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ABSTRACT

Neural network training is a memory- and compute-intensive task. Quantization,
which enables low-bitwidth formats in training, can significantly mitigate the work-
load. To reduce quantization error, recent methods have developed new data formats
and additional pre-processing operations on quantizers. However, it remains quite
challenging to achieve high accuracy and efficiency simultaneously. In this paper,
we explore sub-8-bit integer training from its essence of gradient descent optimiza-
tion. Our integer training framework includes two components: ShiftQuant to
realize accurate gradient estimation, and L1 normalization to smoothen the loss
landscape. ShiftQuant attains performance that approaches the theoretical upper
bound of group quantization. Furthermore, it liberates group quantization from inef-
ficient memory rearrangement. The L1 normalization facilitates the implementation
of fully quantized normalization layers with impressive convergence accuracy. Our
method frees sub-8-bit integer training from pre-processing and supports general
devices. This framework achieves negligible accuracy loss across various neural
networks and tasks (0.92% on 4-bit ResNets, 0.61% on 6-bit Transformers). The
prototypical implementation of ShiftQuant achieves more than 1.85 x /15.3%
performance improvement on CPU/GPU compared to its FP16 counterparts, and
33.9% resource consumption reduction on FPGA than the FP16 counterparts. The
proposed fully-quantized L1 normalization layers achieve more than 35.54% im-
provement in throughout on CPU compared to traditional L2 normalization layers.
Moreover, theoretical analysis verifies the advancement of our method.

1 INTRODUCTION

Recently, deep neural networks have made significant advancements in various tasks. However, this
progress comes at the cost of high computational complexity. High energy cost and computational
resource consumption hamper the deployment of these deep learning applications on both edge-
device and high-end cloud servers. While existing studies primarily concentrate on minimizing
resource consumption during inference Jacob et al.| (2018)); [Li et al.| (2019); [Uhlich et al.| (2019);
Liu et al.| (2022); Lin et al.| (2020); [He et al.| (2019); [Fang et al.| (2023)), it should be noted that the
computational complexity of training is approximately three times that of inference Banner et al.
(2018). Consequently, there is an urgent demand for efficient training methods.

Reducing the bitwidth of data is a reasonable approach. The resource consumption of a neural
network scales almost linearly with the bitwidth of data|/Zhou et al.|(2016). However, low-precision
training faces two challenges. The first is the wide range of gradients. Very few outliers extremely
expand the data range, resulting in high quantization error Sun et al.|(2020); |Xi et al.| (2023)); |Chen
et al.[(2020). The second is the sharp loss landscape of low-precision networks (Cacciola et al.| (2023)).
Sharp local minimal points disrupt optimization significantly [Foret et al.|(2020); Li et al.| (2018).

To address the challenge of wide gradient range and significant quantization errors, common ap-
proaches include (1) employing a non-uniform quantization format|Sun et al.|(2020)); Cambier et al.
(2020); Zhong et al.|(2022)), (2) utilizing smaller quantization granularity, or (3) suppressing outliers
before quantization X1 et al.[(2023); |Chen et al.| (2020). However, all methods encounter practicality
issues, as they cannot be easily adapted to existing General Matrix Multiply (GEMM) software and
hardware implementations or extremely exacerbate the computation burden (detailed discussion
in Sec. 2)). To this end, we analyze the structure of outliers in gradients and develop an efficient
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and effective quantizer, ShiftQuant. With strategic and structural grouping of channels, ShiftQuant
achieves excellent outlier suppression at a negligible cost, and also supports GEMM.

Recent methods focus on developing new quantizers but neglect the impact of sharp loss landscape
X1 et al.|(2023)); |Chen et al.| (2020); Sun et al.| (2020); [Fu et al.|(2021)); |Wu et al.| (2022)); Das et al.
(2018); [Banner et al. (2018); [Chmiel et al.|(2021)); \Ghaffari et al.[(2022). The sharp landscape of low-
precision networks brings more local minimal points and leads to unstable convergence. Moreover,
sharp curvature demands more bits to specify gradients Dong et al.|(2019); |[Foret et al.| (2020). In
this paper, we reveal that the source of the sharp landscape lies in the limited smoothening and
quantization-tolerated capacity of the normalization layers loffe & Szegedy|(2015)); Ba et al.[(2016);
Ulyanov et al.|(2016); Wu & He|(2018)). Stronger smoothening comes from stronger regularization.
In this paper, we introduce the stronger regularization, L1 normalization, into normalization layers,
which achieves clearly smooth loss landscape under less computation.

Our main contributions include the following:

By analyzing the structure of outliers in gradients, we find that appropriately grouping channels can
effectively reduce quantization errors. Hence, we develop a new quantizer, ShiftQuant. ShiftQuant
applies a smart grouping strategy that effectively approximates the optimal solution for grouping
with minimal computational overhead. ShiftQuant utilizes the common low-bitwidth integer format
and supports GEMM. Moreover, we develop a specific implementation of the new quantizer, which
avoids the inefficient memory rearrangement in per-group quantization for the first time.

We experimentally analyze the source of the sharp loss landscape in low-precision networks. Quan-
tization weakens the smoothening effort of L2 normalization layers significantly. To this end, we
develop L1 normalization layers, which achieves stronger smoothening with less computation.

We evaluate the proposed framework on various datasets. Our method achieves negligible perfor-
mance loss on ResNets, Transformers, GNN, and RNN under sub-8-bit integer training, respectively.
Furthermore, theoretical analysis substantiates the effectiveness of the new quantizer and normaliza-
tion layers.

Our prototypical implementation of ShiftQuant achieves more than 1.85 x /15.3% performance
improvement on CPU (ARMv8)/GPU (Nvidia RTX 3090) compared to Pytorch.fp16, and more
than 33.9% resource consumption reduction on FPGA (ZC706) compared to FP16. Moreover, 6-bit
ShiftQuant surpasses 4-bit integer training competitor in efficiency. The implementation of proposed
fully-quantized L1 normalization layers achieves more than 35.54% improvement of throughout on
CPU compared to traditional L2 normalization layers.

