3. The back of the human hand is tied to the hand
exoskeleton base, while the thumb, index finger, and middle
fingertips are respectively fixed to the second cross link at
the end of the three serial kinematic chains.

Each finger has a total of 6 DoF, including 3 DoF in the
pitch direction, 2 degrees of freedom in the roll direction,
and 1 DoF in the yaw direction, which allows for effective
haptic interactions within the functional workspace of the
hand without constraints to the fingers. This high-freedom
design fully satisfies the finger movement of wearers of
different sizes in the workspace.

B. Human Finger’s Joint-space Reconstruction

Fig. 4. The index and the thumb fingers moved as a circular
arc around the base frame.

Although HEXOTRAC has provided the capability of
accurate finger motion capture, two questions still remain:

First, the transformation WTBi from world frame to
each finger’s base frame is uncertain for different wearers.



Besides, the lengths of each phalanxes are uncertain for
different people.

Therefore, it is important to apply our finger reconstruction
method [22]. As shown in Fig. 4, a finger can be modeled
as a serial link manipulator by simple assumptions: each
fingers’ last three parallel joints are placed on a certain plane,
the ratios of each phalanx are considered to be fixed for all
people in medical science [23], and the fingertip is placed
on the sphere.

So we can summarize the method for obtaining the precise
finger joints in three steps:

First, let Pi = {xi
B , y

i
B , z

i
B} represent the position of {Bi}

relative to {Wi}, let P ee
i = {x, y, z} represent the position

of the fingertip. we can calibrate the translation from {W}
to {Bi} using an arc fitting algorithm:

(x− xi
B)

2 + (y − yiB)
2 + (z − ziB)

2 = L2
Total. (1)

With the arc fitting algorithm, we can estimate the position
of {Bi} in the {W}:

LTotal =

√
(xi

B)
2 + (yiB)

2 + (ziB)
2 − d̂, (2)

Although length of fingers varies from person to person,
the ratios of each phalanxes are considered to be fixed for
all human being. With knowing the total lengths LTotal, we
each easily obtain the lengths of each phalanx.

Finally, the joint angles can be calculated with inverse
kinematics BiTEEi which is the transformation from base
to fingertip needs to be captured to get the accurate joint
configurations. According to the kinematics tree, BiTEEi

can
be calculated as follow:

BiTEEi
= (WTBi

)−1·WTEEi
, (3)

WTEEi
is the transformation from world to fingertip which

can be captured by hand exoskeleton. And the accurate finger
joints can be calculated with the precise lengths of phalanx
estimated above.

C. Cartesian Mapping Method
Direct Cartesian Mapping typically involves processing

the human fingertip poses B3TEEi
to apply scaling, opti-

mization, or ad hoc transformations based on specific design
criteria. A new Cartesian method based on an auxiliary frame
is proposed. The method can be summarized into two main
steps: Unify the rotation of world frame and calculate the
transformation T ′ to bridge the gap from human fingers to
robotic fingers,

RWTREEi
(Θ) = T

′

i ·B3 TEEi
(Θ) · (REEiTEEi

)−1, (4)

T
′

1 = (W
′
TRW )−1 ·W

′
TB3

, (5)

where W ′
TRW and W ′

TB3
can be captured by the hand

exoskeleton, with the compensation values obtained for dif-
ferent fingers T ′

i ∈ R4×4, then for any finger at configuration
Θ, W ′

TREEi
(Θ) can be calculated as follow:

W ′
TREEi(Θ) = T

′

i ·W
′
TEEi

(Θ) ·REEi TEEi
, (6)

where REEiTEEi
represents the gap between robotic fingers

and human fingers.

D. Hybrid Joint-Cartesian Mapping Method

In the real dexterous manipulation task, it is important to
have the ability to switch powerful gasping mode and precise
operating mode adaptively.

Here we design a direct joint mapping method [22], which
can fully map the range of human finger joint configurations
to a robotic hand linearly. The advantage of this algorithm
is its ability to achieve complete control of the robotic hand
across the whole joint space, which is considered effective
in power grasping.

Based on the proposed Joint and Cartesian Mapping meth-
ods, we use a hybrid mapping method to combine the Joint-
Cartesian space. RHPi,DES ∈ R1×3 and RHRi,DES ∈ R3×3

are the position part and rotation part of the desire poses of
the robotic hand, respectively. Then, we have:

RHPi,DES = RHPi,Q · K + RHPi,C · (I − K), (7)

RHRi,DES = RHRi,Q, (8)

where I ∈ R3×3 is the identity matrix and K ∈ R3×3 is
a smooth, sigmoidal gain governing the transition between
joint and Cartesian mappings [24].

kI =


1 if δI < rin
1
2

(
1− cos

(
δIπ

rout−rin

))
if rin ≤ δI ≤ rout,

0 if δI > rout

(9)

where rin and rout (rin < rout) represent the radii of two
spheres centered in the human hand thumb fingertip, δI =
∥B3PEE1 − B3PEE2∥

represents the distance between human thumb fingertip
and human index fingertip.
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Fig. 5. Experimental platform setups. A dual-arm teleop-
eration system with an anthropomorphic robotic hand is
established to perform the fine manipulations.



