
DenoiseRank: Learning to Rank by Diffusion Models

Anonymous ACL submission

Abstract001

Learning to rank (LTR) is one of the core tasks002
in NLP by supervised algorithmic techniques003
trained on a dataset with queries and their cor-004
responding labeled relevant items. LTR mod-005
els have made great progress, but all of them006
implement the algorithms from discriminative007
perspective. In this paper, we aim at address-008
ing LTR from a novel perspective, i.e., by a009
deep generative model. Specifically, we pro-010
pose a novel denoise rank model, DenoiseRank,011
which is a denoising diffusion-based model, for012
the LTR task. Our DenoiseRank noises the rele-013
vant labels in the diffusion process and denoises014
them on the query documents in the reverse pro-015
cess to accurately predict their distribution. Our016
model is the first to address LTR from genera-017
tive perspective and is a diffusion method for018
LTR. Extensive experiments were conducted019
on benchmark datasets and the results demon-020
strated the effectiveness of the proposed De-021
noiseRank model. DenoiseRank provides a022
benchmark for generative LTR task.023

1 Introduction024

Learning to Rank (LTR) is one of the core tasks025

in NLP addressed by supervised machine learning026

techniques that are used to automatically construct027

ranking models. Its primary goal is to order items028

(documents, products, answers, etc.) in response029

to an input query so that the most relevant ones030

appear higher in a ranked list of results. LTR has031

been commonly used in a wide spectrum of NLP032

applications (Song and Ermon, 2019), e.g., rec-033

ommender systems (Karatzoglou et al., 2013) and034

question-answering (Agarwal et al., 2012; Ji and035

Wang, 2013). A large number of LTR algorithms036

have been proposed and can be classified into two037

types, tree-based models (Lucchese et al., 2025;038

Chen et al., 2024; Ke et al., 2017; Burges et al.,039

2005) and neural-based LTR models (Gu et al.,040

2020; Pang et al., 2020; Argouarc’h et al., 2024;041

Jin et al., 2024; Jagerman et al., 2022; Cao et al.,042

2007). Among these models, those applying self- 043

attention mechanism (Vaswani et al., 2017; Devlin 044

et al., 2019) have typically achieved better perfor- 045

mance, as demonstrated by SetRank (Pang et al., 046

2020) and DASALC (Qin et al., 2021). 047

Previous LTR models mainly adopt a discrim- 048

inative approach to LTR (Gu et al., 2020; Pang 049

et al., 2020; Chen et al., 2024; Ke et al., 2017; Ar- 050

gouarc’h et al., 2024; Qin et al., 2021), with no 051

work considering it from a generative perspective. 052

However, a large number of generative models have 053

demonstrated their superior over both traditional 054

and discriminative models for many NLP tasks 055

such as machine translation (Vaswani et al., 2017), 056

text classification (Devlin et al., 2019) and senti- 057

ment analysis (Yin and Zhong, 2024; Yuan et al., 058

2021). Of special interest to us, accordingly, is to 059

explore whether generative models are capable of 060

further enhancing the performance of LTR. 061

Generative models use the joint probability dis- 062

tribution P (Y,X) (Harshvardhan et al., 2020) to 063

model the data space. This makes them better to 064

capture complex data distributions and more ro- 065

bust for classification and regression tasks (Sehwag 066

et al., 2021). In this paper, we aim to estimate 067

the full distribution of corresponding labels Y , i.e., 068

P (Y |D), given a ranked list of documents D in 069

response to an input query, from the perspective of 070

a generative model. Denoising diffusion probabilis- 071

tic models (DDPMs) (Ho et al., 2020; Nichol and 072

Dhariwal, 2021) as one class of the most effective 073

generative models have demonstrated significant 074

potential in images and videos generation (Li et al., 075

2025; Rombach et al., 2022; Ho et al., 2022) in re- 076

cent years. Due to their advantages of distribution 077

generation, diversity representations, and training 078

stability, we aim at investigating whether DDPMs 079

can accurately recover the corresponding labels Y 080

for documents D in response to a given query. 081

Specifically, we propose a novel denoising rank- 082

1

ing model, DenoiseRank 1, to address the LTR task.083

Our DenoiseRank is a DDPM (Sec.3) model and084

consists of three main components: diffusion pro-085

cess, reverse process and denoise neural network.086

In our proposed DenoiseRank, we first gradually087

inject Gaussian noise into the input corresponding088

labels Y within a number of timesteps, (based on089

the Markov process (Sohl-Dickstein et al., 2015)),090

and consequently Y becomes an isotropic Gaus-091

sian distribution. Then, noised labels are fed into092

the denoise neural network which will output de-093

noised labels. We repeat this process on datasets094

and optimize the model with a special loss func-095

tion, in order to learn the conditional probability096

distribution P (Y |D). Note that the Denoise neural097

network mainly consists of a custom feedforward098

network and a Transformer-Encoder network. Fi-099

nally, during the reverse process, the labels Y are100

randomly sampled from Gaussian noise and fed101

into the well-trained Denoise neural network. Af-102

ter enough iterations, accurate labels are obtained.103

We demonstrate the effectiveness of the proposed104

DenoiseRank through extensive experimentation105

(Sec. 4) on the popular LTR dataset (Qin and Liu,106

2013; Chapelle and Chang, 2011; Dato et al., 2016)107

and analyse its characteristics in ablation studies108

(Appendix. B). Experimental results show that De-109

noiseRank either outperforms or performs equiva-110

lently to recent LTR models (Pang et al., 2020; Qin111

et al., 2021). Our DenoiseRank can be utilised as112

a benchmark for future neural ranking models and113

can be extended to other sequence prediction tasks,114

such as “Multi-Objective Ranking (MOR) learning”115

(Gu et al., 2020).116

The main contributions of this paper are as fol-117

lows:118

1. We study the problem of LTR from a gen-119

erative perspective and introduce a diffusion120

model solution for the first time.121

2. We propose a novel DenoiseRank model for122

LTR, which can be used as a benchmark for123

future generative neural ranking models.124

3. Extensive experiments were conducted on125

benchmark datasets to demonstrate the effec-126

tiveness of DenoiseRank, and optimal perfor-127

mance was achieved against most metrics.128

4. We introduce a new metric, RSD@(K,M),129

to evaluate the ability of the model to produce130

diverse ranked lists. Our DenoiseRank has131

1The source code of our model DenoiseRank is publicly
downloadable from: https://github.com/yingwang93/
DenoiseRank.

been proven to rank documents diversely. 132

2 Definition of the LTR Task 133

We denote a training dataset as query set Q = 134

{ql}Ll=1 and their corresponding document and la- 135

bel set {(Dl, Yl) | ql}Ll=1, where Dl is a document 136

list that contains n documents Dl,i to be sorted, 137

i ∈ [1, n], Dl,i ∈ Rk, and k is the dimensions of 138

the feature (Documents are represented and stored 139

by embeddings/features). Yl is the label list for the 140

corresponding documents list Dl, with Yl,i > 0 141

indicating the document Dl,i being relevant to the 142

query and Yl,i = 0 otherwise. L denotes the total 143

number of queries contained in the dataset. 144

The goal of LTR is to train a ranking function 145

f(Q,D), which can be used to accurately predict 146

the relevance score of documents. We approxi- 147

mate the ranking function by training a model opti- 148

mized by the loss L(f ;Q,D). Different models for 149

LTR have different loss formulations, which can 150

be categorized into point-wise (Friedman, 2001), 151

pair-wise (Burges, 2010), and list-wise (Cao et al., 152

2007) ones. Our DenoiseRank can be a point-wise, 153

pair-wise or even list-wise model dependent on 154

the loss equipped in the model. We make com- 155

parisons among the performance of DenoiseRank 156

with point-wise, pair-wise and list-wise losses in 157

the experiments; see Appendix. D. 158

3 Denoise Ranking Model 159

In this section, we first provide an overview of our 160

proposed DenoiseRank model. We then detail our 161

DenoiseRank model, including the diffusion pro- 162

cess, the inverse process and the Denoise neural 163

network. Finally we provide the training and in- 164

ference algorithm and discuss the advance of our 165

model compare to the others. 166

3.1 Overview of Our DenoiseRank 167

The overview of our proposed DenoiseRank is pro- 168

vided in Figure 1. As shown in the figure, our 169

DenoiseRank is built based on DDPM and consists 170

of three components: Diffusion Process, reverse 171

process and denoise neural network. It first takes 172

documents D in response to a given query and cor- 173

responding labels Y as input, then the Gaussian 174

noise are injected into the labels through diffusion 175

process. Next, noised labels and documents are fed 176

into the denoise neural network to train and opti- 177

mize them. Finally, in the reverse process, labels 178

from randomly sampling and the corresponding 179

2

https://github.com/yingwang93/DenoiseRank
https://github.com/yingwang93/DenoiseRank

Figure 1: Left is an illustration of the diffusion process and reverse process in DenoiseRank. Right is the architecture
of denoise network in DenoiseRank. FeedForward Layer is linear layer, softplus is activation, and dropout is dropout
layer. Feature transform is applied when document feature input into transformer block.

