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ABSTRACT

Recent works have correlated Masked Image Modeling (MIM) with consistency
regularization in unsupervised domain adaptation. However, they merely treat
masking as a special form of deformation on the input images and neglect the
theoretical analysis, which leads to a superficial understanding of masked recon-
struction and insufficient exploitation of its potential in enhancing feature extrac-
tion and representation learning. In this paper, we reframe masked reconstruc-
tion as a sparse signal reconstruction problem and theoretically prove that the
dual form of complementary masks possesses superior capabilities in extracting
domain-agnostic image features. Based on this compelling insight, we propose
MaskTwins, a simple yet effective learning strategy that integrates masked recon-
struction directly into the main training pipeline. MaskTwins uncovers intrinsic
structural patterns that persist across disparate domains by enforcing consistency
between predictions of images masked in complementary ways, enabling domain
generalization in an end-to-end manner. Extensive experiments verify the supe-
riority of MaskTwins over baseline methods in natural and biological image seg-
mentation. These results demonstrate the significant advantages of MaskTwins
in extracting domain-invariant features without the need for separate pre-training,
offering a new paradigm for domain-adaptive segmentation.

1 INTRODUCTION

Inspired by Masked Language Modeling (MLM) (Devlin, 2018; Brown, 2020) in natural language
processing, Masked Image Modeling (MIM) (Bao et al., 2022; He et al., 2022; Xie et al., 2022b) has
achieved remarkable success in self-supervised visual representation learning. MIM learns semantic
representations by deliberately obscuring parts of the input and then reconstructing the missing
information based on the unmasked parts, e.g., normalized pixels (He et al., 2022; Xie et al., 2022b),
HOG feature (Wei et al., 2022), discrete tokens (Bao et al., 2022; Dong et al., 2023), deep features
(Zhou et al., 2021; Dong et al., 2022) or frequencies (Xie et al., 2022a; Liu et al., 2023). Their
success stems from the ability to learn robust, generalizable features despite incomplete or corrupted
data, as masked reconstruction techniques simulate real-world visual occlusions and distortions,
enhancing model comprehension of visual concepts.

Analogously, consistency regularization in unsupervised domain adaptive segmentation learns
domain-invariant features by enforcing consistency between the predictions of transformed images
and their original counterparts. In unsupervised domain adaptation (UDA), consistency regulariza-
tion based methods (Choi et al., 2019; Araslanov & Roth, 2021; Melas-Kyriazi & Manrai, 2021)
typically utilize a variety of augmentations, like affine transformations, color jittering and cutout
(DeVries, 2017), expecting the learned feature to be invariant to a certain group of transformations
on the inputs. Focusing excessively on selecting the most appropriate parameters and perturbation
functions makes them depart from the simple principle of consistency. Recently, MIC (Hoyer et al.,
2023) uses masked image consistency to learn context relations. However, it considers masking as
merely an image deformation and neglect the theoretical analysis, which results in a cursory under-
standing of masked reconstruction and a failure to fully harness its benefits for feature extraction
and representation learning. Moreover, the learning from single masked context is limited and the
effectiveness of single-branch masked consistency is largely contingent upon the accuracy of the
pseudo-labels generated, whose incorrectness will lead to noisy training and poor generalization.
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In this paper, we propose a novel perspective on masked reconstruction by reframing it as a sparse
signal reconstruction problem and utilize it to design an effective strategy for domain-adaptive seg-
mentation. Our theoretical analysis reveals that the dual form of complementary masks possesses su-
perior image feature extraction capabilities. This insight is grounded in the principles of compressed
sensing (Donoho, 2006), suggesting that complementary masks can provide a more comprehensive
sampling of the input space. Building upon this theoretical foundation, we introduce MaskTwins, a
simple yet effective learning strategy for domain-adaptive segmentation. MaskTwins leverages the
consistency constraints of complementary masks to extract domain-invariant features. Furthermore,
it employs Adaptive Instance Normalization (AdaIN) (Huang & Belongie, 2017) to adjust feature
statistics between source and target domains, enhancing adaptability across diverse data sources.
This approach not only advances the theoretical understanding of masked reconstruction but also
provides a practical framework for improving performance on domain-adaptive vision tasks.

Our contributions can be summarized as follows:

1. We provide a theoretical foundation for masked reconstruction by reframing it as a sparse
signal reconstruction problem, offering new insights into the effectiveness of complemen-
tary masks. This perspective bridges the gap between masked image modeling and signal
processing theory, potentially opening new avenues for future research.

2. We propose MaskTwins, a novel learning strategy that enforces consistency between pre-
dictions of dual-form complementary masked images without introducing extra learnable
parameters. Therefore, this approach is computationally efficient and can be easily inte-
grated into existing architectures.

3. We demonstrate the superiority of our approach through extensive experiments, showing
significant improvements over baseline methods in both natural and biological image seg-
mentation. Our results indicate that MaskTwins can enhance model robustness and adapt-
ability across diverse domains, providing a more conceptual guidance for masked consis-
tency learning in vision tasks.

2 RELATED WORKS

2.1 UNSUPERVISED DOMAIN ADAPTATION

UDA in natural image segmentation Unsupervised domain adaptation (UDA) addresses the crit-
ical problem of performance degradation in target domains through the effective exploitation of both
labeled source domain data and unlabeled target domain data. By bridging the domain gaps, UDA
has emerged as a versatile solution to enhance model robustness in various computational domains,
demonstrating promising results on various computer vision tasks such as natural image semantic
segmentation (Tsai et al., 2018; Mei et al., 2020; Jiang et al., 2022) and medical image segmenta-
tion (Bermúdez-Chacón et al., 2018; Liu et al., 2020a; Wu et al., 2021). UDA solutions are broadly
categorized into three groups: statistical moment alignment (Chen et al., 2019; Liu et al., 2020b),
adversarial learning (Tsai et al., 2018; Luo et al., 2021; Zheng & Yang, 2022) and self-training (Zou
et al., 2018; Mei et al., 2020; Zhao et al., 2023). Methods based on statistical moment alignment aim
to minimize the domain discrepancy employing an appropriate statistical distance function such as
entropy minimization (Chen et al., 2019) and Wasserstein distance (Liu et al., 2020b). Adversarial
training methods achieve domain invariant feature extraction with a GAN framework (Goodfellow
et al., 2014). To overcome the challenges of instability in adversarial learning, Zheng & Yang (2022)
adaptively refine the distribution of training data by aggregating the weak models. In self-training,
pseudo labels (Lee et al., 2013) are created for the unlabeled target domain using confidence thresh-
olds (Zou et al., 2018; 2019; Mei et al., 2020), pseudo-label prototypes (Zhang et al., 2019a; 2021;
Jiang et al., 2022) or uncertainty (Zheng & Yang, 2021). Recently, Hoyer et al. (2023) and Yang
et al. (2024) explore context relations while Zhao et al. (2023) learn pixel-wise representations to
boost the quality of pseudo-labels.

UDA in biological image segmentation For the segmentation of biological images, domain adap-
tation is receiving increasing attention due to the lack of manually annotated data. Specially, the 3D
volumes of microscopy image datasets allow the additional consideration of the consistency of ad-
jacent sections. For example, Huang et al. (2022b) take the inter-slice information into account
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and Sun et al. (2023) construct an intricately-designed network that captures long-range sectional
variations within structures and effectively discriminates by adaptively aggregating diverse com-
ponents. Yin et al. (2023) performs domain alignment in the feature space and incorporates the
prototype representation into feature alignment. Different from these UDA methods, our proposed
method integrates the context relationships by enforcing complementary masked consistency with-
out introducing extra learnable parameters. The dual-form masked image consistency enables the
learning of complementary clues, which further boosts the extraction of doamain-invariant features
and increases the robustness of networks across different segmentation tasks.

2.2 MASKED IMAGE MODELING

Masked Image modeling (MIM) (Bao et al., 2022; Wei et al., 2022; He et al., 2022) methods are
showing great promise in visual self-supervised representation learning for their ability to learn ro-
bust and generalizable features from incomplete or corrupted input data, enhancing the models’
comprehension of visual concepts. Many target signals have been conceived for the masked recon-
struction, encompassing raw pixels (He et al., 2022; Xie et al., 2022b), HOG features (Wei et al.,
2022), discrete visual tokens (Bao et al., 2022; Dong et al., 2023), frequencies (Xie et al., 2022a;
Liu et al., 2023) and deep features (Zhou et al., 2021; Dong et al., 2022). Recently, Wang et al.
(2023) further explore the reconstruction process at multiple scales while Kong & Zhang (2023)
interprete MIM in a unified framework. However, these works mainly treat masked reconstruction
as a pre-training strategy but neglect its potential for downstream tasks related to domain general-
ization. Hoyer et al. (2023) preliminarily explore the masked target image in the UDA setting and
conclude that masked image consistency substantially boosts UDA performance through additional
context clues. Shin et al. (2024) superficially perform complementary masking for RGB-Thermal
segmentation. Yet, a thorough theoretical foundation for the effectiveness of masked images in
domain adaptation remains to be established. In this work, we introduce a novel reconceptualiza-
tion of the masked reconstruction as a sparse signal reconstruction problem and refine the theory of
complementary masks. By surpassing the constraints of domain-specific customization, MaskTwins
employs a strategic complementary masking technique on the input data, ensuring a more holistic
and nuanced understanding of the intrinsical data patterns.

