
Under review as submission to TMLR

Data Dependent Generalization Bounds for Neural Networks
with ReLU

Anonymous authors
Paper under double-blind review

Abstract

We try to establish that one of the correct data dependent quantities to look at while trying
to prove generalization bounds, even for overparameterized neural networks, are the gradients
encountered by stochastic gradient descent while training the model. If these are small, then
the model generalizes. To make this conclusion rigorous, we weaken the notion of uniform
stability of a learning algorithm in a probabilistic way by positing the notion of almost sure
(a.s.) support stability and showing that algorithms that have this form of stability have
generalization error tending to 0 as the training set size increases. Further, we show that
for Stochastic Gradient Descent to be a.s. support stable we only need the loss function
to be a.s. locally Lipschitz and locally Smooth at the training points, thereby showing low
generalization error with weaker conditions than have been used in the literature. We then
show that Neural Networks with ReLU activation and a doubly differentiable loss function
possess these properties. Our notion of stability is the first data dependent notion to be able
to show good generalization bounds for non-convex functions with learning rates strictly
slower than 1/t at the t-th step. Finally, we present experimental evidence to validate our
theoretical results.

1 Introduction

The low generalization error of Deep neural networks is now a well known empirical result (c.f. Jin et al.
(2020)), but theoretical explanations of this behaviour are still unsatisfactory. Chatterjee & Zielinski (2022)
articulated the main question as follows: why (or when) do neural networks generalize well when they have
sufficient capacity to memorize their training set? Although a number of formalisms have been used in
an attempt to derive theoretical bounds on the generalization error, e.g., VC dimension (Vapnik, 1998),
Rademacher complexity (Bartlett & Mendelson, 2003) and uniform stability (Bousquet & Elisseeff, 2002) but,
as Zhang et al. (2017) showed, all of these fail to resolve the conundrum thrown up by overly parameterized
deep neural networks. One clear failing identified in Zhang et al. (2017) was that many of these notions
were data independent. A simple counterexample provided by Zhang et al. (2017) clearly established that a
data independent notion was bound to fail to distinguish between data distributions on which deep NNs will
generalize well and those on which they will not. Subsequent research on generalization has tried to tackle the
question that Chatterjee & Zielinski (2022) formulated as follows: For a neural network, is there a property of
the dataset that controls the generalization error (assuming the size of the training set, architecture, learning
rate, etc are held fixed)? We give an affirmative answer to this question in one direction: We identify data
dependent quantities, namely the Training Lipschitz constant (LS) and the Test Lipschitz constant (Lg),
that control the generalization error bound of an NN trained using SGD. In simple terms, we show that
if the data distribution is such that the gradients computed by SGD during training and the gradients on
the test points are bounded, the model will generalize well. Our techniques are able to rigorously handle
nonlinearities like RELU and work for non-convex loss functions. We also allow for a learning rate that is
asymptotically strictly slower than θ(1/t) at the t-th step of SGD.

Our work is within the theoretical paradigm of stability. We asked the question, Is there an appropriate
version of stability that is flexible enough to incorporate dataset properties and can also adapt to most neural
networks? In a partial answer to this question, we introduce a notion called almost sure (a.s.) support

1

Under review as submission to TMLR

Paper Number of
Epochs

Step Size Neural Network
Type

Key Assumptions

Hardt et al. (2016) O(mc), c > 1/2 O(1/t) No restrictions No data dependence.

Kuzborskij &
Lampert (2018)

1 epoch O(1/t) No restrictions Bounded Hessian

Lei & Ying (2020) O(1) O(1/t) No restrictions Strongly convex ob-
jective but non con-
vex loss function

Charles &
Papailiopoulos
(2018)

O(m) O(1) 1-layered networks
with leaky ReLU or
linear

PL and QG growth
conditions

Lei et al. (2022) O(m) O(1) 1-layered networks
with smooth activa-
tion functions

Smooth loss function,
Bound in expecta-
tion, lower bound on
number of parame-
ters n > m

3
(α+1) , α >

0

Our Paper O(ln m) O
(

1/t1− c
ρ(τ,m)

)
,

c ∈ (0, 1)
No restrictions Bounded Spectral

Complexity

Table 1: Recent related works addressing the question of generalization error and stability of neural networks
in comparison to the results in this paper.

stability which is a data dependent probabilistic weakening of uniform stability. Following the suggestions
made by Zhang et al. (2017), data dependent notions of stability were defined in Kuzborskij & Lampert
(2018) and Lei & Ying (2020) as well. However, a.s. support stability is a more useful notion on three counts:
it can handle SGD learning rates that are strictly slower than θ(1/t), its initial learning rate is much higher,
and, while these past works bound generalization error in expectation, a.s. support stability can be used
to show high probability bounds on generalization error. But, over and above these technical benefits, our
main contribution here is the identification of the data dependent Lipschitz constants as a key indicator of
generalization. A brief description of recent related works are summarized in table 1.

Technically, our approach has several ingredients. We begin by widening the scope of the generalization
results of Feldman & Vondrak (2018; 2019a) by showing that they hold for algorithms that have a.s. support
stability. To do so, we prove a mild generalization of McDiarmid’s Inequality that could be of independent
interest. Secondly, we show that when SGD is used to minimize a non-convex function, its a.s. support
stability can be bounded in terms of the gradients encountered during the training and testing. This naturally
leads to the idea of the two data dependent constants mentioned above, the Training and Test Lipschitz
constants. Thirdly we show that NN with ReLU activation will be locally Lipschitz and smoothness (w.r.t. to
the parameter set) with probability 1 as long as the unknown distribution places probability 0 on sets of
Lebesgue measure 0, a constraint that holds for most natural data distributions. This directly implies the
existence of the constants that control the rate of convergence to 0 of the generalization error. The Training
Lipschitz constant (LS) depends on the training set picked, and the Test Lipschitz constant (Lg) is a function
of data distribution. We show bounds on these constants based on the spectral property of NN, arguing
that although these constants are always small for small sized networks, they could also be small for large
networks depending on the parameter (weights) values. Our theory can also help explain why the Neural
Tangent Kernel generalizes well because of a good bound on Lipschitz constants, although we do not go into

2

Under review as submission to TMLR

detail in this work. We also consider the randomly labelled example suggested by Zhang et al. (2018) and
show that the assumption of bounded Lipschitz constants w.r.t training set size breaks. We show that the
Lipschitz constants are high and keep increasing with the training set size of this bad distribution. Thereby
our theory does not guarantee any generalization in these cases, which is as it should be.

We note that although we can say that when the data dependent Training and Test Lipschitz constants
are small, our results guarantee good generalization performance, we do not establish that this condition is
necessary.

In particular our contributions are:

• In Section 3 we define a new notion of stability called a.s. support stability and show in Theorem 3.2 that
algorithms with a.s. support stability o(1/ log2 m) have generalization error tending to 0 as m → ∞ where m
is the size of the training set.

• In Section 4 we show that if we run stochastic gradient descent on a parameterized optimization function
that is only locally Lipschitz and locally smooth in the parameter space and has data dependent Training and
Test Lipschitz constants that are bounded with probability 1, then the replace-one error is bounded even if
the training is conducted for c log m epochs. This implies (Corollary 4.5) that any learning algorithm trained
this way has a generalization error that goes to 0 as m → ∞. If SGD is trained for τ epochs, the slowest
learning rate for which our result holds is α0/t1−ρ(τ,m) at step t where ρ(τ, m) is O (ln ln m/ (ln τ + ln m)) for
an appropriately selected value of α0. For all reasonable values of m and τ , this marks a significant slowing
down of the training rate from θ(1/t).

• In Section 5.1 we show that the output of an NN with ReLU activations when used with a doubly
differentiable loss function is locally Lipschitz and locally smooth in the parameter space for all inputs except
those from a set of Lebesgue measure 0 (Theorem 5.2). We also show a spectral norm based bound for
Training and Test Lipschitz constants (Lg and LS). We then experimentally verify our theory showing that
the bounded Lipschitz condition holds and we also plot the generalization error.

