
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOWARDS ACCURATE AND EFFICIENT SUB-8-BIT IN-
TEGER TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural network training is a memory- and compute-intensive task. Quantization,
which enables low-bitwidth formats in training, can significantly mitigate the work-
load. To reduce quantization error, recent methods have developed new data formats
and additional pre-processing operations on quantizers. However, it remains quite
challenging to achieve high accuracy and efficiency simultaneously. In this paper,
we explore sub-8-bit integer training from its essence of gradient descent optimiza-
tion. Our integer training framework includes two components: ShiftQuant to
realize accurate gradient estimation, and L1 normalization to smoothen the loss
landscape. ShiftQuant attains performance that approaches the theoretical upper
bound of group quantization. Furthermore, it liberates group quantization from inef-
ficient memory rearrangement. The L1 normalization facilitates the implementation
of fully quantized normalization layers with impressive convergence accuracy. Our
method frees sub-8-bit integer training from pre-processing and supports general
devices. This framework achieves negligible accuracy loss across various neural
networks and tasks (0.92% on 4-bit ResNets, 0.61% on 6-bit Transformers). The
prototypical implementation of ShiftQuant achieves more than 1.85 × /15.3%
performance improvement on CPU/GPU compared to its FP16 counterparts, and
33.9% resource consumption reduction on FPGA than the FP16 counterparts. The
proposed fully-quantized L1 normalization layers achieve more than 35.54% im-
provement in throughout on CPU compared to traditional L2 normalization layers.
Moreover, theoretical analysis verifies the advancement of our method.

1 INTRODUCTION

Recently, deep neural networks have made significant advancements in various tasks. However, this
progress comes at the cost of high computational complexity. High energy cost and computational
resource consumption hamper the deployment of these deep learning applications on both edge-
device and high-end cloud servers. While existing studies primarily concentrate on minimizing
resource consumption during inference Jacob et al. (2018); Li et al. (2019); Uhlich et al. (2019);
Liu et al. (2022); Lin et al. (2020); He et al. (2019); Fang et al. (2023), it should be noted that the
computational complexity of training is approximately three times that of inference Banner et al.
(2018). Consequently, there is an urgent demand for efficient training methods.

Reducing the bitwidth of data is a reasonable approach. The resource consumption of a neural
network scales almost linearly with the bitwidth of data Zhou et al. (2016). However, low-precision
training faces two challenges. The first is the wide range of gradients. Very few outliers extremely
expand the data range, resulting in high quantization error Sun et al. (2020); Xi et al. (2023); Chen
et al. (2020). The second is the sharp loss landscape of low-precision networks Cacciola et al. (2023).
Sharp local minimal points disrupt optimization significantly Foret et al. (2020); Li et al. (2018).

To address the challenge of wide gradient range and significant quantization errors, common ap-
proaches include (1) employing a non-uniform quantization format Sun et al. (2020); Cambier et al.
(2020); Zhong et al. (2022), (2) utilizing smaller quantization granularity, or (3) suppressing outliers
before quantization Xi et al. (2023); Chen et al. (2020). However, all methods encounter practicality
issues, as they cannot be easily adapted to existing General Matrix Multiply (GEMM) software and
hardware implementations or extremely exacerbate the computation burden (detailed discussion
in Sec. 2). To this end, we analyze the structure of outliers in gradients and develop an efficient

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

and effective quantizer, ShiftQuant. With strategic and structural grouping of channels, ShiftQuant
achieves excellent outlier suppression at a negligible cost, and also supports GEMM.

Recent methods focus on developing new quantizers but neglect the impact of sharp loss landscape
Xi et al. (2023); Chen et al. (2020); Sun et al. (2020); Fu et al. (2021); Wu et al. (2022); Das et al.
(2018); Banner et al. (2018); Chmiel et al. (2021); Ghaffari et al. (2022). The sharp landscape of low-
precision networks brings more local minimal points and leads to unstable convergence. Moreover,
sharp curvature demands more bits to specify gradients Dong et al. (2019); Foret et al. (2020). In
this paper, we reveal that the source of the sharp landscape lies in the limited smoothening and
quantization-tolerated capacity of the normalization layers Ioffe & Szegedy (2015); Ba et al. (2016);
Ulyanov et al. (2016); Wu & He (2018). Stronger smoothening comes from stronger regularization.
In this paper, we introduce the stronger regularization, L1 normalization, into normalization layers,
which achieves clearly smooth loss landscape under less computation.

Our main contributions include the following:

By analyzing the structure of outliers in gradients, we find that appropriately grouping channels can
effectively reduce quantization errors. Hence, we develop a new quantizer, ShiftQuant. ShiftQuant
applies a smart grouping strategy that effectively approximates the optimal solution for grouping
with minimal computational overhead. ShiftQuant utilizes the common low-bitwidth integer format
and supports GEMM. Moreover, we develop a specific implementation of the new quantizer, which
avoids the inefficient memory rearrangement in per-group quantization for the first time.

We experimentally analyze the source of the sharp loss landscape in low-precision networks. Quan-
tization weakens the smoothening effort of L2 normalization layers significantly. To this end, we
develop L1 normalization layers, which achieves stronger smoothening with less computation.

We evaluate the proposed framework on various datasets. Our method achieves negligible perfor-
mance loss on ResNets, Transformers, GNN, and RNN under sub-8-bit integer training, respectively.
Furthermore, theoretical analysis substantiates the effectiveness of the new quantizer and normaliza-
tion layers.

Our prototypical implementation of ShiftQuant achieves more than 1.85 × /15.3% performance
improvement on CPU (ARMv8)/GPU (Nvidia RTX 3090) compared to Pytorch.fp16, and more
than 33.9% resource consumption reduction on FPGA (ZC706) compared to FP16. Moreover, 6-bit
ShiftQuant surpasses 4-bit integer training competitor in efficiency. The implementation of proposed
fully-quantized L1 normalization layers achieves more than 35.54% improvement of throughout on
CPU compared to traditional L2 normalization layers.

2 RELATED WORK AND CHALLENGES

2.1 NEW QUANTIZATION DATA FORMATS

Developing new data formats with wide representing range reduces quantization loss significantly.
Sun et al. Sun et al. (2020) proposes a new fixed-point format using radix-4, which, unlike the
traditional radix-2 fixed-point format, offers a significantly larger representation range and higher
resolution. Fu et al. Fu et al. (2021) explores a dynamic data format with varying bit-widths to
balance accuracy and efficiency by periodically adjusting the bit-width. Cambier et al. Cambier
et al. (2020) proposes the S2FP8 format, where a vector is represented by an FP8 vector and two
FP32 values, named squeeze and shift factors. Zhong et al. Zhong et al. (2022) develops the MLS
tensor format, which balances the accuracy and computation efficiency in a tensor level. Although
the excellent accuracy, new data formats demand customer design of new hardware units, hindering
the deployment on contemporary devices inherently.

2.2 FINE-GRAINED QUANTIZATION

Fine-grained quantization can reduce quantization error significantly. However, naive fine-grained
quantization may lead to incompatibility with GEMM Xiao et al. (2023); Zhong et al. (2022). Since
when fine-grained quantization is applied to the inner dimension, different indices have distinct
floating-point scaling factors. Inevitably, when accumulating these indices, each element must first
multiply its corresponding scaling factor, thereby introducing extra floating-point multiplication

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: Matrix multiplica-
tions in training. Inner dimen-
sions are labeled in red.

Table 1: Difference between our method and prior studies.

