DenoiseRank: Learning to Rank by Diffusion Models

Anonymous ACL submission

Abstract

Learning to rank (LTR) is one of the core tasks
in NLP by supervised algorithmic techniques
trained on a dataset with queries and their cor-
responding labeled relevant items. LTR mod-
els have made great progress, but all of them
implement the algorithms from discriminative
perspective. In this paper, we aim at address-
ing LTR from a novel perspective, i.e., by a
deep generative model. Specifically, we pro-
pose a novel denoise rank model, DenoiseRank,
which is a denoising diffusion-based model, for
the LTR task. Our DenoiseRank noises the rele-
vant labels in the diffusion process and denoises
them on the query documents in the reverse pro-
cess to accurately predict their distribution. Our
model is the first to address LTR from genera-
tive perspective and is a diffusion method for
LTR. Extensive experiments were conducted
on benchmark datasets and the results demon-
strated the effectiveness of the proposed De-
noiseRank model. DenoiseRank provides a
benchmark for generative LTR task.

1 Introduction

Learning to Rank (LTR) is one of the core tasks
in NLP addressed by supervised machine learning
techniques that are used to automatically construct
ranking models. Its primary goal is to order items
(documents, products, answers, etc.) in response
to an input query so that the most relevant ones
appear higher in a ranked list of results. LTR has
been commonly used in a wide spectrum of NLP
applications (Song and Ermon, 2019), e.g., rec-
ommender systems (Karatzoglou et al., 2013) and
question-answering (Agarwal et al., 2012; Ji and
Wang, 2013). A large number of LTR algorithms
have been proposed and can be classified into two
types, tree-based models (Lucchese et al., 2025;
Chen et al., 2024; Ke et al., 2017; Burges et al.,
2005) and neural-based LTR models (Gu et al.,
2020; Pang et al., 2020; Argouarc’h et al., 2024;
Jin et al., 2024; Jagerman et al., 2022; Cao et al.,

2007). Among these models, those applying self-
attention mechanism (Vaswani et al., 2017; Devlin
et al., 2019) have typically achieved better perfor-
mance, as demonstrated by SetRank (Pang et al.,
2020) and DASALC (Qin et al., 2021).

Previous LTR models mainly adopt a discrim-
inative approach to LTR (Gu et al., 2020; Pang
et al., 2020; Chen et al., 2024; Ke et al., 2017; Ar-
gouarc’h et al., 2024; Qin et al., 2021), with no
work considering it from a generative perspective.
However, a large number of generative models have
demonstrated their superior over both traditional
and discriminative models for many NLP tasks
such as machine translation (Vaswani et al., 2017),
text classification (Devlin et al., 2019) and senti-
ment analysis (Yin and Zhong, 2024; Yuan et al.,
2021). Of special interest to us, accordingly, is to
explore whether generative models are capable of
further enhancing the performance of LTR.

Generative models use the joint probability dis-
tribution P(Y, X) (Harshvardhan et al., 2020) to
model the data space. This makes them better to
capture complex data distributions and more ro-
bust for classification and regression tasks (Sehwag
et al., 2021). In this paper, we aim to estimate
the full distribution of corresponding labels Y, i.e.,
P(Y|D), given a ranked list of documents D in
response to an input query, from the perspective of
a generative model. Denoising diffusion probabilis-
tic models (DDPMs) (Ho et al., 2020; Nichol and
Dhariwal, 2021) as one class of the most effective
generative models have demonstrated significant
potential in images and videos generation (Li et al.,
2025; Rombach et al., 2022; Ho et al., 2022) in re-
cent years. Due to their advantages of distribution
generation, diversity representations, and training
stability, we aim at investigating whether DDPMs
can accurately recover the corresponding labels Y
for documents D in response to a given query.

Specifically, we propose a novel denoising rank-

ing model, DenoiseRank ! to address the LTR task.
Our DenoiseRank is a DDPM (Sec.3) model and
consists of three main components: diffusion pro-
cess, reverse process and denoise neural network.
In our proposed DenoiseRank, we first gradually
inject Gaussian noise into the input corresponding
labels Y within a number of timesteps, (based on
the Markov process (Sohl-Dickstein et al., 2015)),
and consequently Y becomes an isotropic Gaus-
sian distribution. Then, noised labels are fed into
the denoise neural network which will output de-
noised labels. We repeat this process on datasets
and optimize the model with a special loss func-
tion, in order to learn the conditional probability
distribution P(Y'|D). Note that the Denoise neural
network mainly consists of a custom feedforward
network and a Transformer-Encoder network. Fi-
nally, during the reverse process, the labels Y are
randomly sampled from Gaussian noise and fed
into the well-trained Denoise neural network. Af-
ter enough iterations, accurate labels are obtained.
We demonstrate the effectiveness of the proposed
DenoiseRank through extensive experimentation
(Sec. 4) on the popular LTR dataset (Qin and Liu,
2013; Chapelle and Chang, 2011; Dato et al., 2016)
and analyse its characteristics in ablation studies
(Appendix. B). Experimental results show that De-
noiseRank either outperforms or performs equiva-
lently to recent LTR models (Pang et al., 2020; Qin
et al., 2021). Our DenoiseRank can be utilised as
a benchmark for future neural ranking models and
can be extended to other sequence prediction tasks,
such as “Multi-Objective Ranking (MOR) learning”
(Gu et al., 2020).

The main contributions of this paper are as fol-

lows:

1. We study the problem of LTR from a gen-
erative perspective and introduce a diffusion
model solution for the first time.

2. We propose a novel DenoiseRank model for
LTR, which can be used as a benchmark for
future generative neural ranking models.

3. Extensive experiments were conducted on
benchmark datasets to demonstrate the effec-
tiveness of DenoiseRank, and optimal perfor-
mance was achieved against most metrics.

4. We introduce a new metric, RSDQ(K, M),
to evaluate the ability of the model to produce
diverse ranked lists. Our DenoiseRank has

'The source code of our model DenoiseRank is publicly
downloadable from: https://github.com/yingwang93/
DenoiseRank.

been proven to rank documents diversely.

2 Definition of the LTR Task

We denote a training dataset as query set) =
{@}F, and their corresponding document and la-
bel set {(D,Y]) | @1}, where D; is a document
list that contains n documents D, ; to be sorted,
i € [1,n], Dy; € R¥, and k is the dimensions of
the feature (Documents are represented and stored
by embeddings/features). Y; is the label list for the
corresponding documents list D;, with Y;; > 0
indicating the document D ; being relevant to the
query and Y7 ; = 0 otherwise. L denotes the total
number of queries contained in the dataset.

The goal of LTR is to train a ranking function
f(@Q, D), which can be used to accurately predict
the relevance score of documents. We approxi-
mate the ranking function by training a model opti-
mized by the loss £(f; @), D). Different models for
LTR have different loss formulations, which can
be categorized into point-wise (Friedman, 2001),
pair-wise (Burges, 2010), and list-wise (Cao et al.,
2007) ones. Our DenoiseRank can be a point-wise,
pair-wise or even list-wise model dependent on
the loss equipped in the model. We make com-
parisons among the performance of DenoiseRank
with point-wise, pair-wise and list-wise losses in
the experiments; see Appendix. D.

3 Denoise Ranking Model

In this section, we first provide an overview of our
proposed DenoiseRank model. We then detail our
DenoiseRank model, including the diffusion pro-
cess, the inverse process and the Denoise neural
network. Finally we provide the training and in-
ference algorithm and discuss the advance of our
model compare to the others.