• Then in Section 5.2 we experimentally analyze the Test Lipschitz constant (Lg) for random labelling
setting suggested by Zhang et al. (2018) and conclude the Test Lipschitz constant is actually not bounded
and increase with the training set size. We relate this to the high variance of the loss function in random
labelling case and hence provide an explanation of which this example cannot be proved, incorrectly, to
generalize using our methods.

2 Related Work

Although NNs are known to generalize well in practice, many different theoretical approaches have been
tried without satisfactorily explaining this phenomenon, c.f., Jin et al. (2020); Chatterjee & Zielinski (2022).
We refer the reader to the work of Jin et al. (2020) which presents a concise taxonomy of these different
theoretical approaches. Several works seek to understand what a good theory of generalization should look
like, c.f. Kawaguchi et al. (2017); Chatterjee & Zielinski (2022). Our own work falls within the paradigm
that seeks to use notions of algorithmic stability to bound generalization error that began with Vapnik &
Chervonenkis (1974) but gathered steam with the publication of the work by Bousquet & Elisseeff (2002).

The applicability of the algorithmic stability paradigm to the study of generalization error in NNs was
brought to light by Hardt et al. (2016) who showed that functions optimized via Stochastic Gradient Descent
have the property of uniform stability defined by Bousquet & Elisseeff (2002), implying that NNs should
also have this property. Subsequently, there was renewed interest in uniform stability and a sequence of
papers emerged using improved probabilistic tools to give better generalization bounds for uniformly stable
algorithms, e.g., Feldman & Vondrak (2018; 2019a) and Bousquet et al. (2020). Some other works, e.g.
Klochkov & Zhivotovskiy (2021), took this line forward by focussing on the relationship of uniform stability
with the excess risk. However, the work of Zhang et al. (2017) complicated the picture by pointing out
examples where the theory suggests the opposite of what happens in practice. This led to two different
strands of research. In one thread an attempt was made to either discover those cases where uniform stability,
(e.g. Charles & Papailiopoulos (2018)), or to show lower bounds on stability that ensure that uniform stability

3

Under review as submission to TMLR

does not exist, (e.g. Zhang et al. (2022)). The other strand of research, our work falls in this category, focuses
on weakening the notion of uniform stability, specifically by making it data dependent, thereby following
the suggestion made by Zhang et al. (2017). Kuzborskij & Lampert (2018) defined “on-average stability”
which is weaker than our definition of a.s. support stability. Consequently, their definition leads to a weaker
in-expectation bound on the generalization error where the expectation is over the training set as well as the
random choices of the algorithm. Our Theorem 3.2, on the other hand, provides a sharp concentration bound
on the choice of the training set. Lei & Ying (2020) define an “on-average model stability” that requires the
average replace-one error over all the training points to be bounded in expectation. While their smoothness
requirements are less stringent, the problem is that their generalization results are all relative to the optimal
choice of the weight vector, which implies a high generalization error in case of early stopping.

3 a.s. Support Stability and Generalization

In this section, we present a weakening of the notion of uniform stability defined by Bousquet & Elisseeff
(2002) and show that exponential concentration bounds on the generalization error can be proved for learning
algorithms that have this weaker form of stability.

3.1 Terminology

Let X and Y be the input and output spaces respectively. We assume we have a training set S ∈ Zm of size
m where each point is chosen independently at random from an unknown distribution D over Z ⊂ X × Y.
For z = (x, y) ∈ Z we will use the notation xz to denote x and yz to denote y. Let R be the set of all finite
strings on some finite alphabet, and let us call the elements of R decision strings and let us assume that
there is some probability distribution Dr according to which we will select r randomly from R. Further, let
F be the set of all functions from X to Y. In machine learning settings we typically compute a map from
Zm × R to F . We will denote the function computed by this map as AS,r. Since the choice of S and r are
both random, AS,r is effectively a random function and can also be thought of as a randomized algorithm.

Given a bound M > 0, we assume that we are given a bounded loss function ℓ : Y × Y → [0, M]. We define
the risk of AS as

R(A, S, r) = Ez∼D [ℓ(AS,r(xz), yz)] ,

where the expectation is over the random choice of point z according to data distribution D. Note that the
risk is a random variable since both S and r are randomly chosen. The empirical risk of AS is defined as

Re(A, S, r) = 1
|S|
∑
z∈S

ℓ(AS,r(xz), yz).

We are interested in bounding the generalization error

|R(A, S, r) − Re(A, S, r)| .

3.2 A Weakening of Uniform Stability

Given S = {Z1, . . . , Zm} chosen randomly according to Dm, we choose {Z1+m, . . . , Z2m} also from Dm

independently from S and, for each i ∈ [m], we define

Si = {Z1, . . . , Zi−1, Zi+m, Zi+1, . . . , Zm}.

Definition 3.1 (Almost (Sure) Support Stability). We say an algorithm AS,r has η-almost support stability
β with respect to the loss function ℓ(·, ·) if for Z1, . . . , Z2m chosen i.i.d. according to an unknown distribution
D defined over Z,

∀i ∈ [m] : ∀z ∈ supp (D) : Er

[
|ℓ(AS,r(xz), yz) − ℓ(ASi,r(xz), yz)|

]
≤ β

with probability 1 − η. If η = 0 then we say the algorithm has almost sure (a.s.) support stability β.

4

Under review as submission to TMLR

We note that this notion weakens the notion of uniform stability introduced by Bousquet & Elisseeff (2002)
by requiring the bound on the difference in losses to hold with a certain probability. This probability is
defined over the random choices of Z1, . . . , Z2m. Besides the condition on the loss is required to hold only
for those data points that lie in the support of D. These conditions make almost support stability a data
dependent quantity on the lines of the suggestion made by Zhang et al. (2017). We also observe that almost
support stability is comparable to but stronger than the hypothesis stability of Kearns & Ron (1999) as
formulated by Bousquet & Elisseeff (2002).

3.3 Exponential Convergence of Generalization Error

A.s. support stability can be used in place of uniform stability in conjunction with the techniques of Feldman
& Vondrak (2019a) to give guarantees on generalization error. In particular, we can derive the following
theorem.
Theorem 3.2. Let AS,r be an algorithm that is symmetric in distribution and has a.s. stability β with
respect to the loss function ℓ(·, ·) such that 0 ≤ ℓ(AS,r(xz), yz) ≤ 1 for all S ∈ Zm, for all r ∈ R and for all
z = (xz, yz) ∈ Z. Then, there is a constant c > 0 s.t. for any m ≥ 1 and δ ∈ (0, 1), with probability 1 − δ,

Er [R(S, r) − Re(S, r)] ≤ c

(
β log(m) log

(m

δ

)
+
√

log(1/δ)
m

)
.

Proof outline. We give a high-level outline here. Feldman & Vondrak (2019b) used two steps to get a better
generalization guarantee. The first step is range reduction, where the range of the loss function is reduced. For
this, they define a new clipping function in Lemma 3.1 Feldman & Vondrak (2019a) which preserves uniform
stability and hence it will also preserve a.s. support stability. They also use uniform stability in Lemma
3.2 Feldman & Vondrak (2019a) where they show the shifted and clipped function will still be stable which is
done by applying McDiarmid’s inequality to β sensitive functions. Here use a modification of McDiarmid’s
Inequality (Lemma A.2 given in Appendix A) to get bounds for a.s. support stability. The second step is
dataset size reduction (as described in Section 3.3 Feldman & Vondrak (2019a)) which will remain the same
for a.s. support stability as this only involves stating the result for a smaller dataset and the probability, and
then taking a union bound. Therefore both steps of the argument given in Feldman & Vondrak (2019a) go
through for a.s. support stability.

4 Proof of a. s. Support Stability of Stochastic Gradient Descent

A large family of machine learning algorithms follow a paradigm in which the learned function is parameterized
by a vector w ∈ Rn for some n ≥ 1, i.e., we have some fixed function g : Rn × X → Y. The training set is
used to learn a suitable parameter vector w ∈ Rn such that the value g(w, xz) is a good estimate of yz for all
z ∈ Z. This value of w is learned by running Stochastic Gradient Descent (SGD) using a training set drawn
from the unknown distribution. We will say that the size of the training set is m and the algorithm proceeds
in epochs of m steps each. The parameter vector at step t being denoted wt for 0 ≤ t ≤ τ · m, where τ is
the total number of epochs during training. To frame the learned function output by this algorithm in the
terms defined in Section 3.1, the random decision string r consists of the pair (w0, (π0, . . . , πτ−1)), i.e., the
random initial parameter vector w0 from which SGD begin and the set of τ random permutations used in
the τ epochs.

