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Abstract

Simulation-free training frameworks have been
at the forefront of the generative modelling rev-
olution in continuous spaces, leading to neural
dynamical systems that encompass modern large-
scale diffusion and flow-matching models. De-
spite the scalability of training, the generation
of high-quality samples and their corresponding
likelihood under the model requires expensive
numerical simulation—inhibiting adoption in nu-
merous scientific applications such as equilibrium
sampling of molecular systems. In this paper, we
revisit classical normalizing flows as one-step gen-
erative models with exact likelihoods and propose
a novel, scalable training objective that does not
require computing the expensive change of vari-
able formula used in conventional maximum like-
lihood training. We propose FORWARD-ONLY
REGRESSION TRAINING (FORT), a simple ℓ2-
regression objective that maps prior samples un-
der our flow to specifically chosen targets. We
demonstrate that FORT supports a wide class
of targets, such as optimal transport targets and
targets from pre-trained continuous-time normal-
izing flows (CNF). We further demonstrate that
by using CNF targets, our one-step flows allow
for larger-scale training that exceeds the perfor-
mance and stability of maximum likelihood train-
ing, while unlocking a broader class of architec-
tures that were previously challenging to train.
Empirically, we elucidate that our trained flows
can perform equilibrium conformation sampling
in Cartesian coordinates of alanine dipeptide, ala-
nine tripeptide, and alanine tetrapeptide.
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1. Introduction
The landscape of modern simulation-free generative
models in continuous domains, such as diffusion models
and flow-matching, has led to state-of-the-art generative
quality across a spectrum of domains (Betker et al., 2023;
Brooks et al., 2024; Huguet et al., 2024; Geffner et al.,
2025). Despite the scalability of simulation-free training,
generating samples and computing model likelihoods from
these model families requires computationally expensive
inference—often hundreds of model calls—through the
numerical simulation of the learned dynamical system. The
search for efficient inference schemes has led to a new
wave of approaches that seek to learn one-step generative
models, either through distillation (Yin et al., 2024; Lu &
Song, 2024; Sauer et al., 2024; Zhou et al., 2024), shortcut
training (Frans et al., 2024), or Inductive Moment Matching
(IMM) (Zhou et al., 2025) — methods that are able to
retain the impressive sample quality of full simulation.
However, many highly sensitive applications—for instance,
in the natural sciences (Noé et al., 2019; Wirnsberger et al.,
2020)—require more than just high-fidelity samples: they
also necessitate accurate estimation of probabilistic quan-
tities, the computation of which can be facilitated by having
access to cheap and exact model likelihoods. Consequently,
for one-step generative models to successfully translate
to scientific applications, they must additionally provide
faithful one-step exact likelihoods for generated samples.

Given their capacity to compute exact likelihoods, classical
normalizing flows (NF) have remained the de facto method
for generative modelling in scientific domains (Dinh et al.,
2014; 2016; Rezende & Mohamed, 2015). For instance,
in tasks such as conformation sampling with Boltzmann
generators (Noé et al., 2019), rapid and exact likelihood eval-
uation is critical both for asymptotically debiasing generated
samples, and for refining them via annealed importance
sampling (Tan et al., 2025). Historically, NFs employed in
conventional generative modelling domains (such as images)
are trained with the maximum likelihood estimation (MLE)
objective, which has empirically lagged behind the expres-
siveness, scalability, and ease of training of modern continu-
ous normalizing flows (CNFs) trained with regression-based
objectives like flow-matching (Peluchetti, 2023; Liu, 2022;
Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023).
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Table 1. Overview of various generative models and their relative
trade-offs with respect to number of inference steps, ability to
provide exact likelihoods, and training objective for learning.

Method One-step Exact likelihood Regression training

CNF (MLE) ✗ ✓ ✗
Flow Matching ✗ ✓ ✓
Shortcut (Frans et al., 2024) ✓ ✗ ✓
IMM (Zhou et al., 2025) ✓ ✗ ✓
NF (MLE) ✓ ✓ ✗
FORT (ours) ✓ ✓ ✓

A key driver of the gap between classical flows and CNFs
can be attributed to the MLE training objective itself, which
requires estimating the Jacobian determinant of the inverse
flow-map, which is often costly to evaluate for expressive
flow architectures, thus preventing efficient optimization and
leading to numerical instability. The tension between MLE
training and invertible architectural choices used in flow
design has created a plethora of exotic training recipes, even
with modernized SOTA flows on images with Transformer
backbones (Zhai et al., 2024; Kolesnikov et al., 2024), that
run counter to the simplicity of training of current one-step
generative models—albeit without efficient exact likelihood.
This raises the natural motivating research question:

Q. Does there exist a performant training recipe for
classical Normalizing Flows beyond MLE?

Present work In this paper, we answer in the affirmative.
We investigate how to train an invertible neural network
to directly match a predefined invertible function. We
introduce FORWARD-ONLY REGRESSION TRAINING
(FORT), a novel regression-based training objective
for classical normalizing flows that marks a significant
departure from the well-established MLE training objective.

Our key insight is that access to coupled samples from any
invertible map is sufficient to train a generative model with
a regression objective. Moreover, with privileged access to
such pairings, a classical NF can then be used to directly
regress against the target points by pushing forward the
corresponding noise points. As a result, we may view FORT
as a flow-matching objective wherein the learnable flow-
map is an exactly invertible architecture. FORT provides
similar benefits to NF training as flow-matching does to
continuous NFs. Compared to MLE training of NFs, FORT
immediately unlocks a key training benefit: to compute the
ℓ2-regression objective, we only need to compute the NF
in the forward direction—removing the need to compute
the Jacobian determinant of the inverse flow-map during
generation. Furthermore, as outlined in Table 1, unlike other
one-step generative methods, FORT provides faithful access
to exact log-likelihoods while being cheaper than CNFs.

To train NFs using FORT, we propose a variety of
couplings to facilitate simple and efficient training. We

propose endpoint targets that are either (I) outputs of a
larger pretrained CNF, or (II) the solution to a pre-computed
OT map done offline as a pre-processing step. In each
case, the designed targets are the result of already invertible
mappings, which simplifies the learning problem for NFs
and enhances training stability. Empirically, we deploy
FORT flows on learning equilibrium sampling for short
peptides in Alanine di-, tri-, and tetrapeptide, and find
even previously discarded NF architectures, such as affine
coupling (Dinh et al., 2016) or Neural Spline Flows (Durkan
et al., 2019), can outperform their respective MLE trained
counterparts. In particular, we illustrate that in scientific
applications where MLE training is unsuccessful, the same
model trained using FORT provides higher fidelity proposal
samples and their likelihood. Finally, we demonstrate
a completely new method of performing Targeted Free
Energy Perturbation (Wirnsberger et al., 2020) that avoids
costly energy evaluations with FORT that is not possible
with conventional MLE training of normalizing flows.