3.1 Overview of Our DenoiseRank

The overview of our proposed DenoiseRank is pro-
vided in Figure 1. As shown in the figure, our
DenoiseRank is built based on DDPM and consists
of three components: Diffusion Process, reverse
process and denoise neural network. It first takes
documents D in response to a given query and cor-
responding labels Y as input, then the Gaussian
noise are injected into the labels through diffusion
process. Next, noised labels and documents are fed
into the denoise neural network to train and opti-
mize them. Finally, in the reverse process, labels
from randomly sampling and the corresponding

https://github.com/yingwang93/DenoiseRank
https://github.com/yingwang93/DenoiseRank

Diffusion Process
Relevance Labels a(iYo) aYr|Yr_1) GussaDrtten
| =11 [1]]] e =
Y Yo Y Yr 2
g
Reverse Process a
Predict Labels Yo Y, Yr %
nn =11 L || B i 5
Y q(Yo[Yo, Y1) a(Yr-1|Yo, Yr)
D)’;,I lY: »‘;] IY,
el Denoise Neural Network pg(D, Yz,)

Query Documents

L}
FeedForward Layer - Softplus - Dropout l l l
i 1
: Denoise Network
FeedForward Layer - Softplus - Dropout
t t t 1t t
ol ol [call o cat
[al aLal f1 &l
L | |
FeedForward Layer - Softplus - Dropout
t Transformer
Tttt -t
@® Hadamard Product Feature Transform
Tt *+ t 1t 1
Cat Label y concat Doc Features
an @ @ e E

Query Documents)

Figure 1: Left is an illustration of the diffusion process and reverse process in DenoiseRank. Right is the architecture
of denoise network in DenoiseRank. FeedForward Layer is linear layer, softplus is activation, and dropout is dropout
layer. Feature transform is applied when document feature input into transformer block.

documents are fed into the well-trained denoise
neural network to predict the ground-truth labels
step by step. Note that the Denoise Neural Net-
work in DenoiseRank is implemented by a custom
feedforward network and a Transformer-Encoder
network, see Figure 1 on the right.

3.2 The DenoiseRank Model

As shown in Figure 1, given are a list of docu-
ments D = dj,ds,...dn in response to a query,
and the corresponding list of feedback labels Y,
Y = y1,v2,...yn. We hope that given D, denois-
eRank will be able to predict the list of relevance
labels Y correctly through the reverse diffusion
process. Our model is trained to approximate the
distribution p(Y'| D). Our goal of training can be
formulated as py(Yo|D) := [pe(Yo.r|D)dY1.1.
where Yj is the input labels Y noised at timestep
0, Yo, ..., Y7 is noising data sampled from Yy ~
q(Y0). po(Yo.7| D) is the reverse diffusion process
that we aim to learn the Gaussian transition from a
Markov chain, the joint distribution formulated as
follows:

T
(YOT|D —p YT H Y;t 1|Y;57) (L

po(Ye1Ys, D) := N(Yia; o (Yi, £, D), 59 (Y2, 1, D)) -
2

For the forward process, we fixed the approximate

posterior ¢(Y1.7|Yp, D) to a Markov chain that

gradually adds Gaussian noise into the labels:

q(Yir|Yo) : Hq Y|Yia) (©)
q(YiYio1) =N (Vi /1= BiYion, BT), (4

where (1, ..., Br is scheduled to control the pro-
cess of noising data. Let oy := 1 — ; and
o = HZ:1048’ then the posterior can be formu-
lated as:

a(Ye | Yo) = N (Ye; VaiYo, (1 —an)l) . ®)

Applying Bayesian theory, the prior probability
can be formulated as:

q(Yio1 | Y2, Yo) = N(Yie1; i(Ye, Vo), Bel), (6

where f; and ji(Y;,Yy) are, respectively, as fol-
lows:

fom g, @
—Oé
(Y Vo) = YO Py YLD)y g
— O 1—0&,5

We then train the model to optimize the variational
lower bound (VLB) on negative log likelihood:

PG Y;ﬁ 1|Y't7)jl
q(Yi|Yio1) ©)

]mebngﬂDﬂ

—) log

L =E, |—log p(Yr)
t>1
po(Yo:r|D)

=E, |[—1lo
q[g«nm@

Thus we can optimize the £ with stochastic gra-
dient descent during training. Further more, the
VLB above can be rewritten as follows:

L =Eq,| Dxe(¢(Y7|Y0) || p(Yr))
Lt
+ZDKL (Yi-11Y2) || po(Ye-1|Y2,)>

10)

t>1
Lt

—logpe(Yo[Y1)
—— —

Lo

While L1 does depend on 6, it will become zero
when data being carefully noised enough and can
be ignored when optimizing; £y use to evaluate
the reconstruct quality, but need complex calculate;
L; calculated by the KL-diveergence between pos-
terior and model prediction.Following (Ho et al.,
2020), we can simplely rewrite the £ and replace
by a mean-squared error (MSE) loss as follows:

L=Eiy, [l €—eo(D, Y, t) [], (1D

where € and €y(D, Y}, t) are noise injected to Y
and nosie predicted from denoise neural network of
DenoiseRank, respectively. According to (Nichol
and Dhariwal, 2021), we can further predict Yj via:

1
(Yt B E) .
\/ Ot 1-— Q¢
Thus, the model can be trained to directly predict
Yo and the loss reformulated as:

Yy =

(12)

L =Eryoplll Yo —po(D. Y2,0) |I7], (13)
where py(+) is the denoising model we aim to train.
That means we can also predict Yy by the other
losses of LTR. In this paper, we do ablation experi-
ments on popular LTR losses to investigate the best
performance of our models; see Appendix D.

3.3 Denoise Neural Network in DenoiseRank

As shown in Figure 1, Our model contains two
components, the Self Attention Network and the
Denoise Network. In recent years, neural LTR mod-
els employ self-attention mechanism and achieve
significant performance advances. Since the self-
attention mechanism can model the query docu-
ments context-aware, we make it as a part of our
models. We choose transformer encoder as the
basic network, formulated as follows:

H = E(d;,dz2,,dn), (14)

where dj,d2,, d, are embeddings of all docu-
ments in response to a single query, H are context-
wise features of documents calculated by the trans-
former encoder E(-). We use a standard trans-
former encoder architecture, where input document
features are computed with advanced self-attention
(Vaswani et al., 2017), followed by feed-forward
networks and activation functions, and finally layer
normalisation and dropout. In order to increase the
model capacity and get the optimal performance,
we try multi-head attention and multi-blocks ar-
chitecture in training, heads € {1,2,4,8} and
blocks € {3,4,5,6}. Unlike the CV diffusion
model, the denoising network is a feed-forward
network instead of a U-net, formulated as:

Yo = FFN(H, Y3, 1), (15)

where t is the time step, Y; is a corresponding
noised label at t. FFN(-) is a feedforward net-
work with a multi-tiered architecture (Han et al.,
2022). As shown in Figure 1 on the right, firstly,

we input Y; ; and H;) into the first layer of the net-
work after concatenating them to obtain the output
h(® = layer(H;, Y; i), where H; denotes the ith
document feature vector and Y; ; denotes the cor-
responding ith label. In each denoising layer, it
goes through a linear layer, an activation function
and a dropout layer respectively, then we do the
embedding calculation to get t.,, for timestep ¢.
Finally, h® is multiplied by t¢,, to get the current
output. In our experiments, we try multiple de-
noise layer architectures with the number of layers
n € {2,4,6,8}. The first layer formulated as:

hY = Dropout(osp(Linear(H;, ;1)) , (16)

m(l) = h(l) © temb7 (17)

middle layer formulated as:

h'”) = Dropout(osp (Linear(m~ 1)), (18)
m<]> = h<]> ® temb) (19)

where j denotes the j-th denoise layer of FFN(-),
J € (1,n). The output layer is formulated as:

h(™ = Dropout(Usp(Linear(mmA))))) 20)

where oy, is the softplus activation function,
m~1) is the output of the previous layer. The
dimension of the last layer h(™ is 5, each dimen-
sion corresponds to the weight of the relevance
label, and the final weighted sum computes the pre-
dicted label Yy, where Y € [0, 4] and is denoted

as: X
Yo =h™ ©(0,1,2,3,4). @1

3.4 Diffusion and Training

In the diffusion process, the main task is to add
noise to the labels. Specifically, given time steps ¢
and a noise scheduler (3, the noised labels Y; are ob-
tained. Our goal is to train an approximate model
pp(+) that is able to predict the true labels yo from
the noisy labels y; at ¢ timesteps. We experimented
with a variety of noise schedulers, see Appendix
B.2. We set the maximum time step T to 1000,
and the ablation experiments are referenced in Ap-
pendix B.1.

