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Abstract
The glyphic writing system of Chinese incor-001
porates information-rich visual features below002
the character level, such as radicals that pro-003
vide hints about meaning or pronunciation.004
However, there has been no investigation into005
whether contemporary Large Language Models006
(LLMs) and Vision-Language Models (VLMs)007
can harness these features in Chinese language008
processing (CLP). In this study, we establish a009
benchmark to evaluate LLMs’ and VLMs’ un-010
derstanding of Chinese characters’ visual ele-011
ments, namely radicals, composition structures,012
strokes, and stroke counts. Our results reveal013
that models exhibit some, but limited, knowl-014
edge of the visual information, regardless of015
whether images of characters are provided. To016
investigate models’ ability of using radicals,017
we further experiment whether incorporating018
radicals into prompts is beneficial for LLMs019
in language understanding tasks. Our experi-020
ments indicate that models possess knowledge021
in utilizing radicals to a certain extent. For ex-022
ample, we observe consistent improvement in023
POS tagging after providing correct radicals.024

1 Introduction025

Visual information embedded in Chinese charac-026

ters is crucial. Most Chinese characters convey a027

meaning equivalent to an entire word in English,028

with a complex internal structure. These characters029

are formed by combining different writing strokes030

into radicals1 and visually combining meaning- or031

pronunciation-related radicals into complete char-032

acters. When encountering unfamiliar characters,033

Chinese speakers rely on semantic and phonetic034

hint within radicals, much like how English speak-035

ers use sub-words such as prefixes or suffixes to036

estimate the meaning of unknown words. For exam-037

ple, the Chinese character “花” (meaning “flower”)038

1A comprehensive definition of Chinese radicals can be
found on Wikipedia: https://en.wikipedia.org/wiki/
Chinese_character_radicals. For simplicity, this paper
refers to any large components within a character as radicals.

Figure 1: Chinese character “花” displayed at the char-
acter, radical, and stroke levels from left to right. Differ-
ent radicals are shown in green, yellow, and pink colors,
while the writing order of the strokes is indicated by red
(current), gray (upcoming), and black (completed).

in Figure 1 has “艹” (meaning “herbal”) on the top, 039

contributing to its semantic meaning, and “化” on 040

the bottom, indicating its pronunciation. By utiliz- 041

ing the radical information, one can infer that “花” 042

is related to herbs and has a pronunciation similar 043

to “huà” without prior knowledge of the character. 044

Although radicals contain rich information about 045

characters, they have received little attention. Con- 046

temporary typeface treat Chinese characters, radi- 047

cals, and strokes as indivisible units, disregarding 048

their compositional relationships. Consequently, 049

most language models follow this approach, under- 050

utilizing the rich visual and semantic information 051

embedded in Chinese characters. While limited 052

prior works (Sun et al., 2021; Si et al., 2021) have 053

attempted to address this issue by incorporating 054

visual embeddings, such as strokes or font images, 055

into smaller-scale models, there remains a lack of 056

research investigating whether these visual features 057

can be recognized and utilized by models in light of 058

the significant advancements in LLMs and VLMs. 059

To address this, we developed a Chinese visual 060

dataset by collecting over 14,000 Chinese charac- 061

ters from the CJK Unified Ideographs2, incorporat- 062

ing four elements: radicals, composition structures, 063

strokes, and stroke counts. In addition to radicals, 064

2The CJK Unified Ideographs refers to a set of Chinese
characters used across Chinese, Japanese, and Korean lan-
guages to standardize and unify the characters.
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the composition structure refers to the visual ar-065