2. Background and Preliminaries
Generative models A generative model can be seen as
an (approximate) solution to the distribution matching
problem: given two distributions p0 and p1, the distribu-
tional matching problem seeks to find a push-forward map
fθ : Rd → Rd that transports the initial distribution to the
desired endpoint p1 = [fθ]#(p0). Without loss of gener-
ality, we set pprior := p0 to be a tractable prior (typically
standard normal) and take pdata := p1 the data distribu-
tion, from which we have empirical samples. We now
turn our attention to solving the generative modelling prob-
lem with modelling families that admit exact log-likelihood,
log pθ(x), where pθ = [fθ]#(p0), with a particular empha-
sis on normalizing flows (Dinh et al., 2014; 2016; Rezende
& Mohamed, 2015; Papamakarios et al., 2021).

2.1. Continuous normalizing flows

Learning the pushforward map, fθ, can be done by con-
verting this problem into the solution to a neural dynamical
system. For example, in a deterministic dynamical system,
the pushforward map becomes a time-dependent sufficiently
smooth generator fθ : [0, 1] × Rd → Rd, (t, x0) 7→ xt
and forms the solution pathway to a (neural) ordinary
differential equation (ODE) with initial conditions
f0(x0) = x0. More precisely, a continuous normalizing
flow (CNF) models the problem as the following ODE
d
dtft,θ(x) = vt,θ (ft,θ(xt)). Here, vt,θ : [0, 1]× Rd → Rd

is the time-dependent velocity field associated with the
(flow) map that transports particles from p0 to p1.

As a CNF is the solution to a deterministic dynamical sys-
tem, it is an invertible map, and as a result, we can compute
the exact log-likelihood, log pt,θ(xt), using the instanta-
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neous change of variable formula for probability densi-
ties (Chen et al., 2018). The overall log-likelihood of a data
sample, x0, under the model can be computed as follows:

log p1,θ(x1) = log p0(x0)−
∫ 0

1

∇ · vt,θ(xt)dt, (1)

Maximizing the model log-likelihood in Equation (1)
offers one possible method to train CNF’s but incurs
costly simulation. Instead, modern scalable methods to
train CNF’s is to employ flow-matching (Lipman et al.,
2023; Albergo & Vanden-Eijnden, 2023; Tong et al., 2023;
Liu et al., 2023), which learns vt,θ by regressing against
the (conditional) vector field associated with a designed
target conditional flow everywhere in space and time, e.g.,
constant speed conditional vector fields.

Numerical simulation In practice, the simulation of a
CNF is conducted using a specific numerical integration
scheme that can impact the likelihood estimate’s fidelity
in Equation (1). For instance, an Euler integrator tends to
overestimate the log-likelihood (Tan et al., 2025), and thus
it is often preferable to utilize integrators with adaptive step
size, such as Dormand–Prince 45 (Hairer et al., 1993). In ap-
plications where likelihood estimates suffice, it is possible to
employ more efficient estimators such as Hutchinson’s trace
estimator to get an unbiased—but higher variance—estimate
of the divergence. Unfortunately, as we demonstrate in §3.1,
such estimators are too high variance to be useful for impor-
tance sampling even in the simplest settings, and remain too
computationally expensive and unreliable in larger science
applications considered in this work.

One-step maps: shortcut models One way to discretize
an ODE is to rely on the self-consistency property of ODEs,
also exploited in consistency models (Song et al., 2023),
namely that jumping ∆t in time can be constructed by fol-
lowing the velocity field for two half steps (∆t/2). This is
the core idea behind shortcut models (Frans et al., 2024)
that are trained at various jumps by conditioning the vec-
tor field network on the desired step-size ∆t. Precisely,
f∗short,t,2∆t(xt) = f∗t (xt,∆t)/2+ f∗t (x

′
t+∆t,∆t)/2, where

x′t+∆t = xt + f∗t (xt,∆t)∆t. In their extreme, shortcut
models define a one-step mapping which has been shown to
generate high-quality images but it remains an open question
whether these models can reliably estimate likelihoods.

2.2. Normalizing flows

The generative modelling problem can also be tackled using
time-agnostic generators. One such prominent example
are Normalizing Flows (NFs) (Dinh et al., 2016; Rezende
& Mohamed, 2015), which parameterize diffeomorphisms
(continuously differentiable bijective functions, with
continuously differentiable inverse), fθ : Rd → Rd. Those

are typically trained using an MLE objective. It is important
to highlight that for arbitrary invertible maps fθ, computing
the absolute value of the log Jacobian determinant of the
flow exerts a prohibitively expensive cost that scales O(d3).
Consequently, it is popular to build fθ using a composition
of M elementary diffeomorphisms, each with an easier to
compute Jacobian determinant: fθ = fM−1 ◦ · · · ◦ f0 (Pa-
pamakarios et al., 2021). Through function composition,
simple invertible blocks can lead to flows that are universal
density approximators (Teshima et al., 2020), and the
resulting MLE objective for training is simply:

log pθ(x1) = log p0(x0)−
M−1∑
i=0

log det

∣∣∣∣∂fi,θ(xi)∂xi

∣∣∣∣ . (2)

Despite the theoretical expressive power of certain classes
of NFs (Teshima et al., 2020; Ishikawa et al., 2023; Kong
& Chaudhuri, 2021; Zhang et al., 2020; Bose et al., 2021),
training using the MLE objective does not offer any insight
into the ease and/or practical optimization of fθ during the
learning process.

3. FORWARD-ONLY REGRESSION TRAINING

We seek to build one-step transport maps that both push
forward samples x0 ∼ p0 to x1 ∼ p1, and also permit exact
likelihood evaluation. Such a condition necessitates that this
learned map is a bijective function—i.e. an invertible map—
and enables us to compute the likelihood using the change of
variable formula. While using an MLE objective is always a
feasible solution to learn this map, it is often not a scalable
solution for both CNFs and classical NFs. Beyond architec-
tural choices and differentiating through a numerical solver,
learning flows using MLE is intuitively harder as the process
of learning must simultaneously learn the forward mapping,
fθ, and the inverse mapping, f−1

θ , without knowledge of
pairings (x0, x1) ∼ π(x0, x1) from a coupling.

To appreciate this nuance, consider the set of invertible
mappings I and the subset of flows F ⊂ I, that solve the
generative modelling problem. For instance, there may
exist multiple ODEs (possibly infinitely many) that push
forward p0 to p1. It is clear then that the MLE objective
allows the choice of multiple equivalent solutions f ∈ F .
However, this is precisely what complicates learning fθ, as
certain solutions are harder to optimize since there is no
prescribed coupling π(x0, x1) for noise x0 and data targets
x1. That is to say, during MLE optimization of the flow
fθ, the coupling π is learned in conjunction with the flow,
which can be challenging to optimize when the pairing
between noise and data is suboptimal.