4.1 Some Properties of Parameterized Functions

In Hardt et al. (2016), proving that the learning algorithm derived by SGD is stable requires smoothness
and Lipschitz properties of f , but only for partial derivatives taken on Rn, i.e., on the parameter space. The
requirement there is that every function in the family of functions {f(·, z) : z ∈ Z} is smooth and has a
bounded Lipschitz constant. Our key insight is that this requirement is stronger than required. All we need
is that the functions induced by the data points that we pick to train SGD have these properties. We now
present some definitions that encapsulate this idea.

5

Under review as submission to TMLR

Definition 4.1 (Almost Locally Parameter-Lipschitz functions). Given a set Ω defined over Z, a parameterized
function f : Rn × Z → R is said to be β-almost Ll locally Lipschitz w.r.t Ω if for any w ∈ Rn there exists
constants Ll > 0 and ϵ > 0 such that, with probability β (over the choice of z), for all w′ ∈ Rn, ∥w′ − w∥ < ϵ
implies

|f(w′, z) − f(w, z)| ≤ Ll∥w′ − w∥.

Note that Ll can depend on z. If β = 1 then we say that f is almost surely locally Ll-parameter Lipschitz
(a.s. Ll-LPL for short).
Definition 4.2 (Almost Locally Parameter-Smooth functions). Given a set Ω defined over Z, a parameterized
function f : Rn × Z → R is said to be γ-almost Kl-Parameter Smooth w.r.t Ω for some γ ∈ (0, 1] if for any
w ∈ Rn there exist constants Kl > 0 and ϵ > 0 such that, with probability γ (over the choice of z), for all
w′ ∈ Rn, ∥w′ − w∥ < ϵ implies

∥∇f(w′, z) − ∇f(w, z)∥ ≤ Kl∥w′ − w∥.

Note that Kl can depend on z. If γ = 1 then we say that f is almost surely locally Kl-parameter smooth (a.s.
Kl-LPS for short).

If the function (or its gradient) is locally bounded, and, if we only look at this function at a finite number of
points (w), we get a “global” property within this finite set of points:
Lemma 4.3. Given f : Rn × Z → R we have that (1) if f is bounded and is locally Lipschitz at a finite set
of points A ⊂ Rn and for a set Ω ⊆ Z, then there is an L > 0 such that for every pair w, w′ ∈ A and z ∈ Ω

|f(w, z) − f(w′, z)| ≤ L∥w − w′∥, and

2) if ∇f is bounded and is locally smooth at a finite set of points A ⊂ Rn and for a set Ω ⊆ Z, then there is
a K > 0 such that for every pair w, w′ ∈ A and z ∈ Ω

∥∇f(w, z) − ∇f(w′, z)∥ ≤ K∥w − w′∥.

The proof is in Appendix B.

Discussion: Local properties imply “Global” properties. SGD trained on a finite training set will
encounter a finite number of parameter vectors in its execution, and hence Lemma 4.3 can be used to say
that the local properties of a bounded Lipschitz constant and bounded smoothness can be extended to the
entire set of parameters encountered by SGD. Specifically, we use the lemma in two ways.

• Setting Ω = S, and taking A to be the set of weights encountered during training over all possible
permutations of S, we get the Training Lipschitz constant LS and the Training Smoothness constant
KS .

• Setting Ω = supp (D) and taking A to be the set of final parameter vectors produced by SGD for
each of the possible permutations, we get the Test Lipschitz constant Lg which is applicable for each
test point.

Note that although we use the term “constant” in their names, all these quantities are random variables that
depend on the random choice of the initial weight w0.

4.2 a.s. Support Stability of SGD

We now work towards the a.s. support stability of SGD. First, we state a theorem that bounds the replace-one
error of SGD up to a certain number of epochs.
Theorem 4.4. We are given a labelled data set Z and probability distribution D defined over it. Suppose we
have a parameterized loss function f : Rn × Z → R that is a.s. Ll-LPL and a.s. Kl-LPS w.r.t D. Suppose
further for some integer τ > 0, for each i ∈ [m] we run Stochastic Gradient Descent on f for τ epochs

6

Under review as submission to TMLR

using a training set S of size m chosen i.i.d. according to D with random choices r and, parallelly, with the
same set of random choices r, on a set Si wherein the i-th data point zi of S has been replaced by another
data point z′

i chosen from D independent of all other random choices and with a decreasing learning rate
of αt ≤ α0/t(1−ρ(τ,m)), ρ(τ, m) = ln ln m

ln τ+ln m . Then, if for all t > 0, we denote by wt and w′
t the parameter

vectors obtained while training with S and Si respectively, we have constants LS, KS and Lg as the Training
Lipschitz constant, Training Smoothness constant and Test Lipschitz constant such that with probability 1
over z

Er [f(wτm, z) − f(w′
τm, z)] ≤ Er

[
F (τ) · U(α0, KS , ρ(τ, m))

m

(
1− α0KS

ρ(τ,m)

)]
, (1)

where U(α0, KS , ρ(τ, m)) ≤ 1 + 1
KSα0

, and as α0 → 0, U(α0, KS , ρ(τ, m)) → 1, and also F (τ) := 2τ α0 · LSLg.

Note that here Expectation will be over random variables Lg, LS and KS which are a function of random
initialization of initial weights (w0).

Proof outline. The proof follows the lines of the argument presented by Hardt et al. (2016) with the difference
that we allow for a probabilistic relaxation of the smoothness conditions in line with our definition of a.s.
stability. Also, note that we have to account for an expectation over the random string r and that we have
been able to extend the argument to multiple epochs which was not possible in Kuzborskij & Lampert (2018).
The complete proof of Theorem 4.4 is in Appendix B.

Data dependence with Training Lipschitz constant and Test Lipschitz constant. A key feature of the bound
presented in equation 1 is that the dependence on the data is expressed through the data dependent Training
Lipschitz constant LS and Test Lipschitz constant Lg. Training Lipschitz constant depends on the gradients
at training points and the replacement point z′

i which is also picked from the data distribution and Training
Lipschitz constant depends on the gradients of the trained network calculated at points from distribution. In
general, we expect that if the unknown distribution D has a low variance then the Lipschitz constants will
be small. Further, a line of research in the optimization literature has shown that the gradients associated
with SGD decay as training proceeds, even for non-convex loss functions, c.f. Section 4 of Bottou et al.
(2018). Therefore we can conclude that the a.s. stability bound of equation 1 is closely connected to the data
distribution and is likely to be useful for cases where SGD returns a meaningful solution and vacuous for bad
cases like the one presented by Zhang et al. (2017).
Corollary 4.5. For a learning algorithm that is symmetric in distribution and trained as described in the
statement of Theorem 4.4 under the condition that KS is a constant ∀r w.r.t. m and Er [LgLS] is also
constant w.r.t m then there is a constant c ∈ (0, 1) that depends on α0 and KS such that for training at most
till c log m epochs the expectation of the generalization error of the algorithm taken over the random choices

of the algorithm decreases as O

(
log(m)2

mϵ +
√(

log(m)
m

))
with probability at least 1 − 1/m over the choice of

the training set if α0 < ρ(τ, m)/(KS), where ϵ > c and ∈ (0, 1) is some constant.

Proof. It is easy to check from Theorem 4.4 that with the conditions given in the statement of Corollary 4.5
the learning algorithm has a.s. support stability β where β is o(1/m) if α0 < ρ(τ, m)/KS .

We can therefore apply Theorem 3.2 with δ = 1/m to get the result.