documents are fed into the well-trained denoise180

neural network to predict the ground-truth labels181

step by step. Note that the Denoise Neural Net-182

work in DenoiseRank is implemented by a custom183

feedforward network and a Transformer-Encoder184

network, see Figure 1 on the right.185

3.2 The DenoiseRank Model186

As shown in Figure 1, given are a list of docu-187

ments D = d1, d2, ...dn in response to a query,188

and the corresponding list of feedback labels Y ,189

Y = y1, y2, ...yn. We hope that given D, denois-190

eRank will be able to predict the list of relevance191

labels Y correctly through the reverse diffusion192

process. Our model is trained to approximate the193

distribution p(Y |D). Our goal of training can be194

formulated as pθ(Y0|D) :=
∫
pθ(Y0:T |D)dY1:T ,195

where Y0 is the input labels Y noised at timestep196

0, Y0, ..., YT is noising data sampled from Y0 ∼197

q(Y0). pθ(Y0:T |D) is the reverse diffusion process198

that we aim to learn the Gaussian transition from a199

Markov chain, the joint distribution formulated as200

follows:201

pθ(Y0:T |D) := p(YT)

T∏
t=1

pθ(Yt−1|Yt, D) , (1)202

203
pθ(Yt−1|Yt, D) := N (Yt−1;µθ(Yt, t,D),

∑
θ(Yt, t,D)) .

(2)204

For the forward process, we fixed the approximate205

posterior q(Y1:T |Y0, D) to a Markov chain that206

gradually adds Gaussian noise into the labels:207

q(Y1:T |Y0) :=
T∏

t=1

q(Yt|Yt−1) , (3)208

209
q(Yt|Yt−1) := N (Yt;

√
1− βtYt−1, βtI) , (4)210

where β1, ..., βT is scheduled to control the pro-211

cess of noising data. Let αt := 1 − βt and212

αt :=
∏t

s=1αs, then the posterior can be formu-213

lated as:214

q(Yt | Y0) = N (Yt;
√
αtY0, (1− αt)I) . (5)215

Applying Bayesian theory, the prior probability 216

can be formulated as: 217

q(Yt−1 | Yt, Y0) = N (Yt−1; µ̃(Yt, Y0), β̃tI) , (6) 218

where β̃t and µ̃(Yt, Y0) are, respectively, as fol- 219

lows: 220

β̃t :=
1− αt−1

1− αt
βt , (7) 221

222

µ̃(Yt, Y0) :=

√
αt−1βt

1− αt
Y0 +

√
αt(1− αt−1)

1− αt
Yt . (8) 223

We then train the model to optimize the variational 224

lower bound (VLB) on negative log likelihood: 225

L =Eq

− log p(YT)−
∑
t≥1

log
pθ(Yt−1|Yt, D)

q(Yt|Yt−1)

=Eq

[
− log

pθ(Y0:T |D)

q(Y1:T |Y0)

]
≥ E[− log pθ(Y0|D)] .

(9) 226

Thus we can optimize the L with stochastic gra- 227

dient descent during training. Further more, the 228

VLB above can be rewritten as follows: 229

L = Eq

[
DKL

(
q(YT |Y0) ∥ p(YT)

)︸ ︷︷ ︸
LT

+
∑
t>1

DKL
(
q(Yt−1|Yt) ∥ pθ(Yt−1|Yt, D)

)︸ ︷︷ ︸
Lt

− log pθ(Y0|Y1)︸ ︷︷ ︸
L0

]
.

(10) 230

While LT does depend on θ, it will become zero 231

when data being carefully noised enough and can 232

be ignored when optimizing; L0 use to evaluate 233

the reconstruct quality, but need complex calculate; 234

Lt calculated by the KL-diveergence between pos- 235

terior and model prediction.Following (Ho et al., 236

2020), we can simplely rewrite the L and replace 237

by a mean-squared error (MSE) loss as follows: 238

L = Et,Y0,ε[|| ϵ− ϵθ(D,Yt, t) ||2] , (11) 239

3

where ϵ and ϵθ(D,Yt, t) are noise injected to Yt240

and nosie predicted from denoise neural network of241

DenoiseRank, respectively. According to (Nichol242

and Dhariwal, 2021), we can further predict Y0 via:243

Y0 =
1

√
αt

(
Yt −

βt√
1− αt

ϵ

)
. (12)244

Thus, the model can be trained to directly predict245

Y0 and the loss reformulated as:246

L = Et,Y0,pθ [|| Y0 − pθ(D,Yt, t) ||2] , (13)247

where pθ(·) is the denoising model we aim to train.248

That means we can also predict Y0 by the other249

losses of LTR. In this paper, we do ablation experi-250

ments on popular LTR losses to investigate the best251

performance of our models; see Appendix D.252

3.3 Denoise Neural Network in DenoiseRank253

As shown in Figure 1, Our model contains two254

components, the Self Attention Network and the255

Denoise Network. In recent years, neural LTR mod-256

els employ self-attention mechanism and achieve257

significant performance advances. Since the self-258

attention mechanism can model the query docu-259

ments context-aware, we make it as a part of our260

models. We choose transformer encoder as the261

basic network, formulated as follows:262

H = E(d1,d2,,dn) , (14)263

where d1,d2,,dn are embeddings of all docu-264

ments in response to a single query, H are context-265

wise features of documents calculated by the trans-266

former encoder E(·). We use a standard trans-267

former encoder architecture, where input document268

features are computed with advanced self-attention269

(Vaswani et al., 2017), followed by feed-forward270

networks and activation functions, and finally layer271

normalisation and dropout. In order to increase the272

model capacity and get the optimal performance,273

we try multi-head attention and multi-blocks ar-274

chitecture in training, heads ∈ {1, 2, 4, 8} and275

blocks ∈ {3, 4, 5, 6}. Unlike the CV diffusion276

model, the denoising network is a feed-forward277

network instead of a U-net, formulated as:278

Ŷ0 = FFN(H, Yt, t) , (15)279

where t is the time step, Yt is a corresponding280

noised label at t. FFN(·) is a feedforward net-281

work with a multi-tiered architecture (Han et al.,282

2022). As shown in Figure 1 on the right, firstly,283

we input Yt,i and Hi) into the first layer of the net- 284

work after concatenating them to obtain the output 285

h(l) = layer(Hi, Yt,i), where Hi denotes the ith 286

document feature vector and Yt,i denotes the cor- 287

responding ith label. In each denoising layer, it 288

goes through a linear layer, an activation function 289

and a dropout layer respectively, then we do the 290

embedding calculation to get temb for timestep t. 291

Finally, h(l) is multiplied by temb to get the current 292

output. In our experiments, we try multiple de- 293

noise layer architectures with the number of layers 294

n ∈ {2, 4, 6, 8}. The first layer formulated as: 295

h(1) = Dropout(σsp(Linear(Hi, Yt,i))) , (16) 296

297
m(1) = h(1) ⊙ temb , (17) 298

middle layer formulated as: 299

h(j) = Dropout(σsp(Linear(m(j−1)))) , (18) 300
301

m(j) = h(j) ⊙ temb , (19) 302

where j denotes the j-th denoise layer of FFN(·), 303

j ∈ (1, n). The output layer is formulated as: 304

h(n) = Dropout(σsp(Linear(m(n−1)))) , (20) 305

where σsp is the softplus activation function, 306

m(j−1) is the output of the previous layer. The 307

dimension of the last layer h(n) is 5, each dimen- 308

sion corresponds to the weight of the relevance 309

label, and the final weighted sum computes the pre- 310

dicted label Ŷ0, where Ŷ0 ∈ [0, 4] and is denoted 311

as: 312
Ŷ0 = h(n) ⊙ (0, 1, 2, 3, 4) . (21) 313

3.4 Diffusion and Training 314

In the diffusion process, the main task is to add 315

noise to the labels. Specifically, given time steps t 316

and a noise scheduler β, the noised labels Yt are ob- 317

tained. Our goal is to train an approximate model 318

pθ(·) that is able to predict the true labels y0 from 319

the noisy labels yt at t timesteps. We experimented 320

with a variety of noise schedulers, see Appendix 321

B.2. We set the maximum time step T to 1000, 322

and the ablation experiments are referenced in Ap- 323

pendix B.1. 324

Training. We perform hundreds of epocs of train- 325

ing for DenoiseRank as follows. First, the timestep 326

t is randomly sampled for each query list. Based 327

on the time step t and the noise scheduler β, label 328

vector Y0 will gradually become Gaussian noise 329

YT at T (Eq.5). Second, Yt and document list D 330

are fed into the model pθ(·), which will output the 331

4

Algorithm 1: Training
Input : Docs: D = {d1, d2, . . . , dn}

Truth labels: Y0 = {y1, . . . , yn}
Timesteps: t ∈ [0, T]
Noise schedule: βt

Base model: pθ(·)
Training epochs: K

Output : Well-trained Model: pθ(·)
for epoch← 1 to K do

Yt ← q(Yt|Y0) // Eq.(22)