Training. We perform hundreds of epocs of train-
ing for DenoiseRank as follows. First, the timestep
t is randomly sampled for each query list. Based
on the time step ¢ and the noise scheduler 3, label
vector Yy will gradually become Gaussian noise
Yr at T' (Eq.5). Second, Y; and document list D
are fed into the model py(-), which will output the

Algorithm 1: Training

Algorithm 2: Inference

: Docs: D = {di1,da,...,dn}
Truth labels: Yo = {y1,...,Yn}
Timesteps: ¢ € [0, T
Noise schedule: 3
Base model: py(-)
Training epochs: K

Output : Well-trained Model: pg(-)

for epoch < 1 to K do

Y: + q(Yi[Yo)

Yo « po(D, Yz, 1)

Input

// Eq.(22)
// Prediction

L(Yo, Yo) // Compute loss
0+ 0—nVoLl // Update
end
return pg

denoised labels Y. Finally, the loss function is
calculated and the model parameters are adjusted.
The above process is repeated until the target epoc
and the model converge; see Algorithm 1. Our
goal is to make Yo accurately equal to Y through
extensive training. Training process can be briefly
formulated as:

Vi = q(Y|Yo), Yo = po(D, Yy, 1) . (22)

3.5 Reverse and Inferencing

The main task in the reverse process is labels de-
noising. Starting from a given noisy label Y; and
time step ¢, denoising yields the next time step la-
bels Y;_1. The goal of inference is to obtain the
predicted labels Y that can correctly rank the query
document D. We need to predict Yy at each step
and then compute Y;_1, see Eq.2,12.

Inference. First, the noised labels Y; is sampled
from the Gaussian distribution N(0, I) in the max
timestep 7". Then, Y; and the document list D are
fed into the model Py and the denoised labels }}0
are output. According to equation 2,12, we can
approximate Y;_; from Y; and Yo. Finally, repeat
the above denoising process until £ = 0, and obtain
o, the predicted relevance labels, see Algorithm 2.
Inferencing process can be brief formulated as:

YO :pg(DaY;fyt)v Yt—l <~ q(m—l‘ifovn) . (23)

3.6 Discussions

Our DenoiseRank differs from previous diffusion
based generative models in at least the following as-
pects: (1) Our model is the first one to address LTR
task by generative diffusion model to accurately

: Docs: D = {di,d2,...,dn}
Noised labels: ¥; ~ A(0,1)
Max Diffusion steps: 1'

Noise schedule: 5,
Trained model: po(-)
QOutput : Denoised labels: Yo
fort < T 1do
Yy = po(D,Y:,t) // Prediction
q(Ye-1[Yo,Yi) — Yio1 // Eq.(23)
end

Input

return Yy

rank by fitting the conditional distribution P(Y|D).
(2) Previous diffusion models use the U-net as the
denoise network (especially in CV areas (Rombach
et al., 2022; Ho et al., 2022)), but we use a novel
network consists of feedforward network and trans-
former. (3) Compare to the diffusion models in se-
quence recommendation(Li et al., 2023), we utilise
the transformer to calculate context-wise features
and denoise labels by the feedforward network.

4 Experiments

4.1 Research Questions

The remainder of this paper is guided by the follow-
ing research questions: (1) Does our DenoiseRank
outperform state-of-the-art LTR models? (2) How
do the hyperparameters and each design choice of
the DenoiseRank affect its performance? (3) What
about the diversity of the rank result of DenoiseR-
ank compared to other LTR models ?

4.2 Datasets and Metric

Datasets. Experiments were conducted on three
famous datasets for LTR, including the Microsoft
Web30k (Qin and Liu, 2013), Yahoo! LETOR
(Chapelle and Chang, 2011), and Istella LETOR
(Dato et al., 2016). The queries and documents
in these datasets were obtained from real search
engines. Each dataset contains a large number of
query-documents. In addition, labels are repre-
sented on a 5-level scale from O to 4 (the most
relevant). Each document is represented by mul-
tidimensional features such as BM25 score of the
page section. We use pre-partitioned train/test data
from each dataset for training and testing.

Metrics. Normalised Discounted Cumulative
Gain (NDCQG) is used to evaluate all models’ per-
formance. We report the values of the metric at
positions 1, 5, and 10, i.e., NDCG@1, NDCG@5,
and NDCG@10. It is worth noting that we use

NDCG@10 as the evaluation criterion to select
the best model. Experimental results against other
metrics are shown in Appendix E.

4.3 Comparison Models

We evaluate DenoiseRank against the advanced and
recent baselines; see Table 1. There are two cate-
gories of baselines, tree-based and neural-based.

Tree-based. MARTgpMm (Ke et al., 2017) is one
of the LambdaMART (Wu et al., 2010) implemen-
tations provided by Microsoft and is one of the best
tree-based methods. MARTRk1ib 1S part of the
RankLib library and is another implementation of
LambdaMART (Wu et al., 2010).

Neural-based. DLCM (Ai et al., 2018) employs
the RNN network to capture the local ranking con-
text and is trained with an attention-based loss func-
tion, which makes it more effective. SetRank,
(Pang et al., 2020) is an improved version of Se-
tRank, where documents are reranked before they
are entered. NeuraNDCG (Pobrotyn and Biato-
brzeski, 2021) is a neural LTR model that addresses
the mismatch between optimisation objective and
evaluation criterion of traditional model by a novel
loss function. DASALC (Qin et al., 2021) is a
baseline provided by Google, which is based on
the self-attention and multiple optimisation com-
ponents to outperform even the tree-based models.
Rankformer (Buyl et al., 2023) is one of the recent
baselines, which uses list-wise labels to capture
contextual information and also uses an novel im-
plicit feedback component. However, implicit feed-
back component of Rankformer is not enabled in
the experiments as it is not part of our study.

We report evaluation results for MART g,
MARTRankib, DLCM, and Rankformer in the
same runtime environment as DenoiseRank. The re-
sults for NeuraNDCG, SetRank,. and DASALC
are those reported in their original papers. The De-
noiseRank model parameters and training setups
are presented in Appendix A.

4.4 Comparison Result

The results are shown in Table 1, and we conclude
that 1) DenoiseRank achieves better or compet-
itive performance compared to other discrimina-
tive models, especially on the Web30k and Ya-
hoo datasets, which proves the effectiveness of
our models. 2) Compared to advanced tree-based
models, DenoiseRank consistently leads in per-
formance on the Web30k dataset; on the Yahoo

dataset, NDCG @10 performs better, and @1 and
@5 are closely. 3) DenoiseRank achieves an over-
all lead over advanced neural LTR baselines. 4)
DenoiseRank performs better on the Web30k and
Yahoo datasets, and @10 achieves a lead on the Is-
tella dataset compared to other neural LTR models.

4.5 Design Choice and Hyperparameters

We carry out ablation studies on DenoiseRank and
investigate the best design choice of it on different
datasets. The configurations of DenoiseRank are
in Table 2. We further introduce hyperparameters
and design choice in Appendix. A and B.

Noise schedule. Noise schedule is the dynamic
parameter & which controls the noise ratio each
step during diffusion. We choose 4 types of sched-
ule to evaluate our DenoiseRank, including Linear,
TruncatedLinear, Sqrt and Cosine. As shown in
Figure 6 and Table 5, we summarize that: (1) Dif-
ference schedule affect the performance of our De-
noiseRank (2) TruncatedLinear is the better choice
because it results in more reliable performance.
More introduction is found in Appendix B.2.

Max diffusion timesteps. Diffusion timesteps
T control the speed of noising corresponding la-
bels, noise becomes more subtle as max timestep
increases. We choose 5 max timesteps, including
1,000, 800, 600, 400 and 200. The result shown
in Figure 5 and Table 4 denotes that: (1) The per-
formance is benefitial from carefully nosing after
increasing the max diffusion timesteps (2) Train-
ing on different datasets need different diffusion
timesteps, for example, the best choice is T=600 on
istella datasets. Appendix B.1 shows the detailed
discussion.

The number of denoise network layers. De-
noise network is an important part of our model to
predict ground-truth labels, and its layer count may
affect the ranking result of DenoiseRank. Thus we
choose 4 types of layers to investigate it, and results
are shown in Figure 7 and Table 6 denotes that: (1)
The number of Layers significantly affects the per-
formance of DenoiseRank (2) the best choice is 2,
4, 4 on Web30K, Yahoo!, Istella datasets respec-
tively. (See Appendix B.3)

Self attentions. The performance of DenoiseR-
ank is significantly improved as Transformer be-
comes a part of our model, as shown in Table 7 and
Figure 8. The self-attention mechanism makes it

Table 1: NDCG@K performance comparison on benchmark datasets. Best performance is bolded. * and T denote
statistically significant improvements over the best tree-based and neural models respectively. Last row is relative

difference of DenoiseRank over the best comparison models.