rangement of a character’s radicals; as shown in066

Figure 2, the order of radicals is determined by this067

structure, typically following a top-to-bottom or068

left-to-right sequence, among other possible orien-069

tations depends on structures. Strokes provide an070

alternative way to represent radicals. Some radi-071

cals, which commonly appear within characters,072

cannot be typed as standalone units in standard073

typefaces, making them difficult to represent di-074

rectly. For instance, assume the radical “亻” in075

Figure 1 is not typable, it can be indirectly repre-076

sented as a series of strokes: “ノ丨.” Stroke count077

offers a measure of a character’s visual complexity078

and density similar to word length in English.079

To determine whether current models recognize080

or can acquire the visual knowledge embedded in081

Chinese characters, we established a benchmark us-082

ing aspects collected in our dataset, which includes083

tasks such as structure recognition, radical recogni-084

tion, stroke count identification, and stroke identifi-085

cation, with example questions shown in Figure 2.086

We evaluated a series of LLMs and VLMs on this087

benchmark and found that all models possess some,088

but limited, extent of visual knowledge of Chinese089

characters, even without image inputs. Notably, the090

models tend to perform well in recognizing the first091

radical but often fail with subsequent ones. This092

suggests that the models can correlate the meaning093

of the first radical with the character, as the first094

radical is usually associated with the character’s095

attribute, such as "艹" (herbal) in "花" (flower).096

We also demonstrate that the pixel-based encoder097

PIXEL (Razzhigaev et al., 2022) has the ability098

to capture structural information effectively after099

fine-tuning. As a language model pre-trained only100

on an English corpus, PIXEL achieved an F1 score101

of 84.57, significantly higher than the second-best102

score of 54.30, indicating its potential for CLP as103

it naturally captures visual information.104

We further investigate whether models can uti-105

lize radicals to improve performance on understand-106

ing tasks (e.g., POS tagging and NER) by prompt-107

ing them to use radicals when encountering unfa-108

miliar words. Our experiments show that radical109

information yields promising results in downstream110

tasks, particularly in POS tagging. We observe con-111

sistent improvement across models and datasets112

when correct radicals are provided. Notably, Ernie-113

Lite-8K’s F1 score decreases by 2.1 points when114

recognizing radicals on its own, but increases by115

5.7 points when provided with correct radicals. For116

NER, We also observe an improvement on three 117

over six models. Analyzing the cases where incor- 118

porating radical degrades the model performance, 119

we see that incorrect answers often occur when 120

the model fails to identify unfamiliar words and 121

bypasses radical, indicating the decrease is likely 122

due to long prompts. When evaluating only sen- 123

tences where the model detects unknown words, 124

performance on NER generally improves. Our 125

work demonstrates that models possess ability to 126

recognize and utilize radical information only to a 127

certain limit, highlighting a promising area in CLP 128

for further research. 129

2 Related Work 130

Chinese Character Decomposition in Computer 131

Vision The task of decomposing Chinese charac- 132

ters into constituent components has majorly been 133

studied in the field of computer vision. Research 134

within this domain, such as the studies by (Ma et al., 135

2021), (Xia, 1994), and (Liu et al., 2021), has ex- 136

plored analogous challenges. The work by (Zhang 137

et al., 2018) employs a methodical approach by 138

categorizing characters into structured types and 139

further decomposing sub-components according 140

to their spatial arrangements—akin to the layered 141

structural analysis which we adopt in this paper. 142

Chinese Decomposition Dataset In reviewing 143

available resources, we encountered a comprehen- 144

sive dataset (Kawabata et al., 2018) that offers de- 145

compositions for the CJK Unified Ideographs. Al- 146

though this collection overlaps with our dataset, it 147

does not cite any authoritative sources for its data. 148

This omission leads to ambiguity due to multiple 149

decomposition sequences for individual characters. 150

Our approach utilizes sources from authoritative 151

dictionaries such as the Kangxi Dictionary (康熙字 152

典) and the Xinhua Dictionary (新华字典)3, ensur- 153

ing a validated framework for visual information. 154

Additionally, our dataset contains systematic and 155

standard stroke orders for all 14,648 characters, 156

which the aforementioned dataset lacks. We also 157

created a manageable subset of 4,651 Simplified 158

Chinese characters with structural classification. 159

Glyphic Embedding Strategies in LMs Few 160

prior works have utilized the idea of adding ad- 161

ditional input embedding with Chinese visual fea- 162

tures. For instance, (shi, 2015) attempted to add 163

3Xinhua and Kangxi Dictionaries are renowned lexico-
graphical resources for Chinese. Digitalized Kangxi Dictio-
nary can be found here: https://www.kangxizidian.com/
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radical embedding in the pre-transformer era. (Sun164

et al., 2021) introduced font images into embed-165

ding, and (Si et al., 2021) experimented with stroke166

embedding among other glyph-based methods. An-167

other interesting approach is PIXEL(Razzhigaev168

et al., 2022), which uses a pixel-based encoder to169

transform input into images, capturing the visual170

features of Chinese characters. Our assessment of171

PIXEL highlights its potential.172

Statistic Number

Total Characters 14,648
- Frequently used : 3,500 (24.1%)
- Commonly used : 3,000 (20.6%)
- Terminology used: 1,605 (11.0%)
- Rarely used: 5,543 (37.8%)
- With structural information: 4,651 (31.8%)

Without components 324
With 2 components 12,769
With 3 components 992
With more than 3 components 476

Unique stroke patterns 13,740

Number of strokes (mean) 11.51
Number of strokes (σ) 3.92
Minimum number of strokes 2
Maximum number of strokes 39

Table 1: Key statistics of our Chinese character dataset

3 Dataset173

To evaluate contemporary LLMs and VLMs’ pro-174

ficiency with visual information in Chinese char-175

acters, we compile a dataset using characters from176

CJK Unified Ideographs with visual features col-177

lected from the digitized Kangxi Dictionary (康熙178

字典) and Xinhua Dictionary (新华字典). Our179

dataset includes 14,648 Chinese characters and180

details their corresponding radicals, strokes, and181

stroke count. A subset of 4,651 Simplified Chinese182

characters also contains structural composition in-183

formation. The detailed statistics are provided in184

Table 1 with three tiers of Chinese character fre-185

quency listed for reference. These tiers are cate-186

gorized by the Table of General Standard Chinese187

Characters published by the Chinese government.188

Structure of Chinese Characters. According189

to the digitized Kangxi dictionary, we categorize190

4651 simplified Chinese characters into eight ma-191

jor structural arrangements: top-bottom, left-right,192

top-mid-bottom, left-mid-right, wrapping, inlay,193

triple-stack, and single structure, which refers to194

characters that cannot be further segmented. Ex-195

amples of each structure are illustrated in Figure196

2. The structure of Chinese characters can be com- 197

plex, with layers of structure compounding upon 198

each other. For example, the character ’花,’ shown 199

in Figure 1, has a top-bottom structure, consisting 200

of “艹” and “化.” “化” exhibits a left-right struc- 201

ture which can be further decomposed into “亻” 202

and “七.” To maintain clarity, we categorize all 203

characters based on their top-layer structure. 204

Radicals of Chinese Characters. Radicals are 205

the major component blocks in Chinese charac- 206

ters, providing essential clues about meaning and 207

pronunciation. In our dataset, the radicals are col- 208

lected using a combination of human annotation 209

and APISpace’s Chinese character segmentation 210

API4. After attempts at automated annotation, we 211

manually review and adjust segmentation to ensure 212

that at least one component is meaningful after seg- 213

mentation, wherever feasible. For example, while 214

“八” can be segmented as a left-right structure, we 215

classify “八” as a single structure with zero radicals 216

to avoid all radicals being meaningless strokes af- 217

ter segmentation. Approximately 1,000 characters 218

required manual adjustment due to empty or incor- 219

rect radicals, with more than 500 being adjusted 220

to avoid reduction to strokes by one of the authors 221

who is a native Chinese speaker. 222

The radical order follows rules: from top to bot- 223

tom, left to right, outside to inside, and main part 224

before inlay parts as illustrated in Figure 2, where 225

the radicals are colored according to their order 226

and structures. If a radical does not exist in the 227

typeface, it is further split to check for existing sub- 228

radicals. For example, in a left-mid-right structured 229

character, if the mid part cannot be typed but can 230

be split into top and bottom parts, the radical order 231

will be left, mid (top), mid (bottom), and right. 232

Strokes of Chinese Characters. Chinese dictio- 233

naries categorize all Chinese strokes into five basic 234

stroke types: “一”, “丨”, “ノ”, “丶”, and “フ’, 235

which our dataset adopts. We first utilized the Xin- 236

hua Dictionary (新华字典) API to annotate the 237

strokes. For characters not found in the dictionary, 238

we attempted to concatenate the stroke information 239

of their components in order. We then manually 240

reviewed the stroke information to ensure accuracy. 241

The stroke count, also collected in the dataset, 242

is the number of strokes required to write a char- 243

acter, offering a measure of word complexity. Un- 244

like alphabetic writing system, where word length 245

4API document in CN can be accessed: https://www.
apispace.com/eolink/api/dfsdfsfsf/apiDocument
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can hint at complexity, Chinese characters occupy246