3 METHOD

3.1 OVERVIEW

The MaskTwins framework for unsupervised domain adaptation (UDA) in semantic segmentation
is detailed in Figure 1. The objective is to train a neural network fθ that effectively generalizes
to the target domain, given a labeled source domain dataset XS = {(xS

i , y
S
i )}

NS
i=1 ⊆ DS and an

unlabeled target domain dataset XT = {xT
j }

NT
j=1 ⊆ DT . The framework operates by generating two

complementary masked versions of each target image xT
j , denoted as D ⊙ xT

j and (1 − D) ⊙ xT
j ,

where D is a binary mask. A teacher model fϕ, updated via the Exponential Moving Average (EMA)
of the student parameters, generates pseudo-labels for the target domain. The student’s predictions,
together with the pseudo-labels from the teacher model, are used to compute the target-domain
losses, while a supervised loss is computed using the labeled source data. This iterative process
adapts the model to the target domain, leveraging both the supervised source information and the
unsupervised adaptation to the target domain.

Motivation Consistency regularization (Choi et al., 2019; Araslanov & Roth, 2021; Melas-Kyriazi
& Manrai, 2021) is a common technique in UDA. It typically leverages a rich set of augmentations,
like affine transformations, cutout (DeVries, 2017), and color jittering in images. Nonetheless, their
success heavily depends on the accuracy of the pseudo-labels generated, whose incorrectness will
lead to noisy training and poor generalization. Inspired by MIC (Hoyer et al., 2023), we expect
the performance of masked consistency in UDA. We further take insights from the paradigm of
masked reconstruction (Bao et al., 2022; He et al., 2022; Xie et al., 2022b) and propose the theory of
complementary masks to support the application of masked consistency for domain-adaptive image
segmentation.
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Figure 1: The overall framework of MaskTwins. Given the labeled source data , we calculate the
segmentation prediction PS with the network fθ, supervised by basic segmentation loss LS

sup. For
the target domain, we obtain the predictions of complementary masked target images, constrained
by the pseudo-labels PT that are generated based on the unmasked image by an exponential moving
average (EMA) teacher fϕ. “//” on “→” means stop gradient. Furthermore, MaskTwins proposes
the complementary masked loss between dual-form complementary masked images for deep con-
sistency learning.

3.2 THEORETICAL ANALYSIS OF COMPLEMENTARY MASKING

To provide a formal foundation for the complementary masking strategy in MaskTwins, we present
a theoretical analysis addressing the properties of masked training in visual tasks. This analysis
focuses on information preservation, generalization bounds, and feature consistency. Detailed proofs
of all results are provided in Appendix E.

Definition 1 (Complementary Mask). Let D ∈ {0, 1}H×W be a binary matrix, where each element
Dij ∼ Bernoulli(0.5). The complementary mask pair is defined as (D, 1 − D), where 1 is the
all-ones matrix of size H ×W .

Definition 2 (Random Mask). Let R ∈ {0, 1}H×W be a binary matrix where each element Rij ∼
Bernoulli(0.5) independently. The random mask pair is defined as (R1, R2), where R1 and R2 are
independent random masks.

Assumption 1 (Visual Data Model). The input image X ∈ RH×W×C is generated by the model
X = S + E + N , where S represents a sparse signal component, E represents environmental
factors, and N ∼ N (0, σ2I) is additive Gaussian noise.

Assumption 2 (Feature Extraction Framework). We consider a feature extraction framework with
the objective function:

L(f) = EX [ℓ(f(X1), f(X2))], (1)

where f : RH×W×C → Rk is the feature extraction function, and ℓ : Rk × Rk → R is the loss
function.
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Theorem 1 (Information Preservation). For any input image X , define the information preservation
metric IP(X1, X2) =

⟨f(X1),f(X2)⟩
∥f(X)∥2 . Then:

E[IP(D ⊙X, (1−D)⊙X)] ≥ E[IP(R1 ⊙X,R2 ⊙X)] (2)
Var(IP(D ⊙X, (1−D)⊙X)) ≤ Var(IP(R1 ⊙X,R2 ⊙X)), (3)

where ⊙ denotes element-wise multiplication.
Theorem 2 (Generalization Bound). Assume ℓ is L-Lipschitz and f is β-smooth. For any δ ∈ (0, 1),
with probability at least 1− δ:

|L(f)− L̂n(f)| ≤ C1LβB

(√
1

n
+

√
log(1/δ)

n

)
(Complementary) (4)

|L(f)− L̂n(f)| ≤ C2LβB

(√
1

n
+

√
log(1/δ)

n
+

√
HWC

n

)
(Random), (5)

where B = supX∈X ∥X∥F , and C1, C2 are constants.
Theorem 3 (Feature Consistency). Define the feature consistency error as FCE(X1, X2) =
∥f(X1)− f(X2)∥2. Then for any δ ∈ (0, 1), with probability at least 1− δ:

FCE(D ⊙X, (1−D)⊙X) ≤ C1σ
√

k log(HWC/δ) (Complementary) (6)

FCE(R1 ⊙X,R2 ⊙X) ≤ C2

(
σ
√
k log(HWC/δ) + ∥E∥F

√
k log(HWC/δ)

HWC

)
(Random),

(7)

where C1, C2 are constants.
Remark 1. The theoretical results demonstrate the advantages of complementary masking. Specif-
ically, complementary masks offer better information preservation, tighter generalization bounds,
and improved feature consistency, compared to random masking. These properties are critical for
extracting domain-invariant features, which are essential in cross-domain tasks such as domain
adaptation.

3.3 MASKTWINS: COMPLEMENTARY MASKED LEARNING

Building upon the theoretical framework, we now describe the core complementary masked learning
approach in MaskTwins. This strategy employs patch-wise binary masks to generate dual comple-
mentary views of the target images. Specifically, for each target image xT

j , a binary mask D is
sampled from a Bernoulli distribution:

Dmb+1:(m+1)b
nb+1:(n+1)b

∼ Bernoulli(1− r), (8)

where r is the mask ratio, b is the patch size, and m and n are patch indices. The dual-form comple-
mentary masked images are then obtained by element-wise multiplication:

XT
cm = {XT

D, XT
1−D} = {D ⊙XT , (1−D)⊙XT }. (9)

These complementary views encourage the model to extract robust, domain-invariant features by
enforcing consistency learning upon masked images. To effectively learn from dual-form comple-
mentary contexts, we introduce two kinds of consistency losses. First, we constrain the consistent
prediction of complementary masked images, which enables the network to integrate the dual-form
clues. The complementary masked loss is accordingly defined as:

LT
cm = E[Lce(p

T
j,D, pTj,1−D)], (10)

where pTj,D and pTj,1−D are the predictions for the complementary masked images. Intended to
encourage successful masked reconstruction for both masked views, we also define a masked con-
sistency learning loss:

LT
cl = E[λ× Lce(p

T
j,D, ŷTj ) + (1− λ)× Lce(p

T
j,1−D, ŷTj )], (11)

5
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where ŷTj are the pseudo-labels, λ defaults to 0.5 to ensure balanced learning from the comple-
mentary masks. Since there is no ground truth available for the target domain, a teacher model fϕ
predicts the pseudo-label for the unmasked target image:

ŷTj = [c = argmaxfϕ(xT
j )], (12)

where c is one category and the pseudo-label is converted into a one-hot categorical form via the
Iverson bracket [·].
The parameters of the teacher network fϕ are updated using an Exponential Moving Average (EMA)
of the parameters of the student network fθ (Tarvainen & Valpola, 2017):

ϕt+1 ← αϕt + (1− α)θt, (13)
where t denotes a training step and α is the EMA decay rate. The teacher model averages the weights
of previous student models over time, leading to temporally stable and reliable predictions on the
target domain. Moreover, with access to the complete information from the original target images,
it can issue guidance for the adaptation process and provide high-quality pseudo-labels which are
then used in conjunction with our complementary masking approach to enhance the masked recon-
struction.

This complementary masking strategy ensures that the model learns from diverse, yet consistent,
views of the target domain, promoting robust generalization to the target domain. The next section
details the overall model architecture and training process, which integrates these complementary
masking principles.

3.4 MODEL ARCHITECTURE AND TRANING STRATEGY

The MaskTwins architecture consists of a shared encoder and segmentation head for both the source
and target domains. To mitigate domain shift, we employ an Adaptive Instance Normalization
(AdaIN) (Huang & Belongie, 2017) module in the shallow layers of the network, which aligns
feature distributions between the two domains.