Microsoft Web30K Yahoo! Istella

Method

@1 @5 @10 @1 @5 @10 @1 @5 @10
MARTRL 4535 44.59 46.46 68.52 70.27 74.58 65.71 61.18 65.91
MARTGEM 50.73 49.67 51.46 71.90 74.20 78.01 74.95 71.20 76.05
DLCM 46.31 45.01 46.90 67.71 69.91 74.29 65.57 61.95 66.80
SetRank,¢ 45.91 45.15 46.96 68.22 70.29 74.53 67.60 63.45 68.34
NeuralNDCG - 51.45 53.49 - 66.02 71.02 - - -
DASALC 50.95 50.92 52.88 70.98 73.76 77.66 7277 70.06 75.30
Rankformer 49.61 4923 51.27 70.18 73.02 77.58 68.11 68.20 75.03
DenoiseRank 51.87*T 52.52*T 54.60*" 71377 74.067 78.42*"7 70.00 6930 75.82F
Relative Diff ~ (+1.8%) (+2.1%) (+2.1%) (-0.7%) (-1.6%) (+0.5%) (-7.1%) (-2.7%) (-1.4%)

Note: MARTR1, and MART ¢gm denotes Ranklib and GBM version of the LambdaMART respectively.

Table 2: Recommended configurations of DenoiseRank
from ablation study.

Design Web30K Yahoo Istella
Noise Schedule TruncL TruncL. TruncL
Max Diffusion Steps 1000 1000 600
Denoising Layers 2 4 8
Self-Attention v v v
Loss Function ListNet MSE MSE

Note: All configurations use the same base architecture. v’
denotes the inclusion of self-attention modules. TruncLL
denotes Truncate Linear schedule.

passible to recalculate documents feature context-
wise, and DenoiseRank can learn about the relation
between documents. (See Appendix B.4)

Learning Rate. We train our model with differ-
ent learning rates € 10~1,1072,1073,10%, and
user AdamW optimizer. In most situations, 10~*
is a good choice, while training on the web30k
dataset, performance is a little better when learning
rate is 1073,

4.6 Diversity of Ranking Results

As our DenoiseRank is a diffusion based model,
it is able to produce diverse ranked lists of docu-
ments in response to the same query while may
still keep the high standard of the NDCG Perfor-
mance, compared to traditional LTR models that
always produce the same ranked list of documents
in response to the same query. Such diverse ranked
lists of documents allow documents with the same
ground-truth labels have the same chances to be
ranked in the top-K position in the ranked lists.

In this study, we verify the diversity of the
ranking sequences produced by DenoiseRank. In
the inference stage, Y, which is sampled at ran-

dom from Gaussian noise, introduces uncertainty
when making predictions. To address this, we
perform multiple inferences for the same query
and analyze the ranking diversity. We introduce
the RSD@(K,M) metric (see Eq. 24), which de-
notes the number of different sequences on the
top K ranking of the same query among M times
inference. (Note that RSD (Ranking Sequence
Diversity) is absolutely different to traditional di-
versity metrics; see Appendix. C) Using K €
{1,5,10,20}, M = 10, we compare RSD@(K,M)
of DenoiseRank to Rankformer, which has a simi-
lar architecture to ours but addresses LTR task from
a traditional discriminative perspective without un-
certainty.

As shown in Figure 2, the ranking results in-
ferred by DenoiseRank are diverse, while those in-
ferred by Rankformer remain singleton. Referring
to Table 8, we find that the ranked lists generated by
DenoiseRank are various in response to the same
test query 10 times while the NDCG metric remains
excellent. In contrast, Rankformer keeps the same
ranked list and the NDCG is also unchanged. More
detailed analysis can be found in the Appendix. C.

5 Related Work

Over the last 20 years, LTR has usually been stud-
ied from the perspective of discriminative meth-
ods (Friedman, 2001; Burges, 2010; Cao et al.,
2007). These studies can be categorised as tree-
based and neural network-based.

Tree-based models show competitive perfor-
mance (Lucchese et al., 2025), e.g., Lamb-
daMART (Ke et al., 2017; Wu et al., 2010), but
poor performance when data is sparse and not easy

-
o
L[]

o
1
(X'}
[]
Jawlopjuey Aq pajipaid
yueyasiouaq Aq pajoipald

Figure 2: A t-SNE plot shows the diverse ranking se-
quences on the top 20 predicted in the inference stage
of a single query randomly selected. The blue points
denote the ranking sequences inferred by DenoiseRank
using 100 different Y7 values from Gaussian noise. The
orange yellow represents the other sequences predicted
by Rankformer in 100 attempts. Testing was conducted
on the MS Web30K dataset.

to be scalable (Qin et al., 2021). Other studies
advocate the use of neural networks to train LTR
models, e.g., RankNet (Burges et al., 2005). The
advantage of neural networks based models is that
they are easy to be scalable, but are prone to be
overfitting, and the feed-forward layer treats docu-
ments in isolation and ignore documents’ correla-
tion. Some studies introduce attention mechanisms
such as RNN and attention to LTR and achieve
significant performance, e.g., SetRank (Pang et al.,
2020) and DASALC (Qin et al., 2021). However,
all these models are discriminative. In this work,
we introduce generative method to LTR, using high-
capacity networks and self-attention mechanisms.

In addition to model design, there are LTR stud-
ies using unbiased estimation (Luo et al., 2024)
and innovative loss functions (Pobrotyn and Biato-
brzeski, 2021). In recent years, there have been
studies on obtaining implicit feedback and reduc-
ing the bias in realistic feedback scores by design-
ing click models, e.g. Rankformer (Buyl et al.,
2023), InfoRank (Jin et al., 2024). Unbiased LTR
achieved significant results, but this is far differ-
ent from our study, which focuses on generative
LTR model design. Loss functions have been the
focus of LTR research, and traditionally there are
three types, point-wise (Friedman, 2001), pair-wise
(Burges, 2010) and list-wise (Cao et al., 2007). In
recent years, there have also been studies propos-
ing loss functions such as ApproxNDCG (Bruch
et al., 2019), Lambdaloss (Jagerman et al., 2022),
NeuralNDCG (Pobrotyn and Biatobrzeski, 2021).
In this study, the MSE loss is used, which is more

suitable for diffusion models.

Traditional LTR studies have used discriminative
models, which are also commonly used in classifi-
cation and regression studies. Generative models,
represented by VAE (Kingma et al., 2013), GAN
(Goodfellow et al., 2014), etc., can model the data
distribution (Zhou et al., 2023; Liu et al., 2021) and
better solve the problems of data sparsity, overfit-
ting and noise sensitivity, etc. In recent years, there
have been researches on the use of generative meth-
ods in classification and regression studies (Han
et al., 2022). Unfortunately, there is no research
on LTR using generative models. Diffusion Mod-
els (Sohl-Dickstein et al., 2015) have shown great
potential in recent years, with models represented
by DDPMs (Ho et al., 2020; Nichol and Dhari-
wal, 2021) being applied to multimodal generation
(Zhang et al., 2025; Song and Ermon, 2019; Ho
et al., 2022; Song and Ermon, 2020). Some studies
have applied diffusion models to recommender sys-
tems (Li et al., 2023), but not yet to LTR. This study
is the first to address LTR through a generative
approach and lays the foundation for subsequent
studies on LTR through generative models.

6 Conclusion

This study aims at addressing the L'TR task. Previ-
ous studies address the LTR task from a discrimina-
tive perspective, do not modeling the data well and
ignore the latent relationships among documents.
In contrast, to our knowledge we are the first to ad-
dress the task via a generative model. We propose
the novel DenoiseRank model, which is a diffusion-
based LTR model for the task. Specifically, our De-
noiseRank noises the relevant labels in the diffusion
process and denoises them on the query documents
in the reverse process to accurately predict the la-
bels of the documents in response to the input query.
Experimental results demonstrate the advantages
of our DenoiseRank, including excellent retrieval
performance and diversity of ranked lists. We also
propose a new evaluation metric to evaluate the
performance of the generative model in terms of
the diversity of the ranked lists. We believe that our
work makes an important contribution to advance
research on neural-based LTR models and paves
the way for future research into generative models
for LTR. As to future work, we intend to include
interactive data such as clicks on documents into
the model to improve the performance.

