
Collapse-Proof Non-Contrastive Self-Supervised Learning

Emanuele Sansone 1 2 Tim Lebailly 1 Tinne Tuytelaars 1

Abstract
We present a principled and simplified design of
the projector and loss function for non-contrastive
self-supervised learning based on hyperdimen-
sional computing. We theoretically demonstrate
that this design introduces an inductive bias that
encourages representations to be simultaneously
decorrelated and clustered, without explicitly en-
forcing these properties. This bias provably en-
hances generalization and suffices to avoid known
training failure modes, such as representation, di-
mensional, cluster, and intracluster collapses. We
validate our theoretical findings on image datasets,
including SVHN, CIFAR-10, CIFAR-100, and
ImageNet-100. Our approach effectively com-
bines the strengths of feature decorrelation and
cluster-based self-supervised learning methods,
overcoming training failure modes while achiev-
ing strong generalization in clustering and linear
classification tasks.

1. Introduction
Self-supervised learning (SSL) has unlocked the poten-
tial of learning general-purpose representations from large
amounts of unlabeled data. Despite its successes, important
challenges remain, hindering the applicability of SSL to
a broader spectrum of real-world tasks and its widespread
adoption and democratization. One such challenge is the
presence of failure modes occurring during the training of
SSL models. Several heuristic strategies have been proposed
and analyzed in the literature, such as momentum encoder,
stop gradient and asymmetric projector heads (Chen et al.,
2022; He et al., 2020; Grill et al., 2020; Tao et al., 2022;
Chen & He, 2021; Tian et al., 2021; Halvagal et al., 2023;
Wang et al., 2022). However, these heuristics do not always
come with universal guarantees, making it unclear whether
failure modes can be avoided in all situations.
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Figure 1: Top: Venn diagram relationships between types
of collapses, viz. dimensional collapse (D), cluster collapse
(C), intracluster collapse (I) and representation (full) col-
lapse of embeddings. Bottom: on the left, collapse-proof
data embeddings (each blue dot correspond to an embedding
of a data point, e.g. an image) and on the right, examples of
collapses for each single type (collapsed clusters are high-
lighted in red).

In this work, we focus on the family of non-contrastive
SSL approaches, aiming to distill the essential principles
to guarantee the avoidance of known failure modes. More
concretely, we identify sufficient conditions to avoid repre-
sentation, dimensional, cluster, and intracluster collapses,
exemplified in Figure 1, and correspondingly devise a pro-
jector and loss function enforcing them by design. In par-
ticular, we demonstrate that minimizing invariance to data
augmentations while matching priors suffices to avoid repre-
sentation and cluster collapses, whereas orthogonal frozen
weights based on hyperdimensional computing, and large
prediction outputs in the projector are key to avoiding di-
mensional and intracluster collapses. Moreover, we prove
that these principles are sufficient to guarantee (i) the decor-
relation of embeddings, without any explicit computation
of their covariance matrix, and (ii) the clustering of embed-
dings, without the use of specialized clustering layers. We
experimentally validate the theory on four image datasets,
including SVHN, CIFAR-10, CIFAR-100 and ImageNet-
100, showcasing training robustness to failure modes and
strong generalization to downstream clustering and classifi-
cation tasks compared to popular feature decorrelation and
cluster-based SSL.

To summarize, our key contributions are:
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• At a conceptual level, we identify sufficient conditions
to avoid known failure modes and accordingly devise
CPLearn, the first Collapse-Proof non-constrastive
self-supervised Learning approach.

• These conditions are shown to be sufficient to jointly
decorrelate and cluster embeddings, thus providing
evidence on the feasibility of unifying non-contrastive
and cluster-based SSL families of approaches.

• We establish the first connection between SSL and hy-
perdimensional computing, thus supporting training
and the systematic exploitation of large projector out-
puts.

• At a practical and computational level, we simplify the
design and training of non-contrastive SSL and provide
a proof-of-concept demonstration of the properties of
CPLearn.

The structure of the paper is organized as follows: In §2, we
relate our work to theory of SSL, clarify the relation between
different failure modes and review recent efforts aiming to
address them. In §3, we provide design principles for the
loss and projector head of CPLearn. Subsequently, we
provide the theory supporting its design. In §4, we compare
our solution to existing feature decorrelation and cluster-
based SSL strategies and analyze the different properties
highlighted by the theory. Finally, we conclude with §5 by
summarizing the main findings and discussing future work.

2. Related Work
We frame this work within the context of theoretical studies
of SSL and solutions aimed at mitigating collapses.

Theory and relations among different families of
SSL. Several works have theoretically investigated con-
trastive (Saunshi et al., 2019; Wang & Isola, 2020; Zim-
mermann et al., 2021; Tosh et al., 2021; HaoChen et al.,
2021; Saunshi et al., 2022; Wang et al., 2024) and non-
contrastive SSL methods (Tian et al., 2021; Kang-Jun et al.,
2022; Weng et al., 2022; Wen & Li, 2022; Shwartz-Ziv
et al., 2023), to improve our understanding and provide more
principled or simplified solutions. There have been works
identifying key properties of SSL objectives and inductive
biases (Wang & Isola, 2020; Dubois et al., 2022), generaliz-
ing SSL to incorporate data augmentation graphs (HaoChen
et al., 2021; Wang et al., 2024), deriving generalization error
bounds (Saunshi et al., 2022; Bao et al., 2022; Shwartz-Ziv
et al., 2023), understanding SSL objectives from an opti-
mization perspective (Tian et al., 2021; Tian, 2022; 2023)
as well as understanding the role of asymmetries and pro-
jector heads (Kang-Jun et al., 2022; Wen & Li, 2022). A
recent line of studies has focused on identifying connections
between contrastive and non-contrastive methods (Garrido

et al., 2023b; Balestriero & LeCun, 2022; Huang et al.,
2023) aiming towards unifying different families of SSL.
Our work complements these efforts by providing a princi-
pled solution and design to bring together cluster-based SSL
and feature decorrelation methods from the non-contrastive
family.
Failure modes in SSL. SSL can be affected by four un-
desired failure modes, namely representation, dimensional,
cluster and intracluster collapses, as exemplified in Fig-
ure 1. Representation collapse refers to the case where
neural representations collapse to an identical constant vec-
tor, irrespectively of their input. Different strategies have
been proposed to avoid the issue, such as leveraging con-
trastive objectives to maximize mutual information between
data and representations (den Oord et al., 2018; O. Henaff,
2020; Chen et al., 2020; Lee, 2022; Linsker, 1988; Becker
& Hinton, 1992; McAllester & Stratos, 2020; Barber &
Agakov, 2004; Belghazi et al., 2018; Poole et al., 2019;
Tschannen et al., 2019; Song & Ermon, 2020), introducing
heuristics such as momentum encoder, stop gradient and
asymmetric projector heads (Chen et al., 2022; He et al.,
2020; Grill et al., 2020; Tao et al., 2022; Chen & He, 2021;
Tian et al., 2021; Halvagal et al., 2023; Wang et al., 2022),
regularizing the objective by introducing a generative term
to reconstruct or estimate the data density (Hendrycks et al.,
2019; Winkens et al., 2020; Mohseni et al., 2020; Kim & Ye,
2022; Gatopoulos & Tomczak, 2020; Zhue et al., 2020; San-
sone & Manhaeve, 2022; Wu et al., 2023; Nakamura et al.,
2023; Sansone, 2023; Sansone & Manhaeve, 2023; 2024)
and leveraging predictive models to identify masked data
such as image patches or text tokens (Assran et al., 2022;
Zhou et al., 2022). Dimensional collapse occurs when em-
beddings span a subspace of the whole vector space. Several
methods (Zbontar et al., 2021; Zhang et al., 2021; Ermolov
et al., 2021; Li et al., 2022b; Liu et al., 2022; Bardes et al.,
2022a;b; Ozsoy et al., 2022) propose to mitigate the issue
by whitening the feature embeddings (Hua et al., 2021).
Dimensional collapse has been recently linked to reduced
performance of downstream tasks (He & Ozay, 2022; Li
et al., 2022a; Garrido et al., 2023a), and different evaluation
metrics have been consequently derived, such as the compu-
tation of the entropy of the singular value distribution for the
covariance matrix (Jing et al., 2022), the rank estimator (Gar-
rido et al., 2023a), the computation of the AUC (Li et al.,
2022a) or a power law approximation (Ghosh et al., 2022)
of the singular value distribution. Cluster collapse is a phe-
nomenon observed in cluster-based SSL, where data points
are assigned to a subset of available prototypes (Caron et al.,
2018; Asano et al., 2020; Caron et al., 2020; Li et al., 2021;
Caron et al., 2021; Govindarajan et al., 2023). The issue is
typically mitigated by introducing regularizers in the objec-
tive, such as the Koleo regularizer (Sablayrolles et al., 2019;
Oquab et al., 2024; Govindarajan et al., 2024) or explic-
itly enforcing uniform cluster assignments (Amrani et al.,
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2022; Assran et al., 2023). Last but not least in terms of
importance, intracluster collapse, similarly to the notion
of neural collapse observed in supervised learning (Papyan
et al., 2020; Fang et al., 2021; Yang et al., 2022; Chen et al.,
2022; Kothapalli, 2023; Dhuliawala et al., 2023) occurs
whenever the variability of the embeddings within some
clusters is infinitesimally small. Intracluster collapse can be
mitigated by enforcing representation equivariance (rather
than invariance) to data augmentations (Dangovski et al.,
2022; Komodakis & Gidaris, 2018; Scherr et al., 2022; Park
et al., 2022) or by splitting the embeddings into content and
style parts, while using only content for the self-supervision
task (Louizos et al., 2016; Kügelgen et al., 2021; Garrido
et al., 2023c). In contrast, this work provides a principled yet
simple solution based on an objective function and projector
head that avoid all forms of collapses.