Ŷ0 ← pθ(D,Yt, t) // Prediction

L(Ŷ0, Y0) // Compute loss
θ ← θ − η∇θL // Update

end
return pθ

denoised labels Ŷ0. Finally, the loss function is332

calculated and the model parameters are adjusted.333

The above process is repeated until the target epoc334

and the model converge; see Algorithm 1. Our335

goal is to make Ŷ0 accurately equal to Y0 through336

extensive training. Training process can be briefly337

formulated as:338

Yt ← q(Yt|Y0), Ŷ0 = pθ(D,Yt, t) . (22)339

340

3.5 Reverse and Inferencing341

The main task in the reverse process is labels de-342

noising. Starting from a given noisy label Yt and343

time step t, denoising yields the next time step la-344

bels Yt−1. The goal of inference is to obtain the345

predicted labels Ŷ0 that can correctly rank the query346

document D. We need to predict Ŷ0 at each step347

and then compute Yt−1, see Eq.2,12.348

Inference. First, the noised labels Yt is sampled349

from the Gaussian distribution N (0, I) in the max350

timestep T . Then, Yt and the document list D are351

fed into the model Pθ and the denoised labels Ŷ0352

are output. According to equation 2,12, we can353

approximate Yt−1 from Yt and Ŷ0. Finally, repeat354

the above denoising process until t = 0, and obtain355

y0, the predicted relevance labels, see Algorithm 2.356

Inferencing process can be brief formulated as:357

Ŷ0 = pθ(D,Yt, t), Yt−1 ← q(Yt−1|Ŷ0, Yt) . (23)358

359

3.6 Discussions360

Our DenoiseRank differs from previous diffusion361

based generative models in at least the following as-362

pects: (1) Our model is the first one to address LTR363

task by generative diffusion model to accurately364

Algorithm 2: Inference
Input : Docs: D = {d1, d2, . . . , dn}

Noised labels: Yt ∼ N (0, I)
Max Diffusion steps: T
Noise schedule: βt

Trained model: pθ(·)
Output : Denoised labels: Ŷ0

for t← T 1 do
Ŷ0 = pθ(D,Yt, t) // Prediction

q(Yt−1|Ŷ0, Yt)→ Yt−1 // Eq.(23)
end
return Ŷ0

rank by fitting the conditional distribution P (Y |D). 365

(2) Previous diffusion models use the U-net as the 366

denoise network (especially in CV areas (Rombach 367

et al., 2022; Ho et al., 2022)), but we use a novel 368

network consists of feedforward network and trans- 369

former. (3) Compare to the diffusion models in se- 370

quence recommendation(Li et al., 2023), we utilise 371

the transformer to calculate context-wise features 372

and denoise labels by the feedforward network. 373

4 Experiments 374

4.1 Research Questions 375

The remainder of this paper is guided by the follow- 376

ing research questions: (1) Does our DenoiseRank 377

outperform state-of-the-art LTR models? (2) How 378

do the hyperparameters and each design choice of 379

the DenoiseRank affect its performance? (3) What 380

about the diversity of the rank result of DenoiseR- 381

ank compared to other LTR models ? 382

4.2 Datasets and Metric 383

Datasets. Experiments were conducted on three 384

famous datasets for LTR, including the Microsoft 385

Web30k (Qin and Liu, 2013), Yahoo! LETOR 386

(Chapelle and Chang, 2011), and Istella LETOR 387

(Dato et al., 2016). The queries and documents 388

in these datasets were obtained from real search 389

engines. Each dataset contains a large number of 390

query-documents. In addition, labels are repre- 391

sented on a 5-level scale from 0 to 4 (the most 392

relevant). Each document is represented by mul- 393

tidimensional features such as BM25 score of the 394

page section. We use pre-partitioned train/test data 395

from each dataset for training and testing. 396

Metrics. Normalised Discounted Cumulative 397

Gain (NDCG) is used to evaluate all models’ per- 398

formance. We report the values of the metric at 399

positions 1, 5, and 10, i.e., NDCG@1, NDCG@5, 400

and NDCG@10. It is worth noting that we use 401

5

NDCG@10 as the evaluation criterion to select402

the best model. Experimental results against other403

metrics are shown in Appendix E.404

4.3 Comparison Models405

We evaluate DenoiseRank against the advanced and406

recent baselines; see Table 1. There are two cate-407

gories of baselines, tree-based and neural-based.408

Tree-based. MARTGBM (Ke et al., 2017) is one409

of the LambdaMART (Wu et al., 2010) implemen-410

tations provided by Microsoft and is one of the best411

tree-based methods. MARTRankLib is part of the412

RankLib library and is another implementation of413

LambdaMART (Wu et al., 2010).414

Neural-based. DLCM (Ai et al., 2018) employs415

the RNN network to capture the local ranking con-416

text and is trained with an attention-based loss func-417

tion, which makes it more effective. SetRankre418

(Pang et al., 2020) is an improved version of Se-419

tRank, where documents are reranked before they420

are entered. NeuralNDCG (Pobrotyn and Biało-421

brzeski, 2021) is a neural LTR model that addresses422

the mismatch between optimisation objective and423

evaluation criterion of traditional model by a novel424

loss function. DASALC (Qin et al., 2021) is a425

baseline provided by Google, which is based on426

the self-attention and multiple optimisation com-427

ponents to outperform even the tree-based models.428

Rankformer (Buyl et al., 2023) is one of the recent429

baselines, which uses list-wise labels to capture430

contextual information and also uses an novel im-431

plicit feedback component. However, implicit feed-432

back component of Rankformer is not enabled in433

the experiments as it is not part of our study.434

We report evaluation results for MARTGBM,435

MARTRankLib, DLCM, and Rankformer in the436

same runtime environment as DenoiseRank. The re-437

sults for NeuralNDCG, SetRankre and DASALC438

are those reported in their original papers. The De-439

noiseRank model parameters and training setups440

are presented in Appendix A.441

4.4 Comparison Result442

The results are shown in Table 1, and we conclude443

that 1) DenoiseRank achieves better or compet-444

itive performance compared to other discrimina-445

tive models, especially on the Web30k and Ya-446

hoo datasets, which proves the effectiveness of447

our models. 2) Compared to advanced tree-based448

models, DenoiseRank consistently leads in per-449

formance on the Web30k dataset; on the Yahoo450

dataset, NDCG@10 performs better, and @1 and 451

@5 are closely. 3) DenoiseRank achieves an over- 452

all lead over advanced neural LTR baselines. 4) 453

DenoiseRank performs better on the Web30k and 454

Yahoo datasets, and @10 achieves a lead on the Is- 455

tella dataset compared to other neural LTR models. 456

4.5 Design Choice and Hyperparameters 457

We carry out ablation studies on DenoiseRank and 458

investigate the best design choice of it on different 459

datasets. The configurations of DenoiseRank are 460

in Table 2. We further introduce hyperparameters 461

and design choice in Appendix. A and B. 462

Noise schedule. Noise schedule is the dynamic 463

parameter αt which controls the noise ratio each 464

step during diffusion. We choose 4 types of sched- 465

ule to evaluate our DenoiseRank, including Linear, 466

TruncatedLinear, Sqrt and Cosine. As shown in 467

Figure 6 and Table 5, we summarize that: (1) Dif- 468

ference schedule affect the performance of our De- 469

noiseRank (2) TruncatedLinear is the better choice 470

because it results in more reliable performance. 471

More introduction is found in Appendix B.2. 472

Max diffusion timesteps. Diffusion timesteps 473

T control the speed of noising corresponding la- 474

bels, noise becomes more subtle as max timestep 475

increases. We choose 5 max timesteps, including 476

1,000, 800, 600, 400 and 200. The result shown 477

in Figure 5 and Table 4 denotes that: (1) The per- 478

formance is benefitial from carefully nosing after 479

increasing the max diffusion timesteps (2) Train- 480

ing on different datasets need different diffusion 481

timesteps, for example, the best choice is T=600 on 482

istella datasets. Appendix B.1 shows the detailed 483

discussion. 484

The number of denoise network layers. De- 485

noise network is an important part of our model to 486

predict ground-truth labels, and its layer count may 487

affect the ranking result of DenoiseRank. Thus we 488

choose 4 types of layers to investigate it, and results 489

are shown in Figure 7 and Table 6 denotes that: (1) 490

The number of Layers significantly affects the per- 491

formance of DenoiseRank (2) the best choice is 2, 492

4, 4 on Web30K, Yahoo!, Istella datasets respec- 493

tively. (See Appendix B.3) 494

Self attentions. The performance of DenoiseR- 495

ank is significantly improved as Transformer be- 496

comes a part of our model, as shown in Table 7 and 497

Figure 8. The self-attention mechanism makes it 498

6

Table 1: NDCG@K performance comparison on benchmark datasets. Best performance is bolded. ∗ and † denote
statistically significant improvements over the best tree-based and neural models respectively. Last row is relative
difference of DenoiseRank over the best comparison models.