2 RELATED WORK AND CHALLENGES

2.1 NEW QUANTIZATION DATA FORMATS

Developing new data formats with wide representing range reduces quantization loss significantly.
Sun et al. Sun et al.| (2020) proposes a new fixed-point format using radix-4, which, unlike the
traditional radix-2 fixed-point format, offers a significantly larger representation range and higher
resolution. Fu et al. [Fu et al.| (2021) explores a dynamic data format with varying bit-widths to
balance accuracy and efficiency by periodically adjusting the bit-width. Cambier et al. (Cambier
et al.| (2020) proposes the S2FP8 format, where a vector is represented by an FP8 vector and two
FP32 values, named squeeze and shift factors. Zhong et al. [Zhong et al.[(2022) develops the MLS
tensor format, which balances the accuracy and computation efficiency in a tensor level. Although
the excellent accuracy, new data formats demand customer design of new hardware units, hindering
the deployment on contemporary devices inherently.

2.2  FINE-GRAINED QUANTIZATION

Fine-grained quantization can reduce quantization error significantly. However, naive fine-grained
quantization may lead to incompatibility with GEMM Xiao et al.|(2023); Zhong et al.|(2022). Since
when fine-grained quantization is applied to the inner dimension, different indices have distinct
floating-point scaling factors. Inevitably, when accumulating these indices, each element must first
multiply its corresponding scaling factor, thereby introducing extra floating-point multiplication
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Table 1: Difference between our method and prior studies.
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Figure 1: Matrix multiplica- normalization layers

tions in training. Inner dimen-
sions are labeled in red.

operations. As shown in Figure[T] three matrix multiplies are involved in training: forward propaga-
tion, loss propagation, and calculation of weight gradient. Almost all dimensions serve as the inner
dimension. To apply GEMM, fine-grained quantization is not allowed.

2.3 OUTLIER SUPPRESSION BEFORE QUANTIZATION

Before quantization, the data is reflected to an easy-quantization space through an invertible mapping.
By conducting the inverse mapping after dequantization, the original data can be recovered with
small loss. Chen et al. (Chen et al.|(2020) implements the reflection by multiplying gradients with a
constructed Hadamard matrix. Similarly, Xi et al. X1 et al.| (2023)) applies the Hadamard reflection on
quantizing activation during training transformers. Additional computation arises from constructing
reflection. Moreover, the reflection operation is conducted in expensive floating-point format.

Our method utilizes the common integer format. Meanwhile, no pre-processing is applied before
quantization. We highlight the difference between our method and prior methods at Table [T}

3  SHIFTQUANT
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Figure 2: The difficulty of quantizing gradients comes from the diversity between channels.
ShiftQuant aims to minimize the diversity through strategic grouping channels. (a) Gradients
exhibit extremely bell-curve distribution, which is very difficult to quantize. (b) Diversity in mag-
nitude of channels leads to high quantization error. (c) High diversity of channels in gradients. (d)
ShiftQuant divides channels to several groups. Each group characters small diversity, leading to
easier quantization.
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3.1 SMART CHANNEL GROUPING

As shown in Figure [2[c), the distribution of gradient varies among channel dimension extremely.
Channels with wide range expand the quantization range, leading to extremely fewer quantization
levels to represent channels with small range (as shown in Figure 2{b)). High quantization variance
comes from the diversity in channels’ ranges. Merging the gap between channel’s range can reduce
quantization error significantly. Grouping channels is a reasonable approach. Appropriately grouping
channels can minimize the diversity in each group. Then, per-group quantization can achieve low
quantization variance and high efficiency at the same time.

Optimizing grouping strategy

It is intuitive that smaller channels should be divided to one group, and larger channels should be
divided to another group. The key of the grouping strategy is to find the threshold to distinguish
small and large channels. To divide channels into Ng groups, we identify Ng + 1 thresholds
T0,T1," " s TNg—1>TNg-

The object of grouping is:

Ng
-
: g
TouTL T ZZ? !
0T NG TN G S S T (1

S8t Tmaz =To 2T1 = -+ 2 TNg—1 = TNg = 0,

where PY is a set that contains the indexes of channels allotted to group g. 7.4, 1S the minimum
around ranges of channels. r; is the range of ¢-th channel. r; satisfies the following condition:

Tg—1 < 1i <7y, ifi € PY. )
Y icps :—f reflects the diversity of channels’ range in group g. Moreover, problem li is equivalent to
directly optimize the quantization variance. The theoretical verification can be found in Appendix. [A]

Efficient power-of-two grouping

We can apply the optimal solution of problem (1)) to group channels. Unfortunately, two serious
obstacles will rise. The first is the complexity to solve. Problem (I)) does not have a closed-form
solution. It requires nonlinear dynamic programming, which demands iterations of complicated
calculation to find the optimal solution. The second is the optimized thresholds are in floating-point
formats. The scale of these groups does not follow integer-times relation. We have to accumulate the
results of groups in floating-point format.

We analyze the characteristics of the objective function T, the ratio of group’s upper threshold to the
range of channel. We find that larger threshold can tolerate greater distance between channels’ range
and threshold. For instance, let 7, = 27,,7; = 2r;. The loss incured by grouping channel % to group
p is equal to that of grouping channel j to group ¢ (;—f = :—j) However, the distance between the

threshold and channel’s range of group p is twice of group ¢ (7, — r; = 2(7, — r;)). Therefore, to
minimize the objective function, a group with larger threshold should hold larger range.