New data format
Sun et al. (2020),
Fu et al. (2021),

Cambier et al. (2020)

Fine-grained
Das et al. (2018),
Wu et al. (2022)

Outlier suppression
before quantization
Chen et al. (2020),

Xi et al. (2023)

Ours

General data format 8 4 4 4

GEMM supporting - 8 4 4

No pre-processing
4 4

8
4

on quantization

Fully-quantized 8 8 8
4

normalization layers

operations. As shown in Figure 1, three matrix multiplies are involved in training: forward propaga-
tion, loss propagation, and calculation of weight gradient. Almost all dimensions serve as the inner
dimension. To apply GEMM, fine-grained quantization is not allowed.

2.3 OUTLIER SUPPRESSION BEFORE QUANTIZATION

Before quantization, the data is reflected to an easy-quantization space through an invertible mapping.
By conducting the inverse mapping after dequantization, the original data can be recovered with
small loss. Chen et al. Chen et al. (2020) implements the reflection by multiplying gradients with a
constructed Hadamard matrix. Similarly, Xi et al. Xi et al. (2023) applies the Hadamard reflection on
quantizing activation during training transformers. Additional computation arises from constructing
reflection. Moreover, the reflection operation is conducted in expensive floating-point format.

Our method utilizes the common integer format. Meanwhile, no pre-processing is applied before
quantization. We highlight the difference between our method and prior methods at Table 1.

3 SHIFTQUANT

(b) Diversity in ranges (c) Structures in gradient

(a) Gradient: hard to quantize

(d) Grouped channels: mitigate the diversity in ranges for a easier quantization

Division channels to several groups
with minimizing intra-group
differences

Source of the difficulty

Significant channel-wise
diversity

Easier to quantize

Figure 2: The difficulty of quantizing gradients comes from the diversity between channels.
ShiftQuant aims to minimize the diversity through strategic grouping channels. (a) Gradients
exhibit extremely bell-curve distribution, which is very difficult to quantize. (b) Diversity in mag-
nitude of channels leads to high quantization error. (c) High diversity of channels in gradients. (d)
ShiftQuant divides channels to several groups. Each group characters small diversity, leading to
easier quantization.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.1 SMART CHANNEL GROUPING

As shown in Figure 2(c), the distribution of gradient varies among channel dimension extremely.
Channels with wide range expand the quantization range, leading to extremely fewer quantization
levels to represent channels with small range (as shown in Figure 2(b)). High quantization variance
comes from the diversity in channels’ ranges. Merging the gap between channel’s range can reduce
quantization error significantly. Grouping channels is a reasonable approach. Appropriately grouping
channels can minimize the diversity in each group. Then, per-group quantization can achieve low
quantization variance and high efficiency at the same time.

Optimizing grouping strategy

It is intuitive that smaller channels should be divided to one group, and larger channels should be
divided to another group. The key of the grouping strategy is to find the threshold to distinguish
small and large channels. To divide channels into NG groups, we identify NG + 1 thresholds
τ0, τ1, · · · , τNG−1, τNG .

The object of grouping is:

min
τ0,τ1,··· ,τNG−1,τNG

NG∑
g=1

∑
i∈P g

τg
ri
,

s.t. rmax = τ0 ≥τ1 ≥ · · · ≥ τNG−1 ≥ τNG = 0,

(1)

where P g is a set that contains the indexes of channels allotted to group g. rmax is the minimum
around ranges of channels. ri is the range of i-th channel. ri satisfies the following condition:

τg−1 < ri ≤ τg, if i ∈ P g. (2)∑
i∈P g

τg
ri

reflects the diversity of channels’ range in group g. Moreover, problem (1) is equivalent to
directly optimize the quantization variance. The theoretical verification can be found in Appendix. A.

Efficient power-of-two grouping

We can apply the optimal solution of problem (1) to group channels. Unfortunately, two serious
obstacles will rise. The first is the complexity to solve. Problem (1) does not have a closed-form
solution. It requires nonlinear dynamic programming, which demands iterations of complicated
calculation to find the optimal solution. The second is the optimized thresholds are in floating-point
formats. The scale of these groups does not follow integer-times relation. We have to accumulate the
results of groups in floating-point format.

We analyze the characteristics of the objective function τ
r , the ratio of group’s upper threshold to the

range of channel. We find that larger threshold can tolerate greater distance between channels’ range
and threshold. For instance, let τp = 2τq, ri = 2rj . The loss incured by grouping channel i to group
p is equal to that of grouping channel j to group q (τpri =

τq
rj

). However, the distance between the
threshold and channel’s range of group p is twice of group q (τp − ri = 2(τq − rj)). Therefore, to
minimize the objective function, a group with larger threshold should hold larger range.

Consider the accuracy and hardware efficiency, we impose power-of-two relation on thresholds:
τg = τ0 · 2g = rmax · 2g, g = 1, · · · , G. (3)

The above strategy partitions more ranges for groups with larger threshold. Moreover, it frees
grouping from costly optimization and enables accumulation groups in integer format with only a
shift operation. Take the calculation of GA as example:

GA = GB ·W T =

NG∑
g=1

[s−1GB
· 2−g · (GB)

g
q] · [s

−1
W · (W

T)
g

q]

= s−1GB
· s−1W

NG∑
g=1

[(GB)
g
q · (W

T)
g

q >> g],

(4)

where (GB)
g
q and (W T)gq denote the quantized g-th group of GB and W T . Eq. (4) is also

diagrammed in Figure 3(b). All of the calculation are performed on integer format. Detailed
derivation is provided in Appendix. D. ShiftQuant achieves unbiased and low-variance quantization.
Theoretical analysis is provided in Appendix. B.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.2 IMPLEMENTATION OPTIMIZATION

We devise two approaches to implement ShiftQuant. One is based on GEMM. Additionally, we de-
velop a specific implementation method, named ShiftMM, which achieves higher hardware efficiency.

4 1

-15 -5

0 2

-11 -27

-7 -3

4 1

2

-5

0

1

1

-2

6

-4

3 7

-7 -3

4 1

-1 -2

0 1 1 0

1
-2.5

0
0.25

0.25

-0.5

3

-2

0.5

2

-5

6

-4

0

1

1

-2

3 7

-1 -2

>>1

2 2

-18 -29

0

1

1

0

2 2

-18 -29

Grouping:

channel 1, 4 in group 0;

channel 2, 3 in group 1

∗

∗

∗

(𝑮𝑩)0
𝑞

𝑮𝑩
𝑞

𝒎

𝑠𝐺𝐵

𝑠𝑤

(𝑾𝑻)0
𝑞

(𝑾𝑻)1
𝑞

+

6

0

4

-6

>>∑()

3

-7

4

-1

2

0

1

6

𝑮𝑩
𝑞
[0, :]𝑇 (𝑾𝑻)𝑞[: , 0]

.∗

(𝑾𝑻)𝑞 (b) Traditional GEMM implementation

(c) ShiftMM implementation avoids memory rearrangement

(only show the calculation of the first element)
(a) ShiftQuant

𝑪𝑞

𝑪𝑞

Step 1: vector dot

production

Step 2: shift and vector

accumulation

𝑮𝑩

(𝑮𝑩)1
𝑞

(Grouping map)

2

-5

6

-4

0

1

1

-2

(𝑮𝑩)0
𝑞

(𝑮𝑩)1
𝑞

Step 1: Memory

rearrangement

Step 2: Matrix

Multiplication

Step 3: Matrix

Addition

1
-2.5

0
0.25

0.25

-0.5

3

-2

Per-group quantization

(Scale)

𝒎

Figure 3: The power-of-two grouping strategy in ShiftQuant paves a way for implementing per-
grouping quantization without memory rearrangement. Traditional implementation approach (b)
focuses on applying off-the-peg packages. It transfers original matrix multiplication to several
small matrix multiplications based on the grouping map m, which involves expensive memory
rearrangement. ShiftMM (c) aims higher hardware efficiency. It replaces the memory rearrangement
with only a low-cost shift operation. Meanwhile, it only demands slight changes on off-the-peg
packages.