Method Microsoft Web30K Yahoo! Istella

@1 @5 @10 @1 @5 @10 @1 @5 @10

MARTRL 45.35 44.59 46.46 68.52 70.27 74.58 65.71 61.18 65.91
MARTGBM 50.73 49.67 51.46 71.90 74.20 78.01 74.95 71.20 76.05

DLCM 46.31 45.01 46.90 67.71 69.91 74.29 65.57 61.95 66.80
SetRankre 45.91 45.15 46.96 68.22 70.29 74.53 67.60 63.45 68.34
NeuralNDCG – 51.45 53.49 – 66.02 71.02 – – –
DASALC 50.95 50.92 52.88 70.98 73.76 77.66 72.77 70.06 75.30
Rankformer 49.61 49.23 51.27 70.18 73.02 77.58 68.11 68.20 75.03

DenoiseRank 51.87∗† 52.52∗† 54.60∗† 71.37† 74.06† 78.42∗† 70.00 69.30 75.82†

Relative Diff (+1.8%) (+2.1%) (+2.1%) (-0.7%) (-1.6%) (+0.5%) (-7.1%) (-2.7%) (-1.4%)

Note: MARTRL and MARTGBM denotes Ranklib and GBM version of the LambdaMART respectively.

Table 2: Recommended configurations of DenoiseRank
from ablation study.

Design Web30K Yahoo Istella

Noise Schedule TruncL TruncL TruncL
Max Diffusion Steps 1000 1000 600
Denoising Layers 2 4 8
Self-Attention ✓ ✓ ✓
Loss Function ListNet MSE MSE

Note: All configurations use the same base architecture. ✓
denotes the inclusion of self-attention modules. TruncL
denotes Truncate Linear schedule.

passible to recalculate documents feature context-499

wise, and DenoiseRank can learn about the relation500

between documents. (See Appendix B.4)501

Learning Rate. We train our model with differ-502

ent learning rates ∈ 10−1, 10−2, 10−3, 10−4, and503

user AdamW optimizer. In most situations, 10−4504

is a good choice, while training on the web30k505

dataset, performance is a little better when learning506

rate is 10−3.507

4.6 Diversity of Ranking Results508

As our DenoiseRank is a diffusion based model,509

it is able to produce diverse ranked lists of docu-510

ments in response to the same query while may511

still keep the high standard of the NDCG Perfor-512

mance, compared to traditional LTR models that513

always produce the same ranked list of documents514

in response to the same query. Such diverse ranked515

lists of documents allow documents with the same516

ground-truth labels have the same chances to be517

ranked in the top-K position in the ranked lists.518

In this study, we verify the diversity of the519

ranking sequences produced by DenoiseRank. In520

the inference stage, YT , which is sampled at ran-521

dom from Gaussian noise, introduces uncertainty 522

when making predictions. To address this, we 523

perform multiple inferences for the same query 524

and analyze the ranking diversity. We introduce 525

the RSD@(K,M) metric (see Eq. 24), which de- 526

notes the number of different sequences on the 527

top K ranking of the same query among M times 528

inference. (Note that RSD (Ranking Sequence 529

Diversity) is absolutely different to traditional di- 530

versity metrics; see Appendix. C) Using K ∈ 531

{1, 5, 10, 20},M = 10, we compare RSD@(K,M) 532

of DenoiseRank to Rankformer, which has a simi- 533

lar architecture to ours but addresses LTR task from 534

a traditional discriminative perspective without un- 535

certainty. 536

As shown in Figure 2, the ranking results in- 537

ferred by DenoiseRank are diverse, while those in- 538

ferred by Rankformer remain singleton. Referring 539

to Table 8, we find that the ranked lists generated by 540

DenoiseRank are various in response to the same 541

test query 10 times while the NDCG metric remains 542

excellent. In contrast, Rankformer keeps the same 543

ranked list and the NDCG is also unchanged. More 544

detailed analysis can be found in the Appendix. C. 545

5 Related Work 546

Over the last 20 years, LTR has usually been stud- 547

ied from the perspective of discriminative meth- 548

ods (Friedman, 2001; Burges, 2010; Cao et al., 549

2007). These studies can be categorised as tree- 550

based and neural network-based. 551

Tree-based models show competitive perfor- 552

mance (Lucchese et al., 2025), e.g., Lamb- 553

daMART (Ke et al., 2017; Wu et al., 2010), but 554

poor performance when data is sparse and not easy 555

7

Figure 2: A t-SNE plot shows the diverse ranking se-
quences on the top 20 predicted in the inference stage
of a single query randomly selected. The blue points
denote the ranking sequences inferred by DenoiseRank
using 100 different YT values from Gaussian noise. The
orange yellow represents the other sequences predicted
by Rankformer in 100 attempts. Testing was conducted
on the MS Web30K dataset.

to be scalable (Qin et al., 2021). Other studies556

advocate the use of neural networks to train LTR557

models, e.g., RankNet (Burges et al., 2005). The558

advantage of neural networks based models is that559

they are easy to be scalable, but are prone to be560

overfitting, and the feed-forward layer treats docu-561

ments in isolation and ignore documents’ correla-562

tion. Some studies introduce attention mechanisms563

such as RNN and attention to LTR and achieve564

significant performance, e.g., SetRank (Pang et al.,565

2020) and DASALC (Qin et al., 2021). However,566

all these models are discriminative. In this work,567

we introduce generative method to LTR, using high-568

capacity networks and self-attention mechanisms.569

In addition to model design, there are LTR stud-570

ies using unbiased estimation (Luo et al., 2024)571

and innovative loss functions (Pobrotyn and Biało-572

brzeski, 2021). In recent years, there have been573

studies on obtaining implicit feedback and reduc-574

ing the bias in realistic feedback scores by design-575

ing click models, e.g. Rankformer (Buyl et al.,576

2023), InfoRank (Jin et al., 2024). Unbiased LTR577

achieved significant results, but this is far differ-578

ent from our study, which focuses on generative579

LTR model design. Loss functions have been the580

focus of LTR research, and traditionally there are581

three types, point-wise (Friedman, 2001), pair-wise582

(Burges, 2010) and list-wise (Cao et al., 2007). In583

recent years, there have also been studies propos-584

ing loss functions such as ApproxNDCG (Bruch585

et al., 2019), LambdaLoss (Jagerman et al., 2022),586

NeuralNDCG (Pobrotyn and Białobrzeski, 2021).587

In this study, the MSE loss is used, which is more588

suitable for diffusion models. 589

Traditional LTR studies have used discriminative 590

models, which are also commonly used in classifi- 591

cation and regression studies. Generative models, 592

represented by VAE (Kingma et al., 2013), GAN 593

(Goodfellow et al., 2014), etc., can model the data 594

distribution (Zhou et al., 2023; Liu et al., 2021) and 595

better solve the problems of data sparsity, overfit- 596

ting and noise sensitivity, etc. In recent years, there 597

have been researches on the use of generative meth- 598

ods in classification and regression studies (Han 599

et al., 2022). Unfortunately, there is no research 600

on LTR using generative models. Diffusion Mod- 601

els (Sohl-Dickstein et al., 2015) have shown great 602

potential in recent years, with models represented 603

by DDPMs (Ho et al., 2020; Nichol and Dhari- 604

wal, 2021) being applied to multimodal generation 605

(Zhang et al., 2025; Song and Ermon, 2019; Ho 606

et al., 2022; Song and Ermon, 2020). Some studies 607

have applied diffusion models to recommender sys- 608

tems (Li et al., 2023), but not yet to LTR. This study 609

is the first to address LTR through a generative 610

approach and lays the foundation for subsequent 611

studies on LTR through generative models. 612

6 Conclusion 613

This study aims at addressing the LTR task. Previ- 614

ous studies address the LTR task from a discrimina- 615

tive perspective, do not modeling the data well and 616

ignore the latent relationships among documents. 617

In contrast, to our knowledge we are the first to ad- 618

dress the task via a generative model. We propose 619

the novel DenoiseRank model, which is a diffusion- 620

based LTR model for the task. Specifically, our De- 621

noiseRank noises the relevant labels in the diffusion 622

process and denoises them on the query documents 623

in the reverse process to accurately predict the la- 624

bels of the documents in response to the input query. 625

Experimental results demonstrate the advantages 626

of our DenoiseRank, including excellent retrieval 627

performance and diversity of ranked lists. We also 628

propose a new evaluation metric to evaluate the 629

performance of the generative model in terms of 630

the diversity of the ranked lists. We believe that our 631

work makes an important contribution to advance 632

research on neural-based LTR models and paves 633

the way for future research into generative models 634

for LTR. As to future work, we intend to include 635

interactive data such as clicks on documents into 636

the model to improve the performance. 637

8

7 Limitations638

This study advances LTR task from a generative639

perspective but has notable limitations. Interac-640

tive feedback information such as clicks received641

from human-beings is not included in the training642

datasets, but such information does help to improve643

the performance of the model. We inject Gaussian644

noises during the diffusion process in our model.645

However, other kinds of noise distributions rather646

than Gaussian may be much more helpful to model647

the data for the diffusion process.648

References649

Arvind Agarwal, Hema Raghavan, Karthik Subbian,650
Prem Melville, Richard D Lawrence, David C651
Gondek, and James Fan. 2012. Learning to rank652
for robust question answering. In Proceedings of the653
21st ACM international conference on Information654
and knowledge management, pages 833–842.655