3. Method and Properties
Notation. We denote matrices using capital bold letters,
e.g. P, their elements using lowercase letters with subscript
indices, e.g. pij , their row and column vectors using lower-
case bold letters, e.g. pi and pj . Additionally, we denote
sets using capital letters, e.g. S and use squared brackets
when dealing with sets of integers, e.g. [n] ≡ {1, . . . , n}.
Finally, we use lowercase letters for functions, scalars, inte-
gers and constants, e.g. n. Whenever evaluating functions
on matrices, we always assume that the function is applied
row-wise.

Overview of CPLearn. Given an unlabeled batch of data
D = {(X,X′)} containing n pairs of augmented images,
so that X,X′ ∈ Rn×d, we propose to train a backbone
encoder g : Rd → Rf using the CPLearn projector and
loss functions.1 The projector takes the representations
(Z,Z′) = (g(X), g(X′)), with Z,Z′ ∈ Rn×f , and per-
forms two operations. Firstly, it computes embeddings
H,H′ ∈ Rn×f for the corresponding representations and
then it computes probabilities P,P′ ∈ Rn×c for assign-
ing embeddings to codes available from a frozen dictionary
W ∈ {−1, 1}f×c. More precisely, the projector is defined
by the following two layers:

H =
√
f/n · L2-norm(Bn(Linear(Z)))

P = Softmax(HW/τ) (1)

where the embeddings are obtained from representations
through the composition of linear, batch norm and L2 nor-
malization layers, and τ is the temperature parameter of the
softmax layer. Each element wij of W is drawn indepen-
dently and identically distributed according to a Rademacher
distribution, i.e. wij ∼ Rademacher for all i ∈ [f ] and

1For images d is the product of the width, height and color
bands.

j ∈ [c], whereas

τ =
f

√
n log

(
1−ϵ(c−1)

ϵ

)
with ϵ an arbitrarily small positive scalar.2 Notably, we
will provide theoretical justification for the design choice
of the CPLearn projector, demonstrating good properties
for the embeddings, as being both well clustered and having
their features decorrelated. Moreover, we suggest to choose
c ≫ f to avoid dimensional and intracluster collapses, as
we will show in §3.2 and §3.3. The CPLearn loss consists
of two terms, including one to promote invariance to data
augmentations and one for prior matching, namely:

LCPLearn(D) =− β

n

n∑
i=1

c∑
j=1

pij log p
′
ij

−
c∑

j=1

qj log
1

n

n∑
i=1

pij (2)

with q = [q1, . . . , qc] ∈ Qc corresponding to a prior prob-
ability vector, chosen uniformly for all c codes in all our
experiments, viz. qj = 1/c for all j ∈ [c], β > 0 is a weight
hyperparameter to balance the relative importance of the
two loss terms and pij , p

′
ij are elements of P,P′, respec-

tively. We will prove in §3.1 that, when the two loss terms
are minimized, the proposed loss function is guaranteed
to avoid representation and cluster collapses and therefore
allows to train both the backbone and the projector networks
through backpropagation without requiring any additional
heuristics, such as stop gradient, momentum encoder or
clustering operations typically introduced in non-contrastive
learning (Chen et al., 2022; He et al., 2020; Grill et al., 2020;
Tao et al., 2022; Chen & He, 2021; Tian et al., 2021; Hal-
vagal et al., 2023; Wang et al., 2022). Taken altogether,
the CPLearn projector and loss functions guarantee to train
the backbone network in a robust manner, preventing all
known forms of collapses. Consequently, this represents
the first collapse-proof non-contrastive SSL solution and
we summarize the method together with its PyTorch-like
pseudo-code in Figure 2.

3.1. Minima of the Loss Function

In the following, we assume that the backbone has infinite
capacity. Further discussion about the relaxation of this
assumption is left to Appendix C. Therefore, we decouple
the study of the objective and its minima from the neural
network. In Appendix D, we prove that

2ϵ = 1e− 8 throughout the paper.
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Figure 2: In CPLearn, minimizing the proposed objective
together with the corresponding projector ensures that the
embedding representations are clustered and at the same
time that their features are decorrelated. This guarantees
that the representations are collapse-proof, meaning that di-
mensional, cluster, intra-cluster and representation collapses
are prevented.

Algorithm 1 Pseudocode for CPLearn

# g: encoder network
# n: batch size
# f: embedding dimensionality
# c: dictionary size
# eps: 1e-6
# bn: batch normalization
# norm: L2 normalization activation
# softmax: softmax activation with temperature
# beta: weight for the invariance loss
# ce: crossentropy loss

# compute non-learnable dictionary codes
W = 2 * randint(2, size=(f, c)) - 1 # f-by-c
for X_o in loader: # load a batch with n samples

# two randomly augmented versions of X_o
X, X‘ = augment(x_o)
# compute representations
Z = g(X) # n-by-f
Z‘= g(X‘) # n-by-f

# extract embeddings (blue square block)
H = norm(bn(linear(Z))) * sqrt(f / n) # n-by-f (*)
H‘= norm(bn(linear(Z‘))) * sqrt(f / n) # n-by-f (*)
# compute probabilities (gray block)
tau = f / (sqrt(n) * log((1 - eps * (c - 1)) / eps))
P = softmax(H @ W, tau) # n-by-c
P‘= softmax(H‘ @ W, tau) # n-by-c
# compute losses
loss_prior = ce(1 / c, P.mean(0))
loss_inv = ce(P, P‘).mean()
loss = beta * loss_inv + loss_prior

# optimization step
loss.backward()
optimizer.step()

(*) See Practical Considerations for a simpler alternative
to L2-normalization

Lemma 1 (Minima). ∀i ∈ [n] and j ∈ [c], ϵ ≤ pij ≤
1−ϵ(c−1) and ϵ ≤ qj ≤ 1−ϵ(c−1) with 0 ≤ ϵ < 1/c,
then the global minima of the loss function in Eq. 2
jointly satisfy the following conditions:

• Invariance ∀i ∈ [n] and j ∈ [c], pij = p′ij .

• Extrema ∀i ∈ [n], ∃!j ∈ [c] such that pij =
1 − ϵ(c − 1) and ∀k ∈ [c] with k ̸= j, pik = ϵ.
Here, the word extrema refers to the extrema of a
probability simplex.

• Matched prior ∀j ∈ [c], 1
n

∑n
i=1 pij = qj . More-

over, ∀j ∈ [c] define Imax(j) ≡ {i ∈ [n] : pij =

1− ϵ(c− 1)}, then |Imax(j)| =
(

qj−ϵ
1−cϵ

)
n.

The global minimum value of Eq. 2 is bounded by

LCPLearn(D) ≥− β(1− ϵ(c− 1)) log(1− ϵ(c− 1))

− βϵ(c− 1) log ϵ+H(q) (3)

being equal to H(q) whenever ϵ = 0, where H(q) is
the entropy of q.

The assumptions in the Lemma can always be met by
properly choosing arbitrarily small ϵ to satisfy the relation
0 ≤ ϵ < 1/c. The results of the Lemma can be intuitively

explained by observing that the first two conditions (in-
variance and extrema) and the last one (matched prior) are
mainly a by-product of the invariance and the matching
prior losses in Eq. 2, respectively. Indeed, note that the
invariance loss can be equivalently expressed as a cross-
entropy loss. Therefore, it can be decomposed into the sum
of an entropy term for pi and a Kullback-Leibler (KL) diver-
gence term between pi and p′

i, thus enforcing the extrema
condition through the entropy term and the invariance con-
dition through the minimization of the KL one. Minimizing
the matching prior loss is equivalent to minimize the KL
between qj and 1/n

∑n
i=1 pij , thus enforcing the matched

prior condition. It is also important to specify that while
the results of the Lemma are general and valid for any prior
distribution q, our focus is mainly on the uniform setting.
We leave the study of the non-uniform case (Assran et al.,
2023) to future work.