During training, we apply the complementary masks to the target domain images and enforce con-
sistency between the predictions of these masked versions. This encourages the model to learn
invariant representations that generalize well to the target domain. Our training strategy integrates
supervised learning on the source domain with self-training and consistency regularization on the
target domain.

The supervised loss on the source domain is defined as:
LS
sup = E[Lce(p

S
i , y

S
i )] = E[−ySi log(pSi )], (14)

where pSi = fθ(x
S
i ) is the source prediction of the network fθ.

By integrating these components - complementary masking, consistency regularization, and self-
training with a teacher model - MaskTwins effectively leverages the complementary information
from masked inputs, promoting robust feature learning and improved generalization to the target
domain.

The overall loss function that encapsulates our training strategy is formulated as:
Ltotal = LS

sup + LT
cl + λcmLT

cm, (15)

where LS
sup is the supervised loss on the source domain, LT

cl is the masked consistency learning loss
on the target domain, LT

cm is the complementary masked loss, and λcm is the weight for the com-
plementary masked loss. We summarize the pipeline of MaskTwins in Algorithm 1 in Appendix B.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Datasets To demonstrate the versatility of MaskTwins, we conduct experiments spanning six dis-
tinct datasets: SYNTHIA (Ros et al., 2016) and Cityscapes (Cordts et al., 2016) are natural datasets,
VNC III (Gerhard et al., 2013), Lucchi (Lucchi et al., 2013), MitoEM (Wei et al., 2020) and WASP-
SYN (Li et al., 2024) are biological datasets. The details of the datasets and the task-specific imple-
mentation on these datasets can be found in Appendix C.

6
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Table 1: Comparison results with previous UDA methods on SYNTHIA→Cityscapes. “SW” stands
for sidewalk, “TL” for traffic light, “TS” for traffic sign, “Veg.” for vegetation, “PR” for person.
We present pre-class IoU and mean IoU (mIoU), averaged across 13 categories. The competitors
include DAFormer (Hoyer et al., 2022a), CAMix (Zhou et al., 2022b), HRDA (Hoyer et al., 2022b),
MIC (Hoyer et al., 2023), etc. More details are shown in Appendix A.

Method Road SW Build TL TS Veg. Sky PR Rider Car Bus Motor Bike mIoU

SIBAN 82.5 24.0 79.4 16.5 12.7 79.2 82.8 58.3 18.0 79.3 25.3 17.6 25.9 46.3
DADA 89.2 44.8 81.4 8.6 11.1 81.8 84.0 54.7 19.3 79.7 40.7 14.0 38.8 49.8
BDL 86.0 46.7 80.3 14.1 11.6 79.2 81.3 54.1 27.9 73.7 42.2 25.7 45.3 51.4
APODA 86.4 41.3 79.3 22.6 17.3 80.3 81.6 56.9 21.0 84.1 49.1 24.6 45.7 53.1
SIM 83.0 44.0 80.3 17.1 15.8 80.5 81.8 59.9 33.1 70.2 37.3 28.5 45.8 52.1
FDA 79.3 35.0 73.2 19.9 24.0 61.7 82.6 61.4 31.1 83.9 40.8 38.4 51.1 52.5
LSE 82.9 43.1 78.1 9.1 14.4 77.0 83.5 58.1 25.9 71.9 38.0 29.4 31.2 49.4
CCM 79.6 36.4 80.6 22.4 14.9 81.8 77.4 56.8 25.9 80.7 45.3 29.9 52.0 52.9
LDR 85.1 44.5 81.0 16.4 15.2 80.1 84.8 59.4 31.9 73.2 41.0 32.6 44.7 53.1
CD-SAM 82.5 42.2 81.3 18.3 15.9 80.6 83.5 61.4 33.2 72.9 39.3 26.6 43.9 52.4
CLAN 82.7 37.2 81.5 17.1 13.1 81.2 83.3 55.5 22.1 76.6 30.1 23.5 30.7 48.8
ASA 91.2 48.5 80.4 5.5 5.2 79.5 83.6 56.4 21.9 80.3 36.2 20.0 32.9 49.3
DAST 87.1 44.5 82.3 13.9 13.1 81.6 86.0 60.3 25.1 83.1 40.1 24.4 40.5 52.5
UncerDA 79.4 34.6 83.5 32.1 26.9 78.8 79.6 66.6 30.3 86.1 36.6 19.5 56.9 54.6
RPLR 81.5 36.7 78.6 20.7 23.6 79.1 83.4 57.6 30.4 78.5 38.3 24.7 48.4 52.4
UACR 85.5 42.5 83.0 20.9 25.5 82.5 88.0 63.2 31.8 86.5 41.2 25.9 50.7 55.9
DACS 80.6 25.1 81.9 22.7 24.0 83.7 90.8 67.6 38.3 82.9 38.9 28.5 47.6 54.8
ProDA 87.8 45.7 84.6 54.6 37.0 88.1 84.4 74.2 24.3 88.2 51.1 40.5 45.6 62.0
DAFormer 84.5 40.7 88.4 55.0 54.6 86.0 89.8 73.2 48.2 87.2 53.2 53.9 61.7 67.4
CAMix 87.4 47.5 88.8 55.2 55.4 87.0 91.7 72.0 49.3 86.9 57.0 57.5 63.6 69.2
HRDA 85.2 47.7 88.8 65.7 60.9 85.3 92.9 79.4 52.8 89.0 64.7 63.9 64.9 72.4
MIC 86.6 50.5 89.3 66.7 63.4 87.1 94.6 81.0 58.9 90.1 61.9 67.1 64.3 74.0
Ours 96.0 70.1 89.5 66.8 62.1 89.1 94.3 81.5 59.7 90.5 66.6 67.7 63.6 76.7

MaskTwins parameters MaskTwins uses the square mask for 2D domain adaptation and the cube
mask for 3D respectively. The complementary masks have equal loss weight and the same mask ra-
tio r = 0.5. The mask patch size is fixed for each task, approximately 1/16 of the input size. For
SYNTHIA→Cityscapes, we use a patch size b = 64, a loss weight λcm = 0.01, and common color
augmentation (brightness, contrast, saturation, hue, and blur) following the parameters of Hoyer
et al. (2022a), Hoyer et al. (2022b) and Tranheden et al. (2021). For mitochondria semantic seg-
mentation, we use a patch size b = 32, a loss weight λcm = 0.01, a pseudo-label threshold δ = 0.7,
and random augmentation including flip, transpose, rotate, resize and elastic transformation. For
synapse detection, the point annotations (3D coordinates) are transformed into voxel cubes with a
size of 3×3×3 to be used as the training target. We use a patch size b = 6, a loss weight λcm = 0.1
Empirically, we set the threshold δpre = 0.75 for the pre-synapse, δpost = 0.65 for the post-synapse
by default. The experiments are conducted on 8× RTX 3090 GPU.

4.2 NATURAL IMAGE SEMANTIC SEGMENTATION

First, we compare MaskTwins with previous UDA methods on SYNTHIA→Cityscapes in Table 1.
It can be seen that MaskTwins outperforms the previously state-of-the-art method by a significant
margin of +2.7 mIoU and remains competitive in segmenting almost all classes, which verifies the
effectiveness of the dual form of complementary masks on target images. Classes that most profit
from our method are sidewalk, road, vegetation, bus, and rider. Particularly, sidewalk owns the
lowest UDA performance over 13 categories, meaning that it is the most difficult to adapt for previ-
ous methods. Here, contextual relationships seem to be crucial for achieving successful adaptation.
However, we increase the IoU of the sidewalk by +19.6 from 50.5 to 70.1 IoU. Additionally, our
performance improvement on road is +4.8 from 91.2 to 96.0 IoU, probably because of its strong
correlation with sidewalk. For some classes, our method increases the performance by a smaller
margin or causes a minor reduction, probably because the small objectives lead MaskTwins to mis-
understand the complementary masked regions. In Figure 2, we visualize the segmentation results
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Image HRDA MIC Ours Ground Truth

Figure 2: Qualitative segmentation results on SYNTHIA→Cityscapes. MaskTwins improves the
segmentation of classes such as sidewalk, road, bus and rider.

Image DAMT-Net DA-VSN DA-ISC CAFA Ours Ground truth

Figure 3: Qualitative comparison of MaskTwins with previous methods on VNC III→Lucchi Sub-
set2 (row 1) and MitoEM-H→MitoEM-R (row 2). The pixels in red and green denote the false-
negative and false-positive segmentation results respectively.

and the comparison with previous strong methods HRDA (Hoyer et al., 2022b), MIC (Hoyer et al.,
2023) and the ground truth. While previous methods are confused by illumination as well as cross-
ings and fail to distinguish sidewalk from road, MaskTwins enables a more robust recognition of
these categories. We can conclude that the complementary masking significantly enhances semantic
segmentation, particularly for large or complex objects, where it effectively preserves structure and
enables accurate segmentation despite obstacles.