Implemented by GEMM

As illustrated in Figure 3(b), ShiftQuant divides the traditional matrix multiplication into n pairs
of smaller matrix multiplications. Implementing ShiftQuant through GEMM involves three steps.
Firstly, extracting the n pairs of smaller matrices, which requires memory rearrangement. Secondly,
employing GEMM to perform the n pairs of matrix multiplications. Finally, shifting and summing
the results of these n multiplications. This approach achieves a good balance between efficiency and
versatility. However, the memory rearrangement increases time consumption, and the smaller matrix
multiplications do not fully capitalize on the advantages of GEMM.

Implemented without memory rearrangement

ShiftQuant essentially assigns different shift amounts to each index of the inner dimension. As
depicted in Figure 3(c), we can perform the shifting directly before the accumulation phase of the
vector multiplication. This technique offers two benefits. Firstly, it avoids memory rearrangement.
Secondly, it maintains the same level of parallelism as the original matrix multiplication. We refer to
this implementation method as ShiftMM. The implementation of ShiftMM just requires adding a
shifting operation after the multiplication step in the standard GEMM code.

4 FULLY-QUANTIZED L1 NORMALIZATION LAYERS

4.1 OBSERVATION AND PROPOSAL OF NORMALIZATION LAYERS

As shown in Figure 4, the loss landscape of low-precision networks is sharper and more challenging
to optimize compared to that of full-precision networks. As existing literature Santurkar et al.
(2018) points out that normalization layer help smoothen the loss landscape, we hypothesize that
the quantization of the normalization layers might be a main cause of the sharp loss landscape of
low-precision networks. To verify this hypothesis, we replace the quantized normalization layers in

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) Full-precision
(b) Low-precision with fully-

quantized normalization layers

(c) Low-precision with high-

precision normalization layers

(d) Low-precision with proposed

fully-quantized normalization layers

Figure 4: Low-precision networks feature sharpen loss landscape, which disrupts convergence. We
visualize the loss landscape of ResNet20 on CIFAR10 by the method in Li et al. (2018).

𝑋𝑖 =
𝑋𝑖
𝑞
− 𝜇𝑖

𝑞

𝜎𝑖
𝑞

𝑿
𝑿𝑞 = 𝑄(𝑿)

Quantize input

𝜇𝑖 =
1

𝐵𝐻𝑊

𝑏=1

𝑁

𝑿𝑏,𝑖,:
𝑞

𝜎𝑖 =

𝑏=1

𝑁

|𝑿𝑏,𝑖,:
𝑞

− 𝜇𝑖 |1

Mean and L1 norm

𝝁𝑞 = 𝑄(𝝁)

𝝈𝑞 = 𝑄(𝝁)

Quantize mean and

norm

𝜸𝑞 = 𝑄(𝜸)

𝜷𝑞 = 𝑄(𝜷)

Quantize parameters

Normalization

𝑋𝑖
𝐵𝑁 = 𝛾𝑖

𝑞 𝑋𝑖 + 𝛽𝑖
𝑞

Scale and shift
𝑿𝐵𝑁

Figure 5: Procedures of the proposed fully-quantized normalization layer (take BatchNorm for
example). The input X ∈ RN×C×HW , where N,C,HW denote the batchsize, number of channels,
number of spatial elements, respectively.

the low-precision networks with full-precision ones. As shown in Figure 4(c), the sharpness of the
loss landscape disappeared, indicating that the quantization of the L2 normalization layers diminishes
its smoothening capability, leading to the sharp loss landscape.

Two approaches can mitigate this problem, enhancing the smoothening ability of normalization
layers and enhancing their tolerance to quantization. We apply L1 normalization in our fully-
quantized normalization layers. Firstly, L1 normalization has stronger regularization effort than L2
normalization Huber (1996); Candès et al. (2006), leading to stronger smoothening ability (see Sec.
4.2). Secondly, the L1 norm of activation are usually larger than its L2 norm. Larger L1 norm can
tolerate more quantization errors than L2 norm in the processing of normalization (see Appendix.
C.2).

The flow of the fully-quantized L1 normalization layer is shown in Figure 5. All of the input features,
statistics, and parameters are quantized to low bitwidth formats. As shown in Figure 4(d), our
fully-quantized L1 normalization layer achieves similar smoothening effort as the full-precision L2
normalization layer.

4.2 THEORETICAL ANALYSIS

The Lipschitzness constant reflects the smoothness of loss landscape Boyd & Vandenberghe (2004);
Bottou et al. (2018). The Lipschitzness of L1 normalization layers L1 and L2 normalization layers
L2 satisfies the following relationship:

L1

L2
≤ ‖x‖2
‖x‖1

≤ 1. (5)

x is a vectorized input activation of normalization layers. A smaller Lipschitzness constant implies
that the gradients of the loss function do not change drastically with small changes in input, which
means the loss landscape is smoother Boyd & Vandenberghe (2004); Bottou et al. (2018). Detailed
proof can be found in Appendix. C.1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Results on ResNets.

Dataset Model Baselines CPT StateQuant Ultra-low Ours
Fu et al. (2021) Chen et al. (2020) Sun et al. (2020)

FP INT8 INT 3-6/3-6/6 INT 8/8/5 radix-4 4/4/4 INT 4/4/4

CIFAR10

ResNet20 91.25 87.97 90.13 - - 90.41
ResNet38 92.04 89.39 91.24 - - 91.46
ResNet56 93.03 88.82 91.97 - - 92.03
ResNet18 93.31 91.73 92.74 92.85 93.76 92.97
ResNet34 94.44 92.15 93.28 93.31 - 93.67

ImageNet ResNet18 69.40 61.63 68.01 69.48 68.99 69.02
ResNet50 76.48 68.94 74.73 74.45 75.51 74.84

Table 3: Results on Transformers.

Dataset Model Traning
type Metric Baselines Xi et al. (2023) Ultra-low Ghaffari et al. (2022) Ours

Sun et al. (2020)
FP INT8 INT 4/4/4 Radix-4 4/4/4 INT 8/8/8 INT 6/6/6

CIFAR10 ViT-B Fine-tune Top1 Acc 98.85 94.03 98.36 - - 98.40
ViT-L Fine-tune Top1 Acc 98.90 93.69 98.47 - 98.80 98.84

WMT14 Transformer-
based Pretrain BLEU 27.5 21.1 27.17 25.4 - 27.09

* Xi et al. (2023) applies 8-bit integer format on gradients and pruns half of gradients.

5 EXPERIMENTS

5.1 PERFORMANCE ANALYSIS

We evaluate our integer training framework on ResNets He et al. (2016) and Transformers Vaswani
et al. (2017); Dosovitskiy et al. (2020). We also report the performance of recent state-of-art methods,
including new data format methods CPT Fu et al. (2021), Ultra-Low Sun et al. (2020), reflection
methods StateQuant Chen et al. (2020), Xi et al. (2023), and full integer training architecture Ghaffari
et al. (2022). We apply ShiftQuant on activations and gradients, per-out-channel quantization on
weights during forward propagation, and per-input-channel quantization on weights during loss
propagation. We set the number of groups in ShiftQuant as 4 as default. We build two baselines. One
is training in full-precision (fp32). The other is training in 8-bit integer (per-tensor quantization on
weights, activations, and gradients). We adopt hyper-parameters, optimizers, and schedulers for all
the evaluated models.