An important implication of the Lemma is that the global
minima of the CPLearn objective guarantee to avoid rep-
resentation and cluster collapses, consequently reducing
the need for heuristics, such as stop gradients, momentum
encoder and/or specialized clustering layers typically in-
troduced in non-contrastive settings. Indeed, we observe
that all data points indexed by i ∈ [n] are assigned in a
hard way to one of the codes available in the dictionary
due to the extrema condition. Moreover, the distribution
of the assignments follows the result of the matched prior
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condition, specifically |Imax(j)| = n(qj−ϵ)/(1−cϵ). For
a uniform prior qj = 1/c, we have that |Imax(j)| = n/c
for all codes j, meaning that data points are partitioned
and equally assigned to all available codes. Representation
collapse is prevented because data points are assigned in a
hard fashion to different codes, whereas cluster collapse is
avoided because all codes contribute to the partitioning of
the data. Moreover, attaining the lower bound value in Eq. 3
gives a certificate for the avoidance of these collapses.

A similar guarantee result has recently appeared in another
work (Sansone, 2023), where the same training objective
to Eq. 2 is used in addition to a likelihood-based genera-
tive term. Their analysis studies each loss term separately,
demonstrating their different properties. That is, the gener-
ative term prevents representation collapse, the invariance
term enforces smoothness and adherence to the cluster as-
sumption, while the matching prior loss prevents cluster
collapse. Differently from (Sansone, 2023), we study the
objective where the invariance and the matching prior losses
are jointly optimized and show through Lemma 1 that they
are sufficient to avoid the two collapses without the need of
additional terms, like the generative one used in (Sansone,
2023).

3.2. Properties of the Projector

We now turn the analysis to the design of the projector and
state the main theorem of this work for the case of c = f (the
proof is provided in Appendix E). We will later see how to
generalize these results to c ̸= f . Importantly, the theorem
sets the stage for the two key properties of CPLearn, that is
of learning decorrelated and clustered features and avoiding
dimensional and intracluster collapses.

Theorem 1 (Embedding). Given the projector defined
in Eq. 1 with c = f > 2 and a dictionary matrix W
satisfying the condition W TW = fI , if the optimal-
ity conditions of Lemma 1 are met, then the embed-
dings H satisfy the following relation

∀i ∈ [n],∃!j ∈ [c] s.t.

hi = αijwj +

(
αij −

1√
n

)∑
k ̸=j

wk (4)

with αij ∈
{

1√
n
,
(
1− 2

c

)
1√
n

}
.

The theorem tells that at optimality embeddings align with
the orthogonal codes from the dictionary. More concretely,
each embedding aligns with one code up to some spurious
additive term, i.e. the second addend in Eq. 4, whose contri-
bution depends on the admissible values of the coefficient
αij and the remaining codes. Notably, if αij = 1/

√
n,

the spurious term disappears and the embedding shares the

same direction of a single code. If αij = (1−2/c)/
√
n, the

contribution of the spurious term becomes non-zero, scaled
by a factor of 2/c. This notion of alignment is important
to achieve decorrelated and clustered features, as we will
see shortly. The key assumptions to the theorem are the
orthogonality of W , whose codes define a basis for the
embedding space and consequently each embedding can be
expressed as a linear combination of the dictionary codes,
and normalized embeddings, which allow to constrain the
possible values of coefficients for this linear combination.
It is important to specify that, for the sake of generality, the
theorem considers an orthogonal dictionary matrix, which
deviates from the specific choice made in Eq. 1. We will
elaborate this detail about W in the next subsection.

The theorem has three important consequences that are dis-
tilled in the following corollaries:

Corollary 1 (Perfect alignment). Given the assumptions in
Theorem 1, if c → ∞, then ∀i ∈ [n],∃!j ∈ [c] such that
αij =

1√
n

is unique and hi =
1√
n
wj .

Proof. The result in Theorem 1 states that ∀i ∈ [n],∃!j ∈
[c], the coefficients αij ∈ {1/

√
n, (1− 2/c) /

√
n}. Taking

c → ∞, forces all admissible values of αij to coincide with
a unique value 1/

√
n. Substituting this result into Eq. 4

completes the proof.

This means that the orthogonality of codes, the large size
of the dictionary and the normalization of the embeddings
are important inductive biases that are sufficient to guar-
antee perfect alignment to the codes. Indeed, for a large
dictionary, each embedding is assigned to only one of the
available codes, avoiding spurious terms. We also prove in
Appendix F that

Corollary 2 (Diagonal covariance). Given Eq. 4 in Theo-
rem 1 and uniform q, assume that ∀i ∈ [n],∃!j ∈ [c] such
that αij = 1√

n
, then the covariance of the embeddings is

equal to the identity matrix, i.e. HTH = I .

The assumptions of the corollary can be satisfied by simply
choosing a large dictionary along with the other inductive
biases discussed for Corollary 1. These biases are suffi-
cient to ensure that the embeddings are decorrelated and
span the entire embedding space, thus avoiding dimensional
collapse. Moreover, the importance of decorrelated em-
beddings translates into the property of having both the
embedding and representation matrices with full rank. This
ensures improved generalization to supervised linear down-
stream tasks, as shown in Appendix G. Finally, we prove in
Appendix H that

Corollary 3 (Block-diagonal adjacency). Given Eq. 4 in
Theorem 1 and uniform q, assume that ∀i ∈ [n],∃!j ∈ [c]
such that αij = 1√

n
, then the adjacency matrix for the
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embeddings, i.e. HHT , is a block-diagonal matrix with
blocks of equal size and their size being equal to n

c .

The orthogonality of the codes and the normalization of the
embeddings are therefore sufficient conditions to enforce
clustered embeddings. The large size of the dictionary (c ≫
1) contributes to decreasing the block size of the adjacency
matrix, consequently reducing the effect of intra-cluster
collapse.

3.3. Practical Considerations

So far, the analysis has focussed on the case of c = f ,
demonstrating that by choosing large c (also large f ) leads
to decorrelated and clustered embeddings and the preven-
tion of dimensional and intracluster collapses. However,
in practice, we rarely have control over the size of the rep-
resentation f . The typical learning setting of SSL takes a
backbone network with a fixed f and uses a projector to
train it. Therefore, it is natural to ask whether our previous
results hold with the increase of c when f is fixed. At a first
glance, the answer to this question is negative. Indeed, note
that all previous results rely on the assumption of orthogonal
W , so that the codes span the whole embedding space and
also act as an orthogonal basis. Since f is fixed, we can have
only f orthogonal codes. We can go beyond such limitation
and provide an affirmative answer to the above question
by probabilistically relaxing the notion of orthogonal W
and leveraging principles from hyperdimensional comput-
ing (HC) (Kanerva, 2009). More concretely, we can choose
codes as in Eq. 1, that is W ∈ {−1, 1}f×c with elements
drawn i.i.d. from a Rademacher distribution, to obtain a
quasi-orthogonal dictionary matrix. Indeed, we observe that
all columns of W have fixed norm, namely ∥wj∥2 =

√
f ,

and that the expected cosine similarity between two codes
satisfies the following properties:

EW {cos(wj ,wj′)} =

{
1 j = j′

0 j ̸= j′
and

V arW {cos(wj ,wj′)} =
1

f
, ∀j, j′ ∈ [c] (5)

Therefore, the codes are orthogonal to each other on aver-
age with the variance being inversely proportional to the
size of the representation. In other words, W TW = fI
holds on average independently of the choice of c and all
assumptions for Theorem 1 and its corollaries are still satis-
fied. We illustrate the concept in Figure 3. There are several
ways to define random code vectors in HC. We chose to
use the multiply-add-permute encoding, which leverages a
Rademacher distribution. We refer the reader to a recent
survey on HC for more details (Kleyko et al., 2022). This
is a form of encoding equipped with simple element-wise
addition and multiplication operations to perform algebraic
compositions. Notably, the exploitation of the composi-

tional properties of HC is beyond the scope of the current
work and left to future work.

In Eq. 1 we have a linear and batch normalization layer
to ensure that the representations have well-behaved first-
order and second-order statistics throughout training, thus
speeding up the training convergence. Some examples are
provided in Appendix A. Additionally, we replace the L2-
normalization activation in the projector with the hyperbolic
tangent one, without affecting the results of the theory.3

The reason for such choice is to facilitate training: Instead
of constraining embeddings to lie on a hypersphere and
consequently reduce their dimensionality, we constrain them
to lie inside a hypercube while preserving their dimensions.
We also provide an experimental comparison between the
two activations in terms of generalization performance in
Appendix B.