7 Limitations

This study advances LTR task from a generative
perspective but has notable limitations. Interac-
tive feedback information such as clicks received
from human-beings is not included in the training
datasets, but such information does help to improve
the performance of the model. We inject Gaussian
noises during the diffusion process in our model.
However, other kinds of noise distributions rather
than Gaussian may be much more helpful to model
the data for the diffusion process.

References

Arvind Agarwal, Hema Raghavan, Karthik Subbian,
Prem Melville, Richard D Lawrence, David C
Gondek, and James Fan. 2012. Learning to rank
for robust question answering. In Proceedings of the
21st ACM international conference on Information
and knowledge management, pages 833-842.

Qingyao Ai, Keping Bi, Jiafeng Guo, and W Bruce
Croft. 2018. Learning a deep listwise context model
for ranking refinement. In The 41st international
ACM SIGIR conference on research & development
in information retrieval, pages 135-144.

Elouan Argouarc’h, Frangois Desbouvries, Eric Barat,
and Eiji Kawasaki. 2024. Generative vs. discrimina-
tive modeling under the lens of uncertainty quantifi-
cation. arXiv preprint arXiv:2406.09172.

Sebastian Bruch, Masrour Zoghi, Michael Bendersky,
and Marc Najork. 2019. Revisiting approximate met-
ric optimization in the age of deep neural networks.
In Proceedings of the 42nd international ACM SIGIR
conference on research and development in informa-
tion retrieval, pages 1241-1244.

Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier,
Matt Deeds, Nicole Hamilton, and Greg Hullender.
2005. Learning to rank using gradient descent. In
Proceedings of the 22nd international conference on
Machine learning, pages 89-96.

Christopher JC Burges. 2010. From ranknet to lamb-
darank to lambdamart: An overview. Learning,
11(23-581):81.

Maarten Buyl, Paul Missault, and Pierre-Antoine
Sondag. 2023. Rankformer: Listwise learning-to-
rank using listwide labels. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pages 3762-3773.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and
Hang Li. 2007. Learning to rank: from pairwise
approach to listwise approach. In Proceedings of the

24th international conference on Machine learning,
pages 129-136.

Olivier Chapelle and Yi Chang. 2011. Yahoo! learning
to rank challenge overview. In Proceedings of the
learning to rank challenge, pages 1-24. PMLR.

Qi Chen, Xiubo Geng, Corby Rosset, Carolyn Burac-
taon, Jingwen Lu, Tao Shen, Kun Zhou, Chenyan
Xiong, Yeyun Gong, Paul Bennett, and 1 others. 2024.
Ms marco web search: A large-scale information-
rich web dataset with millions of real click labels. In
Companion Proceedings of the ACM Web Conference
2024, pages 292-301.

Domenico Dato, Claudio Lucchese, Franco Maria Nar-
dini, Salvatore Orlando, Raffaele Perego, Nicola
Tonellotto, and Rossano Venturini. 2016. Fast rank-
ing with additive ensembles of oblivious and non-
oblivious regression trees. ACM Transactions on
Information Systems (TOIS), 35(2):1-31.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 conference of the
North American chapter of the association for com-
putational linguistics: human language technologies,
volume 1 (long and short papers), pages 4171-4186.

Jerome H Friedman. 2001. Greedy function approx-
imation: a gradient boosting machine. Annals of
statistics, pages 1189-1232.

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative
adversarial nets. Advances in neural information
processing systems, 27.

Yulong Gu, Zhuoye Ding, Shuaigiang Wang, Lixin Zou,
Yiding Liu, and Dawei Yin. 2020. Deep multifaceted
transformers for multi-objective ranking in large-
scale e-commerce recommender systems. In Pro-
ceedings of the 29th ACM international conference
on information & knowledge management, pages

2493-2500.

Xizewen Han, Huangjie Zheng, and Mingyuan Zhou.
2022. Card: Classification and regression diffusion
models. Advances in Neural Information Processing

Systems, 35:18100-18115.

GM Harshvardhan, Mahendra Kumar Gourisaria, Man-
jusha Pandey, and Siddharth Swarup Rautaray. 2020.
A comprehensive survey and analysis of generative
models in machine learning. Computer Science Re-
view, 38:100285.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. De-
noising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840—
6851.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William
Chan, Mohammad Norouzi, and David J Fleet. 2022.
Video diffusion models. Advances in Neural Infor-
mation Processing Systems, 35:8633—-8646.

Rolf Jagerman, Zhen Qin, Xuanhui Wang, Michael Ben-
dersky, and Marc Najork. 2022. On optimizing top-k
metrics for neural ranking models. In Proceedings
of the 45th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 2303-2307.

Zongcheng Ji and Bin Wang. 2013. Learning to rank for
question routing in community question answering.
In Proceedings of the 22nd ACM international con-
ference on Information & Knowledge Management,
pages 2363-2368.

Jiarui Jin, Zexue He, Mengyue Yang, Weinan Zhang,
Yong Yu, Jun Wang, and Julian McAuley. 2024. In-
forank: Unbiased learning-to-rank via conditional
mutual information minimization. In Proceedings of
the ACM Web Conference 2024, pages 1350-1361.

Alexandros Karatzoglou, Linas Baltrunas, and Yue Shi.
2013. Learning to rank for recommender systems. In
Proceedings of the 7th ACM Conference on Recom-
mender Systems, pages 493-494.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang,
Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu.
2017. Lightgbm: A highly efficient gradient boost-
ing decision tree. Advances in neural information
processing systems, 30.

Diederik P Kingma, Max Welling, and 1 others. 2013.
Auto-encoding variational bayes.

Jia Li, Lijie Hu, Jingfeng Zhang, Tianhang Zheng, Hua
Zhang, and Di Wang. 2025. Fair text-to-image diffu-
sion via fair mapping. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 39,
pages 26256-26264.

Zihao Li, Aixin Sun, and Chenliang Li. 2023. Diffurec:
A diffusion model for sequential recommendation.
ACM Transactions on Information Systems, 42(3):1—
28.

Shiao Liu, Xingyu Zhou, Yuling Jiao, and Jian Huang.
2021. Wasserstein generative learning of conditional
distribution. arXiv preprint arXiv:2112.10039.

Claudio Lucchese, Franco Maria Nardini, Salvatore Or-
lando, Raffaele Perego, and Alberto Veneri. 2025.
Explainable, effective, and efficient learning-to-rank
models using ilmart. ACM Transactions on Informa-
tion Systems.

Dan Luo, Lixin Zou, Qingyao Ai, Zhiyu Chen, Chen-
liang Li, Dawei Yin, and Brian D Davison. 2024. Un-
biased learning-to-rank needs unconfounded propen-
sity estimation. In Proceedings of the 47th Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 1535—
1545.

Alexander Quinn Nichol and Prafulla Dhariwal. 2021.
Improved denoising diffusion probabilistic models.
In International conference on machine learning,
pages 8162-8171. PMLR.

10

Liang Pang, Jun Xu, Qingyao Ai, Yanyan Lan, Xueqi
Cheng, and Jirong Wen. 2020. Setrank: Learning a
permutation-invariant ranking model for information
retrieval. In Proceedings of the 43rd international
ACM SIGIR conference on research and development
in information retrieval, pages 499-508.

Przemystaw Pobrotyn and Radostaw Biatobrzeski. 2021.
Neuralndcg: Direct optimisation of a ranking metric
via differentiable relaxation of sorting. arXiv preprint
arXiv:2102.07831.

Tao Qin and Tie-Yan Liu. 2013. Introducing letor 4.0
datasets. arXiv preprint arXiv:1306.2597.

Tao Qin, Tie-Yan Liu, and Hang Li. 2010. A general
approximation framework for direct optimization of
information retrieval measures. Information retrieval,
13:375-397.

Zhen Qin, Le Yan, Honglei Zhuang, Yi Tay, Rama Ku-
mar Pasumarthi, Xuanhui Wang, Michael Bendersky,
and Marc Najork. 2021. Are neural rankers still out-
performed by gradient boosted decision trees? In
International conference on learning representations.

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Bjorn Ommer. 2022. High-
resolution image synthesis with latent diffusion mod-
els. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages
10684-10695.