Qingyao Ai, Keping Bi, Jiafeng Guo, and W Bruce656
Croft. 2018. Learning a deep listwise context model657
for ranking refinement. In The 41st international658
ACM SIGIR conference on research & development659
in information retrieval, pages 135–144.660

Elouan Argouarc’h, François Desbouvries, Eric Barat,661
and Eiji Kawasaki. 2024. Generative vs. discrimina-662
tive modeling under the lens of uncertainty quantifi-663
cation. arXiv preprint arXiv:2406.09172.664

Sebastian Bruch, Masrour Zoghi, Michael Bendersky,665
and Marc Najork. 2019. Revisiting approximate met-666
ric optimization in the age of deep neural networks.667
In Proceedings of the 42nd international ACM SIGIR668
conference on research and development in informa-669
tion retrieval, pages 1241–1244.670

Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier,671
Matt Deeds, Nicole Hamilton, and Greg Hullender.672
2005. Learning to rank using gradient descent. In673
Proceedings of the 22nd international conference on674
Machine learning, pages 89–96.675

Christopher JC Burges. 2010. From ranknet to lamb-676
darank to lambdamart: An overview. Learning,677
11(23-581):81.678

Maarten Buyl, Paul Missault, and Pierre-Antoine679
Sondag. 2023. Rankformer: Listwise learning-to-680
rank using listwide labels. In Proceedings of the 29th681
ACM SIGKDD Conference on Knowledge Discovery682
and Data Mining, pages 3762–3773.683

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and684
Hang Li. 2007. Learning to rank: from pairwise685
approach to listwise approach. In Proceedings of the686
24th international conference on Machine learning,687
pages 129–136.688

Olivier Chapelle and Yi Chang. 2011. Yahoo! learning 689
to rank challenge overview. In Proceedings of the 690
learning to rank challenge, pages 1–24. PMLR. 691

Qi Chen, Xiubo Geng, Corby Rosset, Carolyn Burac- 692
taon, Jingwen Lu, Tao Shen, Kun Zhou, Chenyan 693
Xiong, Yeyun Gong, Paul Bennett, and 1 others. 2024. 694
Ms marco web search: A large-scale information- 695
rich web dataset with millions of real click labels. In 696
Companion Proceedings of the ACM Web Conference 697
2024, pages 292–301. 698

Domenico Dato, Claudio Lucchese, Franco Maria Nar- 699
dini, Salvatore Orlando, Raffaele Perego, Nicola 700
Tonellotto, and Rossano Venturini. 2016. Fast rank- 701
ing with additive ensembles of oblivious and non- 702
oblivious regression trees. ACM Transactions on 703
Information Systems (TOIS), 35(2):1–31. 704

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 705
Kristina Toutanova. 2019. Bert: Pre-training of deep 706
bidirectional transformers for language understand- 707
ing. In Proceedings of the 2019 conference of the 708
North American chapter of the association for com- 709
putational linguistics: human language technologies, 710
volume 1 (long and short papers), pages 4171–4186. 711

Jerome H Friedman. 2001. Greedy function approx- 712
imation: a gradient boosting machine. Annals of 713
statistics, pages 1189–1232. 714

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, 715
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron 716
Courville, and Yoshua Bengio. 2014. Generative 717
adversarial nets. Advances in neural information 718
processing systems, 27. 719

Yulong Gu, Zhuoye Ding, Shuaiqiang Wang, Lixin Zou, 720
Yiding Liu, and Dawei Yin. 2020. Deep multifaceted 721
transformers for multi-objective ranking in large- 722
scale e-commerce recommender systems. In Pro- 723
ceedings of the 29th ACM international conference 724
on information & knowledge management, pages 725
2493–2500. 726

Xizewen Han, Huangjie Zheng, and Mingyuan Zhou. 727
2022. Card: Classification and regression diffusion 728
models. Advances in Neural Information Processing 729
Systems, 35:18100–18115. 730

GM Harshvardhan, Mahendra Kumar Gourisaria, Man- 731
jusha Pandey, and Siddharth Swarup Rautaray. 2020. 732
A comprehensive survey and analysis of generative 733
models in machine learning. Computer Science Re- 734
view, 38:100285. 735

Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. De- 736
noising diffusion probabilistic models. Advances 737
in neural information processing systems, 33:6840– 738
6851. 739

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William 740
Chan, Mohammad Norouzi, and David J Fleet. 2022. 741
Video diffusion models. Advances in Neural Infor- 742
mation Processing Systems, 35:8633–8646. 743

9

Rolf Jagerman, Zhen Qin, Xuanhui Wang, Michael Ben-744
dersky, and Marc Najork. 2022. On optimizing top-k745
metrics for neural ranking models. In Proceedings746
of the 45th International ACM SIGIR Conference on747
Research and Development in Information Retrieval,748
pages 2303–2307.749

Zongcheng Ji and Bin Wang. 2013. Learning to rank for750
question routing in community question answering.751
In Proceedings of the 22nd ACM international con-752
ference on Information & Knowledge Management,753
pages 2363–2368.754

Jiarui Jin, Zexue He, Mengyue Yang, Weinan Zhang,755
Yong Yu, Jun Wang, and Julian McAuley. 2024. In-756
forank: Unbiased learning-to-rank via conditional757
mutual information minimization. In Proceedings of758
the ACM Web Conference 2024, pages 1350–1361.759

Alexandros Karatzoglou, Linas Baltrunas, and Yue Shi.760
2013. Learning to rank for recommender systems. In761
Proceedings of the 7th ACM Conference on Recom-762
mender Systems, pages 493–494.763

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang,764
Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu.765
2017. Lightgbm: A highly efficient gradient boost-766
ing decision tree. Advances in neural information767
processing systems, 30.768

Diederik P Kingma, Max Welling, and 1 others. 2013.769
Auto-encoding variational bayes.770

Jia Li, Lijie Hu, Jingfeng Zhang, Tianhang Zheng, Hua771
Zhang, and Di Wang. 2025. Fair text-to-image diffu-772
sion via fair mapping. In Proceedings of the AAAI773
Conference on Artificial Intelligence, volume 39,774
pages 26256–26264.775

Zihao Li, Aixin Sun, and Chenliang Li. 2023. Diffurec:776
A diffusion model for sequential recommendation.777
ACM Transactions on Information Systems, 42(3):1–778
28.779

Shiao Liu, Xingyu Zhou, Yuling Jiao, and Jian Huang.780
2021. Wasserstein generative learning of conditional781
distribution. arXiv preprint arXiv:2112.10039.782

Claudio Lucchese, Franco Maria Nardini, Salvatore Or-783
lando, Raffaele Perego, and Alberto Veneri. 2025.784
Explainable, effective, and efficient learning-to-rank785
models using ilmart. ACM Transactions on Informa-786
tion Systems.787

Dan Luo, Lixin Zou, Qingyao Ai, Zhiyu Chen, Chen-788
liang Li, Dawei Yin, and Brian D Davison. 2024. Un-789
biased learning-to-rank needs unconfounded propen-790
sity estimation. In Proceedings of the 47th Inter-791
national ACM SIGIR Conference on Research and792
Development in Information Retrieval, pages 1535–793
1545.794

Alexander Quinn Nichol and Prafulla Dhariwal. 2021.795
Improved denoising diffusion probabilistic models.796
In International conference on machine learning,797
pages 8162–8171. PMLR.798

Liang Pang, Jun Xu, Qingyao Ai, Yanyan Lan, Xueqi 799
Cheng, and Jirong Wen. 2020. Setrank: Learning a 800
permutation-invariant ranking model for information 801
retrieval. In Proceedings of the 43rd international 802
ACM SIGIR conference on research and development 803
in information retrieval, pages 499–508. 804

Przemysław Pobrotyn and Radosław Białobrzeski. 2021. 805
Neuralndcg: Direct optimisation of a ranking metric 806
via differentiable relaxation of sorting. arXiv preprint 807
arXiv:2102.07831. 808

Tao Qin and Tie-Yan Liu. 2013. Introducing letor 4.0 809
datasets. arXiv preprint arXiv:1306.2597. 810

Tao Qin, Tie-Yan Liu, and Hang Li. 2010. A general 811
approximation framework for direct optimization of 812
information retrieval measures. Information retrieval, 813
13:375–397. 814

Zhen Qin, Le Yan, Honglei Zhuang, Yi Tay, Rama Ku- 815
mar Pasumarthi, Xuanhui Wang, Michael Bendersky, 816
and Marc Najork. 2021. Are neural rankers still out- 817
performed by gradient boosted decision trees? In 818
International conference on learning representations. 819