4. Experiments
The experimental analysis is divided into four main
parts. Firstly, we compare CPLearn against non-
contrastive approaches from the families of feature decor-
relation and cluster-based methods on three image datasets,
i.e. SVHN (Netzer et al., 2011), CIFAR-10, CIFAR-
100 (Krizhevsky et al., 2009). Secondly, we demonstrate
the effects of increasing the dictionary size to validate the
results in Corollary 2 and 3 and their implication to general-
ization on downstream tasks, including clustering and linear
probe evaluation. Thirdly, we scale the analysis using a
larger backbone on CIFAR-10. Finally, we run the analysis
on ImageNet-100. We use a ResNet-8 backbone network
with f = 128 for SVHN and CIFAR10, and with f = 256
for CIFAR-100, following the methodology from (Sansone,
2023). The scaled analysis, leverages a ResNet-18 backbone
with f = 512. For ImageNet-100, we use a standard small
ViT with f = 384, following the methodology from (Caron
et al., 2021). The β parameter in Eq. 7 is chosen from the
range {0.01, 0.05, 0.1, 0.25, 0.5, 1, 2.5, 5, 10}, so that both
terms in the objective are minimized. More details are avail-
able in Appendix I). We use the repository from (da Costa
et al., 2022) for SVHN and CIFAR experiments, and the one
from (Caron et al., 2021) for ImageNet-100 experiments.
Further details are available in Appendices I, L, M and N.

Generalization on downstream tasks. We compare
CPLearn with Barlow Twins (Zbontar et al., 2021), forc-
ing diagonalization of the embedding cross-covariance,
SwAV (Caron et al., 2020), using a Sinkhorn-based clus-
tering layer in the projector, Self-Classifier, using a similar
loss (Amrani et al., 2022), and GEDI (Sansone & Manhaeve,
2024), using our loss function in conjunction with a multi-

3At optimality, embeddings are aligned and all results from the
corollaries are still valid.
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(a) c = f = 50 (b) c = 2f (c) c = 5f (d) c = f = 100 (e) c = 2f (f) c = 5f

Figure 3: Top: Illustration of W TW obtained by randomly sampling W . Bottom: Normalized histograms of the elements
of W TW . Figs. 3a-3c have fixed f = 50, whereas Figs. 3d-3f have fixed f = 100. W TW has diagonal values at 1 and
random off-diagonal values centered around zero. For larger c and fixed f , variance remains constant and quasi-orthogonality
is preserved.

Table 1: Test generalization on downstream tasks including clustering and supervised linear probing. Performance are
measured in terms of normalized mutual information (NMI), accuracy (Acc.) and are averaged over 5 training runs obtained
from random initialization seeds. We test CPLearn for undercomplete (c = 10), complete (c = f ) and overcomplete
(c = 16384) dictionaries. For the Self-Classifier, we test the recommended size for the dictionary (c = k, with k being the
number of ground truth classes) and the overcomplete case (c = 16384).

Clustering (NMI) Supervised Linear Probing (Acc.)

Method SVHN CIFAR-10 CIFAR-100 SVHN CIFAR-10 CIFAR-100

Barlow 0.06±0.02 0.05±0.01 0.10±0.01 0.76±0.01 0.65±0.00 0.28±0.00
SwAV 0.03±0.01 0.29±0.02 0.12±0.07 0.45±0.03 0.56±0.01 0.10±0.06
GEDI no gen 0.07±0.02 0.33±0.02 0.28±0.00 0.63±0.02 0.66±0.01 0.39±0.00
GEDI 0.07±0.00 0.29±0.01 0.25±0.01 0.58±0.00 0.64±0.01 0.38±0.00
Self-Classifier (c = k) 0.07±0.02 0.28±0.01 0.26±0.00 0.58±0.01 0.59±0.01 0.15±0.00
Self-Classifier (16384) 0.25±0.01 0.14±0.10 0.17±0.21 0.70±0.01 0.34±0.18 0.16±0.00

CPLearn (10) 0.11±0.01 0.28±0.02 0.15±0.00 0.60±0.02 0.59±0.01 0.15±0.00
CPLearn (c = f ) 0.16±0.02 0.25±0.01 0.33±0.00 0.60±0.03 0.59±0.01 0.18±0.01
CPLearn (16384) 0.29±0.00 0.35±0.00 0.59±0.00 0.75±0.00 0.67±0.00 0.40±0.00

(a) c = 10 (b) c = 128 (c) c = 16384 (d) c = 10 (e) c = 128 (f) c = 16384

Figure 4: Realization of embedding covariance (left) and adjacency matrices (right) for the whole CIFAR-10 test dataset.
Increasing c reduces the value of the off-diagonal elements of the covariance, thus contributing to increase the decorrelation
of features (cf. Corollary 2). Moreover, increasing c has the effect to reduce the block sizes of the adjacency matrix (cf.
Corollary 3).
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Figure 5: Downstream generalization on CIFAR-10 test
dataset, clustering (left) and linear evaluation results (right).

layer perceptron projector as in Barlow Twins.4 We test the
downstream performance on clustering using normalized
mutual information (NMI) computed between the projector
predictions and ground truth labels and supervised linear
probing on the representations using accuracy (Acc.). In
Table 1, we report all results and include three different set-
tings for CPLearn, each corresponding to the undercomplete
(c<f ), complete (c=f ) and overcomplete (c>f ) dictionary
case. We observe that Barlow Twins performs well on linear
probe evaluation compared to the other baselines, thanks
to the connection between feature decorrelation and gener-
alization (cf. Appendix G), whereas SwAV, Self-Classifier
and GEDI perform better on clustering tasks than Barlow
Twins. We also observe that CPLearn in the undercomplete
case performs comparably well to the other cluster-based
baselines despite its difference in the design of the projector.
However, CPLearn is the only method to systematically
leverage larger dictionaries to improve both the clustering
and classification performance, as predicted by our theory.

Effects of increasing the dictionary size. We provide addi-
tional insights on the benefits of increasing the size of the
dictionary. Specifically, we show some examples of em-
bedding covariances and adjacency matrices computed on
CIFAR-10 for different values of c in Fig. 4, thus demonstrat-
ing that larger dictionary sizes contribute to implicitly diag-
onalize the covariance as well as to reduce the block sizes in
the adjacency, as predicted by our corollaries. Moreover, we
provide a quantitative evaluation on the downstream tasks
in Fig. 5, where we observe a monotonic increase in clus-
tering and classification performance with large values of
c. Similar results hold for other datasets, cf. Appendix J.
Interestingly, the monotonic increase in clustering perfor-
mance suggests that more and more structured information
is preserved in the projector.

Additionally, we investigate dimensional collapse following
the methodology proposed in previous work (Jing et al.,
2022), by computing the singular value distribution of the
covariance matrix of the embeddings. We also propose to

4The work in (Sansone & Manhaeve, 2024) proposes two so-
lutions, one adding a generative term to our objective, named
GEDI, and one without, named GEDI no gen. Both versions use a
standard MLP network for the projector.

0 20 40 60 80 100 120
Singular Value Rand Index

4

2

0

2

4

6

8

Lo
g 

of
 S

in
gu

la
r V

al
ue

s Self-Classifier
GEDI nogen
SwAV

Barlow
CPLearn

(a) Dimensional

101 102 103

Number of Mixture Components
25

0

25

50

75

100

125

150

En
tro

py
 E

st
im

at
e

Self-Classifier
GEDI nogen
SwAV

Barlow
CPLearn

(b) Intracluster

Figure 6: Analysis of dimensional and intracluster collapses.
For Self-Classifier, we choose c = f .

study intra-cluster collapse by estimating the entropy of
the embedding distribution. This is done by: (i) fitting a
Gaussian mixture model with diagonal covariance to the
embeddings; (ii) estimating the entropy of the resulting dis-
tribution via Monte Carlo sampling using 10k samples; and
(iii) repeating the analysis for different numbers of mixture
components, i.e., 10, 20, 50, 100, 200, 500, 1000. Higher
entropy values indicate a lower degree of intra-cluster col-
lapse. In Appendix K, we (i) qualitatively demonstrate
how the loss function helps avoid representation and cluster
collapse, and we (ii) quantitatively show how large dictio-
naries prevent dimensional and intracluster collapse, thus
confirming that more structural information is preserved in
the projector. Finally, we repeat the analysis of collapses
by comparing CPLearn to competing methods. In Fig. 6a,
we observe that CPLearn achieves performance comparable
to the best baseline Barlow Twins. This is due to feature
decorrelation property induced by our design. All other
approaches face dimensional collapse. In Fig.6b, we further
demonstrate that CPLearn shows increased robustness to
intra-cluster collapse compared to its competitors.