Image classification We select various network architectures and perform experiments on CIFAR10
Krizhevsky et al. (2009) and ImageNet Deng et al. (2009) to validate the effectiveness of our method.
In convolutional neural networks, we employ 4-bit weights, activations, and gradients, along with
8-bit fully-quantized L1 Batch Normalization (L1BNQ) on ResNets He et al. (2016). As shown
in Table 2, from the shallow ResNet18 to the deeper ResNet56, our method achieves accuracy
comparable to that of the floating-point setup. For the fine-tuning tasks in Vision Transformers (ViT) 1

Dosovitskiy et al. (2020), we also use 4-bit weights, activations, and gradients. Since ViT pre-training
utilized L2 Layer Normalization, we have to keep full-precision L2 layer normalization. It is a future
work to quantize the L2 normalization layers of pre-trained models. As indicated in Table 2, our
approach achieves similar performance to the floating-point models in both the basic ViT-B and the
expanded ViT-L models with negligible loss of accuracy. The experiments confirm the robustness of
our method across different network architectures.

Machine translation We train a transformer-based architecture2 on the WMT14 English-German
(en-de) dataset Bojar et al. (2014). Within the entire network, the linear layers utilize 6-bit weights,
activations, and gradients, along with an 8-bit fully-quantized L1 Batch Normalization (L1BN) layer.
The computation of soft-max in attention mechanism is in floating-point. The results is reported in
Table 3. Our method achieves a negligible loss of accuracy.

Transductive and inductive prediction

1https://github.com/jeonsworld/ViT-pytorch
2https://github.com/facebookresearch/fairseq

7

https://github.com/jeonsworld/ViT-pytorch
https://github.com/facebookresearch/fairseq

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 4: Results on Temporal Graph Net-
work (TGN Kumar et al. (2019)) .

Dataset Metric Full-Precision StateQuant Ours

Wikipedia AUC 0.936 0.939 0.939
AP 0.945 0.945 0.947

Table 5: Results on Recurrent Neural Network (RNN
Medsker et al. (2001)) .

Dataset Metric Full-Precision StateQuant Ours

ElectricityLoadDiagrams20112014 ND 0.069 0.078 0.074
RMSE 0.526 0.516 0.475

Table 6: Performance under different number of groups.

number of groups 6 5 4 3 2 1
ResNet20 90.47 90.47 90.41 89.71 88.39 86.45
ViT-B 98.57 98.52 98.40 98.36 97.54 96.65

Table 7: Ablation on L1 normalization.

FP L2BN L1BN QL2BN QL1BN
ResNet20 91.25 90.78 90.95 13.34 90.40
ResNet38 92.04 91.43 91.67 11.92 91.46

We train a Temporal Graph Network (TGN Kumar et al. (2019)) on the Wikipedia 3 dataset. All the
linear layers in TGN utilize 8-bit weights, activations, and gradients. Our method even surpasses the
performance on full-precision training.

Time series prediction

We train a Recurrent Neural Network (RNN Medsker et al. (2001)) on the
ElectricityLoadDiagrams2011-2014 4 dataset for time series prediction task. Our method
achieves a negligible loss of accuracy.

Our method outperforms competitors across nearly all networks and tasks. In convolutional neural
networks, our method achieves the smallest bitwidth. In transformers, although our method has a
larger bitwidth compared to Xi et al. (2023), it demonstrates superior hardware efficiency, which
we will discuss in Sec. 5.3. We are the first to evaluate integer training on both TGN and RNN
architectures. Our method demonstrates strong accuracy retention, showcasing its applicability and
robustness across diverse network architectures.

5.2 PARAMETER ANALYSIS AND ABLATION STUDY

Analysis on number of groups

In ShiftQuant, an increase in the number of groups leads to finer quantization granularity, but an
excessive number of groups can also increase the computational burden. We conducte experiments
on ResNet20 and ViT-B using different group settings on the CIFAR10 dataset. As shown in Table
6, the performance improvement reduces when number of groups increases. When the number of
groups is 4, the grouping map can be represented using exactly 2 bits, while maintaining relatively
high precision. Therefore, we set the number of groups as 4.

Ablation study on L1 normalization

As shown in Table 7, fully-quantized L2 normalization layers are not suitable for low-precision
training. As a contrast, our fully-quantized L1 normalization layers achieve competitive performance.

5.3 HARDWARE OVERHEAD

Throughput analysis on ARMv8

To evaluate the efficiency of our method, we construct two baselines. The first is a fully-quantized
linear layer, which utilizes the simplest per-tensor quantization and implements matrix multiplication
by widely-used OpenBLAS5. This implementation reflects the upper bounds of efficiency under a
given bitwidth. The second is made against a model using torch.fp16 precision. Meanwhile, we
implement one comparative method Xi et al. (2023). We assess the throughput across various sizes of
linear layers. As depicted in Figure 6, both the GEMM and ShiftMM implementations of our method
significantly outperform the torch.fp16 model. ShiftMM closely matches the performance of the
baseline 4-bit implementation. The performance gap between GEMM and ShiftMM implementation

3http://snap.stanford.edu/jodie/wikipedia.csv
4https://archive.ics.uci.edu/dataset/321/electricityloaddiagrams20112014
5https://www.openblas.net/

8

http://snap.stanford.edu/jodie/wikipedia.csv
https://archive.ics.uci.edu/dataset/321/electricityloaddiagrams20112014

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

comes from memory rearrangement. Moreover, 6-bit ShiftMM outperforms 4-bit Xi et al. (2023).
Two ingredients lead to this, the extra computation before quantization and hardware-unfriendly
pruning in Xi et al. (2023).

(1,256,512),
(512,1024)

(4,128,256),
(256,512)

(4,256,512),
(512,1024)

(8,128,256),
(256,512)

(8,256,512),
(512,1024)

(16,128,256),
(256,512)

Linear layer size (input feature, weight)

0

5

10

15

20

25

30
Gf

lop
s

4-bit upper bound
Ours(Without ShiftMM) 4-bit

Ours(ShiftMM) 4-bit
Hadama[11] 4-bit

6-bit upper bound
Ours(Without ShiftMM) 6-bit

Ours(ShiftMM) 6-bit
Pytorch.fp16

Figure 6: Comparison of simplest per-tensor quantization (the upper bound of efficiency), ShiftQuant
(GEMM implementation and ShiftMM implementation), Xi et al. (2023), Pytorch.fp16 on ARMv8.

Throughput analysis on GPU

As shown in Figure 7, we analyze the performance of our 6-bit ShiftMM, 4-bit Xi et al. (2023),
and Pytorch.fp16 on Nvidia RTX 3090. As the size grows, ShiftMM achieves more performance
improvement than pytorch.fp16. Due to the heavy reflection operation and pruning, Xi et al. (2023)
does not take full advantage of the low bitwidth.

Figure 7: Throughput of ShiftMM, Hadama Xi
et al. (2023), and Pytorch.fp16 on Nvidia RTX
3090.

Figure 8: Comparision of different normalization
layers on ARMv8.

Resource consumption on FPGA

To validate the efficiency of ShiftMM, we analyze the resource consumption of ShiftMM and basic
GEMM on Xilinx ZC706 board. We perform a matrix multiplication with size (1024, 288, 32) on
FPGA. For a comprehensive comparison, we select two resource bind strategy, LUT priority and DSP
priority. We apply DSP reusing technique on implementation (details can be found in Appendix. E).
As shown in Table 8, in LUT priority setting, our INT6 implementation saves 60.7% FF and 43.5%
LUT compared with FP16 implementation. In DSP reusing setting, we utilize DSP reusing technique.
Our INT6 implementation saves 50% DSP, 55.3% FF with 3.4% overhead on LUT compared with
FP16 implementation. Meanwhile, ShiftMM achieves closed resource utilization rate with the basic
GEMM.

Time proportion for each part of ShiftQuant

We evaluate the time proportion for each part of ShiftQuant on ARMV8. As depicted in Figure 9, the
power-of-two grouping strategy and shift operation contribute minimally to the overall latency, with
the majority of the time consumed by matrix computations. This observation aligns with the criteria
for an efficient quantizer and further validates the superiority of ShiftQuant.