Robin Rombach, Andreas Blattmann, Dominik Lorenz, 820
Patrick Esser, and Björn Ommer. 2022. High- 821
resolution image synthesis with latent diffusion mod- 822
els. In Proceedings of the IEEE/CVF conference 823
on computer vision and pattern recognition, pages 824
10684–10695. 825

Vikash Sehwag, Saeed Mahloujifar, Tinashe Handina, 826
Sihui Dai, Chong Xiang, Mung Chiang, and Pra- 827
teek Mittal. 2021. Robust learning meets generative 828
models: Can proxy distributions improve adversarial 829
robustness? arXiv preprint arXiv:2104.09425. 830

Jascha Sohl-Dickstein, Eric Weiss, Niru Mah- 831
eswaranathan, and Surya Ganguli. 2015. Deep un- 832
supervised learning using nonequilibrium thermo- 833
dynamics. In International conference on machine 834
learning, pages 2256–2265. pmlr. 835

Yang Song and Stefano Ermon. 2019. Generative mod- 836
eling by estimating gradients of the data distribution. 837
Advances in neural information processing systems, 838
32. 839

Yang Song and Stefano Ermon. 2020. Improved tech- 840
niques for training score-based generative models. 841
Advances in neural information processing systems, 842
33:12438–12448. 843

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 844
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 845
Kaiser, and Illia Polosukhin. 2017. Attention is all 846
you need. Advances in neural information processing 847
systems, 30. 848

Xuanhui Wang, Cheng Li, Nadav Golbandi, Michael 849
Bendersky, and Marc Najork. 2018. The lambdaloss 850
framework for ranking metric optimization. In Pro- 851
ceedings of the 27th ACM international conference 852
on information and knowledge management, pages 853
1313–1322. 854

10

Qiang Wu, Christopher JC Burges, Krysta M Svore,855
and Jianfeng Gao. 2010. Adapting boosting for in-856
formation retrieval measures. Information Retrieval,857
13:254–270.858

Shuo Yin and Guoqiang Zhong. 2024. Textgt: A double-859
view graph transformer on text for aspect-based sen-860
timent analysis. In Proceedings of the AAAI con-861
ference on artificial intelligence, volume 38, pages862
19404–19412.863

Ziqi Yuan, Wei Li, Hua Xu, and Wenmeng Yu. 2021.864
Transformer-based feature reconstruction network for865
robust multimodal sentiment analysis. In Proceed-866
ings of the 29th ACM international conference on867
multimedia, pages 4400–4407.868

Jiaqing Zhang, Mingxiang Cao, Xue Yang, Kai Jiang,869
and Yunsong Li. 2025. Diffclip: Few-shot language-870
driven multimodal classifier. In Proceedings of871
the AAAI Conference on Artificial Intelligence, vol-872
ume 39, pages 22443–22451.873

Xingyu Zhou, Yuling Jiao, Jin Liu, and Jian Huang.874
2023. A deep generative approach to conditional875
sampling. Journal of the American Statistical Asso-876
ciation, 118(543):1837–1848.877

A Hyperparameters878

DenoiseRank hyperparameters We set879

the hyperparameters of the model, including:880

dropout ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8},881

denoise net hiddenSize ∈ {64, 128, 256, 512} for882

linearLayer, denoise Layers ∈ {2, 4, 6, 8},883

transformer blocks ∈ {3, 4, 5, 6}, self-884

attention heads ∈ {1, 2, 4, 5, 8}. In the885

diffusion configuration, noise schedule886

∈ {TruncatedLinear, Linear, Cosine, Sqrt},887

max diffusion timesteps ∈888

{100, 200, 300, 400, 500, 600, 700, 800, 900, 1000}.889

We have experimented and tuned different datasets890

and the results can be found in Tables 4 , 5. We891

introduce the experiments result in the following892

paragraph and Appendix. B.893

DenoiseRank training settings First, we use894

the AdamW optimiser and set LearningRate895

∈ {0.1, 0.01, 0.001, 0.0001} and batchsize=128.896

Second, the training epoc is set to 200. For train-897

ing, we evaluate every 10 epochs on the test dataset898

using NDCG@10 as a benchmark. Store the opti-899

mal model and the results evaluated by the metrics.900

Finally, we run the model on a single NVIDIA901

GeForce RTX 3090. The performance with differ-902

ent learning rate is shown in Figure 3 and Table 3.903

We find that:904

1. A learning rate of 10−3 is optimal for train- 905

ing DenoiseRank on the MS Web30K dataset, 906

with 10−4 being the next best option. 907

2. For the Yahoo! and Istella datasets, 10−4 is 908

the better learning rate with which to train 909

DenoiseRank; 10−3 provides an approximate 910

result. 911

3. In most situations, learning rates of 10−1 and 912

10−2 result in poor performance, which sug- 913

gests that our DenoiseRank needs subtle opti- 914

misation. 915

Convergence DenoiseRank is a new LTR model 916

consider the task from generative perspective, com- 917

bine with Diffusion model, which need a lot of 918

timesteps in diffusion and reverse process. Thus 919

we investigate the convergence speed on training 920

process in experiments on the runtime enviroment 921

we mention above. We alse compare our model to 922

Rankformer, which has the similiar model architec- 923

ture. We use the best hyperparameter and design 924

choice of them and which can make a best ranking 925

performence. 926

As shown in Figure. 4, we summarize that: 927

1. On the MS Web30K datasets, both Denois- 928

eRank and Rankformer can converge after 50 929

epocs of training. 930

2. On the Yahoo! datasets, DenoiseRank con- 931

verge after 130 epocs, while rankformer is 932

more slow and coverage after 200 epoc. 933

3. We speculate it is because: first, documents 934

in Yahoo! have higher dimension of feature 935

(700 dimensions per document) than those in 936

MS Web30K (136 dimensions per document), 937

so model need more epoc to fit them; sec- 938

ond, our DenoiseRank address LTR task from 939

generative perspective and comine with Diffu- 940

sion model, it can fit high dimensional feature 941

more effective 942

B Ablation Study 943

We have done ablation studies on DenoiseRank, in- 944

cluding maximum diffusion timesteps, noise sched- 945

uler, the number of denoise network layers and 946

effectiveness of self-attentions; see Table [4,5,6, 947

7]. 948

11

Table 3: NDCG@K performance of DenoiseRank with different learning rates on Microsoft Web30K, Yahoo!, and
Istella datasets. Best performance per column in bold.

LR Web30K Yahoo! Istella

@1 @5 @10 @1 @5 @10 @1 @5 @10

0.1 47.32 48.27 50.42 39.17 49.34 57.84 5.70 7.38 9.87
0.01 46.48 46.15 47.89 41.31 51.24 59.34 43.39 43.80 48.89
0.001 51.87 52.52 54.60 69.51 72.18 76.65 68.42 68.20 74.85
0.0001 51.01 51.86 54.10 71.27 73.96 78.40 69.14 69.09 75.63

Figure 3: NDCG@K of DenoiseRank with different learning rates on Miscrosoft Web30k, Yahoo! and Istella
datasets.

B.1 Maximum Diffusion Timesteps949

In the diffusion process, the maximum diffusion950

timestep (T) refers to how many iterations are re-951

quired to change from the original sample to the952

Gaussian noise. The larger the maximum time step,953

the smaller the sample change per iteration, and954

conversely, the larger the sample change. The origi-955

nal DDPM uses a maximum time step of T = 1000956

(Ho et al., 2020)(Nichol and Dhariwal, 2021). As957

different maximum time steps can have an impact958

on the model performance (Li et al., 2023). We959

evaluate the model performance in the case of time960

step t = [1000, 800, 600, 400, 200] respectively.961

As shown in Figure. 5 and Table 4:962

1. The model performs better as the maximum963

time step increases, suggesting that slow noise964

addition is more beneficial for model learning.965

2. The model performance is more dependent on966

long time steps on the web30k dataset.967

3. The performance of the model is not always968

optimal for long time steps. The model per-969

forms optimally on the Istella dataset at T =970

600. This means that we can reduce the time971

step appropriately to speed up training and972

inference.973

B.2 Noise Scheduler 974

The noise scheduler is the way in which the αt 975

changes during diffusion, where αt :=
∏t

s=1αs, 976

see eq. 4. The rate of change of αt varies in dif- 977

ferent noise-adding schemes, e.g., truncated linear 978

has a large change before T
2 and a small change 979

after T
2 , whereas Cosine has a relatively balanced 980

change(Li et al., 2023). 981

In order to evaluate the performance of Denois- 982

eRank under different noise schedules, we try dif- 983

ferent choices, including Truncated Linear, Linear, 984

Cosine, Sqrt. The results (see Figure.6 and Table.5) 985

show that: 986

1. TruncatedLinear performs better than the 987

other schedules overall, but there is not a big 988

difference. 989

2. the performance of the different noise sched- 990

ules varies greatly on the web30k datasets, i.e. 991

TruncatedLinear > Sqrt > Linear > Cosine. 992

3. on the yahoo and istella datasets, there is not 993

much difference in the reliability of the rank- 994

ing, and on the istella dataset, sqrt even per- 995

forms slightly better than TruncatedLinear. 996

B.3 The Number of Denoise Network Layers 997

As shown in Figure. 1 on the right, the denoising 998

network of DenoiseRank is a feed-forward archi- 999

12

Figure 4: Curve of training loss of DenoiseRank(Left) and Rankformer(Right) on MS Web30K and Yahoo! datasets
among 300 epocs.