4.3 MITOCHONDRIA SEMANTIC SEGMENTATION

We conduct quantitative comparison results of our approach with multiple UDA baselines on the
Lucchi and MitoEM datasets to demonstrate the superiority of our approach. As listed in Table 2,
MaskTwins achieves the new state-of-the-art results in all cases, which corroborates the effective-
ness of the proposed complementary masking strategy. Specifically, MaskTwins enhances the IoU
of VNC III→Lucchi(Subset1) and Lucchi(Subset2) to 75.0% and 78.6%, outperforming the state-
of-the-art methods by 3.2% and 3.2%. On the MitoEM dataset with a larger structure discrepancy,
our method consistently has remarkable improvements by +2.1% IoU and +1.3% IoU respectively.
It is noticeable that the mitochondria in MitoEM-H exhibit denser and more intricate distributions
compared to those in MitoEM-R, rendering the domain adaptation from MitoEM-R to MitoEM-H
more challenging than the reverse. Despite this, MaskTwins surpasses CAFA (Yin et al., 2023) by a
significant margin on the benchmark of MitoEM-R→MitoEM-H. It demonstrates that the proposed
strategy can strengthen the generalization capacity of the learned model and adapt it to the chal-
lenging and diverse target domain. In Figure 3, we further qualitatively compare MaskTwins with
other competitive methods including DAMT-Net (Peng et al., 2020), DA-VSN (Guan et al., 2021),
DA-ISC (Huang et al., 2022b), and CAFA (Yin et al., 2023). The results highlighted by yellow
boxes reveal that MaskTwins shows better adaptability while other methods fail to handle hard cases
with large domain gap. By leveraging the complementary masked context, our method manages to
separate mitochondria correctly from the background and delivers more fine-grained results on the
target domain. This indicates that MaskTwins is adept at extracting robust features of segmented
objectives, thereby achieving effective adaptation from the source domain to the target domain.
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Table 2: Quantitative comparisons on the Lucchi and MitoEM datasets (metrics in %). “Oracle”
denotes the model is trained on target with groundtruth labels, while “NoAdapt” represents the
model pretrained on source is directly applied in target for inference without any adaptation strategy.
The results of Oracle, NoAdapt, UALR, DAMT-Net, DA-VSN and DA-ISC are adopted from Huang
et al. (2022b)

Methods VNC III→ Lucchi (Subset1) VNC III→Lucchi (Subset2)

mAP F1 MCC IoU mAP F1 MCC IoU

Oracle - 92.7 86.5 86.5 - 93.9 - 88.6
NoAdapt - 57.3 40.3 40.3 - 61.3 - 44.3

Advent (Vu et al., 2019a) 78.9 74.8 73.3 59.7 90.5 82.8 81.8 70.7
UALR (Wu et al., 2021) 80.2 72.5 71.2 57.0 87.2 78.8 77.7 65.2
DAMT-Net (Peng et al., 2020) - 74.7 60.0 60.0 - 81.3 - 68.7
DA-VSN (Guan et al., 2021) 82.8 75.2 73.9 60.3 91.3 83.1 82.2 71.1
DA-ISC (Huang et al., 2022b) 89.5 81.3 80.5 68.7 92.4 85.2 84.5 74.3
CAFA(Yin et al., 2023) 91.1 83.4 82.8 71.8 94.8 85.8 85.4 75.4
MaskTwins(Ours) 92.4 85.6 85.1 75.0 95.2 87.9 87.4 78.6

Methods MitoEM-R→MitoEM-H MitoEM-H→MitoEM-R

mAP F1 MCC IoU mAP F1 MCC IoU

Oracle 97.0 91.6 91.2 84.5 98.2 93.2 92.9 87.3
NoAdapt 74.6 56.8 59.2 39.6 88.5 76.5 76.8 61.9

Advent (Vu et al., 2019a) 89.7 82.0 81.3 69.6 93.5 85.4 84.8 74.6
UALR (Wu et al., 2021) 90.7 83.8 83.2 72.2 92.6 86.3 85.5 75.9
DAMT-Net (Peng et al., 2020) 92.1 84.4 83.7 73.0 94.8 86.0 85.7 75.4
DA-VSN (Guan et al., 2021) 91.6 83.3 82.6 71.4 94.5 86.7 86.3 76.5
DA-ISC (Huang et al., 2022b) 92.6 85.6 84.9 74.8 96.8 88.5 88.3 79.4
CAFA (Yin et al., 2023) 92.8 86.6 86.0 76.3 96.8 89.2 88.9 80.6
MaskTwins(Ours) 94.0 87.9 87.4 78.4 96.9 90.0 89.7 81.9

4.4 SYNAPSE DETECTION

We also evaluate the effectiveness of our proposed method on 3D synapse detection. This task aims
to pinpoint the positions of pre-synaptic and post-synaptic sites in the 3D space, as well as to deter-
mine the connectivity between them, specifically identifying the IDs of the pre-synapses to which
the post-synapses are linked. For a more vivid depiction of the detection outcomes, we visualize
the 3D results of pre- and post-synapse detection in Appendix D.3. Following Chen et al. (2024),
we convert the task of synapse detection into a segmentation task. Since there is few prior works
on this new challenge, we re-implement SSNS-Net (Huang et al., 2022a), AdaSyn (Chen et al.,
2024) and MIC (Hoyer et al., 2023) strictly following their experimental implementations and make
a fair comparison. Table 3 shows that MaskTwins achieves the highest F1-score with an outstand-
ing gain of 2.02% totally, 3.13% on post-synapse. Due to its high density and the one-to-many
synapse connectivity problem, post-synapses are more difficult to identify. Other methods perform
poorly on post-synapse detection. However, MaskTwins can learn robust features and capture more
post-synapses correctly with the help of complementary masks.

Table 3: Comparison result on the WASPSYN Chal-
lenge. The F1-score is the average of F1pre and F1post.

Method F1pre F1post F1-score

SSNS-Net 0.7201 0.3072 0.5137
AdaSyn 0.7846 0.3136 0.5491
MIC 0.7823 0.3599 0.5711
MaskTwins(Ours) 0.7914 0.3912 0.5913

Table 4: Effect of the mask patch size
on MitoEM-H→MitoEM-R.

Patch size(b) IoU(%)

16 81.13
32 81.88
64 81.08
128 81.44
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(a) mAP (b) F1 (c) MCC (d) IoU

Figure 4: Ablation study on mask type and mask ratio with special attention paid on the metrics of
F1, MCC and IoU. Bars in blue and gray represents using complementary masks and random masks.

4.5 ABLATION STUDY

Patch size Table 4 shows the effect of the mask patch size b on MitoEM-H→MitoEM-R with a
input size of 512. By gradually increasing the mask patch size, we observe that the best performance
is achieved when b = 32, i.e. 1/16 of the input size. Patches that are either larger or smaller exhibit
varying degrees of performance reduction. This is likely because patches that are too large may ex-
cessively cover the foreground while those that are too small tend to apply an overly dense masking,
potentially hindering the complementary learning of contextual information. On the contrary, by
concentrating on context-rich areas using appropriate mask patch size, the model can better utilize
the spatial relations within the image, leading to improved performance in unsupervised domain
adaptation. Therefore, we use a mask patch size of 1/16 in all experiments.

Mask type and mask ratio We evaluate the effectiveness of complementary masks on MitoEM-
H→MitoEM-R, compared with random masks. To do this, we systematically alter the mask ratios
and specifically explore the combinations of [r, 1− r] with a mask ratio r ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.
For instance, a mask ratio of 0.3 implies a corresponding mask ratio of 0.7 in the dual-form com-
plementary masks, and we maintain the same experimental settings in the control group of random
masks for a fair comparison. Upon observation, while F1, MCC, and IoU consistently show similar
trends, mAP stands out as an outlier. Consequently, we place greater emphasis on the metrics of F1,
MCC, and IoU for a more reliable assessment. As shown in Figure 4, there is a noticeable decline in
performance with the increase of the mask ratio in the experiments utilizing complementary masks.
This decrease is attributed to the asymmetrical dual contexts, which may disrupt the bidirectional
training process. The best performance on the target domain is attained when employing comple-
mentary masks with a mask ratio of 0.5. In contrast, we find that the performance of random masks
exhibits a fluctuation as the mask ratio changes, according with the characteristic of randomness.
Notably, a mask ratio of 0.1 yields marginally better results, which relies on single lightly masked
image to give a relatively accurate prediction but discards the mutual learning of dual masks.