Regression objectives In order to depart from the MLE
objective, we may simplify the learning problem by first
picking a solution f∗ ∈ F and fixing the coupling

3



FORT: Forward-Only Regression Training of Normalizing Flows

π∗(x0, x1) induced under this choice, i.e. p1 = [f∗]#(p0).
Given privileged access to f∗, we can form a simple re-
gression objective that approximates this in continuous time
using our choice of learnable flow:

L(θ) = Et,x0,x1,xt

[
∥ft,θ(xt)− f∗t (xt)∥

2
]
, (3)

where (x0, x1) ∼ π∗(x0, x1) and xt ∼ pt(·|x0, x1) is
drawn from a known conditional noising kernel such as
a Gaussian distribution. We highlight that a key benefit
unlocked with using Equation (3) is that we only need to
evaluate the flow ft,θ in the forward direction on samples
drawn from the fixed coupling π∗. We further note that
the regression objective in Equation (3) is more general
than just flows in I, and, at optimality, the learned function
behaves like f∗t on the support of p0, under mild regularity
conditions. We formalize this intuition more precisely in
the next proposition.

Proposition 3.1. Suppose that f⋆t is invertible for all t,
that (f⋆t )

−1 is continuous for all t. Then, as L(θ)→ 0,
it holds that ((f⋆t )

−1◦ft,θ)(x)→ x for almost all (with
respect to p0) x.

The proof for Proposition 3.1 can be found in §A, and
illuminates that solving the original generative modelling
through MLE can be reformulated as a matching problem
to a known invertible function f∗. Indeed, many existing
generative models already fit into this general regression
objective based on the choice of f∗, such as conditional
flow-matching (CFM) (Tong et al., 2023), Rectified
flow (Liu et al., 2023), and (perfect) shortcut models (Frans
et al., 2024). This proposition also shows why these models
work as generative models: they converge in probability
to the prespecified map.

3.1. Warmup: one-step generative models without
likelihood

As there exists powerful one-step regression-based
generative models in image applications, it is tempting
to consider whether they already solve the thesis of
this paper in that they already provide faithful one-step
likelihoods. As a warmup, we investigate the invertibility
of current state-of-the-art one-step generative models
in shortcut models (Frans et al., 2024) and Inductive
Moment Matching (Zhou et al., 2024) (see §B for details).
Intuitively, both these model classes progressively learn a
time-discretized map of the probability path constructed
under a typical diffusion or CNF using bootstrap targets
and other measures of self-consistency.

Synthetic experiments We instantiate both model classes
on a simple generative modelling problem where the data
distribution corresponds to a synthetic checkerboard density
psyn in 2D. We choose this setup as the target distribution

admits analytic log-likelihoods, allowing us to compute
the weights needed to perform importance sampling. For
example, given a trained model pθ, and the collection of
importance weights, we aim to compute a Monte–Carlo ap-
proximation to any test function ϕ(x) of interest under psyn
using self-normalized importance sampling (SNIS) (Liu,
2001) as follows:

Epsyn(x)[ϕ(x)] = Epθ(x)[ϕ(x)w̄(x)] ≈
∑K

i=1 w(x
i)ϕ(xi)∑K

i=1 w(x
i)

.

(4)
In addition, computing importance weights also enables
resampling the pool of samples according to the collection
of normalized importance weights W = {w̄(xi)}Ki=1.

In Figure 1, we plot the results of shortcut models and IMM
with non-invertible networks and IMM with an invertible
network, a Neural Spline Flow (NSF) (Durkan et al.,
2019). Given access to correct likelihoods, we can correct
generated samples using the self-normalized important IS
in Equation (4) to produce asymptotically exact samples that
resemble the ground truth checkerboard. As observed, we
find that non-invertible shortcuts are imperfect at learning
the target and are unable to be corrected to psyn after resam-
pling. Similarly, for the non-invertible IMM, we observe
better initial samples but resampling—while better—still
presents inaccuracies compared to the ground truth. Finally,
when IMM is equipped with an invertible backbone, we see
samples that almost perfectly match psyn. While this may ini-
tially suggest that IMM with an invertible backbone is ideal,
we show that such an approach is difficult to learn even in
simple problems at the scale of MNIST (see Appendix B.2).

This puts spotlight on a counter-intuitive question
given Proposition 3.1: Why do shortcut models have
incorrect likelihoods? Shortcut models have incorrect
likelihoods for two reasons: (1) invertibility implied
under Proposition 3.1 only holds at convergence, and (2)
even if the model has converged, Proposition 3.1 is only
sufficient for accurate generation. Accurate likelihood
estimation requires an invertible map and regularity of
higher-order gradients, because the likelihood, as given
in Equation (2), requires the computation of the log
determinant of the Jacobian. While Proposition 3.1 implies
pointwise convergence of fθ to f∗, this does not imply
convergence or regularity of the gradients of fθ and thus
shortcut models can still achieve high quality generations
without the need to provide faithful likelihoods.

Insufficiency of uniform convergence While it might
seem reasonable to infer that the uniform convergence of
fθ → f⋆ on a sub-domain D ⊆ Rd, implies pointwise
convergence of gradients ∇fθ → ∇f⋆, this is not gener-
ally true. For illustrative purposes, consider the toy ex-
ample: fm(x) = 1

m sin(mx) + x and f⋆(x) = x. As
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(a) Non-invertible shortcut. (b) Non-invertible IMM. (c) IMM with an NF. (d) Ground truth.

Figure 1. Evaluation of IMM and shortcut models with exact likelihood on the synthetic checkerboard experiment, with depictions of the
2D histograms after SNIS resampling.

m→∞, fm converges uniformly to f⋆; however, the gra-
dient∇fm(x) = cos(mx) does not converge. Importantly,
this means that while fθ may produce increasingly accurate
samples, its likelihoods derived through Equation (2) may
not converge to those of the base model. This counterex-
ample demonstrates the need for other methods to ensure
correct likelihoods for models with high-quality samples.

3.2. Training normalizing flows using FORT

We now outline our FORT framework to train a one-step
map in a classical NF. To remedy the issue found in shortcut
models and IMM in Section 3.1, we judiciously choose fθ
to be an already exactly invertible mapping—i.e., a classical
NF. Since NFs are one-step maps by construction Equa-
tion (3) is instantiated as a simple ℓ2 regression objective
as follows:

L(θ) = Ex0,x1

[
∥f0,θ(x0)− f∗1 (x0)∥

2
]
+ λrR

= Ex0,x1

[
∥x̂1 − x1∥2

]
+ λrR, (5)

where R is a regularization strategy and λr ∈ R+ is the
strength of the regularization applied.

Explicit in Equation (5) is the need to procure one-step
targets x1 = f∗1 (x0) from a known invertible mapping f∗1 .
We outline the choice of such functions in §3.3. We also
highlight that the one-step targets in Equation (5) differ from
the typical flow-matching objective where the continuous
targets f∗t,cfm = ∂

∂ pt(xt|x0, x1) (see §A.3 for a detailed
discussion). Furthermore, note that training an NF within
FORT only requires to evaluate the forward direction during
training and acts as the closest invertible approximation to
the already invertible map f∗1 . Consequently, for NFs that
are universal density approximators (Teshima et al., 2020;
Kong & Chaudhuri, 2021; Zhang et al., 2020), the learning
problem includes a feasible solution.