Consider the accuracy and hardware efficiency, we impose power-of-two relation on thresholds:
Tg:70'29:T7rzax’2gvg:17"'aG~ 3)
The above strategy partitions more ranges for groups with larger threshold. Moreover, it frees
grouping from costly optimization and enables accumulation groups in integer format with only a
shift operation. Take the calculation of G 4 as example:
Ng
- _ - g
Ga=Gp- W'=Y [sgl 279 (Gp)J] - [sy - (W"),]
g=1

4)
Ng
=sgh 5w > _(Gp)- (WT)] >> g],
g=1

where (G)¢ and (W™)9 denote the quantized g-th group of Gz and W'. Eq. (4) is also
diagrammed in Figure [3[b). All of the calculation are performed on integer format. Detailed
derivation is provided in Appendix. [D] ShiftQuant achieves unbiased and low-variance quantization.

Theoretical analysis is provided in Appendix.
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3.2 IMPLEMENTATION OPTIMIZATION

We devise two approaches to implement ShiftQuant. One is based on GEMM. Additionally, we de-
velop a specific implementation method, named ShiftMM, which achieves higher hardware efficiency.

Step 1: Memory Step 2: Matrix Step 3: Matrix
s 05 rearrangement Multiplication Addition
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(Scale) s 2 6 2 6 |x |3 7 0 2
m 9 1 1 0 " 2 | 5 -4 1 -2 127 e
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Figure 3: The power-of-two grouping strategy in ShiftQuant paves a way for implementing per-
grouping quantization without memory rearrangement. Traditional implementation approach (b)
focuses on applying off-the-peg packages. It transfers original matrix multiplication to several
small matrix multiplications based on the grouping map m, which involves expensive memory
rearrangement. ShiftMM (c) aims higher hardware efficiency. It replaces the memory rearrangement
with only a low-cost shift operation. Meanwhile, it only demands slight changes on off-the-peg
packages.

Implemented by GEMM

As illustrated in Figure [3[b), ShiftQuant divides the traditional matrix multiplication into n pairs
of smaller matrix multiplications. Implementing ShiftQuant through GEMM involves three steps.
Firstly, extracting the n pairs of smaller matrices, which requires memory rearrangement. Secondly,
employing GEMM to perform the n pairs of matrix multiplications. Finally, shifting and summing
the results of these n multiplications. This approach achieves a good balance between efficiency and
versatility. However, the memory rearrangement increases time consumption, and the smaller matrix
multiplications do not fully capitalize on the advantages of GEMM.

Implemented without memory rearrangement

ShiftQuant essentially assigns different shift amounts to each index of the inner dimension. As
depicted in Figure [3[c), we can perform the shifting directly before the accumulation phase of the
vector multiplication. This technique offers two benefits. Firstly, it avoids memory rearrangement.
Secondly, it maintains the same level of parallelism as the original matrix multiplication. We refer to
this implementation method as ShiftMM. The implementation of ShiftMM just requires adding a
shifting operation after the multiplication step in the standard GEMM code.

4  FULLY-QUANTIZED L1 NORMALIZATION LAYERS

4.1 OBSERVATION AND PROPOSAL OF NORMALIZATION LAYERS

As shown in Figure [d] the loss landscape of low-precision networks is sharper and more challenging
to optimize compared to that of full-precision networks. As existing literature |Santurkar et al.
(2018)) points out that normalization layer help smoothen the loss landscape, we hypothesize that
the quantization of the normalization layers might be a main cause of the sharp loss landscape of
low-precision networks. To verify this hypothesis, we replace the quantized normalization layers in
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Figure 4: Low-precision networks feature sharpen loss landscape, which disrupts convergence. We
visualize the loss landscape of ResNet20 on CIFAR10 by the method in|Li et al.|(2018)).
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Figure 5: Procedures of the proposed fully-quantized normalization layer (take BatchNorm for
example). The input X € RNXCXHW ‘where N, C, HW denote the batchsize, number of channels,
number of spatial elements, respectively.

the low-precision networks with full-precision ones. As shown in Figure[c), the sharpness of the
loss landscape disappeared, indicating that the quantization of the L2 normalization layers diminishes
its smoothening capability, leading to the sharp loss landscape.

Two approaches can mitigate this problem, enhancing the smoothening ability of normalization
layers and enhancing their tolerance to quantization. We apply L1 normalization in our fully-
quantized normalization layers. Firstly, L1 normalization has stronger regularization effort than L2
normalization [Huber]| (1996);|Candes et al.| (2006)), leading to stronger smoothening ability (see Sec.
[A.2). Secondly, the L1 norm of activation are usually larger than its L2 norm. Larger L1 norm can
tolerate more quantization errors than L2 norm in the processing of normalization (see Appendix.

The flow of the fully-quantized L1 normalization layer is shown in Figure[5] All of the input features,
statistics, and parameters are quantized to low bitwidth formats. As shown in Figure [@(d), our
fully-quantized L1 normalization layer achieves similar smoothening effort as the full-precision L2
normalization layer.

4.2 THEORETICAL ANALYSIS

The Lipschitzness constant reflects the smoothness of loss landscape Boyd & Vandenberghe| (2004));
Bottou et al.[(2018). The Lipschitzness of L1 normalization layers L' and L2 normalization layers
L? satisfies the following relationship:

<1. (5)

x is a vectorized input activation of normalization layers. A smaller Lipschitzness constant implies
that the gradients of the loss function do not change drastically with small changes in input, which
means the loss landscape is smoother [Boyd & Vandenberghe| (2004); [Bottou et al.| (2018). Detailed
proof can be found in Appendix. [C.1]
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Table 2: Results on ResNets.