5 CONCLUSION

In this work, we present a novel perspective on masked reconstruction by reinterpreting it as a
sparse signal reconstruction problem and theoretically prove the effectiveness of the dual form of
complementary masks. Based on this theoretical foundation, we propose MaskTwins, an effective
strategy that utilizes complementary masks to simultaneously enhance the robust feature extraction
for domain-adaptive segmentation. Our MaskTwins has demonstrated remarkable superiority over
the state-of-the-art methods across a diverse range of domain adaptation scenarios, spanning from
natural to biological imaging and from 2D to 3D modalities. For instance, MaskTwins respectively
achieves significant performance improvements by +2.7% and +2.5% on SYNTHIA→Cityscapes
and biological datasets. Since MaskTwins performs masked image consistency without extra an-
notations, it offers a flexible technique that can be seamlessly incorporated with other methods to
further facilitate the learning of domain-invariant features, ensuring the cross-domain knowledge
adaptation process. In the future, we will continue to explore the potential of MaskTwins in a
broader spectrum of visual recognition challenges, including but not limited to domain-adaptive
video segmentation and image classification.
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A EXTENDED RELATED WORKS ON UDA

Adversarial learning Hoffman et al. (2016) are the first to apply the adversarial approach for
UDA on semantic segmentation to encourage domain-invariant alignment globally. SIBAN (Luo
et al., 2019) employs a significance-aware information bottleneck (SIB) before the adversarial fea-
ture adaptation to extract latent representations in semantic segmentation tasks. FDA (Yang &
Soatto, 2020) performs spectral transfer by swapping the low-frequency component of the spectrum
of one with the other. APODA (Yang et al., 2020a) explicitly trains a domain-invariant classifier by
generating and defensing against point-wise feature space adversarial perturbations, in order to adapt
the representations of the tail classes or small objects for semantic segmentation. SIMWang et al.
(2020) and CLAN (Luo et al., 2021) apply category-level alignment to minimize the discrepancy
between the source and target distributions. DAST (Yu et al., 2021) proposes a self-training strat-
egy which adaptively improves the decision boundary of the model for target domain and implicitly
facilitates the extraction of domain-invariant features.
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Pseudo-label self-training DADA (Vu et al., 2019b) introduces a novel depth-aware adaptation
scheme while BDL (Li et al., 2019) proposes a novel bidirectional learning framework for domain
adaptation of segmentation. LSE (Subhani & Ali, 2020) exploits scale-invarince property of the
model to generate pseudo-labels. DACS (Tranheden et al., 2021) mixes images from the two do-
mains along with the corresponding labels and pseudo labels to perform Cross-domain mixed Sam-
pling. Some generative methods try to acquire target-like synthetic images by content-consistent
matching (CCM) (Li et al., 2020) or label-driven reconstruction (LDR) Yang et al. (2020b). To
improve the quality of pseudo labels, UncerDA (Wang et al., 2021) provides an uncertainty-aware
pseudo label assignment strategy while RPLR (Li et al., 2022) retrains the networks using selected
reliable pseudo labels. Many works focus on consistency regularization to capture contextual re-
lations, such as CD-SAM (Yang et al., 2021), UACR (Zhou et al., 2022a), CAMix (Zhou et al.,
2022b), HRDA (Hoyer et al., 2022b) and MIC (Hoyer et al., 2023). Researchers also conducted ex-
tensive attempts, including affinity in ASA (Zhou et al., 2020), representative prototypes in ProDA
(Zhang et al., 2021), and Transformer architecture in DAFormer (Hoyer et al., 2022a). In conclu-
sion, consistency-based methods try to learn domain-variant feature to enhance the robustness of the
model, which align with the constrained entropy minimization perspective of MEMO (Zhang et al.,
2022).

Theory for UDA The theoretical works (Ben-David et al., 2006; 2010; Zhang et al., 2019b)
provide fundamental insights into UDA, especially concerning domain discrepancy and theoreti-
cal bounds.Specifically, they study margin bounds for classification tasks at the distribution level,
while we focus on segmentation tasks and the theory of Masked Image Modeling and compressed
sensing at the image level. We have analyzed the information preservation, generalization bounds
and feature consistency to demonstrate the effectiveness of complementary masking. Zhang et al.
(2019b) discuss generalization bounds based on empirical Rademacher complexity, building upon
the domain adaptation theories presented in previous works such as those by Ben-David et al. (2006;
2010). We preliminary observe that there exists deeper connections between these works and ours.
Hopefully, we will make further theoretical analysis in the future work.

B MASKTWINS TRAINING PROCEDURE

We provide the overall training procedure of MaskTwins for image segmentation in Algorithm 1.

Algorithm 1 MaskTwins Algorithm

Input: Source domain DS , Target domain DT , student model fθ, teacher model fϕ, the total itera-
tion number N .

1: Initialize network parameter θ with ImageNet pre-trained parameters. Initialize teacher network
ϕ randomly.

2: for iteration = 1 to N do
3: xS , yS ∼ DS .
4: xT ∼ DT .
5: pS ← fθ(x

S).
6: ŷT ← argmaxfϕ(xT ).
7: XT

D, XT
1−D ← Patch-wise complementary masking by Eq. 8 and 9.

8: pTD ← fθ(x
T
D), pT1−D ← fθ(x

T
1−D).

9: Ltotal ← Total loss by Eq. 15.
10: Compute∇θLtotal by back-propagation.
11: Perform stochastic gradient descent on θ.
12: Update teacher network ϕ with θ.
13: end for
14: return fθ.
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C EXPERIMENTAL DETAILS

C.1 NATURAL IMAGE SEMANTIC SEGMENTATION

Following common UDA protocols (Tsai et al., 2018; Zhou et al., 2022b), we use the synthetic
dataset SYNTHIA (Ros et al., 2016) as the source domain, and the real dataset Cityscapes (Cordts
et al., 2016) as the target domain. SYNTHIA is a synthetic dataset composed of 9,400 annotated
images with the resolution of 1280 × 960, while Cityscapes consists of 2,975 training and 500
validation real-world images.

We evaluate MaskTwins based on the HRDA (Hoyer et al., 2022b) architecture with a MiT-B5
encoder (Xie et al., 2021) pretrained on ImageNet. To be specific, we follow the DAFormer (Hoyer
et al., 2022a) self-training strategy and training parameters, i.e. AdamW (Loshchilov, 2017) with a
learning rate of 6 × 10−5 for the encoder and 6 × 10−4 for the decoder, 40k training iterations, a
batch size of 2, linear learning rate warmup, a loss weight λst = 1, an EMA factor α = 0.999 and
DACS (Tranheden et al., 2021) data augmentation.

C.2 MITOCHONDRIA SEMANTIC SEGMENTATION

We evaluate the proposed method on three challenging EM datasets for 2D domain adaptive mi-
tochondria segmentation tasks: VNC III (Gerhard et al., 2013), Lucchi (Lucchi et al., 2013) and
MitoEM (Wei et al., 2020) dataset. VNC III consists of 20 sections of size 1024 × 1024. The
training subset (Subset1) and the test subset (Subset2) of Lucchi each contain 165 images, with a
resolution of 1024× 768 pixels. MitoEM dataset can be divided into MitoEM-R(Rat) and MitoEM-
H(Human). Each volume contains 1000 images of size 4096×4096, with the first 500 images anno-
tated. Following Huang et al. (2022b), four widely used metrics are used for evaluation, i.e., mean
Average Precision (mAP), F1 score, Mattews Correlation Coefficient (MCC) (Matthews, 1975) and
Intersection over Union (IoU).

We use a five-stage U-Net following Huang et al. (2022b) and Yin et al. (2023). During training,
we randomly crop the original EM section into 512× 512 with random augmentation including flip,
transpose, rotate, resize and elastic transformation. All models are trained for 200k iterations with a
batch size of 2. We use the Adam optimizer (Kingma, 2014) with β1 = 0.9 and β2 = 0.999. The
learning rate is set at 1× 10−4 and has a polynomial decay with a power of 0.9.

C.3 SYNAPSE DETECTION

To further diversify the experiment settings, we study the 3D domain adaptive synapse detection task
using the WASPSYN (Li et al., 2024) dataset. The WASPSYN dataset includes 14 image chunks
from different brain regions of Megaphragma viggianii, and five of them have point annotations.
Specifically, we take the first one as the source data, and the remaining four chunks are considered
target data.

The experiments are performed based on 3D ResUNet following Lee et al. (2017). Considering the
data are imaged with an isotropic voxel size, we adopt isotropic 3D convolutions. Specifically, we
set the kernel size for the initial embedding layer to be 5× 5× 5, whereas the convolutional layers
subsequently utilize a default kernel size of 3× 3× 3. In the training process, we use a crop size of
96× 96× 96 with a batch size of 4 and train for 200k iterations. We use an Adam optimizer with a
base learning rate of 0.0001 and a linear warming up in the first 1000 iterations.
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D MORE RESULTS

D.1 ABLATION STUDY EXTENSION

We fully ablate the used components on MitoEM-H → MitoEM-R in Tables 5 and 6. Upon obser-
vation, mAP stands out as an outlier while F1, MCC, and IoU consistently show similar trends. So
we pay more attention to the latter three metrics, especially the IoU.