Method Clustering (NMI) Linear (Acc.)
Barlow 29.1 92.2
SwAV 18.9 89.6
GEDI no gen 44.6 80.0
Self-Classifier (c = f ) 36.9 84.8
Self-Classifier (16384) 33.9 64.9

CPLearn (c = f ) 47.4 91.6
CPLearn (16384) 48.2 91.3

Table 2: Downstream generalization on Resnet-18.

Analysis with larger backbone. We perform experiments
with a larger backbone, i.e. ResNet-18, trained for 1000
epochs on CIFAR-10 comparing all methods in terms of
linear classification and clustering. Further details about
hyperparameters are given in Appendix L. Results are shown
in Table 2. Overall, the table highlights similar observations
to the ones from experiments on ResNet-8, with CPLearn
achieving comparable performance to Barlow Twins and
significantly outperforming all other approaches in terms of
clustering. Additional analysis is provided in Appendix L.
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Table 3: Test generalization on downstream tasks including clustering and supervised linear probing. Performance are
measured in terms of normalized mutual information (NMI), top-1 accuracy (Acc.) Models are trained on ImageNet-100 for
300 epochs. oom stands for out-of-memory. Obtaining this table roughly costs 2k euros (≈ 48 GPU hours per simulation *
40 simulations * 1.35 euros per GPU hour on A100 GPUs). In bold, the best performance for each method.

Clustering (NMI) Supervised Linear Probing (Acc.)

Small Projector Large Projector Small Projector Large Projector

Method 128 1024 2048 32768 65536 131072 128 1024 2048 32768 65536 131072

Barlow 30.0% 53.6% 59.4% oom oom oom 66.9% 77.2% 77.2% oom oom oom
SwAV 28.0% 47.9% 51.2% 60.7% 60.5% 62.8% 76.6% 77.7% 78.0% 76.6% 77.7% 77.3%
DINO 46.0% 53.4% 55.2% 63.1% 64.7% 64.3% 71.8% 73.6% 73.9% 75.1% 76.2% 75.8%
GEDI no gen 24.5% 36.3% 38.8% 32.7% 32.9% 33.3% 71.8% 73.2% 72.8% 72.9% 72.7% 72.8%
CPLearn 34.1% 54.3% 57.9% 69.3% 69.6% 70.9% 70.8% 72.8% 70.1% 74.5% 74.7% 78.0%

Analysis on ImageNet-100. We analyze the effect of the
dictionary size on ImageNet-100 using a ViT-small back-
bone and compare CPLearn against Barlow Twins (Zbontar
et al., 2021), SwAV (Caron et al., 2020), GEDI (Sansone &
Manhaeve, 2024) and DINO (Caron et al., 2021). We use
the original DINO codebase for the experiments and train
all models for 300 epochs. Table 3 summarizes the results
in terms of clustering and linear probing evaluation. While
Barlow Twins and SwAV achieve good generalization on the
linear probing task, they underperform compared to DINO
in terms of clustering performance, demonstrating that no
method is capable to tackle both tasks well. In contrast,
CPLearn is able to make effective use of a large dictionary
size to achieve good generalization on both clustering and
linear probing tasks. This further demonstrates the value
of the theoretical guarantees of CPLearn, translating into a
simplified and principled design of the projector and loss
function compared to DINO (such as avoiding the use of
asymmetric operations like stop gradient, centering opera-
tion for the teacher network, use of different temperature
parameters for student and teacher networks and exponential
moving average update of the teacher parameters), while
ensuring good properties like decorrelated and clustered
features.

5. Conclusions
We have distilled the essential principles of non-contrastive
self-supervised learning into the design of a projector and
loss function that prevent known failure modes, including
representation, cluster, dimensional, and intracluster col-
lapses. This approach enables robust training of a backbone
network, achieving representations that are both decorre-
lated and clustered. We have also demonstrated that the
resulting solutions improve generalization to supervised
downstream tasks when large dictionaries are used in the
projector. A future direction is to improve scalability when
storing and using large dictionaries. We could leverage
the bipolar nature of the codes, instead of treating them as
floating-point vectors, to significantly enhance efficiency. In

the future, we plan to leverage the connection with hyperdi-
mensional computing and leverage its algebraic properties
for tackling learning and reasoning tasks.
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While the results of this work are foundational in nature,
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Appendix

A. Training Statistics
We provide some examples demonstrating the effectiveness of introducing linear and batch normalization layers in the
projector in Fig. 7. This contributes to prevent excessing increase of mean or variance. An alternative and promising
approach to the linear and batch normalization layers is to penalize the norm of the representations directly in the objective.
We leave this to future investigation.

(a) checkpoint @ 50 epochs (b) checkpoint @ 200 epochs

Figure 7: Example of mean and standard deviation statistics for the representation features obtained by the backbone network
trained on SVHN data. Statistics are computed for a batch of size of 100 samples. Results corresponds to checkpoints for the
projector (c = 4096) without (top) and with (bottom) linear and batch normalization layers. Linear and batch normalization
layers contribute to stabilize the training by avoiding mean or variance increase.

B. Comparison of Different Activations for the Projector
We provide a comparison between activation functions on SVHN, CIFAR-10 and CIFAR-100 in Table 4. For both activations,
we use β according to Table 7.

C. Discussion on Finite Capacity
It is important to mention that the global minima for the CPLearn objective might not be reached when using a backbone
network of finite and small capacity. In this case, the avoidance of representation and cluster collapses can still be guaranteed
when the invariance and the matching prior losses are both minimized. Indeed, we observe that for representation collapse
pij = pj for all i ∈ [n], j ∈ [c] (i.e. the outputs of the overall network are constant with respect to their inputs) and that the
corresponding mimimum value of the objective is given by the following formula

LCPLearn(D) = βH(p) + CE(q,p)

14



Collapse-Proof Non-Contrastive Self-Supervised Learning

Table 4: Test generalization on downstream tasks including clustering and supervised linear probing. Performance are
measured in terms of normalized mutual information (NMI), accuracy (Acc.) and are averaged over 5 training runs obtained
from random initialization seeds. We test CPLearn using L2-Norm and Tanh activations.

Clustering (NMI) Supervised Linear Probing (Acc.)

c Activation SVHN CIFAR-10 CIFAR-100 SVHN CIFAR-10 CIFAR-100

10
L2-Norm 0.14±0.02 0.30±0.01 0.16±0.01 0.64±0.02 0.60±0.01 0.15±0.01
Tanh 0.11±0.01 0.28±0.02 0.15±0.00 0.60±0.02 0.59±0.01 0.15±0.00

f
L2-Norm 0.16±0.00 0.26±0.00 0.33±0.01 0.59±0.01 0.60±0.01 0.20±0.01
Tanh 0.16±0.02 0.25±0.01 0.33±0.00 0.60±0.03 0.59±0.01 0.18±0.01

16384
L2-Norm 0.31±0.00 0.35±0.00 0.58±0.00 0.78±0.01 0.68±0.00 0.41±0.00
Tanh 0.29±0.00 0.35±0.00 0.59±0.00 0.75±0.00 0.68±0.00 0.40±0.00

where the first addend arises from the invariance loss, whereas the second one arises from the matching prior one. Notably,
the two terms cannot be minimized at the same time due to their competitive nature. For instance, in the case of uniform q,
the solution of p = q is a minimum for the matching prior loss but not for the invariance one (this is actually a saddle point,
as corresponding to the maximum for the entropy term in the above equation).

Cluster collapse occurs whenever ∃j, k ̸= j ∈ [c] such that for all i ∈ [n], pij ≤ pik. The minimization of the invariance
loss forces the whole network to make low entropy predictions, whereas the minimization of the matching prior loss forces
to distribute these predictions across all codes according to q. Hence, when both losses are minimized cluster collapse is
avoided.

D. Minima of the CPLearn Loss
Proof. We recall here the loss

LCPLearn(D) = −β

n

n∑
i=1

c∑
j=1

pij log p
′
ij −

c∑
j=1

qj log
1

n

n∑
i=1

pij

and prove all optimality conditions. Before doing that, we observe that the loss is convex w.r.t. P when P′ is fixed, as
the first addend is a sum of linear terms, whereas the second addend is a sum of convex terms. Similarly, we observe that
convexity holds w.r.t. P′ when P is fixed by exploiting the same reasoning. However, it is important to mention that the loss
is not convex globally. This can be shown firstly by computing the Hessian of the first addend w.r.t. both P and P′ and
secondly by observing that the Hessian is not positive semi-definite (we skip the tedious calculation of the Hessian).