We would like to highlight the importance of ρ(τ, m), notice that ρ(τ, m) = O
(

ln ln m
ln τ+ln m

)
so it is decreasing in

m but very slowly, so because of this even for datasets with say 106 points, it turns out to be ρ(τ, m) = 0.19,
so this helps us achieve a descent value of initial learning rate α0 = 0.19 and also a much slower decay of
learning rate αt = α0/t0.81. If we directly compare this corollary with Theorem 4 of Kuzborskij & Lampert
(2018), we note that their analysis requires an αt = α0/t and α0 = O

(
1/ ln(m)2) which is a very steep decay

in learning rate and a very small value of alpha, just to compare for m = 106, for Kuzborskij & Lampert
(2018) α0 = 0.005. Also, their analysis bounds generalization error only up to the end of a single epoch
whereas we can bound the error well beyond that. Kuzborskij & Lampert (2018) also require the Hessian to

7

Under review as submission to TMLR

have a bounded Lipschitz constant, i.e., the third derivative of the loss function has to be bounded. We do
not need any such constraint.

5 Neural Networks with ReLU Activation

The main result of this section presents the conditions required for low generalization error for Neural
Networks with ReLU activation:
Theorem 5.1. For a neural network with ReLU activation and 1 output neuron, trained on set S ∈ Dm using
SGD for τ epochs, where D is over Rd × Y, such that Y is countable and for each y ∈ Y we get a countable
set {x ∈ Rd : PrD {lab(x) = y} > 0}, where lab(x) is label of x. For a doubly differentiable loss function with
bounded first and second order derivatives and learning rate αt = α0/t(1−ρ(τ,m)), where ρ(τ, m) = ln ln m

ln τ+ln m
if the data points of S and the spectral norms of weight matrices explored by SGD are bounded, then KS is
constant w.r.t m for all r and Er [Lg · LS] is also constant w.r.t. m, with c > 0 such that

Er [|R(S, r) − Re(S, r)|] ≤ c

(
Er [F (τ)] · U(α0, KS , ρ(τ, m)) log(m)2

m

(
1− α0KS

ρ(τ,m)

) +
√

log(m)
m

)
,

with probability at least 1−1/m, where U(α0, KS , ρ(τ, m)) ≤ 1+ 1
α0KS

, α0 → 0 implies U(α0, KS , ρ(τ, m)) → 1
and F (τ) := 2τ α0 · LgLS.

Note that for some c1 log(m) epochs and with an initial learning rate of α0 < ρ(τ, m)/KS for some c1 ∈ (0, 1)
the RHS decreases as m increases. It is important to note that Lg is the constant that depends on the actual
distribution D and is calculated for a trained neural network (i.e. at wτm).This aligns with the notion that if
the network has reached a “good enough” minima then the gradient values should be less and hence this
will show better generalization. Also, LS and KS are constants that depend on the training set S. This
dependence on S is also crucial because if the model can’t fit the training set properly then these values will
be high and reflect a bad generalization. Next in Section 5.1, we first establish that the theory of a.s. support
stability applies to NNs under conditions specified, then we prove the above theorem along with empirical
validation.

5.1 Support Stability of Neural Networks with ReLU Activation

The key to showing the support stability of NNs with ReLU is to establish that they are locally parameter-
Lipschitz and locally parameter-smooth. First, we show the existence of these constants and then we will
show an upper bound under some reasonable assumptions.
Theorem 5.2. For every w ∈ Rn, a doubly differentiable loss function, ℓ : R × R → R, applied to the output
of a NN with ReLU activation is locally parameter-Lipschitz and locally parameter-smooth for all x ∈ Rd

except for a set of measure 0.

Proof outline. The proof of this theorem is based on the argument that for a given w a point of discontinuity
exists at a given neuron if the input x lies in the set of solutions to a family of equations, i.e., in a lower
dimensional subspace of Rd. This proof is an adaption of an idea of Milne (2019) and can be found in
Appendix C.

Theorem 5.2 begs the question: How large are these Lipschitz and smoothness constants? We provide some
general bounds that can be improved for specific architectures:
Proposition 5.3. Suppose we have a fully connected NN of depth H + 1, with ReLU activation at the inner
nodes. Then, if the spectral norms of weight matrices are bounded for every layer i.e., ∥W i∥σ is bounded
∀i ∈ [H], and the size of each layer be {l0, . . . , lH} and the distribution of dataset is normalized with ∥x∥2 ≤ 1
then,

Lg ≤

(
H∏

k=1
∥W k∥σ

)
× A(M, W)1/2

8

Under review as submission to TMLR

KS ≤

(
H∏

k=1
∥W k∥σ

)
× A(M, W)

where

A(M, W) =
H∑

l=1

∥M l∥2
2,2

∥W l−1∥2
σ · ∥W l∥2

σ · ∥W l+1∥2
σ

where (i, j)th element of matrix M l[i, j] = ∥M ′(l, i, j)∥σ, and where M ′(l, i, j) is a matrix such that (p, q)th

element is M ′(l, i, j)[p, q] = w
(l+1)
j,p w

(l−1)
q,i . Note that this equation holds for both Training Lipschitz constant

LS and Test Lipschitz constant Lg.

The proof of the proposition is in Appendix C. The bound on Lipschitz constants should be compared to the
bounds given in the context of Rademacher complexity by Bartlett et al. (2017) and Golowich et al. (2018).
Our bound is related to the spectral complexity and can potentially be independent of the size of the network.
We are now ready to prove our main theorem.

Proof of Theorem 5.1. Theorem 5.2 tells us that a NN with ReLU activations is locally parameter-Lipschitz
and locally parameter-smooth. From Proposition 5.3 we see that the boundedness of the first and second
derivatives of the loss function and the boundedness of the spectral norm of weight matrices and data points
ensures that the Lipschitz constants and smoothness constants associated with the NN’s training are bounded
w.r.t. m. With all these in place, we can apply Theorem 4.4 to get the a.s. support stability followed by
Theorem 3.2 to get the desired result.

5.1.1 Experimental Validation of Results

Here we will experimentally show that the Training Lipschitz constant (LS), Test Lipschitz constant (Lg)
and Training Smoothness constant (KS) that we reasoned with are indeed bounded, and that the theoretical
upper bound that we derived for the generalization error of a neural network holds in practice. For simplicity
in this experiment, we assume Training Lipschitz constant to be a good proxy for Test Lipschitz constant
(Lg = LS).

Setup. For our experiments we use MNIST and FashionMNIST datasets. In both datasets, we randomly
selected 20, 000 training and 1, 000 test points. All experiments were conducted using a fully connected feed
forward neural network with a single hidden layer and ReLU activation. We train the model using SGD
(batch size = 1), with cross-entropy loss, starting with randomly initialized weights. As suggested in our
analysis we use a decreasing learning rate αt = α0

t . In each epoch, we consider a random permutation of the
training set. Training Lipschitz constant and Training Smoothness constant are computed by calculating the
norm of gradients and Hessian across the training steps and taking their max.

Experiment 1. Our first experiment is aimed towards establishing that the Training Lipschitz constant (LS)
and Training Smoothness constant (KS) values estimated using local values at each step are bounded. Figure 1
summarizes the results of these experiments over MNIST and FashionMNIST datasets (α0 = 0.001). The plots
contain the maximum of the local parameter Lipschitz and smoothness values obtained after running each
experiment 10 times with random weight initialization. These results support our Theorem 5.2 since the upper
bound values quickly stabilize and do not grow with the size of the training set in both datasets. Similarly, the
bounded smoothness constant supports our constraint on the learning rate, α0 ≤ ρ(τ,m)

KS
, ρ(τ, m) = ln ln m

ln τ+ln m .
We find LS to be 8.1174 (MNIST) & 12.5737 (FashionMNIST), and KS to be 58.185 (MNIST) and 102.7096
(FashionMNIST).

Experiment 2. We now turn our attention to the experiment to support our main result, i.e., the empirical
generalization error estimated using validation set is upper bounded by our theoretical upper bound. We first
split each dataset in a 20:1 ratio into training and validation sets, and train the model at varying sizes of

9

Under review as submission to TMLR

0 5000 10000 15000 20000
Number of Datapoints

10

20

30

40

50

60
Em

pi
ric

al
 m

ax

Training Lipschitz constant
Training Smoothness constant

(a) MNIST

0 5000 10000 15000 20000
Number of Datapoints

20

40

60

80

100

Em
pi

ric
al

 m
ax

Training Lipschitz constant
Training Smoothness constant

(b) FashionMNIST

Figure 1: Experiment 1, Maximum of the Lipschitz and smoothness constants at every p (= 20) interval of
updates of SGD (we plot both the running average and the highest value found so far). Notice that these
constants have a clear upper bound throughout the training process.