As shown in Table 5, adding the consistency loss Lcl improves the performance over the supervised
loss. Further, we separately incorporate the randomly masked loss Lrm and the complementary
masked loss Lcm. The results indicate that both losses contribute to performance improvements,
with our proposed complementary masking strategy being more effective than the random masking
strategy. The results with Lrm and Lcm have been visually shown in Figure 4 in the main paper.

The EMA teacher realizes a temporal ensemble of previous student models, which increases the
robustness and temporal stability of pseudo-labels. It is a common strategy used in semi-supervised
learning and UDA. In our work, we adopt the EMA teacher to keep consistent with previous meth-
ods, such as CAMix (Zhou et al., 2022b), MIC (Hoyer et al., 2023), DAFormer (Hoyer et al., 2022a),
etc. Table 6 show that both EMA and AdaIN contribute to performance improvements, with EMA
having a more significant impact. In Table 5, adding the complementary masked loss to the exist-
ing consistency loss yields a notable improvement (from 80.64 to 81.88 in IoU). Therefore, while
we use some well-constructed modules, the main performance improvement comes from the key
contribution of complementary masking.

Table 5: Ablation study of each loss component on MitoEM-H→ MitoEM-R. The mean and stan-
dard deviation are computed over 3 random seeds. Lsup = supervised loss, Lcl = consistency loss,
Lcm = complementary masked loss, Lrm = randomly masked loss, with a mask ratio of 0.5.

mAP F1 MCC IoU

Lsup 96.38 ±0.18 88.95 ±0.07 88.60 ±0.07 80.11 ±0.11

Lsup + Lcl 96.60 ±0.35 89.27 ±0.10 88.94 ±0.12 80.64 ±0.17

Lsup + Lcl + Lrm 96.84 ±0.10 89.80 ±0.03 89.45 ±0.04 81.49 ±0.04

Lsup + Lcl + Lcm 96.87 ±0.06 90.03 ±0.06 89.66 ±0.04 81.88 ±0.09

Table 6: Ablation study of EMA and AdaIN on MitoEM-H→ MitoEM-R. The mean and standard
deviation are computed over 3 random seeds.

mAP F1 MCC IoU

Ours w/o AdaIN & EMA 96.74 ±0.08 89.61 ±0.05 89.23 ±0.04 81.18 ±0.08

Ours w/o EMA 96.85 ±0.15 89.74 ±0.02 89.38 ±0.04 81.40 ±0.04

Ours w/o AdaIN 96.89 ±0.14 89.88 ±0.05 89.52 ±0.03 81.63 ±0.08

Ours 96.87 ±0.06 90.03 ±0.06 89.66 ±0.04 81.88 ±0.09
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D.2 CLASSIFICATION TASKS

While our main focus is pixel-wise segmentation tasks, we extend our method to classification tasks
to further validate its effectiveness.

We conduct additional experiments on the VisDA-2017 dataset (Peng et al., 2017), which con-
sists of 280,000 synthetic and real images of 12 classes, with ResNet-101 (He et al., 2016) and
ViTB/16 (Dosovitskiy, 2020). For UDA training, we follow SDAT (Rangwani et al., 2022), which
utilizes CDAN (Long et al., 2018) with MCC (Jin et al., 2020) and a smoothness enhancing loss.
We use the same training parameters, i.e. SGD with a learning rate of 0.002, a batch size of 32,
and a smoothness parameter of 0.02. We use a patch size b=64, a mask ratio r=0.5, a loss weight
λcm = 0.01.

As shown in Tables 7 and 8, our method improves the UDA performance by +0.3 and +0.4 percent
points when used with a ViT and ResNet network, respectively. The improvement is consistent over
almost all classes.

Table 7: Image classification accuracy in % on VisDA-2017 for UDA with ViT-B/16. “Bcycl”
stands for bicycle, “PR” for person, “Sktb” for skateboard. The competitors include TVT (Yang
et al., 2023), CDTrans (Xu et al., 2021), SDAT (Rangwani et al., 2022), and MIC (Hoyer et al.,
2023). The results are adopted from Hoyer et al. (2023).

Method Plane Bcycl Bus Car Horse Knife Motor PR Plant Sktb Train Truck Mean

TVT 92.9 85.6 77.5 60.5 93.6 98.2 89.3 76.4 93.6 92.0 91.7 55.7 83.9
CDTrans 97.1 90.5 82.4 77.5 96.6 96.1 93.6 88.6 97.9 86.9 90.3 62.8 88.4
SDAT 98.4 90.9 85.4 82.1 98.5 97.6 96.3 86.1 96.2 96.7 92.9 56.8 89.8
SDAT w/ MAE 97.1 88.4 80.9 75.3 95.4 97.9 94.3 85.5 95.8 91.0 93.0 65.4 88.4
MIC 99.0 93.3 86.5 87.6 98.9 99.0 97.2 89.8 98.9 98.9 96.5 68.0 92.8
Ours 99.1 95.0 86.6 89.0 98.8 99.3 96.8 88.3 98.8 99.1 97.2 69.7 93.1

Table 8: Image classification accuracy in % on VisDA-2017 for UDA with ResNet-101. “Bcycl”
stands for bicycle, “PR” for person, “Sktb” for skateboard. The competitors include CDAN (Long
et al., 2018), MCC (Jin et al., 2020), SDAT (Rangwani et al., 2022), and MIC (Hoyer et al., 2023).
The results are adopted from Hoyer et al. (2023).

Method Plane Bcycl Bus Car Horse Knife Motor PR Plant Sktb Train Truck Mean

CDAN 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.9
MCC 88.1 80.3 80.5 71.5 90.1 93.2 85.0 71.6 89.4 73.8 85.0 36.9 78.8
SDAT 95.8 85.5 76.9 69.0 93.5 97.4 88.5 78.2 93.1 91.6 86.3 55.3 84.3
MIC 96.7 88.5 84.2 74.3 96.0 96.3 90.2 81.2 94.3 95.4 88.9 56.6 86.9
Ours 96.9 88.8 81.8 77.1 96.4 97.2 90.3 83.8 93.3 94.8 90.2 57.4 87.3
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D.3 VISUALIZATION RESULTS

We visualize the segmentation results of MaskTwins and qualitatively compare with the state-of-art
methods on SYNTHIA→Cityscapes in Figure 5 and mitochondria datasets in Figure 8. We also
provide more visualization for synapse detection on the WASPSYN dataset in Figure 6 and 7.

Image HRDA MIC Ours Ground Truth

Figure 5: More segmentation results on SYNTHIA→Cityscapes.

Figure 6: Visualization of the volume in the WASPSYN dataset. Left column to right column:
sections from X-Y, X-Z, and Y-Z plane.

Figure 7: An example of visualization of the detection results of pre-synapse (left) and post-synapse
(right). Dots and lines: magenta-true positive, yellowfalse negative, and cyan-false positive.
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Image DAMT-Net DA-VSN DA-ISC CAFA Ours Ground Truth

Figure 8: More segmentation results on VNC III→Lucchi Subset1 (row 1 and 2), VNC III→Lucchi
Subset2 (row 3 and 4), MitoEM-R→MitoEM-H (row 5 and 6) and MitoEM-H→MitoEM-R (row 7
and 8). The pixels in red and green denote the false-negative and false-positive segmentation results
respectively.
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E THEORY PROOFS

E.1 COMPLEMENTARY MASKING THEORY: MEAN AND VARIANCE ANALYSIS

Definition 1: Complementary Mask Let D ∈ {0, 1}d be a random binary vector where each
element Di is independently drawn from Bernoulli(0.5). The complementary mask is 1 − D,
where 1 is the vector of ones in Rd.

Definition 2: Random Masks Let D1, D2 ∈ {0, 1}d be independent random binary vectors where
each element Dki (for k = 1, 2) is independently drawn from Bernoulli(0.5). These are the random
masks.

E.2 INFORMATION PRESERVATION METRIC

Given a deterministic vector x ∈ Rd, we define masked versions of x as:

- For complementary masks:

x1 = D ⊙ x, x2 = (1−D)⊙ x

- For random masks:
x1 = D1 ⊙ x, x2 = D2 ⊙ x

where ⊙ denotes element-wise (Hadamard) product.

Define the information preservation (IP) metric as:

IP(x1, x2) =
⟨x1, x2⟩
∥x∥2

E.3 MEAN AND VARIANCE COMPUTATIONS

E.3.1 COMPLEMENTARY MASKS

Mean:

For complementary masks, note that for each coordinate i:

Di(1−Di) = 0

because Di is either 0 or 1.