uniform space, making stroke count a valuable in-247

dicator of intricacy. The statistics for strokes are248

provided in Table 1 with illustrations in Figure 2.249

4 Evaluation on Visual information of250

Chinese Character251

To evaluate whether models contain or can learn the252

visual information embedded in Chinese characters,253

we established a benchmark by setting up a series254

of tasks derived from our dataset.255

4.1 Tasks256

Structure Recognition of Chinese Characters.257

We assess LLMs and VLMs’ proficiency in iden-258

tifying the correct structural arrangements of Chi-259

nese characters. For this task, we provide the char-260

acter along with eight different structure types and261

ask the model to identify which type query charac-262

ter is with result evaluated in F1 score.263

Radical Recognition of Chinese Characters.264

We evaluate the ability of LLMs and VLMs to rec-265

ognize radical information in Chinese characters266

through two way: character-to-radical and radical-267

to-character. In the character-to-radical task, mod-268

els are prompted to output a character’s radicals in269

the correct order, requiring structural knowledge.270

Performance is measured by the accuracy of the271

first three radicals and the overall F1 score. In the272

radical-to-character task, models receive radicals273

and their relative positions and are asked to identify274

the correct characters with accuracy.275

Stroke Count Identification of Chinese Charac-276

ters. We measure the LLMs and VLMs’ effec-277

tiveness in determining the stroke count of Chinese278

characters. Models are tasked with identifying the279

total number of strokes required to write each char-280

acter. Performance is measured using Mean Abso-281

lute Error (MAE) and Mean Squared Error (MSE).282

Stroke Identification of Chinese Characters.283

Similar to radical recognition, we evaluate LLMs284

and VLMs’ ability to identify the sequence of285

strokes required to write a character. Performance286

is calculated using the overall F1 score, with posi-287

tional accuracy for the first three positions.288

4.2 Experimental Setup289

We assess the visual information of Chinese charac-290

ters using multilingual, bilingual, and open-source291

LLMs and VLMs. The multilingual LLMs include292

Aya (Üstün et al., 2024), Claude-3 (Anthropic, 293

2024), Gemini-1.5, GPT-3.5 Turbo (OpenAI), and 294

GPT-4 (OpenAI, 2023). The Chinese-English bilin- 295

gual LLMs include ERNIE-Lite (Baidu, 2024a), 296

Kimi-v1 (MoonshotAI, 2024), and open-source 297

LLMs such as Baichuan-13B (BaichuanInc, 2024), 298

BLOOM-7B (BigScience, 2024), ChatGLM-6B 299

(zen, 2023), Chinese-LLaMA-7B (HFL, 2024), 300

InternLM-7B (InternLM, 2024), Orion-14B (Chen 301

et al., 2024), Qwen-7B (Bai et al., 2023), Qwen-2- 302

72B, and Yi-6B (AI et al., 2024). We also evaluate 303

VLMs that provide images of characters in the Mi- 304

crosoft YaHei5 font, including multilingual mod- 305

els such as Claude-3V, Gemini-1.5V, and GPT-4V, 306

as well as bilingual models like Ernie-4V (Baidu, 307

2024b) and Kimi-V. Additionally, we assess the 308

pixel-based encoder model, PIXEL (Rust et al., 309

2023). Since PIXEL is a language model lack- 310

ing sentence completion capabilities, it is evalu- 311

ated only on the structure recognition task using 312

a span-based question-answering framework af- 313

ter fine-tuning. To investigate the learning abil- 314

ity of models on Chinese visual information, we 315

apply Chain-of-Thought (CoT) prompting and fine- 316

tuning settings on GPT-3.5, as well as few-shot 317

settings on GPT-3.5 and GPT-4. The remaining 318

models are evaluated using a zero-shot setting. De- 319

tailed setup is provided in the Appendix B.1. 320

4.3 Experimental Result 321

As shown in Table 3, the models demonstrate a 322

generally vague understanding across various Chi- 323

nese character-visual tasks. Among the models 324

evaluated, Chinese VLMs consistently achieve the 325

highest overall performance, effectively leverag- 326

ing visual information in their processing. Mul- 327

tilingual VLMs, on the other hand, display per- 328

formance similar to their LLM counterparts, with 329

both groups achieving higher-than-random-guess 330

accuracy across tasks. This finding is particularly 331

intriguing for closed-source LLMs, as these mod- 332

els lack explicit vision inputs. Their performance 333

suggests that they have likely been exposed to tex- 334

tual data discussing radicals, enabling them to infer 335

radical knowledge through associated meanings. 336

In contrast, open-source LLMs, which also lack 337

visual inputs, perform below random guess levels. 338

Structure Recognition Task In the structure 339

recognition task, most models score below 50, with 340

the notable exception of PIXEL, which achieve an 341

5Yahei is the default Chinese font in Microsoft Office.
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Figure 2: Examples of composition structures with radical in order of black, red, yellow and four types of tasks.