End-to-end acceleration performance

As shown in Table 9, we evaluate the end-to-end training acceleration of the Vision Transformer (ViT)
across various batch sizes on ARMV8 and RTX-3090. The subsequent tables illustrate the acceleration

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 8: Resource consumption of implementation on FPGA (ZC706).

LUT priority DSP priority
Method Baseline Ours Baseline Ours
Bitwidth 4 6 8 16(FP) 4 6 4 6 8 16(FP) 4 6
FF 414 576 744 1504 414 590 818 1042 1362 2978 994 1330
DSP 0 0 0 0 0 0 8 16 16 32 8 16
LUT 4671 5050 5406 9178 4799 5190 4595 4723 5619 5403 5203 5587
Latency (ms) 5.95 6.32 6.32 6.32 5.95 5.95 4.63 4.63 4.63 4.82 4.63 4.63

Figure 9: Time proportion for each part of ShiftQuant.

achieved by our method compared to FP16 counterparts. Our method markedly accelerates training.
It is important to note that this was achieved through a basic implementation, without fully leveraging
the potential of ShiftQuant. With further engineering optimizations, the acceleration performance
could be significantly enhanced.

Table 9: End-to-end acceleration on different platforms.

Platform ARMV8 RTX3090
Batchsize 1 4 8 16 32 40 48 64 80 96 128 192
ViT-B-16 2% 14% 26% 35% 9% 12% 15% 21% 18% 26% 34% 62%
ViT-L-16 3% 18% 31% 43% 12% 19% 23% 26% 28% 33% 39% 68%

6 CONCLUSION

In this paper, we enhance sub-8-bit integer training from two aspects. We propose ShiftQuant to
eliminate quantization noise in gradient estimation, and introduce fully-quantized L1 normalization
layers to smoothen the loss landscape for stable convergence. Comprehensive experiments validate
the efficiency and accuracy of our method. Meanwhile, we have implemented ShiftQuant on multiple
types of devices and proven its applicability. The first future direction is to further improve accuracy
and efficiency, including developments in algorithms and implementation techniques. The second
future direction is to apply ShiftQuant to other tasks, such as inference acceleration of large language
models (LLMs). The excellent outlier suppression capacity of ShiftQuant may be useful for other
challenging quantization tasks.

REFERENCES

Barry C Arnold, Narayanaswamy Balakrishnan, and Haikady Navada Nagaraja. A first course in
order statistics. SIAM, 2008.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Ron Banner, Itay Hubara, Elad Hoffer, and Daniel Soudry. Scalable methods for 8-bit training of
neural networks. Advances in Neural Information Processing Systems, 31, 2018.

Ondřej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn, Johannes
Leveling, Christof Monz, Pavel Pecina, Matt Post, Herve Saint-Amand, et al. Findings of the 2014
workshop on statistical machine translation. In Proceedings of the ninth Workshop on Statistical
Machine Translation, pp. 12–58, 2014.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM review, 60(2):223–311, 2018.

Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Matteo Cacciola, Antonio Frangioni, Masoud Asgharian, Alireza Ghaffari, and Vahid Partovi Nia.
On the convergence of stochastic gradient descent in low-precision number formats. arXiv preprint
arXiv:2301.01651, 2023.

Léopold Cambier, Anahita Bhiwandiwalla, Ting Gong, Mehran Nekuii, Oguz H Elibol, and Hanlin
Tang. Shifted and squeezed 8-bit floating point format for low-precision training of deep neural
networks. arXiv preprint arXiv:2001.05674, 2020.

Emmanuel J Candès, Justin Romberg, and Terence Tao. Robust uncertainty principles: Exact signal
reconstruction from highly incomplete frequency information. IEEE Transactions on Information
Theory, 52(2):489–509, 2006.

Jianfei Chen, Yu Gai, Zhewei Yao, Michael W Mahoney, and Joseph E Gonzalez. A statistical
framework for low-bitwidth training of deep neural networks. Advances in Neural Information
Processing Systems, 33:883–894, 2020.

Brian Chmiel, Ron Banner, Elad Hoffer, Hilla Ben Yaacov, and Daniel Soudry. Logarithmic unbiased
quantization: Simple 4-bit training in deep learning. arXiv preprint arXiv:2112.10769, 2021.

Dipankar Das, Naveen Mellempudi, Dheevatsa Mudigere, Dhiraj Kalamkar, Sasikanth Avancha,
Kunal Banerjee, Srinivas Sridharan, Karthik Vaidyanathan, Bharat Kaul, Evangelos Georganas,
et al. Mixed precision training of convolutional neural networks using integer operations. arXiv
preprint arXiv:1802.00930, 2018.

Herbert A David and Haikady N Nagaraja. Order statistics. John Wiley & Sons, 2004.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on Computer Vision and Pattern Recognition,
pp. 248–255. Ieee, 2009.

Zhen Dong, Zhewei Yao, Amir Gholami, Michael W Mahoney, and Kurt Keutzer. Hawq: Hessian
aware quantization of neural networks with mixed-precision. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 293–302, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards
any structural pruning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 16091–16101, 2023.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
for efficiently improving generalization. arXiv preprint arXiv:2010.01412, 2020.

Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, and Yingyan Lin. Cpt:
Efficient deep neural network training via cyclic precision. arXiv preprint arXiv:2101.09868, 2021.

Alireza Ghaffari, Marzieh S Tahaei, Mohammadreza Tayaranian, Masoud Asgharian, and Vahid
Partovi Nia. Is integer arithmetic enough for deep learning training? Advances in Neural
Information Processing Systems, 35:27402–27413, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,
pp. 770–778, 2016.

Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric median for
deep convolutional neural networks acceleration. In Proceedings of the IEEE/CVF conference on
Computer Vision and Pattern Recognition, pp. 4340–4349, 2019.

Peter J Huber. Robust statistical procedures. SIAM, 1996.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Proceedings of International Conference on Machine Learning,
pp. 448–456. pmlr, 2015.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for efficient
integer-arithmetic-only inference. In Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition, pp. 2704–2713, 2018.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
https://www.cs.toronto.edu/ kriz/learning-features-2009-TR.pdf, 2009.

Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory in
temporal interaction networks. In Proceedings of the 25th ACM SIGKDD international conference
on knowledge discovery & data mining, pp. 1269–1278, 2019.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape
of neural nets. Advances in Neural Information Processing Systems, 31, 2018.

Yuhang Li, Xin Dong, and Wei Wang. Additive powers-of-two quantization: An efficient non-uniform
discretization for neural networks. arXiv preprint arXiv:1909.13144, 2019.

Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang, Baochang Zhang, Yonghong Tian, and Ling
Shao. Hrank: Filter pruning using high-rank feature map. In Proceedings of the IEEE/CVF
conference on Computer Vision and Pattern Recognition, pp. 1529–1538, 2020.

Zechun Liu, Kwang-Ting Cheng, Dong Huang, Eric P Xing, and Zhiqiang Shen. Nonuniform-to-
uniform quantization: Towards accurate quantization via generalized straight-through estimation.
In Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition, pp.
4942–4952, 2022.

Larry R Medsker, Lakhmi Jain, et al. Recurrent neural networks. Design and Applications, 5(64-67):
2, 2001.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch normal-
ization help optimization? Advances in Neural Information Processing Systems, 31, 2018.

Xiao Sun, Naigang Wang, Chia-Yu Chen, Jiamin Ni, Ankur Agrawal, Xiaodong Cui, Swagath
Venkataramani, Kaoutar El Maghraoui, Vijayalakshmi Viji Srinivasan, and Kailash Gopalakrishnan.
Ultra-low precision 4-bit training of deep neural networks. Advances in Neural Information
Processing Systems, 33:1796–1807, 2020.