0 5000 10000 15000 20000
Number of Datapoints

10 7

10 5

10 3

10 1

101

Ge
ne

ra
liz

at
io

n
er

ro
r Theoretical Upper Bound

Observed Generalization Error

(a) MNIST

0 5000 10000 15000 20000
Number of Datapoints

10 2

100

102
Ge

ne
ra

liz
at

io
n

er
ro

r Theoretical Upper Bound
Observed Generalization Error

(b) FashionMNIST

Figure 2: Experiment 2, Comparison of empirical generalization error (red) vs. theoretical upper bound
(blue) with varying training set size for different datasets.

training sets. We empirically compute the generalization error at each training set size using the validation
set. Figure 2 compares this empirical generalization error (in red) with the theoretical upper bound (in blue).
From these results, we can see that our bound decreases along with the generalization error thus empirically
validating our reasoning. Clearly, the bound is not as tight as we would like it to be. Our conjecture is that
this arises from the fact that we use a single value of LS as an upper bound for the gradients encountered
during the course of the training. Our framework is flexible in the sense that we can use it with a more fine
grained analysis of the gradients averaged over time. This is likely to achieve a better bound. We leave this
direction for future work.

nn

5.2 Random Labelling Case

In making their case against the applicability of uniform stability as a tool for theoretically establishing the
good generalization properties of Neural Networks, Zhang et al. (2017) presented the following classification
problem: Given points picked from Euclidean space using some well-behaved distribution, say a Gaussian, each
point was assumed to have a class label picked uniformly at random from a finite set of labels independent
of all other points. Clearly, any classification algorithm trained on a finite training set will have ω(1)
generalization error for this problem. We now demonstrate that our results do not imply good generalization

10

Under review as submission to TMLR

(a) Increasing Lg for random label MNIST (b) Decreasing Lg for standard (non random) MNIST

Figure 3: Experiment 3, Test Lipschitz constant plot as training set size increases

for this problem. Specifically, we show empirically that the assumption of Test Lipschitz constant (Lg) being
independent of m breaks in this case and this “constant” actually increases with m.

Setup. We pick images from the 0 and 1 label class of MNIST dataset. For random labelling case, we
assign random labels to all the points. We then randomly sample a test set T (|T | = 50). We take a single
hidden layer (128 neurons) fully connected neural network having ReLU activation in the hidden layer. We
take the loss function as l(ŷ, y) = 1 − Softmax(c · ŷ, y) where c = 6. We use a constant learning rate of 0.003,
batch size of size 8.

Experiment 3. The experiment proceeds by selecting initial random weights for a model say w0 (we do
this 10 times). Then for every initialization we pick training set S from our modified dataset (we do this
for 5 times). Now for every training set, we train the model either till accuracy is ≥ 98% or till 500 epochs
whichever is reached first. Now we calculate the loss i.e. f(r, S, z) and the gradient ∇wf(r, S, z) for all z ∈ T .
For the Test Lipschitz constant we do Lg ≃ maxz∈T {∥∇wf(r, S, z)∥}. In figure 3a we can clearly see that
the Test Lipschitz constant Lg scales as the size of the training set (m) increases. On the contrary for the
standard (non-random) dataset the Test Lipschitz constant Lg shows a decreasing trend with m see figure 3b.
Therefore we can expect that in the random labelling case, the upper bound in Theorem 5.1 becomes so large
as to become vacuous.

Discussion. We note that the random labelling example has the property that the variance over the choice
of training sets of the loss of any algorithm, V arS [f(r, S, z)], is bound to be high. One possible direction
for theoretically showing that this implies that the Lipschitz constants are likely to be high is by using
Poincare-type inequalities that show that the norm of the gradients of a function of a random vector is lower
bounded by the variance of the function. We do not pursue this direction further here, but we point out that
it may help develop a general theory for the limitations of what can be learned using parametrized methods
trained using gradient descent methods.

5.3 Discussion on the Applicability of Our Results

• The NTK setting. In the Neural Tangent Kernel (NTK) setting, kernel regression is carried out via the
so-called NTK. The NTK itself can be shown to be essentially independent of the parameters and hence its
norm can be controlled. At the same time the NTK is shown to be a good approximation of a kernel that is
computed from the gradients of the parameters. Hence the empirically observed good generalization properties
of NTK can be derived using our theory by performing a more careful analysis than what Proposition 5.3
implies. Since this analysis would take us far outside the scope of the current paper, we do not include it
here, leaving it for future work.

11

Under review as submission to TMLR

• Removing the fully connectedness constraint. Although Theorem 5.1 is stated for a fully connected network,
it can be applied to networks like CNNs which have partially connected convolutional layers with intermediate
pooling and normalization layers (e.g., LeNet, AlexNet, etc.). In such cases, the symmetry in distribution
condition required for Theorem 3.2 holds as long as the training set is chosen i.i.d. from the unknown
distribution.

• Adding regularization terms to the loss function. Several popular regularizers, the ℓ2 regularizer being a
prominent example, are doubly differentiable and therefore Theorem 5.1 can be applied when such regularizers
are used along with a doubly differentiable loss function.

• Activation functions apart from ReLU. We present a comprehensive treatment of ReLU activation but
that does not mean that our results are restricted to this kind of activation. Non-linearities like max-pool
can also be handled in our framework by proving that, like with ReLU, the points of discontinuity of such a
non-linearity also lie in a set of Lebesgue measure 0.

• The case of multiple outputs Although we state the Theorem 5.1 for the case of a NN with a single output,
it is not difficult to extend the technique to cover the case of multiple outputs.

What about other distributions? The data dependent Training and Test Lipschitz constants turns out to be
the deciding factor of generalization error. But our analysis is limited to the bounds we derive for them.
There is a requirement for a more fine-grained analysis of Training and Test Lipschitz constants and we
believe that optimizing these data dependent Lipschitz constants will be the right direction to proceed. This
may be made possible by looking at the network structures, the data distribution and the training set in
more detail. We hope that the polynomial characterization of the NN presented in Section C.1.2 will help
this process. We conjecture that it may be able to show that for certain distributions the constants actually
improve (decrease) as the training proceeds, resulting in a much slower decay of learning rate and this could
lead to a proof of a.s. support stability in these cases.

6 Conclusion

We have shown the data dependent quantities which derive the generalization error for NNs. We devised
a theoretical framework for using algorithmic stability, introduced the data distribution part and proved
generalization bounds for NNs with ReLU nonlinearities. We feel that it is possible to prove stronger results
in this framework than the ones we have presented here, and more widely applicable ones. Immediate lines of
research that suggest themselves are to apply our methods for CNNs and GNNs and to investigate what other
architectures can be approached with our method and does the Lipschitz constants play some significant
role because of a different network structure. It would be particularly interesting to see if there is some
analog of our polynomial characterisation for GNNs. Although we tackle the overparameterization setting
to some extent we feel more in-depth analysis is required to give better insights into when we can expect
overparametrized NNs to generalize.

References
Peter L. Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and structural

results. JMLR, 3(null):463–482, march 2003. ISSN 1532-4435.

Peter L. Bartlett, Dylan J. Foster, and Matus Telgarsky. Spectrally-normalized margin bounds for neural
networks. In Proc. Advances in Neural Information Processing Systems 30, pp. 6240–6249, 2017.

Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale machine learning.
SIAM Rev., 60(2):221–487, 2018.

Olivier Bousquet and André Elisseeff. Stability and Generalization. J. Mach. Learn. Res., 2(Mar):499–526,
2002.

Olivier Bousquet, Yegor Klochkov, and Nikita Zhivotovskiy. Sharper bounds for uniformly stable algorithms.
Proc. Machine Learning Research, 125:1–17, 2020.

12

Under review as submission to TMLR

Zachary Charles and Dimitris Papailiopoulos. Stability and generalization of learning algorithms that
converge to global optima. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp. 745–754.
PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/v80/charles18a.html.

Satrajit Chatterjee and Piotr Zielinski. On the generalization mystery in Deep Learning. arXiv:2203.10036,
2022.