Vikash Sehwag, Saeed Mahloujifar, Tinashe Handina,
Sihui Dai, Chong Xiang, Mung Chiang, and Pra-
teek Mittal. 2021. Robust learning meets generative
models: Can proxy distributions improve adversarial
robustness? arXiv preprint arXiv:2104.09425.

Jascha Sohl-Dickstein, Eric Weiss, Niru Mah-
eswaranathan, and Surya Ganguli. 2015. Deep un-
supervised learning using nonequilibrium thermo-
dynamics. In International conference on machine
learning, pages 2256-2265. pmlr.

Yang Song and Stefano Ermon. 2019. Generative mod-
eling by estimating gradients of the data distribution.
Advances in neural information processing systems,
32.

Yang Song and Stefano Ermon. 2020. Improved tech-
niques for training score-based generative models.
Advances in neural information processing systems,
33:12438-12448.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Fukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Xuanhui Wang, Cheng Li, Nadav Golbandi, Michael
Bendersky, and Marc Najork. 2018. The lambdaloss
framework for ranking metric optimization. In Pro-
ceedings of the 27th ACM international conference
on information and knowledge management, pages
1313-1322.

Qiang Wu, Christopher JC Burges, Krysta M Svore,
and Jianfeng Gao. 2010. Adapting boosting for in-
formation retrieval measures. Information Retrieval,
13:254-270.

Shuo Yin and Guoqgiang Zhong. 2024. Textgt: A double-
view graph transformer on text for aspect-based sen-
timent analysis. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 38, pages
19404-19412.

Ziqi Yuan, Wei Li, Hua Xu, and Wenmeng Yu. 2021.
Transformer-based feature reconstruction network for
robust multimodal sentiment analysis. In Proceed-
ings of the 29th ACM international conference on
multimedia, pages 4400—-4407.

Jiaging Zhang, Mingxiang Cao, Xue Yang, Kai Jiang,
and Yunsong Li. 2025. Diffclip: Few-shot language-
driven multimodal classifier. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 39, pages 22443-22451.

Xingyu Zhou, Yuling Jiao, Jin Liu, and Jian Huang.
2023. A deep generative approach to conditional
sampling. Journal of the American Statistical Asso-
ciation, 118(543):1837-1848.

A Hyperparameters

DenoiseRank hyperparameters We set
the hyperparameters of the model, including:
dropout € {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8},
denoise net hiddenSize € {64, 128,256,512} for
linearLayer, denoise Layers € {2,4,6,8},
transformer blocks € {3,4,5,6}, self-
attention heads € {1,2,4,5, 8}. In the
diffusion configuration, noise schedule
€ {TruncatedLinear, Linear, Cosine, Sqrt},
max diffusion timesteps €

{100, 200, 300, 400, 500, 600, 700, 800, 900, 1000}

We have experimented and tuned different datasets
and the results can be found in Tables 4 , 5. We
introduce the experiments result in the following
paragraph and Appendix. B.

DenoiseRank training settings First, we use
the AdamW optimiser and set LearningRate
€ {0.1,0.01,0.001,0.0001} and batchsize=128.
Second, the training epoc is set to 200. For train-
ing, we evaluate every 10 epochs on the test dataset
using NDCG @10 as a benchmark. Store the opti-
mal model and the results evaluated by the metrics.
Finally, we run the model on a single NVIDIA
GeForce RTX 3090. The performance with differ-
ent learning rate is shown in Figure 3 and Table 3.
We find that:

11

1. A learning rate of 10~3 is optimal for train-
ing DenoiseRank on the MS Web30K dataset,
with 10~* being the next best option.

. For the Yahoo! and Istella datasets, 10~% is
the better learning rate with which to train
DenoiseRank; 10~3 provides an approximate
result.

. In most situations, learning rates of 10~! and
1072 result in poor performance, which sug-
gests that our DenoiseRank needs subtle opti-
misation.

Convergence DenoiseRank is a new LTR model
consider the task from generative perspective, com-
bine with Diffusion model, which need a lot of
timesteps in diffusion and reverse process. Thus
we investigate the convergence speed on training
process in experiments on the runtime enviroment
we mention above. We alse compare our model to
Rankformer, which has the similiar model architec-
ture. We use the best hyperparameter and design
choice of them and which can make a best ranking
performence.
As shown in Figure. 4, we summarize that:

1. On the MS Web30K datasets, both Denois-
eRank and Rankformer can converge after 50
epocs of training.

. On the Yahoo! datasets, DenoiseRank con-
verge after 130 epocs, while rankformer is
more slow and coverage after 200 epoc.

. We speculate it is because: first, documents
in Yahoo! have higher dimension of feature
(700 dimensions per document) than those in
MS Web30K (136 dimensions per document),
so model need more epoc to fit them; sec-
ond, our DenoiseRank address LTR task from
generative perspective and comine with Diffu-
sion model, it can fit high dimensional feature
more effective

B Ablation Study

We have done ablation studies on DenoiseRank, in-
cluding maximum diffusion timesteps, noise sched-
uler, the number of denoise network layers and
effectiveness of self-attentions; see Table [4,5,6,
7].

Table 3: NDCG@K performance of DenoiseRank with different learning rates on Microsoft Web30K, Yahoo!, and

Istella datasets. Best performance per column in bold.

LR Web30K Yahoo! Istella
@1 @5 @10 @1 @5 @10 @1 @5 @10
0.1 47.32 48.27 5042 39.17 4934 57.84 5.70 7.38 9.87
0.01 4648 46.15 47.89 4131 5124 5934 4339 4380 48.89
0.001 51.87 5252 54.60 69.51 72.18 76.65 6842 68.20 74.85
0.0001 51.01 51.86 54.10 7127 7396 78.40 69.14 69.09 75.63
Miscrosoft Web30k — o1 Yahoo! Istella
55 = o1 80— == 001 == 01 == 001
001 M == 0001 — 704 == o000t == 00001 M
== 0.001 === 0.0001
== 0.0001 704 60
S S & 50
o [a]
b4 b4 50 Z 30
20
] 40 104
45 — — -
NDCG@1 NDCG@5 NDCG@10 NDCG@1 NDCG@5 NDCG@10 NDCG@1 NDCG@5 NDCG@10

Figure 3: NDCG@K of DenoiseRank with different learning rates on Miscrosoft Web30k, Yahoo! and Istella

datasets.

B.1 Maximum Diffusion Timesteps

In the diffusion process, the maximum diffusion
timestep (1) refers to how many iterations are re-
quired to change from the original sample to the
Gaussian noise. The larger the maximum time step,
the smaller the sample change per iteration, and
conversely, the larger the sample change. The origi-
nal DDPM uses a maximum time step of 7' = 1000
(Ho et al., 2020)(Nichol and Dhariwal, 2021). As
different maximum time steps can have an impact
on the model performance (Li et al., 2023). We
evaluate the model performance in the case of time
step t = [1000, 800, 600, 400, 200] respectively.
As shown in Figure. 5 and Table 4:

1. The model performs better as the maximum
time step increases, suggesting that slow noise
addition is more beneficial for model learning.

2. The model performance is more dependent on
long time steps on the web30k dataset.

3. The performance of the model is not always
optimal for long time steps. The model per-
forms optimally on the Istella dataset at T =
600. This means that we can reduce the time
step appropriately to speed up training and
inference.

B.2 Noise Scheduler

The noise scheduler is the way in which the o,
changes during diffusion, where a; := Htszlas,
see eq. 4. The rate of change of a; varies in dif-
ferent noise-adding schemes, e.g., truncated linear
has a large change before % and a small change
after %, whereas Cosine has a relatively balanced
change(Li et al., 2023).

In order to evaluate the performance of Denois-
eRank under different noise schedules, we try dif-
ferent choices, including Truncated Linear, Linear,
Cosine, Sqrt. The results (see Figure.6 and Table.5)
show that:

1. TruncatedLinear performs better than the
other schedules overall, but there is not a big
difference.

2. the performance of the different noise sched-
ules varies greatly on the web30k datasets, i.e.
TruncatedLinear > Sqrt > Linear > Cosine.

3. on the yahoo and istella datasets, there is not
much difference in the reliability of the rank-
ing, and on the istella dataset, sqrt even per-
forms slightly better than TruncatedLinear.