Stefan Uhlich, Lukas Mauch, Kazuki Yoshiyama, Fabien Cardinaux, Javier Alonso Garcia, Stephen
Tiedemann, Thomas Kemp, and Akira Nakamura. Differentiable quantization of deep neural
networks. arXiv preprint arXiv:1905.11452, 2(8), 2019.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing
ingredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Neural Information Processing
Systems, 2017. URL https://api.semanticscholar.org/CorpusID:13756489.

12

https://api.semanticscholar.org/CorpusID:13756489

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Qiaojun Wu, Yuan Li, Song Chen, and Yi Kang. Drgs: Low-precision full quantization of deep
neural network with dynamic rounding and gradient scaling for object detection. In Proceedings of
International Conference on Data Mining and Big Data, pp. 137–151. Springer, 2022.

Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European Conference on
Computer Vision, pp. 3–19, 2018.

Haocheng Xi, Changhao Li, Jianfei Chen, and Jun Zhu. Training transformers with 4-bit integers.
Advances in Neural Information Processing Systems, 36:49146–49168, 2023.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In Proceedings of
International Conference on Machine Learning, pp. 38087–38099. PMLR, 2023.

Kai Zhong, Xuefei Ning, Guohao Dai, Zhenhua Zhu, Tianchen Zhao, Shulin Zeng, Yu Wang, and
Huazhong Yang. Exploring the potential of low-bit training of convolutional neural networks. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 41(12):5421–5434,
2022.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Train-
ing low bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160, 2016.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX

A PROOF OF THE EQUIVALENCE BETWEEN PROBLEM (1) AND THE DIRECT
OPTIMIZATION OF QUANTIZATION VARIANCE

Following Eq. 23, given a variable x, the quantization variance under stochastic rounding is:

V ar[Q(x)] = (l(x)− x)2 · pQ(x) + (u(x)− x)2 · (1− pQ(x))
= (x− l(x)) · (u(x)− x),

(6)

where l(x) and u(x) are lower quantization level and upper quantization level of x.

From the viewpoint of possibility, minimizing quantization variance is equal to minimize the expecta-
tion of quantization variance. The object function is:

min E[V ar(Q(x))]. (7)

For QN levels quantization, above function can be represented as:

E[V ar(Q(x))] =

QN∑
m=1

{
∫ um

lm

(x− lm) · (um − x)}

=

QN∑
m=1

{
∫ um

lm

(lm + um) cotx · p(x)dx−
∫ um

lm

x2 · p(x)dx−
∫ um

lm

lmum · p(x)dx}.

(8)
p(x) is the distribution of x. Any distribution can be representative as the mix of Laplace distributions
with different parameters. Thus, p(x) can be represent as:

p(x) =

inf∑
k=1

αk
1

2λk
e
− |x−µk|λk . (9)

Insert Eq. 9 to Eq. 8:

E[V ar(Q(x))] =

inf∑
k=1

αk

QN∑
m=1

{
∫ um

lm

(lm + um) cotx · 1

2λk
e
− |x−µk|λk dx

−
∫ um

lm

x2 · 1

2λk
e
− |x−µk|λk dx

−
∫ um

lm

lmum ·
1

2λk
e
− |x−µk|λk dx}.

(10)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

We first analyze on one Laplace component:

tk(x) =

QN∑
m=1

{
∫ um

lm

(lm + um) cotx · 1

2λk
e
− |x−µk|λk dx

−
∫ um

lm

x2 · 1

2λk
e
− |x−µk|λk dx

−
∫ um

lm

lmum ·
1

2λk
e
− |x−µk|λk dx}, letz = x− µk

λk

=

QN∑
m=1

fm(x)︷ ︸︸ ︷
{ lm + um

2

∫ um−µk
λk

lm−µk
λk

(λkz + µk)e
−|z|dz

−

gm(x)︷ ︸︸ ︷
1

2

∫ um−µk
λk

lm−µk
λk

(λkz + µk)
2e−|z|dz

−

qm(x)︷ ︸︸ ︷
lmum
2

∫ um−µk
λk

lm−µk
λk

e−|z|dz}.

(11)

Analysis on fm(x)

∫ um−µk
λk

lm−µk
λk

(λkz+µk)e
−|z|dz =

λk[(−um−µkλk
+ 1)e

−um−µkλk − (−l + 1)e
− lm−µkλk]

+µk[e
− lm−µkλk − e−

um−µk
λk] , um−µkλk

> lm−µk
λk

> 0

2(µk − λk)− (λk
lm−µk
λk

+ µk − λk)e
lm−µk
λk

−(λk um−µkλk
+ µk − λk)e−

um−µk
λk , um−µkλk

> 0 > lm−µk
λk

λk[(
um−µk
λk

− 1)e
um−µk
λk − (l − 1)e

lm−µk
λk]

+µk[e
um−µk
λk − e

lm−µk
λk] , lm−µkλk

< um−µk
λk

< 0.
(12)

With assumption of symmetry on quantization range, we have:

QN∑
m=1

∫ um−µk
λk

lm−µk
λk

(λkz + µk)e
−|z|dz =λk[(1−

uQN − µk
λk

)e
uQN

−µk
λk − (l1 − 1)e

l1−µk
λk]

+ µk[e
l1−µk
λk − e−

uQN
−µk

λk] + 2(µk − λk).

(13)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

For clarity, we represent above function as β(uQN , l1), β(uQN , l1) =
∑QN
m=1

∫ um−µk
λk

lm−µk
λk

(λkz +

µk)e
−|z|dz. Then, we have:

QN∑
m=1

fm(x) = (τ − τ

QN
)β(uQN , l0)−

2τ

QN

QN∑
m=1

f(um, l1)

=
QNτ − τ
QN

· 2λ · e−
uQN

−µk
λk − 2τ

QN

QN∑
m=1

λ[e−|um|

+ e
− l1−µkλk − |um|e−|um| −

l1 − µk
λk

e
− l1−µkλk − 2]

= 2λτ
QN − 1

QN
e
−
uQN

−µk
λk − 2λτ

1

QN
· (QN − 1) · [e

l1−µk
λk −

l1 − µk
λk

e
− l1−µkλk − 2]− 2λτ

QN

QN∑
m=1

[e−|um| − |um|e−|um|]

= 2λτ
QN − 1

QN
(
uQN − µk

λk
e
−
uQN

−µk
λk)− 2λτ

QN

QN∑
m=1

[e−|um| − |um|e−|um|],

≈ 2λτ
QN − 1

QN
(
uQN − µk

λk
e
−
uQN

−µk
λk)

(14)

where τ is the quantization range, and uQN = τ
2 , l1 = − τ2 .

Analysis on gm(x)

We first analyze
∫ um−µk

λk
lm−µk
λk

(λkz + µk)
2e−|z|dz. Let l = lm−µk

λk
, u = um−µk

λk
, we can find:

∫ u

l

(λkz+µk)
2e−|z|dz =

λ2[−z2e−z − 2ze−z − 2e−z]|ul +
2λµ[−ze−z − e−z]|ul + µ2[−e−z]|ul , u > l > 0

λ2[(z2 − 2z + 2)ez|0l + (−z2 + 2z − 2)e−z|u0]+
2λµ[(z − 1)ez|0l + (−z + 1)e−z|u0] + µ2[ez|0l + (−e−z)|u0], u > 0 > l

λ2[z2ez − 2zez + 2ez]|ul +
2λµ[zez − ez]|ul + µ2[ez]|ul , l < u < 0.

(15)
Accumulating the integers around different quantization levels:

QN∑
m=1

∫ um−µk
λk

lm−µk
λk

(λkz + µk)
2e−|z|dz = λ2[−e−z(z2 + 2z + 2)]|u0 + µ2[−e−z]|u0 + λ2[ez(z2 − 2z + 2)]|0l + µ2[ez]|0l

= λ2[−e−
um−µk
λk (

um − µk
λk

2

+ 2
um − µk
λk

+ 2)]

+ µ2[−e−
um−µk
λk + 1] + λ2[2− e

lm−µk
λk (

lm − µk
λk

2

− 2
lm − µk
λk

+ 2)]

+ µ2[1− e
lm−µk
λk]

= 2µ2(−e−
um−µk
λk + 1)

+ 2λ2[−e−
um−µk
λk (

um − µk
λk

+ 1)2 − e−
um−µk
λk + 2].