Vitaly Feldman and Jan Vondrak. Generalization bounds for uniformly stable algorithms. In Advances in
Neural Information Processing Systems, 2018.

Vitaly Feldman and Jan Vondrak. High probability generalization bounds for uniformly stable algorithms
with nearly optimal rate. In Alina Beygelzimer and Daniel Hsu (eds.), Proceedings of the Thirty-Second
Conference on Learning Theory, volume 99 of Proceedings of Machine Learning Research, pp. 1270–1279.
PMLR, 25–28 Jun 2019a. URL https://proceedings.mlr.press/v99/feldman19a.html.

Vitaly Feldman and Jan Vondrak. High probability generalization bounds for uniformly stable algorithms
with nearly optimal rate. In Alina Beygelzimer and Daniel Hsu (eds.), Proceedings of the Thirty-Second
Conference on Learning Theory, volume 99 of Proceedings of Machine Learning Research, pp. 1270–1279.
PMLR, 25–28 Jun 2019b. URL https://proceedings.mlr.press/v99/feldman19a.html. Supplementary
section.

N. Golowich, A. Rakhlin, and O. Shamir. Size-independent sample complexity of neural networks (extended
abstract). Proc. Machine Learning Research, 75:1–3, 2018.

Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic gradient
descent. In Maria Florina Balcan and Kilian Q. Weinberger (eds.), Proceedings of The 33rd International
Conference on Machine Learning, volume 48 of Proceedings of Machine Learning Research, pp. 1225–
1234, New York, New York, USA, 20–22 Jun 2016. PMLR. URL https://proceedings.mlr.press/v48/
hardt16.html.

Pengzhan Jin, Lu Lu, Yifa Tang, and George Em Karniadakis. Quantifying the generalization error in deep
learning in terms of data distribution and neural network smoothness. Neural Networks, 130:85–99, 2020.
ISSN 0893-6080. doi: https://doi.org/10.1016/j.neunet.2020.06.024. URL https://www.sciencedirect.
com/science/article/pii/S0893608020302392.

Kenji Kawaguchi, Leslie Pack Kaelbling, and Yoshua Bengio. Generalization in deep learning. CoRR,
abs/1710.05468, 2017.

M. Kearns and D. Ron. Algorithmic stability and sanity-check bounds for leave-one-out cross- validation.
Neural Computation, 11(6):1427–1453, 1999.

Yegor Klochkov and Nikita Zhivotovskiy. Stability and deviation optimal risk bounds with convergence rate
o(1/n). In Advances in Neural Information Processing Systems, 2021.

Ilja Kuzborskij and Christoph Lampert. Data-dependent stability of stochastic gradient descent. In Jennifer
Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 2815–2824. PMLR, 10–15 Jul 2018. URL
https://proceedings.mlr.press/v80/kuzborskij18a.html.

Yunwen Lei and Yiming Ying. Fine-grained analysis of stability and generalization for stochastic gradient
descent. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp. 5809–5819. PMLR, 13–18
Jul 2020. URL https://proceedings.mlr.press/v119/lei20c.html.

Yunwen Lei, Rong Jin, and Yiming Ying. Stability and generalization analysis of gradient methods for shallow
neural networks. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in
Neural Information Processing Systems, 2022. URL https://openreview.net/forum?id=BWEGx_GFCbL.

13

https://proceedings.mlr.press/v80/charles18a.html
https://proceedings.mlr.press/v99/feldman19a.html
https://proceedings.mlr.press/v99/feldman19a.html
https://proceedings.mlr.press/v48/hardt16.html
https://proceedings.mlr.press/v48/hardt16.html
https://www.sciencedirect.com/science/article/pii/S0893608020302392
https://www.sciencedirect.com/science/article/pii/S0893608020302392
https://proceedings.mlr.press/v80/kuzborskij18a.html
https://proceedings.mlr.press/v119/lei20c.html
https://openreview.net/forum?id=BWEGx_GFCbL

Under review as submission to TMLR

Tristan Milne. Piecewise strong convexity of neural networks. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
b33128cb0089003ddfb5199e1b679652-Paper.pdf.

Vladimir Vapnik. Statistical learning theory. Wiley, 1998. ISBN 978-0-471-03003-4.

Vladimir Vapnik and Alexey Chervonenkis. Theory of Pattern Recognition. Nauka, Moscow, 1974.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
learning requires rethinking generalization. In International Conference on Learning Representations, 2017.
URL https://openreview.net/forum?id=Sy8gdB9xx.

Chiyuan Zhang, Qianli Liao, Alexander Rakhlin, Brando Miranda, Noah Golowich, and Tomaso A. Poggio.
Theory of deep learning iib: Optimization properties of sgd. ArXiv, abs/1801.02254, 2018.

Yikai Zhang, Wenjia Zhang, Sammy Bald, Vamsi Pritham Pingali, Chao Chen, and Mayank Goswami.
Stability of SGD: Tightness analysis and improved bounds. In The 38th Conference on Uncertainty in
Artificial Intelligence, 2022. URL https://openreview.net/forum?id=Sl-zmO8j5lq.

A Modification of McDiarmid’s Theorem

We first define a probabilistic weakening of Lipschitz functions.
Definition A.1. Given 2m i.i.d. random variables X1, . . . , X2m drawn from some domain Z according to
some probability distribution D, for some β > 0 and η ∈ [0, 1], a function f : Zm → R is called η-almost
β-Lipschitz w.r.t. D if

∀i ∈ {1, · · · , m} : |f (X1, . . . , Xm) − f (X1, . . . , Xi−1, X ′
i, Xi+1, . . . , Xm)| ≤ β,

with probability at least 1 − η. In case η = 0 we say that f is almost surely β-Lipschitz w.r.t D. When D is
understood we will omit it, and for the case η = 1 we will simply write that f is almost surely (or just a.s.)
β-Lipschitz.

We now state a modified version of McDiarmid’s theorem that holds for η-almost β-Lipschitz functions.
Lemma A.2. Let X1, . . . , Xm be i.i.d. random variables. If f is η-almost β-Lipschitz and takes values
between 0 and M , then,

Pr {f(X1, . . . , Xm) − E [f(X1, . . . , Xm)] ≥ ϵ} ≤ exp
[

−2ϵ2

m (β + Mη)2

]
+ η.

For simplicity, we adopt the notation Ai,j = Ai, · · · , Aj (i.e. with subscript (i,j) we represent j − i + 1
variables) and Ai represents only one variable in the rest of the section. Before we prove Theorem A.2, we
state and prove the following lemma:
Lemma A.3. Let f : Zm → R be a function such that 0 ≤ f(·) ≤ M . Define Vi = Ei+1,m [f(X1,m)] −
Ei,m [f(X1,m)] , where Ei,j [·] denotes EXi,··· ,Xj

[·] . Then, if f is η-almost β-Lipschitz, then with probability
1 − η, ∀i, Vi ≤ (1 − η)β + ηM.

Proof.

Vi = Ei+1,m [f(X1,m)] − Ei,m [f(X1,m)]

=
∫

· · ·
∫

yi+1···ym

f(X1,i, yi+1,m)dµ(yi+1,m) −
∫

· · ·
∫

yi···ym

f(X1,i−1, yi,m)dµ(yi,m)

=
∫

· · ·
∫

yi+1···ym

[
f(X1,i, yi+1,m)dµ(yi+1,m) −

∫
yi

f(X1,i−1, yi,m)dµ(yi,m)dµ(yi)
]
dµ(yi+1,m)

14

https://proceedings.neurips.cc/paper/2019/file/b33128cb0089003ddfb5199e1b679652-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/b33128cb0089003ddfb5199e1b679652-Paper.pdf
https://openreview.net/forum?id=Sy8gdB9xx
https://openreview.net/forum?id=Sl-zmO8j5lq

Under review as submission to TMLR

where µ is the measure associated with the random variables. Thus, Vi, a function of X1,i, is an expectation
over the random variables yi+1,m. Thus, we can write Vi = Eyi+1,m [Φ(X1,i, yi,m)|X1,i] .