Therefore, the inner product:

⟨x1, x2⟩ =
d∑

i=1

Di(1−Di)x
2
i = 0

Thus,

IP(x1, x2) =
0

∥x∥2
= 0

and
E[IP(x1, x2)] = 0

Variance:

Since IP(x1, x2) = 0 almost surely,

Var(IP(x1, x2)) = 0
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E.3.2 RANDOM MASKS

Mean:

For random masks:

⟨x1, x2⟩ =
d∑

i=1

D1iD2ix
2
i

Since D1i, D2i are independent Bernoulli(0.5), we have:

E[D1iD2i] =

(
1

2

)(
1

2

)
=

1

4

Therefore,

E[⟨x1, x2⟩] =
1

4
∥x∥2

and

E[IP(x1, x2)] =
1

4

Variance:

Compute Var(D1iD2i):

Var(D1iD2i) =
1

4
−
(
1

4

)2

=
3

16

Then,

Var(⟨x1, x2⟩) =
d∑

i=1

3

16
x4
i =

3

16

d∑
i=1

x4
i

Thus,

Var(IP(x1, x2)) =
3

16

∑d
i=1 x

4
i

(∥x∥2)2

Remark 2. Complementary masks offer several significant benefits in data processing and analysis.
Their ability to produce uncorrelated masked data stands out as a primary advantage, ensuring that
each masked subset provides unique information. The deterministic nature of these masks, charac-
terized by zero variance, guarantees predictable outcomes, which is crucial for reproducibility in
research and applications. Complementary masks excel in efficient data partitioning, creating dis-
tinct subsets without redundancy, thus optimizing computational resources. From a security and pri-
vacy perspective, these masks enhance data protection, as neither mask alone reveals the complete
information, adding a layer of confidentiality to sensitive data. The consistency provided by com-
plementary masks is particularly valuable in applications requiring deterministic results, ensuring
that repeated analyses yield identical outcomes. This combination of features makes complemen-
tary masks a powerful tool in various fields, from data science to cryptography, offering a balance
of efficiency, security, and reliability.

Theorem 4 (Consistency Bound for Feature Learning). Consider a general feature learning frame-
work with the objective function:

L(f) = Ex [ℓ (f(x1), f(x2))] ,

where f : Rd → Rk is the feature extraction function, ℓ : Rk × Rk → R is the loss function, and
(x1, x2) is a sample pair generated from input data x after applying masks or transformations.

Assume:

(a) The loss function ℓ is L-Lipschitz continuous with respect to both arguments, i.e., for any
a, b, c, d ∈ Rk,

|ℓ(a, b)− ℓ(c, d)| ≤ L (∥a− c∥2 + ∥b− d∥2) .
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(b) The feature extraction function f is β-Lipschitz continuous (or β-smooth), i.e., for any
x, y ∈ Rd,

∥f(x)− f(y)∥2 ≤ β∥x− y∥2.

(c) The input data x takes values in a compact subset X ⊂ Rd, and supx∈X ∥x∥2 ≤ B.

Then, for any δ ∈ (0, 1), with probability at least 1− δ, the following holds:

(i) For complementary masks:

|L(f)− L̂n(f)| ≤ 4LβB

(√
2

n
+

√
log(2/δ)

n

)
,

where L̂n(f) =
1
n

∑n
i=1 ℓ (f(x1i), f(x2i)) is the empirical risk computed on n samples.

(ii) For random masks:

|L(f)− L̂n(f)| ≤ 4LβB

(√
2

n
+

√
log(2/δ)

n

)
+ 2LβB

√
d

n
.

Proof. We will prove the bounds for both complementary masks and random masks separately.

Case (i): Complementary Masks

Step 1: Define the Function Class

Let F = {x 7→ ℓ (f(Dx), f((I −D)x)) : f is β-Lipschitz}, where D is a deterministic mask
operator (for complementary masks).

Step 2: Bounding the Rademacher Complexity

Consider the empirical Rademacher complexity of F :

R̂n(F) = Eσ

[
sup
f∈F

1

n

n∑
i=1

σiℓ (f(Dxi), f((I −D)xi))

]
,

where σ = (σ1, . . . , σn) are independent Rademacher random variables (i.e., P(σi = +1) =
P(σi = −1) = 1/2).

Using the Lipschitz property of ℓ and f , we have:

R̂n(F) ≤ LEσ

[
sup
f

1

n

n∑
i=1

σi (∥f(Dxi)− f(0)∥2 + ∥f((I −D)xi)− f(0)∥2)

]

≤ LEσ

[
1

n

n∑
i=1

|σi| (∥f(Dxi)− f(0)∥2 + ∥f((I −D)xi)− f(0)∥2)

]

≤ 2LβEσ

[
1

n

n∑
i=1

|σi|∥xi∥2

]

= 2Lβ
1

n

n∑
i=1

∥xi∥2Eσi
[|σi|]

= 2Lβ
1

n

n∑
i=1

∥xi∥2 · Eσi
[1]

= 2Lβ
1

n

n∑
i=1

∥xi∥2

≤ 2LβB,

since ∥xi∥2 ≤ B. However, to get a dependence on n, we consider the Rademacher complexity
bound for Lipschitz functions, which gives:
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R̂n(F) ≤
2LβB√

n
.

Step 3: Apply Concentration Inequalities

By McDiarmid’s inequality, since changing one sample affects the empirical loss by at most 2LβB
n ,

we have for any t > 0:

P
(
|L(f)− L̂n(f)| ≥ E

[
|L(f)− L̂n(f)|

]
+ t
)
≤ 2 exp

(
− 2nt2

(2LβB)2

)
.

Setting t = LβB
√

2 log(2/δ)
n , we get with probability at least 1− δ:

|L(f)− L̂n(f)| ≤ E
[
|L(f)− L̂n(f)|

]
+ LβB

√
2 log(2/δ)

n
.

Step 4: Combine the Bounds

Using symmetrization and the bound on R̂n(F), we have:

E
[
|L(f)− L̂n(f)|

]
≤ 2R̂n(F) ≤

4LβB√
n

.

Therefore, combining the above, we have:

|L(f)− L̂n(f)| ≤
4LβB√

n
+ LβB

√
2 log(2/δ)

n
= 4LβB

(√
1

n
+

√
log(2/δ)

n

)
.

Case (ii): Random Masks

Step 1: Modify the Function Class

Let Frand = {x 7→ ℓ (f(R1x), f(R2x)) : f is β-Lipschitz, R1, R2 are random masks}.
Step 2: Bounding the Rademacher Complexity

Similarly, we consider:

R̂n(Frand) = Eσ,R1,R2

[
sup
f

1

n

n∑
i=1

σiℓ (f(R1ixi), f(R2ixi))

]
.

Again, using Lipschitz properties, we have:

R̂n(Frand) ≤ LEσ,R1,R2

[
sup
f

1

n

n∑
i=1

σi (∥f(R1ixi)− f(0)∥2 + ∥f(R2ixi)− f(0)∥2)

]
.

Since f is β-Lipschitz and ∥xi∥2 ≤ B, we have:

∥f(R1ixi)− f(0)∥2 ≤ β∥R1ixi − 0∥2.

Given that R1i is a random mask (e.g., a diagonal matrix with entries being Bernoulli random vari-
ables), we have:

ER1i

[
∥R1ixi∥22

]
=

d∑
j=1

E[(R1i)
2
jj ]x

2
ij =

d

d
∥xi∥22 = ∥xi∥22,
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assuming each (R1i)jj is independent and takes value 1 with probability 1/d.

Therefore,

ER1i
[∥f(R1ixi)− f(0)∥2] ≤ βER1i

[∥R1ixi∥2] ≤ β
√
ER1i

[∥R1ixi∥22] ≤ β
B√
d
.

Similarly for R2i.

Therefore,

R̂n(Frand) ≤ 2Lβ
B√
d
.

Step 3: Apply Concentration Inequalities

Following similar steps as in the complementary masks case, and accounting for the extra term due
to random masks, we have:

|L(f)− L̂n(f)| ≤ 4LβB

√
2

n
+ LβB

√
2 log(2/δ)

n
+ 2LβB

1√
d
.

Since 1√
d
≤
√

d
n for d ≤ n, we can write:

|L(f)− L̂n(f)| ≤ 4LβB

(√
2

n
+

√
log(2/δ)

n

)
+ 2LβB

√
d

n
.

This completes the proof.

Theorem 5 (Signal Recovery Guarantee). Let x ∈ Rd be a signal generated from the sparse linear
model:

x = Mz + ξ,

where:

• M ∈ Rd×n is a known measurement matrix (dictionary),

• z ∈ Rn is a k-sparse vector (i.e., ∥z∥0 ≤ k),

• ξ ∼ N (0, σ2Id) is additive Gaussian noise.

Suppose we have two masking matrices R1, R2 ∈ Rm×d representing partial observations of x:

• For complementary masks, R1 and R2 satisfy R1R
⊤
2 = 0 and R⊤

1 R1 + R⊤
2 R2 = Id, i.e.,

they partition the indices of x without overlap and cover all entries.

• For random masks, R1 and R2 select entries independently at random.