(16)

Analysis on qm(x)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

We first analyze
∫ um−µk

λk
lm−µk
λk

e−|z|dz. Let l = lm−µk
λk

, u = um−µk
λk

, we can find:

∫ u

l

e−|z|dz =

e−l − e−u, u > l > 0

2− el − e−u, u > 0 > l

eu − el, l < u < 0.

(17)

Thus we have:
QN∑
m=1

∫ um−µk
λk

lm−µk
λk

e−|z| = 2− 2e−u (18)

Following the same derivation as Eq. (14), we can find:

QN∑
m=1

lm + um
2

∫ um−µk
λk

lm−µk
λk

e−|z| =
τ · (τ − 2τ

QN
)

2
(2− 2e−u). (19)

Combine the result of Eq. (14), Eq. (16) and Eq. (19), we can find:

tk(x) = 2λτ
QN − 1

QN
(ue−u − 2)− {µ2(−e−u + 1)+

λ2[−e−u(u+ 1)2 − e−u + 2]} −
τ · (τ − 2τ

QN
)

2
(2− 2e−u)

= 2λτ
QN − 1

QN
(ue−u − 2) + µ2(e−u − 1)+

λ2[e−u(u+ 1)2 + e−u − 2] +
τ · (τ − 2τ

QN
)

2
(2e−u − 2),

(20)

where u =
uQN−µk

λk
and u� 1. Therefore, tk(x) is a monotonically increasing function of u at a

single point. As the quantization range τ decreases, the value of tk(x) also decreases. It is evident
that the same conclusion holds on E[V ar(Q(x))] =

∑inf
k=1 αktk(x).

Now we consider quantizing a vector x ∈ NHW . The expectation of the maximum of x is Arnold
et al. (2008); David & Nagaraja (2004):

E[maxx] ≈
inf∑
k=1

(µk + λk ln(2NHW)) (21)

The maximum of x is proportionate to λk. E[V ar(Q(x))] is a monotonically increasing function
of uQN−µk

λk
. Therefore, E[V ar(Q(x))] is also a monotonically increasing function of uQN

τx
(In

experiment, the distribution of gradients are extremely bell curve, which means µk is closed to 0). τx
is the magnitude of x.

Now, we expand to grouping channels. The object of channel grouping is to minimize the quantization
variance:

min
τ0,τ1,··· ,τNG−1,τNG

NG∑
g=1

∑
i∈P g

E[V ar(xi)],

s.t. rmax = τ0 ≥τ1 ≥ · · · ≥ τNG−1 ≥ τNG = 0,

(22)

where xi is the vectorized i-th channel. E[V ar(xi)] is depend on the quantization range of the group
and the range of xi. As indicated before, E[V ar(xi)] is a monotonically increasing function about
uQN
τxi

, where τxi is the quantization range of xi. In group quantization, uQN = τg, where τg is the
upper threshold of group g in Eq. (1). Hence that problem (22) and problem (1) has the same optimal
point. Meanwhile, both of them are monotonically increasing about

∑
i∈P g

τg
ri

.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

B THEORETICAL ANALYSIS ON SHIFTQUANT

Unbiased quantizer

ShiftQuant utilizes stochastic rounding:

SR(x) =

{
u(x) w.p. x−l(x)

u(x)−l(x)
l(x) w.p. 1− x−l(x)

u(l)−l(x)
, (23)

where u(x) = s−1ds · xe is the upper quantization level of x. l(x) = s−1bs · xc is the lower
quantization level of x. s is the quantization scale. It is clear that ShiftQuant is unbiased:

E[Dq(X)] = E[SR((X − ZI) · S) · S−1 + ZI] = X. (24)

X ∈ RN×D is the quantized matrix. The second dimension of X is the inner dimension. S =
diag(s0, · · · , sD−1). si is the scale applied in the i-th index of the inner dimension and si ∈
{sl, 2sl, · · · , 2NG−1sl}. sl is the minimum scale. Z = diag(z0, z1, · · · , zD−1) represents the
zero-point matrix. I ∈ RD×D is a identity matrix.

Low variance

The up bound of ShiftQuant’s variance Udq satisfies:

Udq ≤ α ·
N

4

D∑
j=1

s−2j + 2−NG
ND

4
s−2, (25)

where α is depended on the distribution of channels’ range, and 1 ≤ α ≤ 4. N
4

∑D
j=1 s

−2
j is

the up bound of fine-grained quantization’s variance. ND
4 s−2 is the up bound of coarse-grained

quantization’s variance. Eq. (25) demonstrates that ShiftQuant achieves a closed performance to
fine-grained quantizers.

Proof of Unbiased Quantization

E[Dq(X)] = E[SR((X − ZI) · S) · S−1 + ZI]

= E[SR(X − ZI)] · S · S−1 + ZI

= (X − ZI) · S · S−1 + ZI

= X.

(26)

Clearly, ShiftQuant is a unbiased quantizer.

Proof of Low Variance

From Eq. (6), we can find the up bound of quantization variance:

V ar[SR(x)] = (x− l(x))(u(x)− x) ≤ [u(x)− l(x)]2

4
, (27)

where u(x), l(x) are the neighbouring quantization levels, and u(x) − l(x) = r
B = s−1. r is the

quantization range, and B is the number of quantization bins.

Now we expand Eq. (27) to X ∈ RN×D. For coarse-grained quantization, we have:

V ar[Qpt(X)] =

N∑
i=1

D∑
j=1

r2

4B2
=
ND

4
s−2, (28)

where r is the range of X , and r = maxX −minX . spt = r
B is the quantization scale.

For per-channel quantization, we have:

V ar[Qpt(X)] =

N∑
i=1

D∑
j=1

r2j
4B2

=
N

4

D∑
j=1

s−2j , (29)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 10: Quantization variance of coarse-grained quantization, fine-grained quantization, and
ShiftQuant. We set number of groups as 3 in visualization. We sort the channels in ascending order
by the range of channels.

where rj = maxX:,j −minX:,j , sj =
rj
B .

We visualize the relation between fine-grained, coarse-grained quantization, and ShiftQuant in Figure
10.

As shown in Figure 10(b), in the worst case, the gap of channels’ ranges in a group is maximum. In
this situation, we can find that:

Udq = Ufq + UA + UB + UC

≤ Ufq + Ufq ∗ 3 + UC

= Ufq ∗ 4 + UC ,

(30)

where Ufq is the variance of fine-grained quantization. UA, UB , and UC denote the area of A, B, and
C in Figure 10. For UC , we have:

UC < 2−2∗NG+2 · Ucq, (31)

where Ucq is the variance of coarse-grained quantization. With combining Eq. (30) and Eq. (31), we
can find:

Udq ≤ 4Ufq + 2−2∗NG+2 · Ucq. (32)

As shown in Figure 10(c), in the best case, the channel’s ranges in each group is equal. The area of A,
B, and C are closed to 0. The variance of ShiftQuant satisfies:

Udq = Ufq + UA + UB + UC

≈ Ufq
≤ Ufq + 2−2∗NG+2 · Ucq.