Now, let’s define two sets as follows:

Si = {x ∈ Zi : ∃y ∈ Zm−i : Φ(x, y) ≤ β},

S′
x = {y ∈ Zm−i : Φ(x, y) ≤ β}.

Then, since f is η-almost β-Lipschitz, and renaming yi as yi+m in Φ, since they are i.i.d., for any x ∈ Si, we
have

E [Φ(x, y)|x] ≤
∑

y∈S′
x

Pr {y} β +

1 −
∑

y∈S′
x

Pr {y}

M, (2)

and for any x /∈ Si, we have
E [Φ(x, y)|x] ≤ M.

We further note that
∑

x∈Si
Pr {x} ≥ 1 − η, and

∑
y∈S′

x
Pr {y} ≥ 1 − η. Therefore, applying these bounds to

Equation 2, we get, with probability at least 1 − η,

Vi ≤ β + ηM.

Proof of Theorem A.2. We will use Azuma’s inequality to prove the result. First we show that the sequence
V1, · · · , Vm is a martingale difference sequence with respect to X1,m. To see this, we first notice that Vi is a
function of X1,i. Also, E [|Vi|] is finite since f is bounded. Finally,

E [Vi+1|X1,i] = Ei+1,m [Ei+1,m [f(X1,m)] − Ei,m [f(X1,m)] |X1,i]
= 0

Let E be the event that |f(X1,m) − E [f(X1,m)] | ≥ ϵ, and F the event that Vi is bounded by β + ηM . We
have,

Pr {E} ≤ Pr {E|F } Pr {F } + Pr
{

F
}

. (3)

Using Lemma A.3, we have that with probability 1 − η, for all i, Vi is bounded by β + ηM .

Applying Azuma’s inequality to Pr {E|F }, we have the result.

B a.s. Support Stability of SGD Proved

Proof of Lemma 4.3. If f is locally Lipschitz at w ∈ A, there is an εw > 0 and an Lw > 0 such that for all
w′ ∈ Rn with ∥w − w′∥ ≤ εw, |f(w) − f(w′)| ≤ Lw∥w − w′∥. So, let us turn our attention to those w′ ∈ A
that lie outside the ball of radius εw around w. Note that for such a w′, if B > 0 is the bound on f , we have
that

|f(w) − f(w′)|
∥w − w′∥

≤ 2B

εw
.

Therefore the “global” Lipschitz constant for f within A is max{Lw, 2B/εw : w ∈ A} which is bounded since
A is finite. This proves the first part of the lemma. The second part follows similarly.

Proof of Theorem 4.4. For some i ∈ [m] we couple the trajectory of SGD on S and Si where zi ∈ S has been
replaced with z′

i. Our random string r, in this case, is a random choice of an initial parameter vector, w0,
and a random set of τ i.i.d permutations π0, . . . , πτ−1 of [m] chosen uniformly at random. We use these
random choices for training both the algorithms with S and Si. For 0 ≤ j ≤ τ − 1, we denote π−1

j (i) by Ij ,

15

Under review as submission to TMLR

i.e., Ij is the (random) position where the ith training point is encountered in the jth training epoch. The
key quantity we will track through the coupled training process will be

δt = ∥wt − w′
t∥,

for 1 ≤ t ≤ τm. If we can show that Er [Lgδτm] is bounded by some quantity B almost surely, we can invoke
the fact that f is a.s. Ll-LPL to say that ∥Er [f(wt, z) − f(w′

t, z)] ∥ ≤ Er [Lgδτm] ≤ B for all z ∈ supp (D),
where Lg is the Test Lipschitz constant.

We argue differently for the first epoch and differently for later epochs. For the first epoch, we note that for
t ≤ I0, δt = 0 since SGD performs identical moves in both cases. At t = I0 + 1

δI0+1 = ∥wI0 − αI0∇f(wI0 , zi) − (w′
I0

− αI0∇f(w′
I0

, z′
i))∥ = αI0∥∇f(wI0 , zi) − ∇f(w′

I0
, z′

i)∥,

where the second equality follows from the fact that wI0 = w′
I0

by the definition of I0. Using Lemma 4.3 we
can say that δI0+1 ≤ 2αI0LS almost surely. Notice here we used data dependent Training Lipschitz constant
LS which is only defined for points in set S, unlike Test Lipschitz constant. Now,

δI0+2 ≤ ∥wI0+1 − w′
I0+1∥ + αI0+1∥∇f(wI0+1, zi) − ∇f(w′

I0+1, z′
i))∥.

Here although the parameter vectors wI0+1 and w′
I0+1 are not the same, zπ0(I0+1) and z′

π0(I0+1) are the same
by the definition of I0 (assuming that I0 ̸= m). Therefore we get that

δI0+2 ≤ δI0+1 + αI0+1KgδI0+1

with probability 1 since from Lemma 4.3 we have that f has a “global” smoothness property for the entire set
of at most 2τm parameter vectors that will be encountered during the coupled training of S and Si. Noting
that a similar recursion can be applied all the way to the end of the first epoch, i.e. till t = m we get

δm ≤ 2αI0LS

m∏
t=I0+1

(1 + αtKg) ≤ 2αI0LS exp
{

m∑
t=I0+1

αtKg

}
, (4)

with probability 1. Moving on to the next epoch we note that we can make the argument above till the next
point where the two training sequences differ, i.e., till the m + I1 + 1st step. At this point we have,

δm+I1+1 ≤ δm+I1 + αm+I1∥∇f(wm+I1 , zi) − ∇f(w′
m+I1

, z′
i))∥.

Since neither the parameter vector nor the training points are the same in the second term, we have no option
but to use the almost data dependent Lipschitz constant to say that

δm+I1+1 ≤ δm+I1 + αm+I12LS .

Since αm+I1 < αI0 , observing that our current bound for δm+I1 is larger than αm+I12LS . Therefore

δm+I1+1 ≤ 2δm+I1 .

So, we see that in the second and subsequent epochs, for time step jm + Ij + 1, 1 ≤ j < τ we have the bound

δjm+Ij+1 ≤ 2δjm+Ij ,

and for all t > m + I1, t ̸= I1, . . . , Iτ−1 we have, as before, by the smoothness property that

δt+1 ≤ δt(1 + αt+1KS).

Therefore, we have that

δτm ≤ 2αI0LS(2)τ−1 exp
{

τm∑
t=I0+1

αtKS

}
≤ α0LS2τ 1

I
1−ρ(τ,m)
0

exp

α0KS

(
(τm)ρ(τ,m) − I

ρ(τ,m)
0

)
ρ(τ, m)

 . (5)

16

Under review as submission to TMLR

where, in the first inequality for ease of calculation we have retained the terms of the form (1 + αIj
KS),

2 ≤ j < τ in the product on the right although we can ignore them. In the second inequality, we have
substituted αt = α0/t(1−ρ(τ,m)) and bound the summation using integration.

Finally, in order to compute Er [LgδT] remember there were two source of randomness first is random
initialization w0 or lets call it rinit and random permutation π lets call it rp. Now because rinit and rp are
independent we can write Er [Lgδτm] = Erinit

[
Erp [Lgδτm|rinit]

]
. Now in order to compute Erp [Lgδτm|rinit]

note that Lg, LS and KS are constant.

Note that, since π0 is uniformly drawn from the set of permutations of [m], I0 is uniformly distributed on
[m]. Summing up the last term of (5) over I0 ∈ [m] and dividing further by m we get

Erp
[Lgδτm|rinit] ≤ 2τ α0LgLS × 1

m

m∑
I0=1

1
I

1−ρ(τ,m)
0

exp

α0KS

(
(τm)ρ(τ,m) − I

ρ(τ,m)
0

)
ρ(τ, m)


Using integration we bound the summation part and also using exp(−α0KS/ρ(τ, m)) ≤ 1 we get the upper
bound for the summation part as

≤ U (α0, KS , ρ(τ, m)) · exp
(

α0KS

ρ(τ, m) (τm)ρ(τ,m)
)

where

U (α0, KS , ρ(τ, m)) := 1 + 1 − exp(−α0KSmρ(τ,m)/ρ(τ, m))
α0KS

,

we get

Erp
[LgδT |rinit] ≤ 2τ α0LgLS · U (α0, KS , ρ(τ, m)) ·

exp
{

α0KS

ρ(τ,m) (τm)ρ(τ,m)
}

m
(6)

taking ρ(τ, m) = ln ln m
ln τ+ln m and expectation over rinit we get the desired result.