B.3 The Number of Denoise Network Layers

As shown in Figure. 1 on the right, the denoising
network of DenoiseRank is a feed-forward archi-

12

MS Web30K — Yahoo!
0.07 + ‘
\
g 0.05 \
o
-
~
0.03 - s e O O
0.01 1 1 1 1 1 1 1
0 50 100 150 200 250 300
Epocs

MS Web30K — Yahoo!

4.00

3.75 v
n
7]
o
-~ 3.50

3.254

3.00 1 1 1 1 1 1 1

0 50 100 150 200 250 300
Epocs

Figure 4: Curve of training loss of DenoiseRank(Left) and Rankformer(Right) on MS Web30K and Yahoo! datasets

among 300 epocs.

Table 4: NDCG@K performance with different diffusion timesteps on Microsoft Web30K, Yahoo!, and Istella

datasets. Best performance per column in bold.

. Web30K Yahoo! Istella
Timesteps

@1 @5 @10 @1 @5 @10 @1 @5 @10
1000 51.87 52.52 54.60 71.27 7396 7840 69.14 69.09 75.63
800 5149 52.03 54.10 70.84 73.70 7822 69.25 69.13 75.67
600 5090 51.58 53.53 70.82 73774 7825 69.09 69.21 75.68
400 50.52 49.82 51.66 70.87 7399 7835 69.47 68.97 75.52
200 49.87 4933 51.11 7071 73.82 7823 69.41 68.77 75.35

tecture. The input and output layers of the denois-
ing network are required, and the hidden layers in
between can be dynamically adjusted (Han et al.,
2022). Different hidden layers can affect the perfor-
mance of the model. To obtain the optimal model
structure, we investigate the effect of different lay-
ers of the denoising network. The number of layers
includes [2, 4, 6, 8], e.g. layer = 2 means that only
the input and output layers are included and there
is no hidden layer.

The results (see Figure.7 and Table.6) show that:

1. There is a significant difference between dif-
ferent layers on model performance.

On the web30k dataset, layers=2 performs
the best, followed by layers=4, and the per-
formance decreases instead as the layers in-
crease.

On the Yahoo dataset, the model performs sig-
nificantly better than 6 and 8 when the layers
are 2 and 4.

On the istella dataset, the number of layers has
no significant effect on model performance.

13

B.4 Self Attentions

In recent studies on learning-to-rank (Pang et al.,
2020)(Qin et al., 2021)(Buyl et al., 2023), the self-
attention mechanism has been shown to signifi-
cantly improve ranking results. To evaluate the ef-
fectiveness of self-attention (SA) in DenoiseRank,
we conducted experiments with and without Trans-
former, and the results (see Figure.8 and Table.7)
show that SA significantly improves the model per-
formance, especially on the MS Web30k and Istella
datasets.

C Diversity

In inference stage, DenoiseRank randomly samples
Yr from Gaussian noise, causing uncertainty to
result of the ranking. Different Gaussian noise
labels Y7 may have a different ranking sequence.
Compared to DenoiseRank, traditional LTR models
may have been trained to rank certainly in various
attempts given the same input document features.
In real-world information retrieval, the diverse
ranked list of items in different search sceneries
can be meaningful. In some situations, e.g., shop-
ping retrieval on the e-Commerce website, we want
items with the same relevance scores to have a fair
chance to rank higher. Unfortunately, previous LTR

Yahoo!

Istella
Miscrosoft Web30k om
— A
78|
54 - 74
__ 76 .
& X
—~ o & 724
& 52+ Q 74 o
@ =} % g —" 5
(] z z
o 70—
z 72
50 : —————a—
./o‘o—o-/' 68
70 T T T T 1 T T T T 1
48 T T r ; . 200 400 600 800 1000 200 400 600 800 1000
200 400 600 800 1000 Maximum Diffusion Timesteps Maximum Diffusion Timesteps
Maximum Diffusion Timesteps —-o- NDCG@1 -® NDCG@5 -4+ NDCG@10 -~ NDCG@1 -® NDCG@5 —4— NDCG@10

Figure 5: NDCG @K of DenoiseRank at different noise schedule on Miscrosoft Web30k, Yahoo! and Istella datasets.

Miscrosoft Web30k Yahoo! Istella
55— == Cosine 80 === Cosine === Cosine
- Sqt == Sqrtt 76 — Sf]ﬂ - o
== Linear 78 == Linear M M == Linear
Trunc Linear === Trunc Linear 74 === Trunc Linear
3 < 76 S
< T o 724
g 50+ 8]
o - o
2 z 7 Z 70+
724 68 H
45- 70- — 66— -
NDCG@1 NDCG@5 NDCG@10 NDCG@1 NDCG@5 NDCG@10 NDCG@1 NDCG@5 NDCG@10

Figure 6: NDCG@XK of DenoiseRank at different noise schedule on Miscrosoft Web30k, Yahoo! and Istella datasets.

Miscrosoft Web30k Yahoo! Istella
=== 2layers . == 2 layers _ === 2layers
=== 4layers 78 === 4layers 76 === 4layers
54 - E g :ayers = 6layers == 6layers]
layers 76— m— 8 layers 74 - mmm 8 layers
< 3 744 <
& 52 = =
g 8n 8"
al a "“7 fal
z z Z 70+
50 704
68 68
48— 66 - 66 - —
NDCG@1 NDCG@5 NDCG@10 NDCG@1 NDCG@5 NDCG@10 NDCG@1 NDCG@5 NDCG@10

Figure 7: NDCG @K of DenoiseRank at different denoise-net design on Miscrosoft Web30k, Yahoo! and Istella
datasets.

models did not consider uncertainty for ranking and
may not rank items diversely.

In this study, we denote diversity in LTR task
as: given a query Q) and the corresponding docu-

MS Web30k 4=

Yahoo! == NDCG@1/NoSA ments D, run inference by LTR model M times,

== NDCG@1/SA the number of different ranking sequences is the

f :szzgz::% diversity. For instance, ranking sequence of items

Istella — NDCG@I0/NoSA [a,b,c,d, e, fland [a, b, d, c, f, €] are inferenced at
— NDCG@10/SA different times and causing diversity.

711 In order to evaluate diversity of our DenoiseR-
40 50 60 70 80 . . .
ank, we are the first time to introduce a new metric

NDCG(%) RSD (Ranking Sequence Diversity), formulated as:
Figure 8: NDCG @K of DenoiseRank without and with RSDQ(K, M) = N (24)
self attention on Miscrosoft Web30k, Yahoo! and Istella M

datasets.

14

where K denotes the top K corresponding docu-
ments of the ranking results, N denotes the num-
ber of different sequences of items in M times

Table 5: NDCG@K performance with different noise schedulers on Microsoft Web30K, Yahoo!, and Istella datasets.

Best performance per column in bold.

Web30K Yahoo! Istella
Scheduler
@1 @5 @10 @1 @5 @10 @1 @5 @10
TruncatedLinear 51.87 52.52 54.60 7127 7396 78.40 69.14 69.09 75.63
Linear 50.40 50.25 52.10 7120 73.89 7833 69.04 6891 75.48
Cosine 46.83 46.16 48.04 7131 7391 7836 68.59 68.38 74.89
Sqrt 50.40 50.15 52.08 71.58 74.00 7839 6897 6893 7540

Table 6: NDCG @K Performance with different denoise network depths on Microsoft Web30K, Yahoo!, and Istella

datasets. Best performance per column in bold.

Web30K Yahoo! Istella
Layers
@1 @5 @10 @1 @5 @10 @1 @5 @10
2 51.87 5252 54.60 7137 7406 7842 69.00 69.10 75.69
4 5145 5208 54.03 7137 74.06 7842 69.54 69.14 75.65
6 5045 51.36 5332 69.03 72.09 7651 6941 69.01 75.65
8 50.08 51.73 53.82 69.73 7213 7658 69.46 69.17 75.80

Table 7: NDCG@K performance with/without self-attention on Microsoft Web30K, Yahoo!, and Istella datasets.
Best performance per column in bold. 1 denotes significant improvements.