(33)

With combining Eq. (32) and Eq. (33), we can find:

Udq ≤ α ∗ Ufq + 2−2∗NG+2 · Ucq

= α · N
4

D∑
j=1

s−2j + 2−2NG+2ND

4
s−2,

(34)

where 1 ≤ α ≤ 4.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

C PROOF OF L1 NORMALIZATION

C.1 ANALYSIS ON LIPSCHITZNESS CONSTANT

A normalization layer contains two step: normalization, scale and shift:

x̂ =
x− µ
σ

, Normalization, (35)

y = γ · x̂+ β, Scale and shift, (36)

where x is the input vector. For example, x ∈ RNHW in batchnorm, N,H,W are batchsize, height,
and width of the input activation respectively. When we get y, it is feed to the next layer f(·). Let z
denote the output of the following layer (z = f(y)). The gradient of y is:

∂L̂
∂x

=
(γ

Nσ

)(
N
∂L̂
∂z
− 1

〈
1,
∂L̂
∂z

〉
− x̂

〈
∂L̂
∂z

, x̂

〉)

=
γ

σ

((
∂L̂
∂z
− 1µg

)
− x̂

‖x̂‖

〈(
∂L̂
∂z
− 1µg

)
,

x̂

‖x̂‖

〉)
,

(37)

where L̂ is the loss function. µg =
〈
1, ∂L̂∂z

〉
. The derivation of Eq. (37) can be found in Santurkar

et al. (2018). Then we have:

∥∥∥∥∥∂L̂∂x
∥∥∥∥∥
2

=
γ2

σ2

∥∥∥∥∥
(
∂L̂
∂z
− 1µg

)
− x̂

‖x̂‖

〈(
∂L̂
∂z
− 1µg

)
,

x̂

‖x̂‖

〉∥∥∥∥∥
2

≤ γ2

σ2

∥∥∥∥∥
(
∂L̂
∂z
− 1µg

)∥∥∥∥∥
2

−

〈(
∂L̂
∂z
− 1µg

)
,

x̂

‖x̂‖

〉2
 ,

≤ γ2

σ2

∥∥∥∥∥
(
∂L̂
∂z
− 1µg

)∥∥∥∥∥
2

−

∥∥∥∥∥∂L̂∂z − 1µg

∥∥∥∥∥
2

·
∥∥∥∥ x̂

‖x̂‖

∥∥∥∥2
 .

(38)

Only σ and x̂ are different in L1 normalization layers and L2 normalization layers. Then we have:

σ1 = |x− µ|1, x̂1 =
x− µ
σ1

,L1normalization

σ2 = |x− µ|2, x̂2 =
x− µ
σ2

,L2normalization.
(39)

Thus the Lipschitzness constant of L1 normalization L1 and L2 normalization L2 satisfies:

L1

L2
≤ σ2

2

σ2
1

=
|x− µ|22
|x− µ|21

. (40)

Moreover, as shown in Figure 11, we record the L1 norm and L2 norm of activations around all
training stage. The L1 norm is extremely larger than L2 norm during all training stage, leading to
more smooth loss landscape.

C.2 QUANTIZATION-TOLERATION OF L1 NORMALIZATION

In fully-quantized normalization layers, before normalization (Eq. (35)), we first quantize the statistics
µ and σ:

µq = Q(µ), σq = Q(σ), Quantization. (41)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 11: The L1 norm and L2 norm of the activations during all training stage. We measure the
activation before the first BN layer in ResNet20.

x̂ =
x− µq

σq
, Normalization. (42)

In Eq. (42), σq is the denominator. Same noise imposed on smaller denominator will lead to larger
fluctuation in Eq. (42). As shown in Figure 11, σ in L2 normalization is significantly smaller than
in L2 normalization, which validates the weak quantization-tolerance of L2 normalization layers.
Moreover, we visualize the quantization error of 1

σ under different normalization layers. As shown in
Figure 12, L1 normalization achieves significantly smaller quantization gap than L2 normalization.

Figure 12: The quantization gap of 1
σ under L1 normalization and L2 normalization. During the

whole training stage, the quantization error of L1 normalization is significantly smaller than L2
normalization.

D DETAILED IMPLEMENTATION OF SHIFTQUANT

The gradient GB ∈ RNB×CB is first partitioned into NG distinct groups. Each group possesses a
unique scaling factor. The g-th group (GB)g ∈ RNB×CNg undergoes quantization according to the
following formulation:

(GB)gq = round(
(GB)g

τ0
B · 2−g

) = round(
(GB)g

s−1GB
· 2−g

), (43)

where τ0 represents the magnitude of GB . Naturally, we have:

(GB)g · (W T)g = [s−1GB
· 2−g · (GB)gq] · [s−1W · (W

T)gq]

= s−1GB
· s−1W · [(GB)gq · (W T)gq >> g],

(44)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

where W ∈ RCA×CB , and (W)gq ∈ RCA×CNg . With aggregating the results from all NG groups,
we have:

GA =

NG∑
g=1

(GB)
g · (W T)

g

= s−1GB
· s−1W

NG∑
g=1

[(GB)
g
q · (W

T)
g

q >> g],

(45)

In the code implementation, we substitute the right shift operation with a left shift operation. This
modification ensures that the outcome is perfectly congruent with the original dot product computa-
tion:

s−1GB
· s−1W · 2

−NG
NG∑
g=1

[(GB)
g
q · (W

T)
g

q << (Ng − g)]

=

NG∑
g=1

s−1GB
· s−1W · 2

−NG [(GB)
g
q · (W

T)
g

q << (Ng − g)]

=

NG∑
g=1

s−1GB
· (GB)

g
q · (2

−NG << (Ng − g)) · s−1W · (W
T)
g

q

=

NG∑
g=1

s−1GB
· (GB)

g
q · 2

−g · s−1W · (W
T)
g

q

=

NG∑
g=1

(GB)
g · (W T)

g

=GA.

(46)

E IMPLEMENTATION OF DSP REUSING ON FPGA

In the Xilinx ZC706 board, the interface for the multiplier within the FPGA’s DSP module (Xilinx
DSP48E1) is configured for 25-bit and 18-bit inputs. In low-bitwidth computations, the direct
utilization of DSPs leads to the wastage of bit width (as shown in Figure 13). DSP reusing addresses
this issue by packing multiple low-bitwidth data into a single data unit sized to the bit width. This
approach enables the execution of multiple multiplications in a single computation cycle.

Figure 13: Direct utilization of DSP on 8-bit multiplication. Unused bits is colored in gray. A lot of
bitwidth is wasted.

As shown in Figure 14 and 15, for 8-bit and 6-bit multiplications, the Xilinx DSP48E1 block can
achieve a maximum of dual multiplexing, allowing for the execution of two multiplications in a single

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

operation. This capability is also the reason why the DSP resource consumption for both 6-bit and
8-bit implementations is the same, as indicated in Table 8.

Figure 14: DSP reusing on 8-bit multiplication. One calculation can realize two multiplications.

Figure 15: DSP reusing on 6-bit multiplication. One calculation can realize two multiplications.

As shown in Figure 16, the DSP48E1 block is capable of simultaneously executing four 4-bit
multiplications. This aligns with the data presented in Table 8, where the DSP resource consumption
for the 4-bit implementation is half that of the 6-bit and 8-bit implementations.

Figure 16: DSP reusing on 4-bit multiplication. One calculation can realize four multiplications.

23

	Introduction
	Related Work and Challenges
	New Quantization Data Formats
	Fine-grained Quantization
	Outlier Suppression before Quantization

	ShiftQuant
	Smart Channel Grouping
	Implementation Optimization

	Fully-quantized L1 Normalization Layers
	Observation and Proposal of Normalization Layers
	Theoretical Analysis

	Experiments
	Performance Analysis
	Parameter Analysis and Ablation study
	Hardware Overhead

	Conclusion
	Proof of the Equivalence between Problem (1) and the Direct Optimization of Quantization Variance
	Theoretical Analysis on ShiftQuant
	Proof of L1 Normalization
	Analysis on Lipschitzness Constant
	Quantization-Toleration of L1 Normalization

	Detailed implementation of ShiftQuant
	Implementation of DSP Reusing on FPGA