Dataset Model Baselines CPT StateQuant Ultra-low Ours
Fu et al.|(2021) Chen et al.|(2020) Sun et al.|(2020)
FP INT8 INT3-6/3-6/6  INT 8/8/5 " radix-4 47474 INT 4/4/4
ResNet20  91.25 8797  90.13 - - 90.41
ResNet38  92.04 8939 91.24 - - 91.46
CIFARIO  ResNet56  93.03 88.82 9197 - - 92.03
ResNet18  93.31 91.73  92.74 92.85 93.76 92.97
ResNet34 9444 92,15 93.28 93.31 - 93.67
ImageNet ResNetl8 6940 61.63  68.01 69.48 68.99 69.02
ResNet50 7648 6894  74.73 74.45 75.51 74.84

Table 3: Results on Transformers.

Dataset  Model [Tyr;:‘"g Metric  Baselines  [Xi etal|(2023) Ultra-low Ghaffari et al[(2022) Ours
Sun et al.|(2020)
FP  INTS INT 4/4/4 Radix-4 47474 INT 87878 INT 6/6/6
CIFARI0 VITB Fine-tune Topl Acc 98.85 94.03 98.36 B - 98.40
ViT-L Fine-tune Topl Acc 98.90 93.69 98.47 - 98.80 98.84
WMT14 E;‘;‘:;“’rmer' Pretrain BLEU 275 21.1 27.17 254 . 27.09

“IXi et al.| (2023) applies 8-bit integer format on gradients and pruns half of gradients.

5 EXPERIMENTS

5.1 PERFORMANCE ANALYSIS

We evaluate our integer training framework on ResNets [He et al.|(2016) and Transformers |Vaswani
et al.| (2017); Dosovitskiy et al.[(2020). We also report the performance of recent state-of-art methods,
including new data format methods CPT |[Fu et al.|(2021)), Ultra-Low [Sun et al.| (2020), reflection
methods StateQuant|Chen et al.| (2020), Xi et al.[(2023), and full integer training architecture Ghaftfari
et al.| (2022). We apply ShiftQuant on activations and gradients, per-out-channel quantization on
weights during forward propagation, and per-input-channel quantization on weights during loss
propagation. We set the number of groups in ShiftQuant as 4 as default. We build two baselines. One
is training in full-precision (fp32). The other is training in 8-bit integer (per-tensor quantization on
weights, activations, and gradients). We adopt hyper-parameters, optimizers, and schedulers for all
the evaluated models.

Image classification We select various network architectures and perform experiments on CIFAR10
Krizhevsky et al.| (2009) and ImageNet|Deng et al.|(2009) to validate the effectiveness of our method.
In convolutional neural networks, we employ 4-bit weights, activations, and gradients, along with
8-bit fully-quantized L.1 Batch Normalization (L1BNQ) on ResNets |[He et al|(2016). As shown
in Table [2| from the shallow ResNetl8 to the deeper ResNet56, our method achieves accurac
comparable to that of the floating-point setup. For the fine-tuning tasks in Vision Transformers (ViT)
Dosovitskiy et al.[(2020), we also use 4-bit weights, activations, and gradients. Since ViT pre-training
utilized L2 Layer Normalization, we have to keep full-precision L2 layer normalization. It is a future
work to quantize the L2 normalization layers of pre-trained models. As indicated in Table [2] our
approach achieves similar performance to the floating-point models in both the basic ViT-B and the
expanded ViT-L models with negligible loss of accuracy. The experiments confirm the robustness of
our method across different network architectures.

Machine translation We train a transformer-based architectureE] on the WMT 14 English-German
(en-de) dataset|Bojar et al.|(2014)). Within the entire network, the linear layers utilize 6-bit weights,
activations, and gradients, along with an 8-bit fully-quantized L1 Batch Normalization (L1BN) layer.
The computation of soft-max in attention mechanism is in floating-point. The results is reported in
Table 3] Our method achieves a negligible loss of accuracy.

Transductive and inductive prediction

"https://github.com/jeonsworld/ViT-pytorch
“https://github.com/facebookresearch/fairseq
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Table 4: Results on Temporal Graph Net- Table 5: Results on Recurrent Neural Network (RNN

work (TGN |[Kumar et al.{(2019)) . Medsker et al.|(2001)) .
Dataset ~ Metric Full-Precision StateQuant Ours Dataset Metric Full-Precision StateQuant Ours
Wikipedia AUC  0-936 0939 0.939 ElectricityLoadDiagrams20112014 N 0-069 0078 0.074

AP 0.945 0.945 0.947 RMSE 0.526 0.516 0.475

Table 6: Performance under different number of groups.  Table 7: Ablation on L1 normalization.

number of groups 6 5 4 3 2 1 FP  L2BN L1BN QL2BN QLIBN
ResNet20 90.47 90.47 90.41 89.71 88.39 86.45 ResNet20 91.25 90.78 90.95 13.34  90.40
ViT-B 98.57 98.52 98.40 98.36 97.54 96.65 ResNet38 92.04 91.43 91.67 11.92 91.46

We train a Temporal Graph Network (TGN [Kumar et al|(2019)) on the Wikipediadataset. All the
linear layers in TGN utilize 8-bit weights, activations, and gradients. Our method even surpasses the
performance on full-precision training.

Time series prediction

We train a Recurrent Neural Network (RNN |[Medsker et al| (2001)) on the
ElectricityLoadDiagrams2011-2014 E] dataset for time series prediction task. Our method
achieves a negligible loss of accuracy.

Our method outperforms competitors across nearly all networks and tasks. In convolutional neural
networks, our method achieves the smallest bitwidth. In transformers, although our method has a
larger bitwidth compared to Xi et al.| (2023), it demonstrates superior hardware efficiency, which
we will discuss in Sec. We are the first to evaluate integer training on both TGN and RNN
architectures. Our method demonstrates strong accuracy retention, showcasing its applicability and
robustness across diverse network architectures.