impressive score of 84.57. PIXEL (Razzhigaev342

et al., 2022), pre-trained solely on an English cor-343

pus (English Wikipedia and BookCorpus) and ex-344

posed to Chinese only during fine-tuning, high-345

lights its potential in CLP as it capture visual em-346

bedded information naturally. Additionally, fine-347

tuning and CoT prompting method brought notice-348

able improvements for this task.349

Radical Recognition Task In the character-to-350

radical task, a clear trend emerges where model351

performance is highest for the first component and352

sharply decreases for subsequent ones. For exam-353

ple, Claude-3 achieve an F1 score of 70.02 for354

the first component, but this drop to 5.64 for the355

second component and nearly zero for the third.356

This pattern suggests that models can associate357

the meaning of the radical with the character, as358

the first radical often relates to the attribute of the359

character, such as “艹” in “花.” Interestingly, fine-360

tuning, CoT prompting, and the addition of vision361

in multilingual models drastically decreased per-362

formance to nearly zero, highlighting the difficulty363

of this task. However, in the radical-to-character364

task, fine-tuning GPT-3.5 results in a significant365

improvement, achieving an F1 score of 71.66.366

Stroke and Stroke Count Identification Task 367

Overall, most models struggle with identifying 368

individual strokes, performing at levels similar 369

to random guessing, except for Chinese VLMs, 370

which show slightly better results. Stronger mod- 371

els demonstrate a better grasp of stroke count, 372

with Claude-3 standing out by achieving the low- 373

est Mean Squared Error (MSE) among all LLMs, 374

at 7.78—well below the dataset’s average stroke 375

count of 11.51, indicating that stronger models 376

have a sense of the underlying complexity within 377

Chinese characters. 378

To better understand the performance boost in 379

structure recognition tasks after fine-tuning and the 380

superior results from Chinese VLMs, we experi- 381

ment with the impact of Chinese character encod- 382

ing on these tasks, as detailed in Appendix C, and 383

analyze the errors made by Chinese VLMs. 384

4.4 Error Analysis in Chinese VLMs 385

There are several types of characters that Ernie-V 386

and Kimi-V tend to make mistakes on. Firstly, com- 387

plex and dense characters are often misrecognize 388

as similar, more frequently used characters. In a 389

uniform space, as characters become more com- 390
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Model
Structure Radicals Stroke Count Strokes
F1 H 1st 2nd 3rd F1 H Acc MSE MAE 1st 2nd 3rd F1 H

↑ ↓ Acc Acc Acc ↑ ↓ ↑ ↓ ↓ Acc Acc Acc ↑ ↓
Vision Language Models (VLMs)

Ernie-4V ⋄ 54.30 - 41.03 34.21 12.50 41.67 - 71.79 12.54 1.78 53.85 35.90 47.37 30.90 -
Kimi-V ⋄ 45.60 - 36.73 19.15 0.00 32.93 - 42.86 15.32 2.68 30.61 26.53 16.67 20.70 -
Claude-3V 23.70 0.54 8.80 0.61 0.00 2.44 1.09 57.30 5.93 1.22 15.40 19.60 26.80 19.62 1.22
Gemini-1.5V 27.15 0.36 3.00 0.41 0.00 1.53 1.12 27.08 8.83 2.28 29.60 16.80 22.00 22.04 1.00
GPT-4V 23.28 0.46 10.20 0.41 0.00 9.22 0.95 24.18 7.96 1.64 24.00 19.60 23.80 21.96 1.34

Close-Sourced Models (LLMs)

Ernie-Lite-8K ⋄ 7.19 0.76 18.92 3.52 0.13 11.99 1.89 3.72 44.53 5.34 29.30 23.28 20.78 23.34 1.11
Kimi-v1 ⋄ 24.51 0.83 7.24 0.33 0.00 1.10 0.72 50.16 19.05 3.12 33.12 21.56 19.72 22.99 1.07
Aya 12.56 0.16 35.72 2.16 0.26 20.13 0.73 5.65 13.20 2.79 28.24 23.48 19.44 21.43 0.37
Claude-3 23.70 0.54 70.02 5.64 0.43 45.57 1.09 40.40 7.78 1.32 28.64 19.02 31.19 22.91 0.88
Gemini-1.5 23.04 0.56 4.20 0.04 0.38 1.37 1.16 11.26 13.23 2.76 26.66 24.52 15.14 20.24 0.81
Few-shot GPT-3.5 22.82 0.88 54.14 7.37 0.30 34.60 1.21 23.12 7.96 1.65 27.86 22.70 30.23 25.62 1.13
Zero-shot GPT-3.5 15.43 0.69 52.14 4.33 0.20 31.66 1.30 17.45 48863 5.99 30.70 21.92 26.97 25.09 0.98
Fine-tune GPT-3.5 27.14 0.33 4.12 0.00 0.00 1.23 1.11 71.66 7.36 1.46 47.50 44.58 32.67 28.64 1.08
CoT GPT-3.5 38.08 1.25 5.24 0.16 0.11 1.63 1.05 24.41 8.93 1.92 31.06 22.22 26.85 25.60 0.83
Few-shot GPT-4 45.28 0.48 58.44 6.45 0.31 41.66 0.84 38.01 7.96 1.65 24.18 18.22 21.90 20.87 1.37
Zero-shot GPT-4 35.40 0.54 57.86 6.28 0.20 41.42 0.88 38.76 12.17 1.99 27.04 21.16 21.99 22.18 1.21

Open-Sourced Models (LLMs)