Table 4: NDCG@K performance with different diffusion timesteps on Microsoft Web30K, Yahoo!, and Istella
datasets. Best performance per column in bold.

Timesteps Web30K Yahoo! Istella

@1 @5 @10 @1 @5 @10 @1 @5 @10

1000 51.87 52.52 54.60 71.27 73.96 78.40 69.14 69.09 75.63
800 51.49 52.03 54.10 70.84 73.70 78.22 69.25 69.13 75.67
600 50.90 51.58 53.53 70.82 73.74 78.25 69.09 69.21 75.68
400 50.52 49.82 51.66 70.87 73.99 78.35 69.47 68.97 75.52
200 49.87 49.33 51.11 70.71 73.82 78.23 69.41 68.77 75.35

tecture. The input and output layers of the denois-1000

ing network are required, and the hidden layers in1001

between can be dynamically adjusted (Han et al.,1002

2022). Different hidden layers can affect the perfor-1003

mance of the model. To obtain the optimal model1004

structure, we investigate the effect of different lay-1005

ers of the denoising network. The number of layers1006

includes [2, 4, 6, 8], e.g. layer = 2 means that only1007

the input and output layers are included and there1008

is no hidden layer.1009

The results (see Figure.7 and Table.6) show that:1010

1. There is a significant difference between dif-1011

ferent layers on model performance.1012

2. On the web30k dataset, layers=2 performs1013

the best, followed by layers=4, and the per-1014

formance decreases instead as the layers in-1015

crease.1016

3. On the Yahoo dataset, the model performs sig-1017

nificantly better than 6 and 8 when the layers1018

are 2 and 4.1019

4. On the istella dataset, the number of layers has1020

no significant effect on model performance.1021

B.4 Self Attentions 1022

In recent studies on learning-to-rank (Pang et al., 1023

2020)(Qin et al., 2021)(Buyl et al., 2023), the self- 1024

attention mechanism has been shown to signifi- 1025

cantly improve ranking results. To evaluate the ef- 1026

fectiveness of self-attention (SA) in DenoiseRank, 1027

we conducted experiments with and without Trans- 1028

former, and the results (see Figure.8 and Table.7) 1029

show that SA significantly improves the model per- 1030

formance, especially on the MS Web30k and Istella 1031

datasets. 1032

C Diversity 1033

In inference stage, DenoiseRank randomly samples 1034

YT from Gaussian noise, causing uncertainty to 1035

result of the ranking. Different Gaussian noise 1036

labels YT may have a different ranking sequence. 1037

Compared to DenoiseRank, traditional LTR models 1038

may have been trained to rank certainly in various 1039

attempts given the same input document features. 1040

In real-world information retrieval, the diverse 1041

ranked list of items in different search sceneries 1042

can be meaningful. In some situations, e.g., shop- 1043

ping retrieval on the e-Commerce website, we want 1044

items with the same relevance scores to have a fair 1045

chance to rank higher. Unfortunately, previous LTR 1046

13

Figure 3: NDCG@K of DenoiseRank at different noise
schedule on Miscrosoft Web30k, Yahoo! and Istella
datasets.

Figure 4: NDCG@K of DenoiseRank at different noise
schedule on Miscrosoft Web30k, Yahoo! and Istella
datasets.

16

Figure 3: NDCG@K of DenoiseRank at different noise
schedule on Miscrosoft Web30k, Yahoo! and Istella
datasets.

Figure 4: NDCG@K of DenoiseRank at different noise
schedule on Miscrosoft Web30k, Yahoo! and Istella
datasets.

16

Figure 3: NDCG@K of DenoiseRank at different noise
schedule on Miscrosoft Web30k, Yahoo! and Istella
datasets.

Figure 4: NDCG@K of DenoiseRank at different noise
schedule on Miscrosoft Web30k, Yahoo! and Istella
datasets.

16

Figure 5: NDCG@K of DenoiseRank at different noise schedule on Miscrosoft Web30k, Yahoo! and Istella datasets.

Figure 4: NDCG@K of DenoiseRank at different noise
schedule on Miscrosoft Web30k, Yahoo! and Istella
datasets.

15

Figure 4: NDCG@K of DenoiseRank at different noise
schedule on Miscrosoft Web30k, Yahoo! and Istella
datasets.

15

Figure 4: NDCG@K of DenoiseRank at different noise
schedule on Miscrosoft Web30k, Yahoo! and Istella
datasets.

15

Figure 6: NDCG@K of DenoiseRank at different noise schedule on Miscrosoft Web30k, Yahoo! and Istella datasets.

Figure 5: NDCG@K of DenoiseRank at different denoise-net design on Miscrosoft Web30k, Yahoo! and Istella
datasets.

16

Figure 5: NDCG@K of DenoiseRank at different denoise-net design on Miscrosoft Web30k, Yahoo! and Istella
datasets.

16

Figure 5: NDCG@K of DenoiseRank at different denoise-net design on Miscrosoft Web30k, Yahoo! and Istella
datasets.

16

Figure 7: NDCG@K of DenoiseRank at different denoise-net design on Miscrosoft Web30k, Yahoo! and Istella
datasets.

Figure 8: NDCG@K of DenoiseRank without and with
self attention on Miscrosoft Web30k, Yahoo! and Istella
datasets.

models did not consider uncertainty for ranking and 1047

may not rank items diversely. 1048

In this study, we denote diversity in LTR task 1049

as: given a query Q and the corresponding docu- 1050

ments D, run inference by LTR model M times, 1051

the number of different ranking sequences is the 1052

diversity. For instance, ranking sequence of items 1053

[a, b, c, d, e, f] and [a, b, d, c, f, e] are inferenced at 1054

different times and causing diversity. 1055

In order to evaluate diversity of our DenoiseR- 1056

ank, we are the first time to introduce a new metric 1057

RSD (Ranking Sequence Diversity), formulated as: 1058

RSD@(K,M) =
N

M
, (24) 1059

where K denotes the top K corresponding docu- 1060

ments of the ranking results, N denotes the num- 1061

ber of different sequences of items in M times 1062

14

Table 5: NDCG@K performance with different noise schedulers on Microsoft Web30K, Yahoo!, and Istella datasets.
Best performance per column in bold.

Scheduler Web30K Yahoo! Istella

@1 @5 @10 @1 @5 @10 @1 @5 @10

TruncatedLinear 51.87 52.52 54.60 71.27 73.96 78.40 69.14 69.09 75.63
Linear 50.40 50.25 52.10 71.20 73.89 78.33 69.04 68.91 75.48
Cosine 46.83 46.16 48.04 71.31 73.91 78.36 68.59 68.38 74.89
Sqrt 50.40 50.15 52.08 71.58 74.00 78.39 68.97 68.93 75.40

Table 6: NDCG@K Performance with different denoise network depths on Microsoft Web30K, Yahoo!, and Istella
datasets. Best performance per column in bold.

Layers Web30K Yahoo! Istella

@1 @5 @10 @1 @5 @10 @1 @5 @10

2 51.87 52.52 54.60 71.37 74.06 78.42 69.00 69.10 75.69
4 51.45 52.08 54.03 71.37 74.06 78.42 69.54 69.14 75.65
6 50.45 51.36 53.32 69.03 72.09 76.51 69.41 69.01 75.65
8 50.08 51.73 53.82 69.73 72.13 76.58 69.46 69.17 75.80

Table 7: NDCG@K performance with/without self-attention on Microsoft Web30K, Yahoo!, and Istella datasets.
Best performance per column in bold. ↑ denotes significant improvements.