5.2 PARAMETER ANALYSIS AND ABLATION STUDY

Analysis on number of groups

In ShiftQuant, an increase in the number of groups leads to finer quantization granularity, but an
excessive number of groups can also increase the computational burden. We conducte experiments
on ResNet20 and ViT-B using different group settings on the CIFAR10 dataset. As shown in Table
[l the performance improvement reduces when number of groups increases. When the number of
groups is 4, the grouping map can be represented using exactly 2 bits, while maintaining relatively
high precision. Therefore, we set the number of groups as 4.

Ablation study on L1 normalization

As shown in Table [/] fully-quantized L2 normalization layers are not suitable for low-precision
training. As a contrast, our fully-quantized L1 normalization layers achieve competitive performance.

5.3 HARDWARE OVERHEAD

Throughput analysis on ARMvS

To evaluate the efficiency of our method, we construct two baselines. The first is a fully-quantized
linear layer, which utilizes the simplest per-tensor quantization and implements matrix multiplication
by widely-used OpenBLASﬂ This implementation reflects the upper bounds of efficiency under a
given bitwidth. The second is made against a model using torch.fp16 precision. Meanwhile, we
implement one comparative method [Xi et al.|(2023)). We assess the throughput across various sizes of
linear layers. As depicted in Figure[6] both the GEMM and ShiftMM implementations of our method
significantly outperform the torch.fp16 model. ShiftMM closely matches the performance of the
baseline 4-bit implementation. The performance gap between GEMM and ShiftMM implementation

3http://snap.stanford.edu/jodie/wikipedia.csv
“https://archive.ics.uci.edu/dataset/32 1/electricityloaddiagrams20112014
5]https://www.openblas.net/l
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comes from memory rearrangement. Moreover, 6-bit ShiftMM outperforms 4-bit (2023).
Two ingredients lead to this, the extra computation before quantization and hardware-unfriendly

pruning in (2023).

m=== 4-bit upper bound === Ours(ShiftMM) 4-bit === 6-bit upper bound = Ours(Shift MM) 6-bit
W Ours(Without ShiftMM) 4-bit Hadar bi W Ours(Without ShiftMM) 6-bit  EEEE  Pytorch.fpl6

Gflops

(1.256.512). (4.128.256). (4,256,512), (8,128.256), (8.256.512), (16.128.256),
(312,1024) (256,512) (512,1024) (256,512) (512,1024) (356,512)
Linear layer size (input feature, weight)

Figure 6: Comparison of simplest per-tensor quantization (the upper bound of efficiency), ShiftQuant
(GEMM implementation and ShiftMM implementation), (2023), Pytorch.fpl6 on ARMvS.

Throughput analysis on GPU

As shown in Figure [7] we analyze the performance of our 6-bit ShiftMM, 4-bit (2023),
and Pytorch.fp16 on Nvidia RTX 3090. As the size grows, ShiftMM achieves more performance
improvement than pytorch.fp16. Due to the heavy reflection operation and pruning,
does not take full advantage of the low bitwidth.
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Figure 7: Throughput of ShiftMM, Hadama

-et al| @ngp, and Pvtorch.fp16 on Nvidia RTX Figure 8: Comparision of different normalization
3090. Y P layers on ARMvS.

4.128256) 4.256,512) $.128256) $.256,512) (16128250 (16.236,512)
Feature size (samples, channels, spatial clements)

Resource consumption on FPGA

To validate the efficiency of ShiftMM, we analyze the resource consumption of ShiftMM and basic
GEMM on Xilinx ZC706 board. We perform a matrix multiplication with size (1024, 288, 32) on
FPGA. For a comprehensive comparison, we select two resource bind strategy, LUT priority and DSP
priority. We apply DSP reusing technique on implementation (details can be found in Appendix. [E)
As shown in Table in LUT priority setting, our INT6 implementation saves 60.7% FF and 43.5%
LUT compared with FP16 implementation. In DSP reusing setting, we utilize DSP reusing technique.
Our INT6 implementation saves 50% DSP, 55.3% FF with 3.4% overhead on LUT compared with
FP16 implementation. Meanwhile, ShiftMM achieves closed resource utilization rate with the basic
GEMM.

Time proportion for each part of ShiftQuant

We evaluate the time proportion for each part of ShiftQuant on ARMVS. As depicted in Figure[9] the
power-of-two grouping strategy and shift operation contribute minimally to the overall latency, with
the majority of the time consumed by matrix computations. This observation aligns with the criteria
for an efficient quantizer and further validates the superiority of ShiftQuant.

End-to-end acceleration performance

As shown in Table[J] we evaluate the end-to-end training acceleration of the Vision Transformer (ViT)
across various batch sizes on ARMV8 and RTX-3090. The subsequent tables illustrate the acceleration
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Table 8: Resource consumption of implementation on FPGA (ZC706).

LUT priority DSP priority
Method Baseline Ours Baseline Ours
Bitwidth 4 [ 6 [ 8 [ 16(FP) | 4 6 4 [ 6 [ 8 [ 16(FP) | 4 6
FF 414 576 744 1504 414 590 | 818 1042 1362 2978 |994 1330
DSP 0 0 0 0 0 0 8 16 16 32 8 16
LUT 4671 5050 5406 9178 | 4799 5190 | 4595 4723 5619 5403 |5203 5587
Latency (ms) [ 5.95 6.32 6.32 6.32 595 595 |4.63 4.63 4.63 482 463 4.63

W= Grouping W Quantization mmm Matrix Multiplication WS Shift

Time ratio
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Figure 9: Time proportion for each part of ShiftQuant.
achieved by our method compared to FP16 counterparts. Our method markedly accelerates training.
It is important to note that this was achieved through a basic implementation, without fully leveraging
the potential of ShiftQuant. With further engineering optimizations, the acceleration performance

could be significantly enhanced.

Table 9: End-to-end acceleration on different platforms.