Baichuan-13B ⋄ 11.17 0.88 33.20 2.05 0.60 22.62 1.20 13.67 32.70 4.31 27.68 21.42 15.92 22.74 1.56
ChatGLM-6B ⋄ 10.30 0.68 6.94 0.50 0.00 6.33 1.35 1.38 29.68 4.25 26.88 12.60 12.43 27.28 0.96
Chinese-LLaMA-7B ⋄ 5.13 0.97 9.26 0.64 0.17 6.32 1.92 0.32 15.83 3.00 26.26 24.86 13.42 22.32 0.93
InternLM-7B ⋄ 9.68 1.05 12.08 0.34 0.05 8.89 1.50 0.00 45.38 5.50 28.82 24.66 13.38 22.01 0.95
Yi-6B ⋄ 8.86 0.70 14.18 1.05 0.21 12.14 1.40 0.32 29.49 4.24 28.56 22.40 7.76 24.17 0.85
Bloom-7B 9.81 0.96 3.48 0.54 0.04 4.15 1.70 0.00 46.76 4.05 27.92 24.96 14.47 23.19 0.87
Qwen-7B 5.25 1.16 17.30 0.85 0.23 12.41 1.50 1.59 34.16 4.62 25.02 20.20 21.92 23.30 1.30
Qwen-2-7B 6.76 1.50 15.42 0.68 0.22 10.70 1.75 0.42 44.48 5.39 23.16 18.50 21.54 22.68 1.40
Orion-14B 9.00 1.04 5.27 0.18 0.76 9.46 1.11 3.39 31.45 4.45 28.40 22.82 19.38 24.81 0.90

Fine-tune PIXEL 84.57 -

Table 2: Models performance on Chinese character visuals with tasks separated by vertical lines. The top scores for
each section and overall are highlighted in blue and green respectively. H: Entropy, ⋄: CN & EN bilingual models.

plex, the individual radicals within the character391

become narrower, leading to misrecognition. Sec-392

ondly, characters that are extremely similar, with393

only a single stroke difference, are often seen by394

the models as the more common variant of the two.395

Thirdly, for rare characters, Ernie-V often states396

that it does not detect any character in the image,397

while Kimi-V even refuses to allow the user to send398

the prompt when it fails to extract the character399

from the image. Models occasionally recognize a400

radical of the character as the character itself. They401

sometimes confuse the character in the image with402

black and white pictures. Examples of Kimi-V and403

Ernie-V’s behavior are provided in Appendix B.4.404

5 Evaluation on Utilizing Radicals405

We evaluated LLMs on downstream tasks, specif-406

ically examining performance differences when407

models are prompted or not prompted to use their408

knowledge of radicals to infer the meaning of unfa- 409

miliar words. Example is shown in Figure 3. 410

5.1 Tasks 411

Although LLMs may not achieve scores as high 412

as supervised LMs in traditional NLP tasks, we 413

selected the following tasks because they serve 414

as strong indicators of a model’s understanding 415

on Chinese, allowing us to observe improvements 416

from the baseline when models are prompted to 417

leverage radical information. 418

Part-of-Speech (POS) tagging. For the POS tag- 419

ging task, we selected a 5-word span containing at 420

most one punctuation mark and tasked the model 421

with identifying the POS tag of the central word. 422

The model’s performance was evaluated using the 423

F1 score. To cover a diverse range of sentences, we 424

utilized three datasets: the GSD Simplified dataset 425

(Qi and Yasuoka, 2023), the Parallel Universal De- 426
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pendencies (PUD) dataset (McDonald et al., 2023),427

and a self-annotated dataset of 500 sentences from428

Tang Dynasty poems, processed using Classical429

Chinese RoBERTa (Yasuoka, 2023). Notably, we430

annotated the poetry dataset to evaluate how well431

radicals perform in Classical Chinese, which is432

characterized by compact and precise sentences433

where more information is preserved in each char-434

acter. Additionally, we conducted an ablation study435

with varying word span lengths in Appendix D.2 to436

ensure the robustness of our word span selection.437

Named Entity Recognition (NER). Following438

the traditional approach to Chinese NER, given439

a sentence, we tasked the model with identifying440

three types of entities—PER (person), LOC (lo-441

cation), and ORG (organization)—at the charac-442

ter level, using the BIO tagging standard. We ex-443

cluded nominal entities provided in some datasets444

to streamline the analysis. The model’s perfor-445

mance was evaluated using the F1 score. We use446

two distinct datasets for the NER task: the Peo-447

ple’s Daily dataset (Chen, 2023), which focuses on448

formal Chinese text, and the Weibo NER dataset449

(Peng and Dredze, 2015), which is oriented towards450

casual and online Chinese text.451

Chinese Word Segmentation (CWS). For this452

task6, we give whole sentences from the GSD and453

PUD datasets and ask models to separate them into454

words. Answers are evaluated using the F1 score.455

5.2 Method456

Baseline. Our baseline employs the Chain-of-457

Thought (CoT) prompting framework with steps458

that guide the model to execute tasks.459

Radical Prompting. We incorporate the radical460

information into the input prompt as steps within461

the CoT framework. The process begins with the462

model identifying any unclear words within a given463

context. Then, the model is instructed to dissect464

these words into their constituent radicals and at-465

tempt to utilize useful radicals to aid the task. Steps466

are then provided to guide the model in executing467

specific tasks, identical to the baseline, with three468

examples. When using radical prompting, it is im-469

portant to guide models to critically assess informa-470

tion from character components to avoid being mis-471

guided. Thus, one example intentionally includes472

6CWS is a unique task in Chinese language processing.
Distinguished from many other languages, Chinese does not
use delimiters such as spaces to separate words within sen-
tences. Accurately segmenting text could be beneficial.

Figure 3: Example of model answer for part-of-speech
(POS) tagging with an unfamiliar Chinese word using
radical prompting.

radical information that is irrelevant. Prompt lines 473

of radical prompting are listed in Appendix D.3. 474

Radical Prompting (Oracle). Similar to the rad- 475

ical prompting method, instead of instructing the 476

model to decompose characters, we directly pro- 477

vided the correct radicals in the input prompt. This 478

method was applied only to the POS tagging task, 479

as it required supplying the radical of just the cen- 480

tral word. For the other tasks, it is impractical to 481

provide radicals for all characters in the sentence. 482

5.3 Experimental Setup 483

We select a series of large language models (LLMs) 484

for evaluation, including Aya, Claude-3, ERNIE- 485

Lite-8K, GPT-3.5, GPT-4, and QWen-1.5 72B Chat. 486

The models are instructed to return answers in 487

JSON format, with target sentences annotated in a 488

manner similar to (Blevins et al., 2023). Each task 489

and dataset is evaluated using 2,000 sample sen- 490

tences, with the process repeated five times. Due 491

to higher costs, Claude-3 and GPT-4 are evaluated 492

with 1,000 samples. 493

5.4 Experimental Result 494

Our results indicate that radicals hold promising 495

potential for improving Chinese language process- 496

ing, particularly if models better understand and 497

utilize radicals. In the POS tagging task, mod- 498

els consistently show improvement across datasets, 499

especially when the correct radicals are provided. 500

Notably, in the PUD dataset, ERNIE-Lite-8K ex- 501

hibits a slight decrease in performance without the 502

correct radicals but shows an increase of approxi- 503
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Model
Part-Of-Speech Tagging