Invariance. We observe that P′ appears only in the first addend of LCPLearn and that this addend can be equivalently
rewritten in the following way:

−β

n

n∑
i=1

c∑
j=1

pij log p
′
ij = −β

n

n∑
i=1

c∑
j=1

pij log pij −
β

n

n∑
i=1

c∑
j=1

pij log
p′ij
pij

=
β

n

n∑
i=1

H(pi) +
β

n

n∑
i=1

KL(pi∥p′
i) (6)

where H(.),KL(.) are the entropy and Kullback-Leibler divergence, respectively. Therefore minimizing LCPLearn w.r.t. P′

is equivalent to minimizing Eq. 6. The solution is given by pi = p′
i, ∀i ∈ [n], thus proving the invariance condition.

Extrema. We first leverage the invariance condition, pi = p′
i, ∀i ∈ [n], and rewrite LCPLearn accordingly:

LCPLearn(D) = −β

n

n∑
i=1

c∑
j=1

pij log pij −
c∑

j=1

qj log
1

n

n∑
i=1

pij (7)
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We observe that the loss in Eq. 7 is convex w.r.t. P. Therefore, we can obtain its optimality conditions, by deriving the
closed-form solutions for the minima of the second addend in Eq. 7, and then constraining the optimization of the first
addend with these solutions and deriving the corresponding minima.

Let’s start by considering the following constrained convex minimization problem, obtained from the first addend in Eq. 7,
with n, β being dropped as being constant for the optimization:

min
P

−
n∑

i=1

c∑
j=1

pij log pij

s.t.
c∑

j=1

pij = 1, ∀i ∈ [n]

ϵ ≤ pij ≤ 1− ϵ(c− 1), ∀i ∈ [n], j ∈ [c],

(8)

and the corresponding Lagrangian with multipliers Λ,∆ ∈ Rn×c
+ ,ν ∈ Rn is:

L1(P;Λ,∆,Ω,ν) ≡−
n∑

i=1

c∑
j=1

pij log pij +

n∑
i=1

νi

 c∑
j=1

pij − 1

+

+

n∑
i=1

c∑
j=1

[λij(ϵ− pij) + δij(pij − 1 + ϵ(c− 1))] (9)

We observe that the Lagrangian is constructed so as to satisfy the following relation

−
n∑

i=1

c∑
j=1

pij log pij ≥ L1(P;Λ,∆,Ω,ν) (10)

Let’s maximize L1 w.r.t. P by setting ∇pij
L1 = 0. This leads to the following closed-form expression:

p∗ij = e−1−λij+νi+δij ∀i ∈ [n], j ∈ [c] (11)

By evaluating L1 at the solutions in Eq. 11, we obtain the Lagrange dual function

L1(P
∗;Λ,∆,Ω,ν) = n+

n∑
i=1

−νi +

c∑
j=1

[λijϵ− δij(1− ϵ(c− 1))]

 (12)

The Lagrange multipliers in Eq. 12 depend on the values of P∗ through the Karush-Kuhn-Tucker (KKT) conditions. We
distinguish two main cases for P∗, each leading to different evaluation of the Lagrange dual function:

• Case 1. When all probability values touch their extrema, such as

∀i ∈ [n],∃!j ∈ [c],∀k ∈ [c] with k ̸= j s.t. p∗ij = 1− ϵ(c− 1) and p∗ik = ϵ

By the KKT conditions (i.e. complementary slackness), we have that λij = 0 and δik = 0, whereas λik ≥ 0, δij ≥ 0.
By substituting these conditions in Eq. 12, we obtain that

L1(P
∗;Λ,∆,Ω,ν)|{λij=δik=0} = n+

n∑
i=1

−νi − δij(1− ϵ(c− 1)) +
∑
k ̸=j

λikϵ

 (13)
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By taking into account also Eq. 11, we have that ∀i ∈ [n],∃!j ∈ [c],∀k ∈ [c]

δij = 1− νi + log(1− ϵ(c− 1)) and λik = −1 + νi − log ϵ (14)

And by substituting Eq. 14 into Eq. 13, we obtain that

L1(P
∗;Λ,∆,Ω,ν)|{λij=δik=0} and Eq. 14 =− n(1− ϵ(c− 1)) log(1− ϵ(c− 1))−

− nϵ(c− 1) log ϵ (15)

• Case 2. When all probability values never touch the highest extrema, such as

∀i ∈ [n], j ∈ [c], s.t. p∗ij < 1− ϵ(c− 1)

By KKT conditions, we have that δij = 0. By substituting these conditions in Eq. 12, we obtain that

L1(P
∗;Λ,∆,Ω,ν)|{δij=0} = n+

n∑
i=1

−νi +

c∑
j=1

λijϵ

 (16)

which always satisfies the inequality

L1(P
∗;Λ,∆,Ω,ν)|{δij=0} ≥ L1(P

∗;Λ,∆,Ω,ν)|{λij=δik=0} (17)

and therefore also

L1(P
∗;Λ,∆,Ω,ν)|{δij=0} ≥ L1(P

∗;Λ,∆,Ω,ν)|{λij=δik=0} and Eq. 14 (18)

Finally, we observe that the objective of the optimization problem of Eq. 8 evaluated at the solutions of Case 1 is

−
n∑

i=1

c∑
j=1

pij log pij = L1(P
∗;Λ,∆,Ω,ν)|{λij=δik=0} and Eq. 14 (19)

And by leveraging also the result in Eq. 18, we can state that the solutions of Case 1 are the global minima of the objective
in Eq. 8. Thus concluding the proof for the extrema condition.

Matched prior. We consider the minimization of the second addend in Eq. 7 subject to the extrema condition

min
P

−
c∑

j=1

qj log
1

n

n∑
i=1

pij

s.t.
c∑

j=1

pij = 1, ∀i ∈ [n]

pij ∈ {ϵ, 1− ϵ(c− 1)}, ∀i ∈ [n], j ∈ [c], (20)

Let’s define p̃j ≡ 1
n

∑n
i=1 pij for all j ∈ [c] and observe that

∑c
j=1 p̃j = 1 and ϵ ≤ p̃j ≤ 1− ϵ(c− 1). Therefore, we can

rewrite the problem in Eq. 20 equivalently

min
P

−
c∑

j=1

qj log p̃j

s.t.
c∑

j=1

p̃j = 1,

ϵ ≤ p̃j ≤ 1− ϵ(c− 1), ∀j ∈ [c], (21)
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Now, we observe that the optimization objective satisfies the following equality

−
c∑

j=1

qj log p̃j = H(q) +KL(q∥p̃) (22)

The minimum for Eq. 22 is obtained at q = p̃ and this solution satisfies the constraints in Eq. 21 because ϵ ≤ qj ≤ 1−ϵ(c−1)
for all j ∈ [c] (indeed we can always choose ϵ to satisfy the inequality), thus being the global optimum. In other words, we
have that 1

n

∑n
i=1 pij = qj for all j ∈ [c].

Finally, recall that Imax(j) ≡ {i ∈ [n] : pij = 1 − ϵ(c − 1)}, ∀j ∈ [c], which identifies all elements having the highest
possible value of probability in P . We observe that

n∑
i=1

pij =
∑

i∈Imax(j)

pij +
∑

i/∈Imax(j)

pij

=
∑

i∈Imax(j)

(1− ϵ(c− 1)) +
∑

i/∈Imax(j)

ϵ (by Extrema condition)

= |Imax(j)|(1− cϵ) + nϵ

By the condition 1
n

∑n
i=1 pij = qj and the above relation we have that

|Imax(j)|(1− cϵ) + nϵ = nqj , ∀j ∈ [c]

or equivalently that

|Imax(j)| =
(
qj − ϵ

1− cϵ

)
n (23)

Now, for the case of uniform prior, Eq. 23 becomes

qj =
1

c
=⇒ |Imax(j)| =

n

c
, ∀j ∈ [c] (24)

This concludes the proof for the matching prior condition.

Finally the global minimum value of the CPLearn objective can be obtained by dividing Eq. 15 by n and adding the entropy
term (as for the result obtained by the matched prior condition). This concludes the proof of the Lemma.