III. EXPERIMENTS

A. Experimental Setups

We design a telerobotic system for experimental valida-
tion. As illustrated in Fig. 5, Omega.7 is used to control
the left manipulator equipped with a gripper, while the
right manipulator is operated via CLAF mini. Additionally,
the Allegro Hand is teleoperated using our exoskeleton,
which offers six DoFs motion capture for each finger. To
demonstrate the effectiveness in dexterous manipulation, we
design three fine teleoperation tasks.

1) The first task, shown in Fig. 6, involves screwing
a screwdriver into a threaded hole. This task requires
the accurately dexterous manipulation with continuous ad-
duction/abduction motion, ensuring the screwdriver remains
stable throughout the process.

2) The second task, shown in Fig. 7, involves unscrewing
a bottle cap in three steps: grabbing the bottle, exchanging
the bottle, and unscrewing the bottle cap. The grab action
requires motion capture and mapping in flexion/extension
directions, while unscrewing action requires motion capture
and mapping in adduction/abduction directions. However,
this task requires not only the full state motion capture
of human hands, but also adaptive adjustment of mapping
methods for different steps. The first step involves power
grasping using joint mapping to securely grip the bottle,
while the third step requires precious manipulation through
the proposed Cartesian mapping to complete the task. The
hybrid mapping method is employed to ensure a smooth and
adaptive transition between two mapping methods.

3) The final task involves holding a panel and tapping
specific points with the robotic thumb. We selected three
points along a straight line and an additional point positioned
randomly away from the line to demonstrate the ability
of human hands motion capture in large workspace and
the precision of the finger’s adduction/abduction motion
mapping. The process is illustrated in Fig. 8.

(b)

Stable contact point

(a)

Screwing direc�on

Fig. 6. The task of screwing a screwdriver. This task requires
the Allegro Hand (a) contact with screwdriver stably and (b)
screw the screwdriver accurately.
B. Performance in Three Dexterous Manipulation Tasks

We intend to validate the accuracy and dexterity of our
telerobotic system through a user study in the bottle cap
unscrewing task. Seven volunteers (aged 20–28, seven men,
without the foundation of robot knowledge) are invited to
finish the task. As shown in Table.I, the hybrid mapping
outperforms the joint mapping both in success rate and

Unscrew the cap

Cartesian map

Grasp the bo�le Exchange

Joint map

Change

Fig. 7. The bottle cap unscrewing task and experimental
steps. The yellow blocks show the third step of task with
Cartesian map, while the blue blocks show other steps of
task with Joint map.

(a) (b)

Move direc�on

A random point

Fig. 8. The task of holding a panel and tapping. This task
requires the Allegro Hand (a) tap three point in a line
continuously and (b) tap a random point far from the line.

average (AVG) time, as the joint mapping is more conducive
to grasping and difficult to accommodate the dexterous ma-
nipulation. Although the success rate of Cartesian mapping
is equal to hybrid mapping, its average time is longer as
the volunteers need more time to get used to grab the bottle.
Meanwhile, two basically trained operators using our system
to perform the remaining tasks as they are too difficult
for volunteers. Five consecutive test trials are conducted by
each operator and the average time to finish the tasks are
242s and 12.5s in screwing screwdriver task and tapping the
panel task, respectively. The results validate the adaptability,
dexterity and stability of our telerobotic system.

TABLE I: The result of volunteers test.

Success rate1 AVG time(s)
Joint mapping 2/7 125.4

Proposed Cartesian mapping 6/7 118
Proposed hybrid mapping 6/7 106

1 The trial is denoted as successful if the cap is unscrewed.

IV. CONCLUSION

In this paper, we designed a telerobotic system that can ac-
curately capture the full states of human hands and adaptively
map the motion to the robotic hand. Through our system,
human operation data can be better collected and mapped to
robotic hands, bridging the gap of sim-to-real and human-to-
robot. The experimental results demonstrate that our system
exhibits excellent performance in dexterous manipulation. In
the future, we will focus more on force and tactile feedback
for the operator which leads to a more immersive feeling and
abundant dataset for dexterous manipulation.
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