Platform | ARMVS RTX3090

Batchsize |1 4 8 16 |32 40 48 64 80 96 128 192
VIT-B-16 (2% 14% 26% 35% | 9% 12% 15% 21% 18% 26% 34% 62%
VIiT-L-16 |3% 18% 31% 43% | 12% 19% 23% 26% 28% 33% 39% 68%

6 CONCLUSION

In this paper, we enhance sub-8-bit integer training from two aspects. We propose ShiftQuant to
eliminate quantization noise in gradient estimation, and introduce fully-quantized L1 normalization
layers to smoothen the loss landscape for stable convergence. Comprehensive experiments validate
the efficiency and accuracy of our method. Meanwhile, we have implemented ShiftQuant on multiple
types of devices and proven its applicability. The first future direction is to further improve accuracy
and efficiency, including developments in algorithms and implementation techniques. The second
future direction is to apply ShiftQuant to other tasks, such as inference acceleration of large language
models (LLMs). The excellent outlier suppression capacity of ShiftQuant may be useful for other
challenging quantization tasks.
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APPENDIX

A PROOF OF THE EQUIVALENCE BETWEEN PROBLEM (1) AND THE DIRECT
OPTIMIZATION OF QUANTIZATION VARIANCE

Following Eq. [23] given a variable x, the quantization variance under stochastic rounding is:

Var[Q(a)] = (i(z) — 2)* - po(x) + (u(z) — 2)* - (1 = po(x))

= (&~ U(a)) - (u(2) - @), ©

where [(x) and u(z) are lower quantization level and upper quantization level of x.

From the viewpoint of possibility, minimizing quantization variance is equal to minimize the expecta-
tion of quantization variance. The object function is:

min E[Var(Q(z))]. (7)

For @) levels quantization, above function can be represented as:

ON
EVar@Q) = 3 { /l (& L) - (i — )}

l (lm + wpm) cot x - p(x)dx — /l z? - p(x)de — /l I, - p(x)dx}.
m=1 m m m
®)

p(z) is the distribution of z. Any distribution can be representative as the mix of Laplace distributions
with different parameters. Thus, p(x) can be represent as:

1 _ \JJ*MM
= , —— Ak,
o) = 3 ange o
k=1
Insert Eq. 0]to Eq. 8
inf QN U 1 o
EWVar@Q) =3 ax > ([l +um)oota ;e 5 ds
k=1 =1 Jim k
Um 1 _lz—pgl
_ 2.~ T d (10)
/l x 2/\ke v dw

Um 1 _le—pgl
7/ Il - ——€ . dx}.
1 2)\k

m
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We first analyze on one Laplace component:

|z —pgl

tp(z) = Z{/lum(l + Uy, ) cOt T - /1\ T %% dx

k

m 1 _le—npl T —
- / bt - € )‘k'k dx}, letz = Hk
l

m 2)\16 )\k
I ()
Qn m =
l, +u Y B
=St L Gue e e (an
me1 Im iy
g™ (x)
Um —Hi
1 -
T i (Aez + pg)?e”1#ldz
Ak
q" ()
I Um Y 2l
B 2 L'm*/-bk ¢ Z}.
mtE
Analysis on ™ (x)
Um =Mk S Ve —imcibg
Me[(—22te 4 1)e” ™ S — (<4 1)e ]
Uy — o —
+Mk[€_ Ak“k —6_ )\k“k] 7u,,LA M > m P«k >0
Um — MK lm_ lm—pp
T s = 4 20 =3 = Lt = A
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“"7 lm Hk i
Mel(Bts — 1) - (1= 1)e 5]
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(12)
With assumption of symmetry on quantization range, we have:
QN u”;\—uk m —
u — Q Mk h—p
S [T Gwr e dz =a(1 - QNAif‘k)ei% (I, — e ™
m— "L)\;uk k (13)
Li—rg “QN "Mk

+oprle” X —e ] 4 2(uk — k).
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Um — K

For clarity, we represent above function as S(ugy,l), B(ugy,l1) = Em 1 )i Aﬁk Az +
Ak
uk)e*|z‘dz. Then, we have:
m T
Zf = 7—_7)5(“@1\1; quma
m=1 QN
QNT — T _toyThk 27 @
AT N — = Al
@n Qn =
Iy —py — 11—
T T W B PR Bt W v Y
Ak
—1 _®Qy~Hk 1 -
:2)\7'QN e —X— _QATi.(QN_l).[e lx:k— (14)
Qn QN
QN
h— e e 20T - -
TR =2 = T Y e — e
Ak Qn “—
QN 1 ugy — pr Oy "% 2)\7' - _
e Ak um'l — |u e ‘um‘ ,
L
QN Ak
where 7 is the quantization range, and ug, = 5,l1 = —3.

Analysis on g™ (x)

Um —Hk
We first analyze [, % (A2 + pp)%e~1#ldz. Let 1 = lm}\_k‘““,u = “bk we can find:
Ak

N[—2%e™% — 2ze7% — 2e 7|1+
2Apu[—ze ™% — e ]| 4 p2[—e 77|, u>10>0
“ _ A2[(22 — 22+ 2)e?|? + (=22 + 22 — 2)e *|4]+
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15)

Accumulating the integers around different quantization levels:

QN Im_bg
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Analysis on ¢ (x)
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Um — K
We first analyze [, % e |*ldz. Letl = l’”/\;"’“,u = Stk we can find:
Iy
w el —emy, u>1>0
/ e 1Fldz = 2—e—e u>0>1 a7
! e — e, l<u<0.
Thus we have:
Qn 7“7”)\;“’6
Z/ D I (18)
lm—pg
m=1 bYR

Following the same derivation as Eq. (T4), we can find:

QN Um — M 27

Iy + U byR “e T (1= QT) —u
> o /mw e = —— S (2-2e7), (19)
m=1 Nk

Combine the result of Eq. (I4), Eq. (I6) and Eq. (I9), we can find:

Qn —
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Me “(u+1) +e ™ -2+ 5

(2¢7% —2),

where u = w and u > 1. Therefore, t;(x) is a monotonically increasing function of v at a
single point. As the quantization range 7 decreases, the value of ¢ () also decreases. It is evident
that the same conclusion holds on E[Var(Q(x))] = Sr | ctr ().