Training recipe We provide the full training pseudocode
in Algorithm 1. In practice, we find that f⋆ is often ill-

Algorithm 1 FORWARD-ONLY REGRESSION TRAINING

input Prior p0, empirical samples from p1, regularization
weight λr, noise scale λn, network fθ
while training do

(x0, x1) ∼ π(x0, x1)
x1 ← x1 + λn · ε, with ε ∼ N (0, I)
L(θ)← ∥fθ(x0)− x1∥22 + λrR
θ ← Update(θ,∇θL(θ))

end while
return fθ

conditioned, with the target distribution often centered
around some lower-dimensional subspace of Rd similar to
prior work (Zhai et al., 2024). This may cause fθ to become
numerically ill-conditioned. To combat this, we use three
tricks to maintain numerical stability. Specifically, we regu-
larize the log determinant, add small amounts of Gaussian
noise to the target distribution similar to (Hui et al., 2025;
Zhai et al., 2024), and, finally, include weight decay.

3.3. FORT targets

To construct useful one-step targets in FORT, we must find
a discretization of a true invertible function—e.g., an ODE
solution—at longer time horizons. More precisely, we seek
a discretization of an ODE such that each time point t+∆t
where the regression objective is evaluated corresponds to
a true invertible function f∗t+∆t. Consequently, if we have
access to an invertible map such that t + ∆t = 1, we can
directly regress our parametrized function as a one-step
map, f0,θ(x0) = x̂1. This motivates the search and design
of other invertible mappings that give us invertibility at
longer time horizons, for which we give two examples next.

Optimal transport targets Optimal transport in contin-
uous space between two distributions defines a continuous
and invertible transformation expressible as the gradient of
some convex function (Villani, 2021; Peyré & Cuturi, 2019).
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This allows us to consider the invertible OT plan:

f∗ot =arg minT

∫
T (x)c(x, T (x))dp0(x)

s.t. T#(p0) = p1,

where c : Rd × Rd → R is the OT cost and T : Rd → Rd

is a transport map. We note that this map is interesting as
it requires no training; however, exact OT runs in O(n3)
time and O(n2) space, which makes it challenging to
scale to large datasets. Furthermore, we highlight that
this differs from OT-CFM (Tong et al., 2023), which uses
mini-batches to approximate the OT-plan. Nevertheless, in
applicable settings, full batch OT acts as a one-time offline
pre-processing step for training fθ using FORT.

Reflow targets Another strategy to obtain samples from
an invertible map is to use a pretrained CNF, also known as
Reflow (Liu, 2022). Specifically, we have that:

f∗reflow(x0) = x0 +

∫ 1

0

v⋆t (xt)dt = x1. (6)

In other words, the one-step invertible map is obtained from
a pre-trained CNF v⋆t , from which we collect a dataset of
noise-target pairs, effectively forming π∗(x0, x1) which we
use during FORT. We now prove that training on Reflow tar-
gets with FORT reduces the Wasserstein distance to the p1.

Proposition 3.2. Let preflow be a pretrained CNF gen-
erated by the vector field v∗t , real numbers (Lt)t∈[0,1]

such that v∗t is Lt-Lipschitz for all t ∈ [0, 1], and
a NF f nf

θ trained using Eq. 5 by regressing against
f⋆reflow(x0), where x0 ∼ N (0, I). Then, writing
pnf
θ := Law(f nf

θ (x0)), we have:

W2(p1, pθ) ≤ K exp

(∫ 1

0

Ltdt

)
+ ϵ,

K ≥
∫ 1

0

E
([
∥v∗t (xt)− vt(xt)∥22

]) 1
2 dt,

where K is the ℓ2 approximation error between the ve-
locity field of the CNF and the ground truth generating
field v∗t , ϵ2 = Ex0,x1

[
∥f⋆reflow(x0)− f

nf
θ (x0)∥22

]
.

The proof for Proposition 3.2 is provided in §A. Intuitively,
the first term captures the approximation error of the pre-
trained CNF to the actual data distribution p1, and the sec-
ond term captures the approximation gap between the flow
trained using FORT to the reflow targets of preflow.

4. Experiments
We evaluate NFs trained using FORT on smaller peptides
(ALDP, AL3, and AL4) both on equilibrium sampling and

free energy prediction tasks. Classical Amber force fields
are used as the energy functions both to generate “Ground
Truth” molecular dynamics data, and for SNIS.

4.1. Molecular conformation sampling

We first evaluate FORT on molecular conformation
sampling tasks. We test three different architectures across
three different molecular systems of increasing length in
alanine dipeptide (ALDP) to alanine tripeptide (AL3) and
alanine tetrapeptide (AL4), and compare the performance
of the same invertible architecture trained using MLE and
using FORT. We report the Effective Sample Size (ESS),
the 1-Wasserstein distance on the energy distribution, and
the 2-Wasserstein distance on the dihedral angles used in
the Ramachandran plots and generated samples in §D.

Normalizing flow architectures In our experiments, we
use the following NF architectures: the classical RealNVP
with a residual network parametrization (Dinh et al., 2016),
NSF (Durkan et al., 2019), and our implementation of the
transformer-based NF in Jet (Kolesnikov et al., 2024).

Main results We report our main quantitative results in Ta-
ble 2 and observe that FORT with reflow targets consistently
outperforms MLE training of NFs across all architectures
for E-W1 and T-W2 metrics and slightly underperforms
MLE training on ESS. However, this can be justified by the
mode collapse that happens in MLE training as illustrated
in the Ramachandran plots for ALDP in Figure 2, which
artificially increases ESS. We further include energy his-
tograms for proposal samples on ALDP of each flow and
their corresponding resampling with IS in Figure 3 and ob-
serve NFs trained using FORT more closely match the true
energy distribution. Additional results for AL3 and AL4 are
reported in §D. Our results demonstrate that FORT is of-
ten a compelling and favorable alternative to MLE training
for each classical NF architecture when we have access to
high-quality targets from diverse invertible maps.

Table 2. Quantitative results on alanine dipeptide (ALDP), alanine
tripeptide (AL3), and alanine tetrapeptide (AL4).
Datasets→ Dipeptide (ALDP) Tripeptide (AL3) Tetrapeptide (AL4)

Algorithm ↓ ESS ↑ E-W1 ↓ T-W2 ↓ ESS ↑ E-W1 ↓ T-W2 ↓ ESS ↑ E-W1 ↓ T-W2 ↓
NSF (MLE) 0.055 13.797 1.243 0.0237 17.596 1.665 0.016 20.886 3.885
NSF (FORT) 0.036 0.519 0.958 0.0291 1.051 1.612 0.010 6.277 3.476

Res–NVP (MLE) < 10−4 > 103 > 30 < 10−4 > 103 > 30 < 10−4 > 103 > 30
Res–NVP (FORT) 0.032 2.310 0.796 0.025 3.600 1.960 0.013 2.724 4.046

Jet (MLE) < 10−4 > 103 > 30 < 10−4 > 103 > 30 < 10−4 > 103 > 30
Jet (FORT) 0.051 6.349 0.872 < 10−4 > 103 3.644 < 10−4 > 103 > 30

Ablations In Table 3, we report FORT using OT targets
and various amounts of generated reflow targets—a unique
advantage of using reflow as the invertible map. As ob-
served, each target choice improves over MLE, outside of
ESS for NSF. Importantly, we find that using more sam-
ples in reflow consistently improves performance metrics
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Figure 2. Ramachandran plots for alanine dipeptide (left to right: ground truth MD data; most performant MLE-trained model (NSF);
NSF (FORT); Res–NVP (FORT); and Jet (FORT).
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Figure 3. Energy distribution of original and SNIS re-weighted samples generated using various flow-based methods on alanine dipeptide
(left to right: most performant MLE-trained model (NSF); NSF (FORT); Res–NVP (FORT); and Jet (FORT).