E. Embedding Theorem
Proof. Recall the extrema condition from Lemma 1, that is

∀i ∈ [n],∃!j ∈ [c],∀k ∈ [c] with k ̸= j s.t. pij = 1− ϵ(c− 1) and pij = ϵ

Moreover, due to orthogonality of W we can express the Span condition, i.e. hi =
∑c

j′=1 αij′wj′ for all i ∈ [n] with
αij ∈ R, This fact leads us to the following equation

pij =
ew

T
j hi/τ∑c

j′′=1 e
wT

j′′hi/τ
=︸︷︷︸

Span

eαijf/τ∑c
j′=1 e

αij′f/τ
∀i ∈ [n], j ∈ [c] (25)

Combining the extrema condition with Eq. 25 gives us a system of equations for each i ∈ [n]
eαijf/τ∑c

j′=1
e
α
ij′f/τ = 1− ϵ(c− 1)

eαikf/τ∑c
j′=1

e
α
ij′f/τ = ϵ ∀k ̸= j
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By taking the logarithm on both sides of the two equations and resolving the above system, the solution is equal to

αik = αij −
τ

f
log

(
1− ϵ(c− 1)

ϵ

)
= αij −

1√
n

∀k ̸= j (26)

where the last equality holds due to the choice τ = f/(
√
n log((1− ϵ(c− 1))/ϵ)). Using Eq. 26 in the Span condition gives

us the following result

∀i ∈ [n],∃!j ∈ [c] s.t. hi = αijwj +

(
αij −

1√
n

)∑
k ̸=j

wk (27)

Note that the αij could potentially take any value in αij ∈ R. This is not allowed as embeddings are normalized by design
choice (cf. Eq. 1). Indeed, the norm of the embeddings can be rewritten to exploit Eq. 27

∥hi∥22 = hT
i hi

=︸︷︷︸
Eq. 27

cfα2
ij −

2(c− 1)f√
n

αij +
f

n
(c− 1) (28)

and by equating Eq. 28 to the fact that embeddings are normalized ∥hi∥22 = f
n for all i ∈ [n] we obtain the following

quadratic equation

α2
ij −

2(c− 1)f√
n

αij +
f

n
(c− 1)− f

n
= 0

whose solutions are given by

αij =

{
1√
n(
1− 2

c

)
1√
n

This concludes the proof.

F. Diagonal Covariance
Proof. Recall from Theorem 1 that

∀i ∈ [n],∃!j ∈ [c] s.t. hi = αijwj +

(
αij −

1√
n

)∑
k ̸=j

wk

By assumption αij =
1√
n

and therefore

∀i ∈ [n],∃!j ∈ [c] s.t. hi =
1√
n
wj (29)

meaning that the rows of H are equal up to a constant to the codes in the dictionary and that they span the same space of the
columns of W , namely the whole embedding space. We can therefore express H as linear combination of W .

Without loss of generality, we can always define H so as to ensure that nearby rows are associated to the same codes in the
dictionary. Therefore, by combining this with Eq. 29 we have that

H = ATW T
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with

A =


1√
n
1T
n/c 0 · · · 0

0 1√
n
1T
n/c · · · 0

...
...

. . .
...

0 0 · · · 1√
n
1T
n/c

 ∈ Rc×n

where 1n/c is a vector containing n/c ones (whose size follows due to the assumption on uniformity of q). Importantly,
matrix A satisfies the following property

AAT =
1

c
I (30)

Therefore, we have that

HTH = WAATW T

=︸︷︷︸
Eq. 30

1

c
WW T

= I

where the last equality simply follows by the orthogonality condition W TW = fI and the fact that W is a square matrix
(c = f ). Indeed, we have that

W TW = fI

WW TW = fIW

(WW T )W = (fI)W

WW T = fI

thus concluding the proof.

G. Generalization to Supervised Linear Downstream Task
We first observe that by the results of Theorem 1 and the uniformity of q, H has full rank. Moreover, considering that H is
a function of Z through the first layer of the projector in Eq. 1, Z must be also full rank. As a consequence,

ZTZ has full rank. (Full Rank Property) (31)

Now, we recall an existing result for generalization to supervised downstream tasks from (Shwartz-Ziv et al., 2023) (Section
6.1) and demonstrate that the Full Rank Property reduces the generalization error.

Indeed, consider a classification problem with r classes. Given an unlabeled dataset D, used for training CPLearn, with the
corresponding unknown ground truth labels YD ∈ Rn×r and a supervised dataset S = {(xi,yi)}mi=1, with yi being the
rows of the label matrix YS ∈ Rm×r, define Z ∈ Rn×f and Z̄ ∈ Rm×f the representations obtained by feeding datasets D
and S, respectively, through the backbone network g. Moreover, define

PD ≡ I −Z(ZTZ)†ZT

PS ≡ I − Z̄(Z̄T Z̄)†Z̄T

where symbol ·† denotes the pseudo-inverse. Now, suppose we train a linear classifier with parameters U ∈ Rf×r on the
latent representations obtained from dataset S through the following supervised loss

ℓx,y(U) ≡ ∥g(x)U − y∥22 + ∥U∥F

Then, we can state the following theorem
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Th. 1 (restated from (Shwartz-Ziv et al., 2023)). ∀δ > 0 with probability at least 1− δ, we have that

Ex,y{ℓx,y(U)} ≤ 1

n

n∑
i=1

∥g(xi)− g(x′
i)∥2 +

2

m
ED,ξ

{
sup
g

n∑
i=1

ξi∥g(xi)− g(x′
i)∥2

}
+

+
2√
n
∥PDYD∥F +

1√
m
∥PSYS∥F + const(n,m) (32)

where ξ is a vector of i.i.d. Rademacher random variables.

Therefore, the expected supervised loss in Eq. 32 can be reduced by minimizing its upper bound. Note that the first addend
in Eq. 32 is minimized by the CPLearn loss, whereas the second addend is also statistically minimized when n is large. The
third addend refers to the contribution term for the classification on the unlabeled data. While ground truth YD is unknown,
this addend can be minimized by exploiting the following relation

∥PDYD∥F ≤ ∥PD∥F ∥YD∥F
Indeed, note that in order to minimize the left-hand side of the inequality, it suffices to minimize the term ∥PD∥F , which
occurs when ZTZ has maximum rank. This is our case due to the Full Rank Property. Finally, by the same argument used
for the third term in Eq. 32, we can minimize the fourth one by having Z̄T Z̄ with maximum rank. This condition holds
because ZTZ and Z̄T Z̄ concentrate to each other by concentration inequalitites (cf. (Shwartz-Ziv et al., 2023) for more
details).

To summarize, minimizing the CPLearn loss ensures that we reduce the invariance of representations to data augmentations
and increase the rank of the representation covariance. This leads to a decrease of the generalization error as from the result
of Theorem 1.

H. Block-Diagonal Adjacency
Proof. The proof follows step by step the one for the diagonal covariance except for the fact that

HHT = ATW TWA =︸︷︷︸
WTW = fI

fATA = fBA

where

BA ≡ ATA =


1n

c ×n
c

0 · · · 0
0 1

n1n
c ×n

c
· · · 0

...
...

. . .
...

0 0 · · · 1
n1n

c ×n
c

 ∈ Rn×n

and 1n
c ×n

c
is a matrix of ones. This concludes the proof.

I. Experimental Details on SVHN, CIFAR10 and CIFAR100
Training. We used a ResNet-8 (details are provided in Table 5. We consider the hyperparameters in Table 6 for training.
Beta is chosen to ensure both losses are minimized, cf. Table 7.

Evaluation. For linear probe evaluation, we followed standard practice by removing the projector head and train a linear
classifier on the backbone representation. We train the classifier with Adam optimizer for 100 epochs and learning rate
equal to 1e− 2.

J. Additional Results on Dictionary Size
We provide additional visualization results for the covariance and adjacency matrices on SVHN and CIFAR-10, cf. Figs. 8, 9.
Moreover, we add the analysis of generalization on downstream tasks on SVHN and CIFAR-100 varying the size of the
dictionary in Figs 10, 11.

K. Qualitative and Quantitative Analysis of Collapses
In Fig. 12, we provide some qualitative evidence on the avoidance of representation and cluster collapses. Indeed, when
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Table 5: Resnet architecture. Conv2D(A,B,C) applies a 2d convolution to input with B channels and produces an output
with C channels using stride (1, 1), padding (1, 1) and kernel size (A, A).