Self-Attention Web30K Yahoo! Istella

@1 @5 @10 @1 @5 @10 @1 @5 @10
Without 4825 47.08 49.00 7137 7335 7770 6391 6391 70.65
With 51.877 52.527 54.60" 71377 74.06" 78.427 69.46" 69.17"7 75.80"

inferred and N € [1, M]. In LTR task, we hope
that RSDQ(K, M) increases, while NDCGQK
does not significantly decrease. There are various
metrics that are relevant to ranking diversity, includ-
ing Coverage, ERRQK, Precition — [AQK,
DIVERSITYQK, o-NDCG@K etc. How-
ever, those metrics are quite different to our
RSDQ(K, M) in at least the following aspects:
(1) RSD considers M times inference and M se-
quences of items, while traditional diversity met-
rics focus on single-ranking sequence of items. (2)
RS D focus on the diversity of the sequences, while
traditional diversity metrics consider the similarity
between items in a single sequence. For instance,
DIVERSITY QK consider the similarity of pair-
wise documents among the top K documents in the
result sequence. The higher the metric, the more
dissimilar the pair.

We conducted experiments on MS Web30K
datasets to investigate the ranking sqeuence deiver-
sity of DenoiseRank and Rankformer which has
the similar architecture. We set K € {1, 5, 10,20}
and M = 10. Then, given a well-trained Denois-
eRank model and Rankformer model, we evaluate
them on the same test file of Web30K datasets. The
result of NDCG@K and RSD@(K,M) shown in

15

Table. 8, and we find that:

1. Among 10 times inferences, the RSD is 0.11,
0.16, 0.28, 0.64 in the top 1,5,10,20 posi-
tions, respectively, showing the ability to rank
sequence diversity of DenoiseRank and the
Gaussian sampling for Yr provides uncer-
tainty to rank.

2. Performance of NDCG@K remains excellent
and even slightly increases after repeat infer-
ence, which means that our DenoiseRank can
produce diverse ranked lists while guarantees
reliability of ranking result.

3. Rankformer did not present the ability to rank
in different order, the RSD is 0.1 regardless
of the K poisition. It proved our extrapolate
that traditional LTR models do not inject un-
certainty which results in a static ranking se-
quence.

According to the above analysis, our DenoiseR-
ank can be applied to areas requiring diverse rank-
ing sequences of items. Our novel metric, RSD,
can also be used to evaluate the ranking diversity
ability of models in other areas.

Table 8: NDCG@K and RSD@(K,M) performance of DenoiseRank and Rankformer on Microsoft Web30K

datasets.
Model M RSD@(K.M) NDCG@K
1 5 10 20 1 5 10 20
Rankformer 1 - - - - 49.62 4930 5142 5429
10 0.1 0.1 0.1 0.1 49.62 4930 5142 54.29
DenoiseRank 1 - - - - 5148 5246 5447 57.49
10 0.11 0.16 028 0.64 51.73 5252 5447 5745
: . . P I .
D Loss Functions and 7(i) = 2 + >_;sigmoid(=i7—), T'is a

DenoiseRank employs MSE as the loss function
in order to predict Y at every timestep, see Eq.13.
MSE is also the original loss in DDPMs. Defining
suitable ranking losses is an important branch of
LTR studies, and there are many versions of loss
functions that significantly improve the effective-
ness of models. To align with this, we evaluate the
performance of DenoiseRank with different losses
for ranking. Thus, in this study, we try to find an
optimal loss function for DenoiseRank on different
datasets.
We consider the following loss functions:

1. RMSE: a typical point-wise loss:
Lrsp(Y,Y) = \/% Y (Vi = Yi)2.
2. RankNet(Burges et al., 2005): a clas-

sic pair-wise loss: LrankNet(Y, Y)
>y,>v, loge (1 + e¥i Vi),

NDCGLoss2 -+ (Wang et al., 2018): a NDCG
metric-driven loss functions based on the
lambdaloss probabilistic framework:

Z log,

LxpcGLoss2 et (Y, Y)

Y;>Y;
Z(;)(pzﬁu%)@ ~Gil (7|7,
1+ e o(YimY))
where Gl - mQa?:Dch’ Pij = |Dz Di]" 61] =
‘D\ilfﬂ - D|i—j\+1” D; = logy(1 + i), and

H(rn|Y) is a hard assignment distribution of
permutations.

4. ApproxXNDCG(Qin et al.,, 2010)(Bruch
et al., 2019): a loss that designed to
be approximation of NDCG metrics,

~ ;
LApproxNDCG(K Y) - 7z Zz 1 logy(1+7Z(Z))

where Z = —DCG(7*,Y), G(Y;) = 2¥i —1

16

smooth parameter.

5. ListNet(Cao et al.,, 2007): a clas-
sic list-wise loss: Lpsinet(Y,Y) =
Y,
- Z?zl YVZ loge Ze] oY
6. MSE (Ho et al., 2020)(Nichol and Dhari-

wal, 2021): a loss function use in DDPMs
to predict zg or €, here we formulate it as
Luse(Y,Y) =E[| Y - Y []?]

We report the results based on the best
NDCG@10 for different losses. For different loss
functions, we use AdamW optimizer and scan
learning rate € 0.01,0.001, 0.0001. We try to find
the best performance of every loss and report the
results based on the NDCG@10. The results are
shown in Table. 9, we find that:

1. DenoiseRank, when trained with MSE, RMSE
and ListNet, achieves first-tier performance
and is far superior to the rest.

. Though ApproxNDCG improves the perfor-
mance of neural LTR models in the original
papers, it does not seem to work well on De-
noisRank, which is implemented from a gen-
erative perspective.

. DenoiseRank, when trained with ListNet, per-
forms the best on the Web30K dataset. How-
ever, for the Yahoo! and Istella datasets, train-
ing with MSE loss is the best choice.

E Other Metrics

In order to evaluate our denoiseRank fully, we use
another 4 types of ranking metrics, including Ex-
pected Reciprocal Rank (ERR), Mean Average Pre-
cision (MAP), Mean Reciprocal Rank(MRR) and
Precision. We reported results at ranks 1,3,5,10,20
and the total rank (denoted as “ALL”). The results
are shown in Table. 10, and the results further con-
firm the effectiveness of our models.

Table 9: NDCG @K performance of DenoiseRank with different loss functions on Microsoft Web30K, Yahoo!, and
Istella datasets. Best performance per column in bold.

Loss Web30K Yahoo! Istella

@1 @5 @10 @1 @5 @10 @1 @5 @10
RMSE 5048 5141 5343 70.64 7330 77.84 6926 69.32 75.80
RankNet 43.66 4584 4856 56.65 6696 73.18 51.11 57.25 65.83

NDCGLoss>.+ 43.01 47.68 50.57 6648 72.18 7698 56.00 5996 67.55
ApproxXNDCG 24.46 2921 3372 60.24 64.67 70.64 33.01 4221 5248
ListNet 51.87 5252 54.60 70.81 73.82 7835 68.75 69.05 7558
MSE 51.20 51.73 5377 7137 7406 7842 6946 69.17 75.80

Table 10: ERR, MRR, MAP and precision of DenoiseRank on Microsoft Web30K, Yahoo!, and Istella datasets.

Metric K Dataset Metric K Dataset
Web30K Yahoo! Istella Web30K Yahoo! Istella
1 26.53 3441 61.53 1 78.07 87.13 94.64
5 36.77 4390 73.79 5 81.55 89.16 95.19
ERR 10 38.55 4534 7434 MAP 10 78.76 8791 93.14
20 39.28 4572 74.40 20 74.89 86.72 90.27
ALL 39.57 4578 74.40 ALL 63.91 85.75 88.36
1 78.07 87.13 94.64 1 78.07 87.13 94.64
5 84.36 90.56 96.77 5 72.86 83.59 89.38
MRR 10 84.64 90.69 96.79 Precision 10 69.25 81.25 80.44
20 84.73 90.70 96.79 20 64.17 78.81 5541
ALL 84.75 90.71 96.79 ALL 44.97 7530 12.81

17

	Introduction
	Definition of the LTR Task
	Denoise Ranking Model
	Overview of Our DenoiseRank
	The DenoiseRank Model
	Denoise Neural Network in DenoiseRank
	Diffusion and Training
	Reverse and Inferencing
	Discussions

	Experiments
	Research Questions
	Datasets and Metric
	Comparison Models
	Comparison Result
	Design Choice and Hyperparameters
	Diversity of Ranking Results

	Related Work
	Conclusion
	Limitations
	Hyperparameters
	Ablation Study
	Maximum Diffusion Timesteps
	Noise Scheduler
	The Number of Denoise Network Layers
	Self Attentions

	Diversity
	Loss Functions
	Other Metrics