Table 3. Ablations on target types and amount of reflow on ALDP.
Datasets→ Dipeptide (ALDP)

Algorithm ↓ ESS ↑ E-W1 ↓ T-W2 ↓
NSF (MLE) 0.055 13.80 1.243
NSF (FORT @ 100k CNF) 0.016 17.39 1.232
NSF (FORT @ 10.4M CNF) 0.036 0.519 0.958
NSF (FORT @ OT) 0.003 0.604 2.019

Res–NVP (MLE) < 10−4 > 103 > 30
Res–NVP (FORT @ 100k CNF) 0.009 46.93 1.155
Res–NVP (FORT @ 10.4M CNF) 0.032 2.310 0.796
Res–NVP (FORT @ OT) 0.006 0.699 1.969

Jet (MLE) < 10−4 > 103 > 30
Jet (FORT @ 100k CNF) 0.017 31.42 1.081
Jet (FORT @ 10.4M CNF) 0.051 6.349 0.872
Jet (FORT @ OT) 0.003 2.534 1.913

for all architectures. In Figure 4 we ablate the impact of
regularization and find performance improvements with in-
creasing regularization, up to a certain point. Although
regularization beyond this guarantees numerical invertibil-
ity, it hampers generation performance across metrics. This
trade-off typically occurs between 10−6 ≤ λr ≤ 10−5 for
all normalizing flow architectures tested in this work.

4.2. Targeted free energy perturbation

Accurate calculations of the free energy difference between
two metastable states of a physical system is both ubiq-
uitous and of profound importance in the natural sciences.
One approach to tackling this problem is Free Energy
Perturbation (FEP) which exploits Zwanzig’s identity:
EA

[
e−β∆U

]
= e−β∆F where ∆F = FB − FA is the

Helmholtz free energy difference between two metastable
states A and B (Zwanzig, 1954). Targeted Free Energy Per-
turbation (TFEP) improves over FEP by using NFs to learn
an invertible map using MLE to increase the distributional
overlap between states A and B (Wirnsberger et al., 2020);
however, this can be challenging for several reasons. NFs
are difficult to learn, especially when the energy function
is expensive to compute, or the states occupy small areas.

We propose a new TFEP method that does not require energy
function evaluations during training. By using FORT, we
can train the normalizing flow solely based on samples from
the states A and B. This enables TFEP, where energy evalu-
ations may be costly—a new possibility that is distinct from
NFs trained using MLE. To demonstrate this application of
FORT, we train an NF solely from samples from two modes
of ALDP (see Figure 5) and use OT targets which avoid any
energy function evaluation. We find we can achieve high-
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Figure 4. Left and center: Ablations demonstrating performance improvements with more reflow samples. Right: Increasing regulariza-
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quality free energy estimation in comparison to ground truth
molecular dynamics (MD) using only samples during train-
ing, as illustrated in Figure 5. We believe this is a promising
direction for future applications of free energy prediction.
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Figure 5. State transitions between βplanar and αR conformations.

5. Related Work
Exact likelihood generative models NFs are generative
models with invertible architectures (Rezende & Mohamed,
2015; Dinh et al., 2016) that produce exact likelihoods for
any given points. Common models include Real NVP (Dinh
et al., 2016), Neural Spline Flows (Durkan et al., 2019),
and Glow (Kingma & Dhariwal, 2018). Jet (Kolesnikov
et al., 2024) and TarFlow (Zhai et al., 2024) are examples
of transformer-based flows. Aside from Jet and Tarflow,
NFs have generally underperformed compared to diffusion
models and flow-matching methods (Ho et al., 2020; Lip-
man et al., 2023; Albergo et al., 2023; Liu, 2022; Song
et al., 2021), partly due to the high cost of evaluating the
log-determinants of Jacobians at each training step.

Few-step generative models To avoid costly inference,
few-step generative models were introduced as methods to
accelerate the simulation of diffusion and CNFs. Common
examples include DDIM (Song et al., 2022) and consistency

models (Song et al., 2023), which introduced a new train-
ing procedure that ensured the model’s endpoint prediction
remained consistent. Song & Dhariwal (2023); Lu & Song
(2024); Geng et al. (2024) have improved this paradigm.
Other lines of work proposed related but different training
objectives, generalizing consistency training (Frans et al.,
2024; Zhou et al., 2025; Kim et al., 2024; Heek et al., 2024).
Beyond diffusion and FM, residual networks (He et al.,
2015) are a class of neural networks that are invertible if
the Lipschitz constant of fθ is at most one (Behrmann et al.,
2019). The log-determinant of the Jacobian is then approx-
imated by truncating a series of traces (Behrmann et al.,
2019)—an approximation improved in Chen et al. (2020).

6. Conclusion
In this work, we present FORT, a method for generating
high-quality samples alongside exact likelihoods in a single
step. Using a base coupling between the dataset samples and
the prior, provided by either pre-computed optimal transport
or a base CNF, we can train a classical NF using a sim-
ple regression objective that avoids computing Jacobians at
training time, as opposed to typical MLE training. We have
shown, in theory and in practice, that the learned model pro-
duces faithful samples, the likelihoods of which empirically
allow us to produce state-of-the-art results on several molec-
ular datasets, using importance-sampling resampling. Limi-
tations include the quality of the proposal samples, which
substantially improve on MLE-trained NFs, but are not on-
par with state-of-the-art CNFs or variants thereof. Moreover,
while producing accurate and high-quality likelihoods, they
do not in theory match those of the base coupling, which
can be a desirable property.
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A. Proofs
A.1. Proof of Proposition 3.1

We first recall Proposition 3.1 below.

Proposition A.1. Suppose that f⋆t is invertible for all t, that (f⋆t )
−1 is continuous for all t. Then, as L(θ)→ 0, it holds

that ((f⋆t )
−1 ◦ ft,θ)(x)→ x for almost all (with respect to p0) x.

To prove Proposition 3.1, we first prove the following lemma, which is essentially the same as the proposition, but it
abstracts out the distribution of xt, which depends on x0, x1, and t.

Lemma A.2. For functions (fn)n≥1 and g, where g is invertible and has a continuous inverse, x0 ∼ p0, if
MSE(fn, g) := Ex0

∥fn(x0)− g(x0)∥22 → 0, then limn→∞ g−1(fn(x)) = x for almost all (wrt to p0) x.