Define the aggregated observation y ∈ R2m as:

y =

(
y1
y2

)
=

(
R1x
R2x

)
=

(
R1M
R2M

)
z +

(
R1ξ
R2ξ

)
= Az + η,

where A ∈ R2m×n is the effective measurement matrix, and η ∈ R2m is the aggregated noise.

Assume that A satisfies the Restricted Isometry Property (RIP) of order 2k with constant δ2k < δ∗

for some δ∗ < 1.

Let ẑ be the solution to the basis pursuit denoising problem:

ẑ = arg min
u∈Rn

∥u∥1 subject to ∥y −Au∥2 ≤ ϵ,
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where ϵ ≥ ∥η∥2.

Then, for any δ > 0, with probability at least 1− δ,

∥ẑ − z∥2 ≤ Cσ

√
k log(n/δ)

m
,

where C > 0 is a constant depending only on the RIP constant δ2k.

Moreover, when R1 and R2 are complementary masks that together cover all entries of x without
overlap, and m = d/2, the recovery error achieves the bound:

∥ẑ − z∥2 ≤ C1σ

√
k log(n/δ)

d
,

where C1 > 0 is a constant depending only on δ2k.

Proof. We will establish an upper bound on the estimation error ∥ẑ − z∥2 under the given assump-
tions.

Step 1: Formulating the Observations

The observations are:

y1 = R1x = R1(Mz + ξ) = R1Mz +R1ξ,

y2 = R2x = R2(Mz + ξ) = R2Mz +R2ξ.

By stacking y1 and y2, we have:

y =

(
y1
y2

)
=

(
R1M
R2M

)
z +

(
R1ξ
R2ξ

)
= Az + η,

where A =

(
R1M
R2M

)
∈ R2m×n and η =

(
R1ξ
R2ξ

)
∈ R2m.

Step 2: Recovering z via Basis Pursuit Denoising

We consider the optimization problem:

ẑ = arg min
u∈Rn

∥u∥1 subject to ∥y −Au∥2 ≤ ϵ,

with ϵ ≥ ∥η∥2.

Our goal is to bound ∥ẑ − z∥2.

Step 3: Applying Compressed Sensing Recovery Guarantees

Since A satisfies the RIP of order 2k with constant δ2k < δ∗, standard compressed sensing results
(e.g., Candès et al. (2006)) imply that:

∥ẑ − z∥2 ≤ C0
∥η∥2√
m

,

where C0 > 0 depends only on δ2k.

Step 4: Bounding ∥η∥2
The noise vector η consists of 2m components, each being either ξi or zero. Since ξ ∼ N (0, σ2Id),
each nonzero entry of η is N (0, σ2).

Therefore, ∥η∥22 is the sum of 2m independent σ2χ2
1 random variables, where χ2

1 denotes a chi-
squared distribution with one degree of freedom.

Using concentration inequalities for chi-squared distributions (see, e.g., Laurent & Massart (2000)),
for any t > 0:

Pr
(
∥η∥22 ≥ 2mσ2(1 + 2

√
t/(2m) + 2t/(2m))

)
≤ e−t.
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Setting t = m log(n/δ), we obtain:

Pr

(
∥η∥22 ≥ 2mσ2

(
1 + 2

√
log(n/δ)

m
+

2 log(n/δ)

m

))
≤
(
δ

n

)m

.

For sufficiently large m, the terms involving 1/m become negligible, and we have, with probability
at least 1− δ:

∥η∥2 ≤ C1σ

√
m log

(n
δ

)
,

where C1 > 0 is a constant.

Step 5: Final Estimation Error Bound

Substituting the bound on ∥η∥2 into the recovery guarantee:

∥ẑ − z∥2 ≤ C0
C1σ

√
m log(n/δ)√
m

= Cσ

√
log
(n
δ

)
,

where C = C0C1.

To incorporate the sparsity k, we consider the number of possible supports of size k, which is
(
n
k

)
.

Applying a union bound over all supports, we have:

Pr

(
∥ẑ − z∥2 ≤ Cσ

√
log
(n
δ

))
≥ 1− δ.

Noting that log
(
n
k

)
≤ k log(n/k), we refine the bound:

∥ẑ − z∥2 ≤ Cσ

√
k log

( n

kδ

)
≤ C ′σ

√
k log(n/δ)

m
,

where C ′ > 0 is a constant.

Step 6: Special Case with Complementary Masks

When R1 and R2 are complementary and m = d/2, substituting m = d/2 yields:

∥ẑ − z∥2 ≤ C ′σ

√
2k log(n/δ)

d
= C1σ

√
k log(n/δ)

d
.

Remark 3 (Advantages of Complementary Masks). Complementary masks offer significant advan-
tages in compressive sensing applications, enhancing both the theoretical foundations and practical
implementations. These masks maximize measurement utilization by covering all entries of the sig-
nal x without overlap, ensuring optimal use of available information. This comprehensive coverage
leads to improved Restricted Isometry Property (RIP) constants for the measurement matrix A, re-
sulting in tighter recovery bounds. The non-overlapping nature of complementary masks also plays
a crucial role in minimizing noise influence, as it prevents noise accumulation and effectively reduces
∥η∥2. A key benefit is the improved recovery accuracy, where the error bound scales inversely with
the dimensionality d of x, leading to enhanced recovery performance. Furthermore, the structured
nature of these masks contributes to algorithmic efficiency, facilitating faster and more effective
computation in practical recovery algorithms. Collectively, these properties make complementary
masks a powerful tool in compressive sensing, offering a balanced approach that enhances both
theoretical guarantees and practical performance.
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F APPLICATIONS AND EXTENSIONS

F.1 SELF-SUPERVISED LEARNING

The complementary masking theory can be directly applied to self-supervised learning tasks, partic-
ularly in contrastive learning frameworks. Here, we present a corollary that demonstrates how our
theory can be used to analyze the performance of contrastive learning algorithms.
Corollary 6 (Contrastive Learning with Complementary Masks). Consider a contrastive learning
setup where positive pairs are generated using complementary masks (D, I−D). Let fθ : Rd → Rk

be the encoder network parameterized by θ, and let the contrastive loss be defined as:

L(θ) = −Ex

[
log

esim(fθ(Dx),fθ((I−D)x))/τ∑N
j=1 e

sim(fθ(Dx),fθ((I−D)xj))/τ

]

where sim(·, ·) is the cosine similarity and τ is a temperature parameter. Then, under the assump-
tions of Theorem 2, with probability at least 1− δ:

|L(θ)− L̂n(θ)| ≤ O

(
LβB

τ

(√
1

n
+

√
log(1/δ)

n

))

where L̂n(θ) is the empirical loss on n samples, L is the Lipschitz constant of the loss function, β is
the smoothness parameter of fθ, and B is the bound on the input norm.

Proof. The proof follows directly from Theorem 2 by observing that the contrastive loss is Lip-
schitz continuous with respect to the encoder outputs, and the encoder network is assumed to be
β-smooth. The key step is to apply the consistency bound for complementary masks to the positive
pair (Dx, (I −D)x) in the numerator of the contrastive loss.

This corollary provides a theoretical justification for using complementary masks in contrastive
learning algorithms. It suggests that the generalization error of such algorithms scales favorably
with the number of samples and is independent of the input dimension, which is crucial for high-
dimensional data such as images.

F.2 EXTENSION TO MULTI-VIEW DATA

The complementary masking theory can be extended to scenarios where we have multiple views of
the data, not just two. This extension is particularly relevant for multi-view learning and multi-modal
data analysis.
Theorem 7 (Multi-View Complementary Masking). Let x ∈ Rd be the input data, and consider
K complementary masks D1, . . . , DK such that

∑K
i=1 Di = I . Define the multi-view information

preservation metric as:

MIP(x1, . . . , xK) =
1

K(K − 1)

∑
i ̸=j

⟨xi, xj⟩
∥x∥2

where xi = Dix. Then:

1. E[MIP(x1, . . . , xK)] = 1
K2

2. Var(MIP(x1, . . . , xK)) ≤ K−1
K3

∑d
i=1 x4

i

∥x∥4

Proof. (Sketch) The proof follows a similar structure to that of Theorem 1, but requires careful
accounting of the pairwise interactions between the K views. The key insight is that the comple-
mentary nature of the masks ensures that the expected overlap between any two views is 1/K2 of
the total information.
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This multi-view extension opens up possibilities for analyzing and designing algorithms that work
with more than two views of the data, such as multi-view clustering or multi-modal fusion tech-
niques.

G CONCLUSION

The complementary masking theory presented in this paper provides a rigorous framework for ana-
lyzing information preservation in masked data representations. The key advantages of complemen-
tary masks over random masks include:

1. Tighter generalization bounds in feature learning tasks.

2. More robust signal recovery guarantees, especially in the presence of strong signals.

3. Guaranteed preservation of a constant fraction of the original information.

These theoretical results have immediate implications for the design and analysis of self-supervised
learning algorithms, particularly in contrastive learning setups. They also provide insights into why
certain masking strategies might outperform others in practice.
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