GSD PUD Poems
B RP RP (Oracle) B RP RP (Oracle) B RP RP (Oracle)

Aya 68.86 68.91(+0.1) 70.41(+1.6) 73.87 77.21(+3.3) 76.95(+3.1) 65.53 66.19(+0.7) 66.71(+1.2)
Claude-3 69.37 70.68(+1.3) 70.45(+1.1) 69.37 70.45(+1.1) 70.68(+1.3) 65.53 66.20(+0.7) 66.71(+1.2)
ERNIE-Lite-8K 27.06 24.97(-2.1) 32.73(+5.7) 30.35 30.29(-0.0) 41.29(+10.9) 44.19 42.17(-2.0) 49.07(+4.9)
GPT-3.5 59.08 64.62(+5.5) 67.56(+8.5) 62.61 69.90(+7.3) 73.46(+10.9) 53.51 59.22(+5.7) 61.39(+7.9)
GPT-4 71.55 72.14(+0.6) 72.95(+1.4) 76.20 76.72(+0.5) 77.35(+1.2) 66.94 67.11(+0.2) 67.57(+0.6)
QWen-72B 62.20 65.38(+3.2) 67.32(+5.1) 62.20 65.38(+3.2) 67.32(+5.1) 55.63 57.78(+2.2) 59.54(+3.9)

Table 3: Model performance for POS tagging with baseline(B), radical prompting without golden components (RP),
and radical prompting with oracle information (RP (Oracle)). Performance change relative to baseline is highlighted
with green for increase and red for decrease.

Models
Name Entity Recognition Chinese Word Segementation

People’s Daily Weibo GSD PUD

B RP B RP B RP B RP

Aya 38.24 36.36(-1.9) 37.88 30.83(-7.05) 87.98 89.08(+1.1) 88.68 91.05(+2.37)
Claude-3 69.74 73.79(+4.1) 45.64 46.86(+1.22) 94.90 95.16(+0.3) 94.12 94.96(+0.84)
ERNIE-Lite 12.10 12.99(+0.9) 6.72 6.90(+0.19) 88.04 88.70(+0.3) 69.54 73.57(+4.03)
GPT-3.5 56.89 55.97(-0.9) 36.65 36.64(-0.01) 95.68 94.87(-0.8) 93.91 93.70 (-0.21)
GPT-4 66.04 68.05(+2.0) 43.83 44.68(+0.85) 94.21 94.88(+0.7) 94.24 95.63(+1.39)
QWen 72B 62.73 59.59(-3.1) 31.78 35.83(+4.05) 96.59 95.57(-1.0) 89.79 91.94 (+2.15)

Table 4: Model performances for NER and CWS tasks with baseline(B) and radical prompting(RP).

Models
Name Entity Recognition

People’s Daily Weibo

B RP B RP

Aya 52.00 54.61(+2.6) 24.78 16.00(-8.8)
Claude-3 68.54 70.48(+1.9) 41.08 41.67(+1.6)
ERNIE-Lite 7.55 21.05(+13.5) 6.25 14.81(+8.6)
GPT-3.5 55.74 55.96(+0.2) 38.37 44.87(+11.5)
GPT-4 65.23 65.96(+0.7) 38.59 40.34(+1.8)
QWen 72B 58.81 58.94(+0.1) 29.39 33.17(+3.8)

Table 5: Model performances for NER evaluated solely
on samples where the model identifies unknown words.

mately 11 F1 points when the correct radicals are504

included. Results for POS tagging is shown in Ta-505

ble 3. A qualitative analysis of radical prompting506

on POS tagging is provided in Appendix D.1.507

For the NER task, the initial results in Table 4508

are mixed. However, our error analysis reveals that509

with the radical prompting method, incorrect an-510

swers often occur when the model bypasses the use511

of radicals and asserts that there are no ambiguous512

words in the sentence being examined. This sug-513

gests that the negative effect may be attributed to514

the longer prompts, as more robust models, such as515

Claude-3 and GPT-4, still demonstrate improved516

performance across datasets. When evaluating only517

the samples where the model identifies ambiguous518

words in the radical prompt setting, we find that the 519

models genuinely perform better, as shown in Table 520

5. Notably, Aya’s performance drops significantly 521

on the Weibo dataset. Upon closer examination, we 522

find that Aya has a strong tendency to split words 523

into individual characters rather than into radicals. 524

Sample of Aya’s output is shown in Appendix D.4. 525

6 Conclusion 526

In this paper, we create a comprehensive bench- 527

mark on visual information in Chinese characters. 528

Our evaluation of the benchmark highlight the sub- 529

optimal performance of LLMs and VLMs in han- 530

dling information below the character level. De- 531

spite this, our experiments with ’radical prompting,’ 532

which prompts models to utilize radical informa- 533

tion, demonstrate that these sub-character features 534

can still be beneficial. The results show consistent 535

improvements in POS tagging when correct radi- 536

cals are provided, and promising results in NER 537

on sentence contains unfamiliar words. Our work 538

highlights the promise of radical knowledge in CLP, 539

but current models are not yet capable of fully lever- 540

aging this information due to the lack of attention. 541
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Limitations542