Now we consider quantizing a vector x € N'HW. The expectation of the maximum of z is[Arnold
et al.| (2008); David & Nagaraja) (2004):

inf
E[maz x] =~ Z(uk + A In(2NHW)) (1)

k=1
The maximum of x is proportionate to A;. E[Var(Q(x))] is a monotonically increasing function
of UQX;M Therefore, E[Var(Q(x))] is also a monotonically increasing function of uf—N (In

k @
experiment, the distribution of gradients are extremely bell curve, which means g, is closed to 0). 7
is the magnitude of x.

Now, we expand to grouping channels. The object of channel grouping is to minimize the quantization

variance:
Ng
min Z Z E[Var(x;)], 22)

T0,T1, \TNG—1,TNg i
8t Tmae =To 2T1 2+ * 2 TNg—1 = TNg = 0,

where x; is the vectorized i-th channel. E[V ar(x;)] is depend on the quantization range of the group
and the range of z;. As indicated before, E[V ar(z;)] is a monotonically increasing function about
uTQ—{V, where 7, is the quantization range of x;. In group quantization, uq, = 74, where 7, is the
upper threshold of group g in Eq. (T). Hence that problem (22) and problem @ has the same optimal

point. Meanwhile, both of them are monotonically increasing about ) -, p, 2.
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B THEORETICAL ANALYSIS ON SHIFTQUANT

Unbiased quantizer

ShiftQuant utilizes stochastic rounding:

z—I(z)
SR@) = { "W UP Wi o (23)
Wz) wp. 11— 5=

where u(z) = s71[s - 2] is the upper quantization level of z. [(z) = s~ ![s - x| is the lower
quantization level of x. s is the quantization scale. It is clear that ShiftQuant is unbiased:

E[D,(X)] =E[SR(X —ZI)-8)-S™ '+ ZI] = X. (24)
X € RNV*P js the quantized matrix. The second dimension of X is the inner dimension. S =
diag(sg, -+ ,8p—1). s; is the scale applied in the i-th index of the inner dimension and s; €
{51,251, ,2N6~"1g}. s is the minimum scale. Z = diag(zo, 21, - ,2p_1) represents the

RDXD

zero-point matrix. I € is a identity matrix.

Low variance

The up bound of ShiftQuant’s variance Uy, satisfies:
D
N -2 N ND
quga-ZZSj +2 NS (25)

572
j=1%j
the up bound of fine-grained quantization’s variance. 2 is the up bound of coarse-grained
quantization’s variance. Eq. demonstrates that ShiftQuant achieves a closed performance to
fine-grained quantizers.

where o is depended on the distribution of channels’ range and1 < a < 4. X Z is

ND
Proof of Unbiased Quantization

E[D,(X)] = E[SR((X — ZI)-S)- S~ + ZI]
=E[SR(X — ZI)]- S-S~ ' +ZI

=(X-2ZI)-5-S'+7I (20
= X.
Clearly, ShiftQuant is a unbiased quantizer.
Proof of Low Variance
From Eq. (6), we can find the up bound of quantization variance:
VarlSA(E) = (&~ 1)) (u(a) - z) < LT @)

where u(x), (x) are the neighbouring quantization levels, and u(z) — I(z) = 5 = s~'. ris the

quantization range, and B is the number of quantization bins.

Now we expand Eq. to X € RV*P_ For coarse-grained quantization, we have:

N D2
VarlQu(X ZZ L (28)
: J:

where 7 is the range of X, and r = max X — min X. s;; = 5 is the quantization scale.

For per-channel quantization, we have:

N D r] N D
Var[Qu(X)] = Z > iy Z (29)
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Figure 10: Quantization variance of coarse-grained quantization, fine-grained quantization, and
ShiftQuant. We set number of groups as 3 in visualization. We sort the channels in ascending order
by the range of channels.

r

where r; = mar X, ; —muin X, ;, s, = 3.

We visualize the relation between fine-grained, coarse-grained quantization, and ShiftQuant in Figure
10

As shown in Figure [I0[b), in the worst case, the gap of channels’ ranges in a group is maximum. In
this situation, we can find that:

Ugg =Upg +Us +Up +Uc
< Upq+Upq 3+ Uc (30)
Zqu>k4|:—|—UC7

where Uy, is the variance of fine-grained quantization. U4, Up, and Uc denote the area of A, B, and
C in Figure[I0] For U, we have:

Uo <27 #Net2. 17, (3D

where U, is the variance of coarse-grained quantization. With combining Eq. and Eq. (31), we
can find:

Ugg < AU, + 272 N2, (32)

As shown in Figure [I0{c), in the best case, the channel’s ranges in each group is equal. The area of A,
B, and C are closed to 0. The variance of ShiftQuant satisfies:

Ugg =Upg +Us+Up +Uc
~ Uy, (33)
S qu + 2—2*Nc+2 . ch

With combining Eq. and Eq. (33), we can find:
Ugg < axUpy+272Ne2. 17,

ND 34

N
§ -2 —2Ng+2
= Q- Z S] +2 ¢ 1 N

Jj=1

where 1 < a < 4.