Proof. Let Yn = ∥fn(x0) − g(x0)∥2. We know that limn→∞ E[Y 2
n ] = 0 (as it corresponds to the MSE), which implies

that limn→∞ Var(Yn) = 0. Consequently, Yn −→ c for some constant c ∈ R. Moreover, by Jensen’s inequality and the
convexity of x 7→ x2, we find that (E[Yn])2 ≤ E[Y 2

n ], meaning that c = 0. This implies that limn→∞∥fn(x)− g(x)∥22 = 0
almost everywhere, and thus that limn→∞ fn(x) = g(x). Finally, since g−1 is continuous, we can apply the function to
both sides of the limit to find that limn→∞ g−1(fn(x)) = x, almost everywhere.

It suffices to apply the above lemma to xt ∼ pt( · | x0, x1)p1(x1 | x0)p0(x0).

A.2. Proof of Proposition 3.2

We now prove Proposition 3.2. The proposition reuses the following regularity assumptions, as introduced in Benton et al.
(2023), which we recall verbatim below for convenience:

(Assumption 1) Let vtrue be the true generating velocity field for the CNF with field v∗ trained using flow matching. Then
the true and learned velocity v∗ are close in ℓ2 and satisfy:

∫ 1

0
Et,xt

[∥vt,true(xt)− v∗t (xt)∥2]dt ≤ K2.
(Assumption 2) For each x ∈ Rd and s ∈ [0, 1], there exists unique flows (f∗s,t)t∈[s,1] and (f(s,t),true)t∈[s,1], starting at

f∗(s,s) = x and f(s,s),true = x with velocity fields v∗t (xt) and vt,true(xt), respectively. Additionally, f∗ and
ftrue are continuously differentiable in x, s and t.

(Assumption 3) The velocity field v∗t (xt) is differentiable in both x and t, and also for each t ∈ [0, 1] there exists a constant
Lt such that v∗t (xt) is Lt-Lipschitz in x.

Proposition A.3. Let preflow be a pretrained CNF generated by the vector field v∗t , real numbers (Lt)t∈[0,1] such that v∗t
is Lt-Lipschitz for all t ∈ [0, 1], and a NF f nf

θ trained using Eq. 5 by regressing against f⋆reflow(x0), where x0 ∼ N (0, I).
Then, writing pnf

θ := Law(f nf
θ (x0)), we have:

W2(p1, pθ) ≤ K exp

(∫ 1

0

Ltdt

)
+ ϵ,

K ≥
∫ 1

0

E
([
∥v∗t (xt)− vt(xt)∥22

]) 1
2 dt,

where K is the ℓ2 approximation error between the velocity field of the CNF and the ground truth generating field
v∗t , ϵ2 = Ex0,x1

[
∥f⋆reflow(x0)− f

nf
θ (x0)∥22

]
.

Proof. We begin by first applying the triangle inequality toW2(p1, pθ) and obtain:

W2(p1, pθ) ≤ W2(p1, preflow) +W2(preflow, p
nf
θ ). (7)

The first term is an error in Wasserstein-2 distance between the true data distribution and our reflow targets, which is still a
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CNF. A straightforward application of Theorem 1 in Benton et al. (2023) gives a bound on this first Wasserstein-2 distance1:

W2(p1, preflow) ≤ K exp

(∫ 1

0

Ltdt

)
. (8)

To boundW2(preflow, pθ), recall that the following inequality holdsW2(Law(X),Law(Y )) ≤ E
[
∥X − Y ∥22

] 1
2 , for any

two random variables X and Y . In our case, these random variables are p∗reflow = Law(f∗reflow(x0)) and pnf
θ = Law(f nf

θ (x0)).
This gives:

W2(preflow, p
nf
θ ) ≤ Ex0,x1

[∥∥f∗reflow(x0)− f nf
θ (x0)

∥∥2
2

] 1
2

. (9)

Combining Equation (8) and Equation (9) achieves the desired result and completes the proof.

W2(p1, pθ) ≤ K exp

(∫ 1

0

Ltdt

)
+ Ex0,x1

[∥∥f∗reflow(x0)− f nf
θ (x0)

∥∥2
2

] 1
2

. (10)

Note that the bound onW2(preflow, p
nf
θ ) is effectively the square-root of the FORT objective and thus optimization of the

NF using this loss directly minimizes the upper bound toW2(p1, p
nf
θ ).

A.3. FORT in continuous time

Current state-of-the-art CNFs are trained using “flow-matching” (Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023;
Liu et al., 2023), which attempts to match the vector field associated with the flow to a target vector field that solves for
mass transportation everywhere in space and time. Specifically, we can cast conditional flow matching (CFM) (Tong
et al., 2023) from the perspective of FORT. To see this explicitly, consider a pre-specified probability path, pt(xt), and
the following f∗t,fm = ∂

∂tpt(xt). However, since it is generally computationally challenging to sample from pt directly,
the marginalization trick is used to derive an equivalent objective with a conditional f∗t,cfm. We note that FORT requires
f∗t,cfm to be invertible therefore this assumes regularity on ∂

∂tpt(xt). This is generally satisfied by adding a small amount
of noise to the following. We present this simplified form for clarity.

pt(xt) :=

∫
pt(xt|x0, x1)dπ(x0, x1), pt(xt|x0, x1) = δ(xt; (1− t)x0 + tx1). (11)

Then setting f∗t,cfm = ∂
∂tpt(xt|x0, x1) it is easy to show that:

L(θ) = Et,x0,x1,xt

[∥∥∥∥vt,θ(xt)− ∂

∂t
pt(xt|x0, x1)

∥∥∥∥2
]

= Et,xt

[∥∥∥∥vt,θ(xt)− ∂

∂t
pt(xt)

∥∥∥∥2
]
+ C

= Et,x0,x1,xt

[
λt

∥∥ft,θ(xt)− f∗t,cfm(xt)
∥∥2]

with C independent of θ (Lipman et al., 2023), and λt is a loss weighting, which fits within the FORT framework in the
continuous-time setting with the last equality known as target/end-point prediction.

B. Additional Background
B.1. Inductive Moment Matching

Introduced in Zhou et al. (2025), Inductive Moment Matching (IMM) defines a training procedure for one-step generative
models, based on diffusion/flow-matching. Specifically, IMM trains models to minimize the difference in distribution

1A sharper bound can be obtained with additional assumptions, as demonstrated in Benton et al. (2023), but it is not critically important
in our context.
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(a) 1-step. (b) 2-step. (c) 4-step. (d) 8-step. (e) 16-step.

Figure 6. Generations of IMM trained with an iUNet with a variable number of steps.

between different points in time induced by the model. As a result, this avoids direct optimization for the predicted endpoint,
in contrast to conventional diffusion.