Our study, while contributing valuable insights into543

the integration of radical prompting for Chinese lan-544

guage models, encounters several limitations that545

suggest directions for future research. First, the546

dataset employed does not encompass the full array547

of Chinese characters but is confined to commonly548

used characters. This selective coverage might af-549

fect the scalability of our findings to all Chinese550

characters especially when greater model meets un-551

known or unfamiliar character, there is a chance552

that our dataset does not cover that character.553

Additionally, the study primarily evaluates the554

effectiveness of radical prompting on a narrow se-555

lection of models and specific NLP tasks, which556

might not reflect its utility across different models557

or broader language processing applications.558

Furthermore, an intrinsic limitation of our559

methodology arises from the exclusive use of En-560

glish in our prompting lines. Incorporating Chinese561

in the prompting strategy could potentially enhance562

the relevance and effectiveness of prompts, align-563

ing better with the linguistic context of the target564

language.565
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Figure 4: Prompt Line of Structure Task

LLMs, a random sample of 1,000 characters is se-749

lected for each task and model. Due to higher costs,750

the number of samples for VLMs is reduced to 500.751

ERNIE-V and Kimi-V, which lack API access, are752

tested manually with only 100 samples. We in-753

corporate few-shot learning by providing models754

with three examples for each task, except for the755

structure recognition task, where one example per756

structure type is given. In the Chain-of-Thought757

(CoT) setting, models are prompted to break down758

their reasoning process step-by-step, with detailed759

prompts provided in the Appendix B.3. Models760

with fine-tuning are trained with a 7:3 split and761

tested using 1,000 samples randomly selected from762

the test set. To assess consistency and model en-763

tropy, each question is asked five times, and the764

best trial out of the five for each task is selected to765

calculate the overall results.766

To adapt answers from models generating long767

responses conventionally, we first let models gen-768

erate responses freely without a specific answer769

format. Then, we use GPT-3.5 Turbo to extract770

answers from various model responses. For open-771

source models and extraction-used GPT-3.5 Turbo,772

a temperature of 0.3 is applied. Closed-source mod-773

els generally use a temperature of 0.7 unless other-774

wise recommended by model documentation.775

B.2 Structure Recognition Across Structures776

We provide detailed result for structure recognition777

across different structures in Table 6.778

B.3 CoT Prompting779

We present the prompt lines used for visual info780

evaluation in Figure 4, 5, 6, 7.781

B.4 Chinese VLMs Behavior782

Examples of VLMs misrecognizing images are783

shown in Figure 8, 9, 10, 11, and 12.784

Figure 5: Prompt Line of Component Task

Figure 6: Prompt Line of Stroke Number Task
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Model Top-Bottom Top-Mid-Bottom Left-Right Left-Mid-Right Wrapping Inlay Triple-Stack Single

GPT-3.5 Few 23.1 22.00 20.14 15.56 9.74 14.29 7.14 21.00
GPT-3.5 Zero 24.01 16.00 25.17 2.00 3.59 0.00 0.00 57.00
GPT-4 Few 35.33 0.00 64.92 7.78 4.18 28.57 21.43 32.00
GPT-4 Zero 17.26 2.00 54.94 2.00 7.17 14.29 7.14 29.50
Ernie-Lite 21.70 12.00 52.20 2.00 7.17 14.29 66.67 67.50

Yi-6B 47.34 16.86 27.54 9.32 25.11 25.00 57.14 33.18
Qwen-7B 33.21 5.56 29.12 11.32 14.56 25.00 42.86 42.95
Baichuan-13B 35.27 11.38 22.45 3.44 28.34 25.00 42.86 37.12
Mistral-7B 27.48 14.56 33.45 12.34 30.43 25.00 28.57 51.46

Table 6: Accuracy of models across different structure types of Chinese characters.

Unicode Character Structure Unicode Character Structure

U+4EBF 亿 LR U+4ED9 仙 LR
U+4EC0 什 LR U+4EE3 代 LR
U+4EC1 仁 LR U+4EEA 仪 LR
U+4EC3 仃 LR U+4EEB 仫 LR
U+4EC4 仄 WRP U+4EF0 仰 LR
U+4EC7 仇 LR U+4EF2 仲 LR
U+4ECE 从 LR U+4EF5 仵 LR
U+4ED1 仑 TB U+4EFB 任 LR
U+4ED3 仓 TB U+4EFD 份 LR
U+4ED5 仕 LR U+4F01 企 TB
U+4ED6 他 LR U+4F0A 伊 LR
U+4ED7 仗 LR U+4F0D 伍 LR
U+4ED8 付 LR U+4F0E 伎 LR

Table 7: This table showcases a randomly selected range of Unicode characters in dataset along with their respective
structures. This representation provides a snapshot of the structural information inherent in the Unicode.

C Analysis on Chinese Encoding785

To further investigate why models after fine-tuning786

perform exceptionally well on structure tasks but787

show decreased performance on other Chinese vi-788

sual tasks, we conducted a side experiment on dif-789

ferent encoding systems to determine if they learn790

some sort of implicit pattern from the encoding.791

Setup. We fine-tuned GPT-3.5 by explicitly792

switching all Chinese characters in the train-793

ing and testing documents to various encod-794

ings—namely, Unicode, stroke, Pinyin7, Wubi,795

and Cangjie8—and evaluated them on the struc-796

ture recognition task to assess the impact of these797

representations on the model’s learning ability with798

visual knowledge of Chinese characters.799

7Pinyin is the Romanization of the Chinese characters
based on their pronunciation. In Mandarin, it’s the standard
method for typing Chinese characters.

8Wubi and Cangjie are two glyph-based input methods that
are uncommon to use.