19



Under review as a conference paper at ICLR 2025

C PROOF OF L1 NORMALIZATION

C.1 ANALYSIS ON LIPSCHITZNESS CONSTANT

A normalization layer contains two step: normalization, scale and shift:

T = T M, Normalization, 35)
o

y=v-&+ L, Scaleandshift, (36)

where  is the input vector. For example, € RYW in batchnorm, N, H, W are batchsize, height,
and width of the input activation respectively. When we get y, it is feed to the next layer f(-). Let z
denote the output of the following layer (z = f(y)). The gradient of y is:

oL v oL AN T
o= = (3c) (Naz - <1’ 8z> e <8zw>>
oL, \_ & [(9E 1.} &
o= 1) el \\o= ~ ) Tell /)
where £ is the loss function. g = <17 g—f>. The derivation of Eq. 1i can be found in Santurkar|
et al.[(2018). Then we have:
oL & [(oL
= —1p, | - = -1
> (|l (of * /(oL ’
g

N 2 2
<% )| - e |
~ o2 0z Ha

T
Only o and & are different in L1 normalization layers and L2 normalization layers. Then we have:

(37

~ 2
oL
ox

Il

2
2 ‘

8

IN
|
I

oL
= _1
0z Hg

]

T —
o1 =|x—p|, &1 = 'u,Ll normalization
o (39)
o9 = T — pl2, Bo = , L2 normalization.
g2

Thus the Lipschitzness constant of L1 normalization L' and L2 normalization L? satisfies:

L' o5 _le—uls

L> = ot |x—pf
Moreover, as shown in Figure @ we record the L1 norm and L2 norm of activations around all
training stage. The L1 norm is extremely larger than L2 norm during all training stage, leading to
more smooth loss landscape.

(40)

C.2 QUANTIZATION-TOLERATION OF L1 NORMALIZATION

In fully-quantized normalization layers, before normalization (Eq. (33)), we first quantize the statistics
wand o:

w!=Q(wn), 0% = Q(0), Quantization. 41
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Figure 11: The L1 norm and L2 norm of the activations during all training stage. We measure the
activation before the first BN layer in ResNet20.

, Normalization. (42)
o

In Eq. {@2), 09 is the denominator. Same noise imposed on smaller denominator will lead to larger
fluctuation in Eq. (@2). As shown in Figure[TT] ¢ in L2 normalization is significantly smaller than
in L2 normalization, which validates the weak quantization-tolerance of L2 normalization layers.
Moreover, we visualize the quantization error of % under different normalization layers. As shown in
Figure[I2] L1 normalization achieves significantly smaller quantization gap than L2 normalization.

100 v

L1 normalization
801

1.2 normalization
60
404

20 (| |

Quantization gap of 1/0
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Figure 12: The quantization gap of % under L1 normalization and L2 normalization. During the

whole training stage, the quantization error of L1 normalization is significantly smaller than L2
normalization.

D DETAILED IMPLEMENTATION OF SHIFTQUANT

The gradient Gp € RV5*CE is first partitioned into N distinct groups. Each group possesses a

unique scaling factor. The g-th group (G )9 € RVE XNy undergoes quantization according to the
following formulation:

_ (GB)? | _ (GB)?
(GB)y = round(@) = round( 8&; e ), (43)

where 7 represents the magnitude of G g. Naturally, we have:

(Gp)? - (W) = [sg, 277 (GB)g] - [sw - (WT)]]

(44)
=g, sy [(Gp)2 - (WD) >> g,
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where W € RC4*C5 and (W) € RY4*“Ns . With aggregating the results from all N¢ groups,
we have:

g=1
. (45)
_ _ g
= sgy - sw Y _(Gp)’ - (W)’ >> g,
g=1
In the code implementation, we substitute the right shift operation with a left shift operation. This

modification ensures that the outcome is perfectly congruent with the original dot product computa-
tion:

Na
s sw 27V Y [(Gr)?, - (W) << (Ng — g)]
g=1
Ng
= sa, sw 2 VClGs)’, - (W), << (Ny — g)]
g=1
Nga
_ — — g
=Y g (@), (27N << (N~ g) s - (W, y
p (46)
Na
:ZSEJL (Gp)?, 277 Syt - (WT)gq
g=1
Ng
=3 (@) - (W
g=1
=Ga4.

E IMPLEMENTATION OF DSP REUSING ON FPGA

In the Xilinx ZC706 board, the interface for the multiplier within the FPGA’s DSP module (Xilinx
DSP48E1) is configured for 25-bit and 18-bit inputs. In low-bitwidth computations, the direct
utilization of DSPs leads to the wastage of bit width (as shown in Figure[T3). DSP reusing addresses
this issue by packing multiple low-bitwidth data into a single data unit sized to the bit width. This
approach enables the execution of multiple multiplications in a single computation cycle.

PortA

Port B

Xy 15

Figure 13: Direct utilization of DSP on 8-bit multiplication. Unused bits is colored in gray. A lot of
bitwidth is wasted.

As shown in Figure [T4]and [T5] for 8-bit and 6-bit multiplications, the Xilinx DSP48E1 block can
achieve a maximum of dual multiplexing, allowing for the execution of two multiplications in a single
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operation. This capability is also the reason why the DSP resource consumption for both 6-bit and
8-bit implementations is the same, as indicated in Table@

1 7
Port A
N 7 X 15 Y2 %
Port B EEEEEEEN
P I 1Y,

15 31

Figure 14: DSP reusing on 8-bit multiplication. One calculation can realize two multiplications.

x
PortA
2 x Y2
Port B HEEENEN
X1y . ! X1Y2

29

Figure 15: DSP reusing on 6-bit multiplication. One calculation can realize two multiplications.

As shown in Figure [I6] the DSP48E1 block is capable of simultaneously executing four 4-bit
multiplications. This aligns with the data presented in Table[8] where the DSP resource consumption
for the 4-bit implementation is half that of the 6-bit and 8-bit implementations.

x1 X2 n
Port A ] ]
Y1 * 15 V2 1
Port B ] ] ]
X I
1N o 15 1Yz 23 X2Y2 3

7

Figure 16: DSP reusing on 4-bit multiplication. One calculation can realize four multiplications.
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