More precisely, let fθ : Rd × [0, 1]2 → Rd, (x, s, t) 7→ fθ(x, s, t) be a function parameterized by θ. IMM minimizes the
following maximum mean discrepancy (MMD) loss:

L(θn) = Es,t,x0,x1

[
w(s, t)MMD2

(
pθn−1,(s|r)(xs), pθn,(s|t)(xs)

)]
, (12)

where 0 ≤ r ≤ r(s, t) := r ≤ s ≤ 1, with s, t ∼ U(0, 1) iid, w ≥ 0 is a weighting function, x1 is a sample from
the target distribution, x0 ∼ N (0, I), xs is some interpolation between x0 and x1 at time s (typically, using the DDIM
interpolation (Song et al., 2022)), the subscript n ∈ N of parameter θ refers to its training step, and MMD is some MMD
function based on a chosen kernel (typically, Laplace).2 Essentially, the method uses as a target the learned distribution of
the previous step at a higher time to train the current distribution at lower times. With a skip parameterization, the higher
time distribution is by construction close to the true solution, as pθ(xs | xr) ≈ p(xs | xr) when r ≈ s, and xs is known.
(Or, in other terms, fθ(x, s, r ≈ s) ≈ x with the skip parameterization.) When the distributions match (when the loss is
zero), MMD2(p1,θ, p1) = 0, and so the generative model’s and the target distribution’s respective moments all match.

This training procedure allows for variable-step sampling. For chosen timesteps, (ti)ni=1, one can sample from p1,θ by
sampling x0 ∼ N (0, I) and performing the steps

xti+1 ← DDIM(fθ(xti , ti+1, ti), xti , ti, ti+1), (13)

where DDIM is the DDIM interpolant.

B.2. Inductive Moment Matching negative results

We detail in Appendix B.1 the Inductive Moment Matching (IMM) framework (Zhou et al., 2025). Observing the sampling
procedure, which we give in Equation (13), one can make this procedure invertible by constraining the Lipschitz constant of
the model, or by using an invertible model. For the first case, if we use the “Euler” (skip) parameterization alongside the
DDIM interpolation, it is shown that the reparameterized model gθ can be written as:

∀x, s, t, gθ(x, s, t) = x− (s− t)fθ(x, s, t). (14)

Moreover, 0 ≤ s− t ≤ 1, and so if the Lipschitz constant of fθ is strictly less than one, then the overall model is invertible,
using the argument of residual flows (Behrmann et al., 2019); so the change of variables formula applies as follows (using
the time notation of IMM/diffusion):

log pθ1(x) = log p0(x0)−
∑
i

log
[
(ti+1 − ti) det(Jfθ(·,ti+1,ti)(xti))

]
, (15)

The difficulty of evaluating the log-determinant of the Jacobian remains. Note, however, that we do not need to find the inverse
of the function to evaluate the likelihood of generated samples, since we know each (xti)i. The second path (of using an
invertible model) is viable only for one-step sampling with no skip parameterization (which, according to Zhou et al. (2025),
tends to under-perform, empirically), since the sampling procedure then boils down to x1 = f(x0, 1, 0) for x0 ∼ N (0, I).

2Note that we have adapted IMM’s notation to our time notation, with noise at time zero, and clean data at time one.
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(a) Using the ResFlow architecture proposed
in Chen et al. (2020).

(b) Using the TarFlow architecture (Zhai
et al., 2024), m = 4.

(c) Using the TarFlow architecture (Zhai
et al., 2024), m = 16.

Figure 7. One-step generation results with a Lipschitz-constrained (ResFlow) model and an invertible model (TarFlow) for IMM. The m
parameter is the group size in IMM used to approximate the MMD.

While both approaches succeeded in synthetic experiments, they fail to scale to datasets such as MNIST, the results of which
we include here in Figure 6 and in Figure 7. We have tried iUNet (Etmann et al., 2020) and TarFlow (Zhai et al., 2024), an
invertible UNet and a Transformer-based normalizing flow, respectively, for invertible one-step models; and we have tried the
ResFlow architecture in (Chen et al., 2020) for the Lipschitz-constrained approach. As observed, TarFlow fails to produce
images of high quality; iUNets produced significantly better results, albeit still not sufficient, especially for the one-step
sampling, which is the only configuration which guarantees invertibility; the Lipschitz-constrained ResFlow entirely failed
to produce satisfactory results, although the loss did diminish during training. In general, an even more important limitation
to consider is the difficulty of designing invertible or Lipschitz-constrained models for other data types, for instance, 3D
coordinates. Perhaps further research on the architectural side could allow for higher performance with invertible sampling.

C. Experimental Details
C.1. Metrics

The performance metrics considered across the investigated flows were the effective sample size, ESS, Wasserstein-1 energy
distance, E-W1, and the Wasserstein-2 distance on dihedral angles, T-W2.

Effective Sample Size (ESS) We compute the effective sample size (ESS) using Kish’s formula, normalized by the
number of samples generated:

ESS
(
{wi}Ni=1

)
=

1

N

(∑N
i=1 wi

)2

∑N
i=1 w

2
i

. (16)

where wi is the unnormalized weight of each particle indexed by i over N particles. Effective sample size measures the
variance of the weights and approximately how many more samples would be needed as compared to an unbiased sample.
For us, this captures the local quality of the proposal relative to the ground truth energy. It does not rely on a ground truth
test set, however is quite sensitive and may be misleading in the case of dropped modes or incomplete coverage as it only
measures agreement on the support of the generated distribution.

Wasserstein-1 Energy Distance (E-W1) The Wasserstein-1 energy distance measures how well the generated distribution
matches some ground truth sample (often generated using MD data) by calculating the Wasserstein-1 distance between the
energy histograms. Specifically:

E-W1(x, y) = min
π

∫
x,y

|x− y|dπ(x, y) (17)
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where π is a valid coupling of p(x) and p(y). For discrete distributions of equal size, π can be thought of as a permutation
matrix. This measures the model’s ability to generate very accurate structures as the energy function we use requires
extremely accurate bond lengths to obtain reasonable energy values. When the bond lengths have minor inaccuracies, the
energy can blow up extremely quickly.

Torus Wasserstein (T-W2) The torus Wasserstein distance measures the Wasserstein-2 distance on the torus defined
by the main torsion angles of the peptide. That is for a peptide of length l, there are 2(l − 1) torsion angles defining the
dihedrals along the backbone of interest ((ϕ1, ψ1), (ϕ2, ψ2), . . . (ϕl, ψl)). We define the torus Wasserstein distance over
these backbone angles as:

T-W2(p, q)
2 = min

π

∫
x,y

cT (x, y)
2dπ(x, y) (18)

where π is a valid coupling between p and q, and cT (x, y)2 is the shortest distance on the torus defined by the dihedral
angles:

cT (x, y)
2 =

2(L−1)∑
i=0

[(Dihedrals(x)i −Dihedrals(y)i + π) mod 2π − π]2 . (19)

The torus Wasserstein distance measures large scale changes and is quite important for understanding mode coverage and
overall macro distribution. We find FORT does quite well in this regard.

C.2. Additional details on experimental setup

To accurately compute the previously defined metrics, 250k proposal samples were drawn and re-weighted for alanine
dipeptide, tripeptide, and tetrapeptide.

Data normalization We adopt the same data normalization strategy proposed in (Tan et al., 2025), in which the center of
mass of each atom is first subtracted from the data, followed by scaling using the standard deviation of the training set.

Exponential moving average We apply an exponential moving average (EMA) on the weights of all models, with a decay
of 0.999, as commonly done in flow-based approaches to improve performance.