Results. The results shown in Table 8 indicate 800

that Unicode encoding performs comparably to 801

the vision-rich stroke encoding and significantly 802

outperforms Pinyin encoding, which is limited to 803

phonetic information. Upon further investigation, 804

we found that the order of Chinese characters in 805

Unicode is closely related to the stroke count and 806

structure of the characters: Unicode is ordered by 807

the stroke count of their indexing radical and the 808

stroke count of remaining parts. However, the full 809

potential of Unicode is diminished by numerous 810

exceptions and a broad spectrum of extensions that 811

complicate its utility in conveying visual knowl- 812

edge. where similar structures are likely grouped 813

together with stroke counts in incremental order, as 814

detailed in Figure 7. 815
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Figure 7: Prompt Line of Strokes Task

Encoding Structure Acc

Unicode 39.80
Stroke 43.80
PinYin 13.85
WuBi 11.81
CangJie 11.66

Table 8: GPT-3.5 Fine-tuning’ Performance on different
way of encoding.

D Detailed Radical Prompting Result 816

D.1 Quantitative Analysis on POS tagging 817

Accuracy 818

We provide a case analysis for POS tagging in Table 819

9.

Category Baseline RP (Oracle)

Correct& utilize Radical - 81.2(+81.2)
Correct without 608.6 611.2(+2.6)
Incorrect & utilize Radical - 41.8(+41.8)
Incorrect without 391.4 265.8 (-125.6)

Table 9: Quantitative analysis of GPT-3.5-Turbo’s POS
tagging accuracy on the number of correct and incorrect
predictions with and without the examination of compo-
nents using radical prompting compared to the baseline.
Improvement is shown in green.

820

D.2 Window size’s impact on POS tagging 821

We evaluate the impact of different window size in 822

POS tagging with GPT-3.5-Turbo in Table 10.

Window Size
Part-Of-Speech Tagging

GPT-3.5-Turbo with GSD

B RP RP (Oracle)

5 59.08 64.62(+5.5) 67.56(+8.5)
7 60.17 66.55(+6.38) 66.73(+6.56)
9 60.38 67.03(+6.65) 67.23(+6.85)

Table 10: Model performance for POS tagging with
different word span sizes

823

D.3 Radical Prompting Prompts 824

We provide our prompting lines for POS tagging, 825

NER, and CWS tasks in Figure 14, 15, and 16, 826

respectively. 827

D.4 Aya Model Behavior 828

Examples of Aya decompose radicals incorrectly 829

are shown in Figure 13. 830

E Discussion on Chinese Characters 831

To investigate the importance of Chinese radicals, 832

we selected a sample of 100 Chinese characters 833

from our dataset and annotated them to determine 834

whether the radicals directly contribute to the mean- 835

ing or pronunciation of the character, as shown in 836

Figures 17. Although the majority of characters 837

have clues derived from the radicals, we found that 838

most characters contain a combination of only one 839

meaningful radical with other radicals hinting at 840

13



Figure 8: Example of Ernie-4V response to rare character with English translation.

Figure 9: Example of Ernie-4V response to extremely similar character with English translation.

Figure 10: Example of Ernie-4V response to part of the character as answer with English translation.
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Figure 11: Example of Ernie-4V response a character with different component part as answer with English
translation.

Figure 12: Example of Kimi-V reject rarely used character with English translation.

Figure 13: Example of Aya decompose incorrectly.
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Figure 14: Prompt Line of POS tagging.

Figure 15: Prompt Line of NER.
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Figure 16: Prompt line for CWS.

Figure 17: Distribution of Chinese characters with
meaning (M) or pronunciation (P) hint from their rad-
icals. The smaller circle on the right shows the distri-
bution among all characters containing radicals with
meaning (sum of Characters M only and Characters M
& P).

Figure 18: Sampled distribution of radicals with mean-
ing (M) or Pronunciation (P) hint.

pronunciation. For example, in the character “花,” 841

we can infer that it is related to herbs from the radi- 842

cal “艹,” while “化” only provides a pronunciation 843

hint, resulting in only vague idea of character’s 844

meaning. In 12 out of the 100 characters, none of 845

the radicals were helpful. 846

This is due to the evolution of the language, 847

where historically, a single Chinese character often 848

conveyed the meaning of a full word. However, 849

more words are now composed of two or more 850

characters, leading to individual characters losing 851

their original meanings. For example, the Chinese 852

character “况” is now commonly used to mean “sit- 853

uation” in words like “情况” or “状况”. However, 854

the original meaning of the character is “cold water” 855

unexpectedly, which is closely related to the radical 856

“冫”, referring to cold water. 857

F Responsible NLP Miscellanea 858

F.1 Intent usage 859

In response to potential inquiries regarding the 860

scope and legitimacy of our experiments, it is im- 861

portant to clarify that all aspects of our research 862

strictly adhere to the intended use cases of the 863

Large Language Models (LLMs) and the NLP task 864

datasets employed. Furthermore, our use of these 865

models and datasets complies fully with the usage 866

policies of the APIs for each model involved. We 867

note that the use of rare Chinese words triggered 868

17



some safety mechanisms in models such as Gemini-869

1.5. However, our intent complies fully with the870

ethical guidelines and usage policies provided by871

the API providers.872

F.2 Computational Experiments Cost873

In our research, we utilized vLLMs for evaluation874

on Yi 6B, Mistral 7B, Baichuan 13B, and Qwen875

7B with a single a40 GPU. For other models, we876

accessed them through their respective APIs. The877

cost and running time for each model varied sig-878

nificantly. Specifically, the time required to run a879

single evaluation ranged from approximately 2 to880

8 hours.881

F.3 Avoid Data Leakage882

For all NLP tasks assessed in this study, evalua-883

tions were exclusively conducted on the develop-884

ment sets of the respective datasets to prevent data885

leakage.886

F.4 Personally Identifying Info887

The dataset we created for evaluating the visual888

information of Chinese characters does not contain889

any offensive content or personally identifying in-890

formation. However, we acknowledge the presence891

of individual names in the Weibo NER dataset that892

we use for evaluation.893

F.5 Evaluation Tools and Methodologies894

To evaluate our Named Entity Recognition (NER)895

tasks, we used a Perl script: conlleval.pl.896

For other tasks, we calculated F1 score using897

Scikit-learn.898

F.6 AI Assistants899

We acknowledge the use of GPT-4 for grammar900

checking and word polishing.901
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