Self-Attention Web30K Yahoo! Istella

@1 @5 @10 @1 @5 @10 @1 @5 @10

Without 48.25 47.08 49.00 71.37 73.35 77.70 63.91 63.91 70.65
With 51.87↑ 52.52↑ 54.60↑ 71.37↑ 74.06↑ 78.42↑ 69.46↑ 69.17↑ 75.80↑

inferred and N ∈ [1,M]. In LTR task, we hope1063

that RSD@(K,M) increases, while NDCG@K1064

does not significantly decrease. There are various1065

metrics that are relevant to ranking diversity, includ-1066

ing Coverage, ERR@K, Precition− IA@K,1067

DIV ERSITY@K, α-NDCG@K etc. How-1068

ever, those metrics are quite different to our1069

RSD@(K,M) in at least the following aspects:1070

(1) RSD considers M times inference and M se-1071

quences of items, while traditional diversity met-1072

rics focus on single-ranking sequence of items. (2)1073

RSD focus on the diversity of the sequences, while1074

traditional diversity metrics consider the similarity1075

between items in a single sequence. For instance,1076

DIV ERSITY@K consider the similarity of pair-1077

wise documents among the top K documents in the1078

result sequence. The higher the metric, the more1079

dissimilar the pair.1080

We conducted experiments on MS Web30K1081

datasets to investigate the ranking sqeuence deiver-1082

sity of DenoiseRank and Rankformer which has1083

the similar architecture. We set K ∈ {1, 5, 10, 20}1084

and M = 10. Then, given a well-trained Denois-1085

eRank model and Rankformer model, we evaluate1086

them on the same test file of Web30K datasets. The1087

result of NDCG@K and RSD@(K,M) shown in1088

Table. 8, and we find that: 1089

1. Among 10 times inferences, the RSD is 0.11, 1090

0.16, 0.28, 0.64 in the top 1,5,10,20 posi- 1091

tions, respectively, showing the ability to rank 1092

sequence diversity of DenoiseRank and the 1093

Gaussian sampling for YT provides uncer- 1094

tainty to rank. 1095

2. Performance of NDCG@K remains excellent 1096

and even slightly increases after repeat infer- 1097

ence, which means that our DenoiseRank can 1098

produce diverse ranked lists while guarantees 1099

reliability of ranking result. 1100

3. Rankformer did not present the ability to rank 1101

in different order, the RSD is 0.1 regardless 1102

of the K poisition. It proved our extrapolate 1103

that traditional LTR models do not inject un- 1104

certainty which results in a static ranking se- 1105

quence. 1106

According to the above analysis, our DenoiseR- 1107

ank can be applied to areas requiring diverse rank- 1108

ing sequences of items. Our novel metric, RSD, 1109

can also be used to evaluate the ranking diversity 1110

ability of models in other areas. 1111

15

Table 8: NDCG@K and RSD@(K,M) performance of DenoiseRank and Rankformer on Microsoft Web30K
datasets.

Model M RSD@(K,M) NDCG@K

1 5 10 20 1 5 10 20

Rankformer 1 – – – – 49.62 49.30 51.42 54.29
10 0.1 0.1 0.1 0.1 49.62 49.30 51.42 54.29

DenoiseRank 1 – – – – 51.48 52.46 54.47 57.49
10 0.11 0.16 0.28 0.64 51.73 52.52 54.47 57.45

D Loss Functions1112

DenoiseRank employs MSE as the loss function1113

in order to predict Y0 at every timestep, see Eq.13.1114

MSE is also the original loss in DDPMs. Defining1115

suitable ranking losses is an important branch of1116

LTR studies, and there are many versions of loss1117

functions that significantly improve the effective-1118

ness of models. To align with this, we evaluate the1119

performance of DenoiseRank with different losses1120

for ranking. Thus, in this study, we try to find an1121

optimal loss function for DenoiseRank on different1122

datasets.1123

We consider the following loss functions:1124

1. RMSE: a typical point-wise loss:1125

LRMSE(Y, Ŷ) =
√

1
n

∑n
i=1(Yi − Ŷi)2.1126

2. RankNet(Burges et al., 2005): a clas-1127

sic pair-wise loss: LRankNet(Y, Ŷ) =1128 ∑
Yi>Yj

loge(1 + eŶj−Ŷi).1129

3. NDCGLoss2++(Wang et al., 2018): a NDCG1130

metric-driven loss functions based on the1131

lambdaLoss probabilistic framework:1132

1133

LNDCGLoss2++(Y, Ŷ) = −
∑
Yi>Yj

log21134

∑
π

(
1

1 + e−σ(Ŷi−Ŷj)
)(ρij+µδij)|Gi−Gj |H(π|Ŷ) ,1135

where Gi =
2yi−1

maxDCG , ρij = | 1
Di −

1
Dj

|, δij =1136

| 1
D|i−j|

− 1
D|i−j|+1 |, Di = log2(1 + i), and1137

H(π|Ŷ) is a hard assignment distribution of1138

permutations.1139

4. ApproxNDCG(Qin et al., 2010)(Bruch1140

et al., 2019): a loss that designed to1141

be approximation of NDCG metrics,1142

LApproxNDCG(Y, Ŷ) = 1
Z

∑n
i=1

G(Yi)
log2(1+π(i)) ,1143

where Z = −DCG(π∗, Y), G(Yi) = 2Yi − 11144

and π(i) = 1
2 +

∑
j sigmoid(

Ŷj−Ŷi

T), T is a 1145

smooth parameter. 1146

5. ListNet(Cao et al., 2007): a clas- 1147

sic list-wise loss: LListNet(Y, Ŷ) = 1148

−
∑n

i=1 Yi loge
eŶi∑
j e

Ŷj
. 1149

6. MSE (Ho et al., 2020)(Nichol and Dhari- 1150

wal, 2021): a loss function use in DDPMs 1151

to predict x0 or ϵ, here we formulate it as 1152

LMSE(Y, Ŷ) = E[|| Y − Ŷ ||2] 1153

We report the results based on the best 1154

NDCG@10 for different losses. For different loss 1155

functions, we use AdamW optimizer and scan 1156

learning rate ∈ 0.01, 0.001, 0.0001. We try to find 1157

the best performance of every loss and report the 1158

results based on the NDCG@10. The results are 1159

shown in Table. 9, we find that: 1160

1. DenoiseRank, when trained with MSE, RMSE 1161

and ListNet, achieves first-tier performance 1162

and is far superior to the rest. 1163

2. Though ApproxNDCG improves the perfor- 1164

mance of neural LTR models in the original 1165

papers, it does not seem to work well on De- 1166

noisRank, which is implemented from a gen- 1167

erative perspective. 1168

3. DenoiseRank, when trained with ListNet, per- 1169

forms the best on the Web30K dataset. How- 1170

ever, for the Yahoo! and Istella datasets, train- 1171

ing with MSE loss is the best choice. 1172

E Other Metrics 1173

In order to evaluate our denoiseRank fully, we use 1174

another 4 types of ranking metrics, including Ex- 1175

pected Reciprocal Rank (ERR), Mean Average Pre- 1176

cision (MAP), Mean Reciprocal Rank(MRR) and 1177

Precision. We reported results at ranks 1,3,5,10,20 1178

and the total rank (denoted as “ALL”). The results 1179

are shown in Table. 10, and the results further con- 1180

firm the effectiveness of our models. 1181

16

Table 9: NDCG@K performance of DenoiseRank with different loss functions on Microsoft Web30K, Yahoo!, and
Istella datasets. Best performance per column in bold.

Loss Web30K Yahoo! Istella

@1 @5 @10 @1 @5 @10 @1 @5 @10

RMSE 50.48 51.41 53.43 70.64 73.30 77.84 69.26 69.32 75.80
RankNet 43.66 45.84 48.56 56.65 66.96 73.18 51.11 57.25 65.83
NDCGLoss2++ 43.01 47.68 50.57 66.48 72.18 76.98 56.00 59.96 67.55
ApproxNDCG 24.46 29.21 33.72 60.24 64.67 70.64 33.01 42.21 52.48
ListNet 51.87 52.52 54.60 70.81 73.82 78.35 68.75 69.05 75.58
MSE 51.20 51.73 53.77 71.37 74.06 78.42 69.46 69.17 75.80

Table 10: ERR, MRR, MAP and precision of DenoiseRank on Microsoft Web30K, Yahoo!, and Istella datasets.

Metric K Dataset Metric K Dataset

Web30K Yahoo! Istella Web30K Yahoo! Istella

ERR

1 26.53 34.41 61.53

MAP

1 78.07 87.13 94.64
5 36.77 43.90 73.79 5 81.55 89.16 95.19
10 38.55 45.34 74.34 10 78.76 87.91 93.14
20 39.28 45.72 74.40 20 74.89 86.72 90.27
ALL 39.57 45.78 74.40 ALL 63.91 85.75 88.36

MRR

1 78.07 87.13 94.64

Precision

1 78.07 87.13 94.64
5 84.36 90.56 96.77 5 72.86 83.59 89.38
10 84.64 90.69 96.79 10 69.25 81.25 80.44
20 84.73 90.70 96.79 20 64.17 78.81 55.41
ALL 84.75 90.71 96.79 ALL 44.97 75.30 12.81

17

	Introduction
	Definition of the LTR Task
	Denoise Ranking Model
	Overview of Our DenoiseRank
	The DenoiseRank Model
	Denoise Neural Network in DenoiseRank
	Diffusion and Training
	Reverse and Inferencing
	Discussions

	Experiments
	Research Questions
	Datasets and Metric
	Comparison Models
	Comparison Result
	Design Choice and Hyperparameters
	Diversity of Ranking Results

	Related Work
	Conclusion
	Limitations
	Hyperparameters
	Ablation Study
	Maximum Diffusion Timesteps
	Noise Scheduler
	The Number of Denoise Network Layers
	Self Attentions

	Diversity
	Loss Functions
	Other Metrics