Training details and hardware All models were trained on NVIDIA L40S 48GB GPUs for 5000 epochs, except those
using OT targets, which were trained for 2000 epochs. Convergence was noted earlier in the OT experiments, leading to
early stopping. The total training time for all models is summarized in Table 4. The time taken to compute the OT map is
also provided; since computing the OT map is independent of the feature dimension, but only on the number of data points
used, the compute time was relatively consistent across all datasets. A total of 100k points was used for training the CNF,
performing MLE training, and computing the OT map.

Table 4. FORT training time (in hours) on ALDP, AL3, and AL4.
Model ALDP AL3 AL4

OT map 3.6 3.8 3.8
DiT CNF 27.6 40.7 48.6
NSF 21.0 23.8 26.8
Res–NVP 15.7 15.6 15.0
Jet 19.1 19.2 20.1

Reflow targets Ablations were done to investigate the influence of synthetic data quantity on all metrics. For all
benchmarking performed against MLE training, the largest amount of synthetic data was used. For ALDP, AL3, and AL4,
this constituted 10.4M, 10.4M, and 10M samples, respectively.

Determinant regularization During FORT, it was initially observed that as proposal sample quality improved, the
re-weighted samples progressively deteriorated across all metrics due to the models becoming numerically non-invertible.
This was partially addressed by adding regularization to the loss in the form of a log determinant penalty. Sweeps were
conducted using multiple regularization weights ranging between 10−7 and 10−4 to prevent hampering sample performance.
The amount of regularization added was a function of the flow and dataset. The final weights are summarized in Table 5.
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Table 5. Regularization weights used across datasets and flows.
Model ALDP AL3 AL4

NSF 10−6 10−5 10−5

Res–NVP 10−5 10−5 10−6

Jet 10−5 10−6 10−5

Target noise To discourage numerical non-invertibility of the trained flows, Guassian noise was also introduced to the
target samples. Experiments were conducted with noise magnitudes of 0.01, 0.05, 0.1, and 0.25, with a final value of 0.05
being selected for use across models and datasets.

FORT implementation details A summary of all trained model configurations is provided in Table 6. To maintain a
fair comparison, the configurations reported below were unchanged for MLE training and FORT. Adam was used as the
optimizer with a learning rate of 5× 10−4 and a weight decay of 0.01. We also included a varying cosine schedule with
warmup in line with the approach suggested in (Tan et al., 2025).

Table 6. Model configurations for the DiT CNF, NSF, Res–NVP, and Jet across all datasets (ALDP, AL3, AL4). A dash (–) indicates the
parameter is not applicable to the respective model.

Model hidden features transforms layers blocks per layer conditioning dim. heads dropout # parameters (M)

DiT CNF 768 – 6 – 128 12 0.1 46.3
NSF 256 24 – 5 – – – 76.8
Res–NVP 512 – 8 6 – – 0.1 80.6
Jet 432 – 4 12 128 12 0.1 77.6

Quality of CNF targets To maximize the likelihood that models trained with FORT have the potential to outperform
MLE, securing high quality targets is essential. In line with this pursuit, a CNF with a diffusion transformer backbone was
used. In Figure 8, the true data and the CNF proposal are shown, where it can be seen that the learned energy distributions
across all three peptides are nearly perfect. Re-weighted samples are not included as obtaining likelihoods from the CNF
requires estimating the trace of the divergence, which is often an expensive operation with a large time and memory cost.
Although many unbiased approaches for approximating the likelihood exist (Hutchinson, 1989), these methods are typically
unusable for Boltzmann generators due to their variance, which introduces bias into the weights needed for SNIS.
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Figure 8. True energy distribution and learned proposal using the DiT-based CNF. ∗The re-weighted proposal is not present because it was
too computationally expensive to compute for a sufficient number of points.
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D. Additional Results
D.1. Generated samples of peptide conformations

Samples of generated peptides Below we provide sample conformations of alanine dipeptide, alanine tripeptide, and
alanine tetrapeptide generated using both MLE training and FORT.

Figure 9. Generated conformations of alanine dipeptide across various flow-based methods (left: NSF with MLE; center left: NSF with
FORT; center right: Res–NVP with FORT; right: Jet with FORT).

Figure 10. Generated samples of various sized peptides using the most performant FORT flow (left: alanine dipeptide; center: alanine
tripeptide; right: alanine tetrapeptide).

D.2. Improved proposals using FORT for larger peptides

FORT outperforms MLE for AL3 and AL4 In Figure 11, we demonstrate that the energy distribution of the re-weighted
samples using FORT yields a more favourable energy distribution over MLE-trained flows. For the tripeptide, the results
are in strong agreement with the MD data. For the tetrapeptide, the re-weighted samples are superior than their MLE
counterparts, but have some room for improvement in perfectly matching the true MD energy distribution.
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Figure 11. Energy distribution of original and re-weighted samples generated for the most performant MLE and FORT models on alanine
tripeptide (left and center left) and alanine tetrapeptide (center right and right).
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D.3. Ramachandran plots for larger peptides

Alanine tripeptide (AL3) We demonstrate the learned distributions of the two pairs of dihedral angles that parameterize
AL4 using our best MLE-trained and FORT flows. The inability to capture the modes using MLE is elucidated, where
multiple modes appear to blend together in both sets of dihedral angles. Conversely, using FORT, most modes are accurately
captured and the general form of the Ramachandran plots conforms well to that of the true distribution obtained from MD.

−π −π
2

0 π
2 π

ϕ0

ψ
0

Ground Truth MD

−π −π
2

0 π
2 π

ϕ0

MLE

−π −π
2

0 π
2 π

ϕ0

FORT

0.0

2.0

4.0

Fr
ee

 e
ne

rg
y 

/ k
B
T

−π −π
2

0 π
2 π

ϕ1

ψ
1

−π −π
2

0 π
2 π

ϕ1

−π −π
2

0 π
2 π

ϕ1

0.0

2.0

4.0

Fr
ee

 e
ne

rg
y 

/ k
B
T

Figure 12. Ramachandran plots for the dihedral angles in AL3 (left: ground truth, middle: best MLE-trained flow, right: best FORT flow.

Alanine tetrapeptide (AL4) The findings observed with alanine tripeptide are even more pronounced with alanine
tetrapeptide, where certain modes are entirely missed when MLE-trained flows are used. With FORT, however, most modes
are accurately captured and the density distribution is in strong agreement with the ground truth data. These findings support
the utility of regression-based training over conventional MLE for applications to equilibrium conformation sampling.

D.4. Targeted free energy perturbation

Generating regression targets Using the available MD data, two conformations of alanine dipeptide were selected:
βplanar and αR (Ghamari et al., 2022). The (ϕ, ψ) ranges for the βplanar conformation were chosen as (−2.5,−2.2) and
(2.3, 2.6), and for the αR conformation as (−1.45,−1.2) and (−0.7,−0.4), respectively. The dataset was then truncated to
82,024 source-target conformation pairs, which were used to compute the OT pairing and generate an invertible map. These
pairs were subsequently trained using FORT, with the same model configurations and settings outlined in Table 6.
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Figure 13. Ramachandran plots for the dihedral angles in AL4 (left: ground truth, middle: best MLE-trained flow, right: best FORT flow.
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