Name Layer Res. Layer

Block 1

Conv2D(3,3,F) AvgPool2D(2)LeakyRELU(0.2)
Conv2D(3,F,F) Conv2D(1,3,F) no paddingAvgPool2D(2)

Sum

Block 2

LeakyRELU(0.2)
Conv2D(3,F,F)

LeakyRELU(0.2)
Conv2D(3,F,F)
AvgPool2D(2)

Block 3

LeakyRELU(0.2)
Conv2D(3,F,F)

LeakyRELU(0.2)
Conv2D(3,F,F)

Block 4

LeakyRELU(0.2)
Conv2D(3,F,F)

LeakyRELU(0.2)
Conv2D(3,F,F)

AvgPool2D(all)

both losses in the CPLearn objective are minimized these two failure modes are avoided. Additionally, we investigate
dimensional collapse following the methodology proposed in previous work (Jing et al., 2022) by computing the singular
value distribution of the covariance matrix for the embeddings. In Fig. 13a, we observe that for the undercomplete setting
only 10 singular values have large values. This is explained by the fact that embeddings align with the 10 codes in the
dictionary, as predicted by Theorem 1. When c increases, more and more singular values increase in their value. This
provides evidence that the loss function in conjuction with the proposed projector allows to exploit the whole embedding
space and avoid dimensional collapse. Finally, we propose to study intracluster collapse by estimating the entropy of the
distribution for the representations. We do so by (i) fitting a Gaussian mixture model with diagonal covariance on the
representation from the backbone, (ii) estimating the entropy of the distribution through Monte Carlo using 10k samples and
(iii) repeating the analysis for different number of mixture components, i.e. {10, 20, 50, 100, 200, 500, 1000}. Intra-cluster
collapse is avoided when achieving higher values of entropy. We illustrate this in Fig. 13b, showcasing improved performance
for larger values of dictionary size. We provide additional results for the collapses on SVHN and CIFAR100. Specifically,
in Fig. 14 we show the analysis of dimensional collapses, whereas in Fig. 15 we show the one for intracluster collapse.

L. Experimental Details and Additional Analysis with ResNet-18
Experimental details for ResNet-18. We used a ResNet-18 backbone network on CIFAR-10 and train it for 1000 epochs
with Adam optimizer, learning rate equal to 1e − 3 and batch-size equal to 64 on 1 A100 GPU. Beta is selected from a
smaller subset of values {0.1, 0.25, 0.5, 1} (given the more expensive nature of the experiments) to ensure both losses are
minimized and chosen being equal to 1.

Training convergence. We provide a comparison of the linear probing performance over training on the experiments for
ResNet-18 on CIFAR-10. We visualize the top1 accuracy over training epochs both on linear and logarithmic scales. We
observe that CPLearn achieves better convergence rate compared to the other approaches, thanks to the quasi-orthogonality
condition of the code matrix W . Results are shown in Fig. 16.

Time/storage analysis. In Table 8 we compare all methods in terms of storage (MB) and training time (minutes) using a
ResNet-18 trained for 1000 epochs on CIFAR-10. We also provide the linear classification and clustering results for the sake
of completeness. The training time does not seem to be impacted much by the larger projector. The size of the checkpoints
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Table 6: Hyperparameters (in terms of optimizer and data augmentation) used in SVHN, CIFAR-10 and CIFAR-100
experiments.

Class Name param. SVHN CIFAR-10 CIFAR-100

Data augment.

Color jitter prob. 0.1 0.1 0.1
Gray scale prob. 0.1 0.1 0.1
Random crop Yes Yes Yes
Additive Gauss. noise (std) 0.03 0.03 0.03
Random horizontal flip No Yes Yes

Optimizer

Batch size 64 64 64
Epochs 20 200 200
Adam β1 0.9 0.9 0.9
Adam β2 0.999 0.999 0.999
Learning rate 1e− 4 1e− 4 1e− 4

Table 7: Values of β hyperparameter. This is chosen from the range {0.01, 0.05, 0.1, 0.25, 0.5, 1, 2.5, 5, 10} to ensure that
both losses are minimized.

Dictionary Size 10 128 256 512 1024 2048 4096 8192 16384

SVHN 0.5 0.5 0.25 0.25 0.1 0.1 0.1 0.05 0.05
CIFAR-10 0.5 0.5 0.25 0.25 0.1 0.1 0.1 0.05 0.05
CIFAR-100 0.5 0.5 0.25 0.25 0.1 0.1 0.1 0.05 0.05

Method Clustering Linear State dict size [MB] Full checkpoint size [MB] Training time [min]
Barlow 29.1 92.2 79 157 356
SwAV 18.9 89.6 53 102 405
GEDI no gen 44.6 80.0 47 140 353
Self-Classifier (c = f ) 36.9 84.8 51 144 353
Self-Classifier (16384) 33.9 64.9 175 268 355

CPLearn (c = f ) 47.4 91.6 51 144 357
CPLearn (16384) 48.2 91.3 175 268 358

Table 8: Comparison of methods on clustering and linear evaluation, with model sizes and training times.

do increase significantly. However, the relative difference would be much smaller with larger networks such as ViT-S/B/L
or larger ResNet architectures as the backbone itself would be much larger compared to the additional parameters in the
projector.

β Linear
2.0 10.0 (cluster collapse)
1.5 10.0 (cluster collapse)

1.25 10.0 (cluster collapse)
1.0 91.6

0.75 90.2
0.5 88.1

0.25 82.7
0.1 75.1

Table 9: Effect of varying β on linear evaluation performance.

Sensitivity analysis (on β). We conducted additional experiments to evaluate the performance of CPLearn across a finer
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(a) c = 10 (b) c = 128 (c) c = 16384 (d) c = 10 (e) c = 128 (f) c = 16384

Figure 8: Realization of embedding covariance (left) and adjacency matrices (right) for the whole SVHN test dataset.
Increasing c reduces the value of the off-diagonal elements of the covariance, thus contributing to increase the decorrelation
of features (cf. Corollary 2). Moreover, increasing c has the effect to reduce the block sizes of the adjacency matrix (cf.
Corollary 3).

(a) c = 10 (b) c = 256 (c) c = 16384 (d) c = 10 (e) c = 256 (f) c = 16384

Figure 9: Realization of embedding covariance (left) and adjacency matrices (right) for the whole CIFAR-100 test dataset.
Increasing c reduces the value of the off-diagonal elements of the covariance, thus contributing to increase the decorrelation
of features (cf. Corollary 2). Moreover, increasing c has the effect to reduce the block sizes of the adjacency matrix (cf.
Corollary 3).

Figure 10: Analysis of downstream generalization for different values of dictionary size on SVHN dataset.

Figure 11: Analysis of downstream generalization for different values of dictionary size on CIFAR-100 dataset.
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(a) Training losses (b) Adjacency matrix (c) t-SNE visualization

Figure 12: Example of bad (top with β = 0 and middle with β = 10) and well-behaved (bottom, β = 0.1) training loss
dynamics on CIFAR-10 with dictionary size 8192. When only one term is minimized, the model faces cluster collapse, as
demonstrated by the adjacency plots in the top and middle rows (corresponding to 2 and 1 clusters, respectively). However,
when both losses are minimized the collapse is avoided. Interestingly, the visualization of the representations reveals the
absence of representation collapse in all cases (colors are used to denote different ground truth classes).
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(a) Dimensional collapse (b) Intracluster collapse

Figure 13: Collapse analysis on CIFAR-10 test data for different dictionary sizes c. Results are averaged over 5 training runs
obtained from random initialization seeds. Left: The singular values of the embedding covariance are in sorted order and
logarithmic scale. The curve rises with very large values of c, avoiding zero singular values. Right: The number of mixture
components are in logarithmic scale. The curve rises with very large values of c for all number of mixture components.

range of β values, using ResNet-18 on CIFAR-10. The results are presented in Table 9. We observed that performance
improves as β increases. However, excessively large values of β lead to cluster collapse. This occurs because minimizing
only the invariance loss ensures invariance and low-entropy predictions, but does not guarantee satisfaction of the matched
prior condition described in Lemma 1. In other words, the network tends to use only a subset of codes, resulting in cluster
collapse.

M. Experimental Details on ImageNet-100
Training. We used a ViT-small backbone network and train it for 100 epochs with learning rate equal to 5e − 4 and
batch-size per GPU equal to 64 on a node with 8 NVIDIA A100 GPUs. Beta is selected from a smaller subset of values
{0.1, 0.25, 0.5, 1} (given the more expensive nature of the experiments) to ensure both losses are minimized and chosen
being equal to 0.25.

Evaluation. For linear probe evaluation, we use the DINO codebase and train the classifier with Adam optimizer (Caron
et al., 2021).

N. Practical Implementation of the Loss
We observed training instability when using the larger backbone on ImageNet-100. The issue is due to some dictionary
codes being unused during the initial training phase (cluster collapse), making the KL matching prior term infinity. Indeed,
we have that

LCPLearn(D) = βCE(p,p′) + CE(q,p)

∝ βCE(p,p′) +KL(q,p)

In practice, the reverse KL term is sufficient to avoid the issue:

LCPLearn(D) = βCE(p,p′) +KL(p, q)
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(a) SVHN (b) CIFAR-100

Figure 14: Dimensional collapse analysis on test data for different size of dictionary. Results are averaged over 5 training
runs obtained from random initialization seeds.

(a) SVHN (b) CIFAR-100

Figure 15: Intracluster collapse analysis on test data for different size of dictionary. Results are averaged over 5 training
runs obtained from random initialization seeds.
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Figure 16: Analysis of training convergence.
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