C Neural Networks: Characterization and Proofs

In order to prove Theorem 5.2 we first need to describe a characterization of Neural Networks that allows us
to get a better insight into their smoothness properties. We present the characterization in Section C.1 and
the proof in Section C.2.

C.1 A Polynomial-based Characterization Neural Networks

C.1.1 Neural Network Terminology

Neural networks provide a family of parameterized functions of the form we have discussed in Section 4. The
parameter vector w ∈ Rn is applied over a network structure with layers. In this case, we specify Z to be
Rd × R, i.e., the data points are from Rd and the label is from R, i.e., the NN has a single output. We will
denote the depth of the network by H. The layers will be numbered 0 to H with layer 0 being the input
layer. The number of neurons in layer i will be ki. For this discussion, we assume a fully connected network.
We will denote by wi

j,k the weight of the edge from the j neuron of the ith layer to the kth neuron of the
i + 1st layer. For the NN with parameters w at a point x ∈ Rd we will denote the input into the jth neuron
of the ith layer by ini,j(w, x) and its output by outi,j(w, x). Further, we will assume that all neurons in all
layers of the network except the input layer and the output layer have ReLU activation applied to them. In
case the output of a node is 0 due to ReLU activation we will say the ReLU gate is closed otherwise we will
say it is open. The label output by the network will be outH,1 = out(w, x). For each exposition, we will
assume that out(w, x) = 1 if in(w, x) > 0 and 0 otherwise, i.e., there are only two labels in Y.

17

Under review as submission to TMLR

C.1.2 Multivariate Polynomials Associated with a Neural Network

Given a set of indeterminates x = x1, . . . , xl, let P(x) be the set of multivariate polynomials on x1, . . . , xl

with real coefficients. For any polynomial p(x), i1, . . . , iq ∈ [l] and any α1, . . . , αq ∈ R for some q ≤ l, we will
denote by p(x)

{
xij

=αj :j∈[q]
}

the polynomial in P(x\{xi1 , . . . , xiq
}) that is obtained by setting all occurrences

of xij
to αj in p(x). In particular, p(x) {xi=0} is the polynomial p(x) with all monomials containing xi

removed, and p(x) {xi=1} retains all the monomials of p(x) but those monomials that contain xi appear
without the term xi.

Returning to NNs, let us consider two sets of indeterminates: x = {xi : i ∈ [d]} and w = {w
(i)
j,k : 0 ≤ i <

H, 1 ≤ j ≤ ki, 1 ≤ k ≤ ki+1} and k0 = d. For a fully connected NN defined in Sec. C.1.1 with all ReLU gates
open we will say that it has the following polynomial associated with it:

ϕ(w, x) =
k0∑

j0=1

k1∑
j1=1

· · ·
kH−1∑

jH−1=1
xj0w

(0)
j0,j1

w
(1)
j1,j2

· · · w
(H−1)
jH−1,1.

Note that the output layer has only one neuron. We will refer to this as the base polynomial of the NN. The
base polynomial associated with the jth neuron in layer i can be derived from the base polynomial of the
network as follows

ϕi,j(w, x) =
ϕ(w, x)

{
w

(i)
l1,l2

=0,w
(l3)
l4,l5

=1:l1∈[ki]\{j},l2∈[ki+1],l3>i,l4∈[kl3],l5∈[kl3+1]
}∏H

p=i+1 ki

.

Also we could describe a Network whose say ith layer jth neuron’s gate is closed by ϕ(w, x){wi
l1,j = 0, ∀l1 ∈

ki−1}. We will write Gw,x as the set of weights needed to be equated to zero for all closed ReLU gates. It’s
clearly visible that due to ReLU activations varying at different points, there is no single polynomial that
captures the output of the NN everywhere in Rn × Rd. However, the following observation shows a way of
defining polynomials that describe the output over certain subsets of space.
Observation C.1. Given w ∈ Rn and x ̸= (0, . . . , 0) ∈ Rd, i ∈ [H], j ∈ [ki] and ϕi,j(w, x){Gw,x = 0} be the
polynomial representing output and Gw,x be the set of weights for closed ReLU gates as discussed above. For
the case where inl1,l2(w, x) ̸= 0 for all 1 ≤ l1 ≤ i and all 1 ≤ l2 ≤ kl1 , there is an ϵ > 0 depending on w, x
such that, for all w′ with ∥w − w′∥ < ϵ,

ϕi,j(w′, x){Gw′,x = 0} = ϕi,j(w′, x){Gw,x = 0}

i.e. the polynomial remains same for w′ and w.

Proof. Since ini,j(w, x) is strictly separated from 0 and there are only a finite number of neurons in the
network there must be an ϵ small enough for which all open ReLU gates remain open and all closed gates
remain closed. And because of this, we can use the same polynomial with new weights as no ReLU gate
switches their state.

C.2 Proof of Theorem 5.2

Proof of Theorem 5.2. The idea behind this proof is due to Milne (2019) who used it for a different purpose.
From Observation C.1 it follows that if we have x ̸= (0, . . . , 0) ∈ Rd such that ini,j(w, x) ̸= 0 for all 1 ≤ i ≤ H
and all 1 ≤ j ≤ ki, then out(w, x) is, in fact, just the polynomial ϕ(w′, x){Gw,x = 0} within a small
neighbourhood of w. Therefore it is doubly differentiable. Since the loss function is also differentiable, we are
done for all such values of x.

So now let us consider the set of points x for which i is the smallest layer index such that ini,j(w, x) = 0.
In case there are two such indices, we break ties using the neuron index j. By Observation C.1, in a
neighbourhood of w, ini,j(w, x) is a polynomial in w and x for each x.

Now, we consider two cases. In the first case, outi−1,j′(w, x) = 0 for all j′ ∈ [ki−1], i.e., all the ReLU gates
from the previous layers are closed because ini−1,j′(w, x) < 0 for all j′ ∈ [ki−1]. In this case out(w′, x) = 0

18

Under review as submission to TMLR

everywhere in the neighbourhood guaranteed by Observation C.1 and therefore ℓ(out(w′, x), lab(x)) is doubly
differentiable in the parameter space at w for all such x, where we assume that each data point has a label
lab(x) ∈ {0, 1} associated with it. We note that this argument is easily portable to the case of a more general
label set Y with the property described in the statement of Theorem 5.1 since inH,1 will be 0 everywhere in a
small neighbourhood.

In the second case we have some j′ ∈ [ki−1] such that outi−1,j′(w, x) > 0. Let Ci,j ⊆ Rd be those x for which
this case holds. Ci,j contains the solutions to ini,j(w, x) = 0. Since we are working with a specific value of w,
this simply becomes a polynomial in x. In fact, inspecting the definition of base polynomials we note that
when w is fixed ini,j(w, x) is simply a linear combination of x1, . . . , xd

R. This implies that Ci,j is a hyperplane
in Rd. We note that this argument can also be made of the output node under the condition on the label
set given in the statement of Theorem 5.1 because for inH,1(w, x) to give a value that lies on the boundary
between two sets with different labels for a given w, x must be drawn from a set of Lebesgue measure 0.

Since the network size is finite the set of all possible values of x for which case 2 occurs, i.e.,
⋃

i∈[H],j∈[ki] Ci,j

is a finite union of hyperplanes in Rd and therefore a set of Lebesgue measure 0.

Proof of Proposition 5.3. Let us consider the partial derivative w.r.t w
(l)
i,j . For this let I

(l)
i,j , A

(l+1)
j and B

(l−1)
i

be 3 matrices of size W (l), W (l+1) and W (l−1) respectively such that I
(l)
i,j [i, i] = 1 and reset all entries are 0,

A
(l+1)
j [k, j] = W (l+1)[k, j], ∀k and rest all entries are 0 and B

(l−1)
i [i, k] = W (l−1)[i, k], ∀k and rest all entries

are one. Using these 3 matrices and the weight matrices we can compute the gradient as

∂ϕ(w, x)
∂w

(l)
i,j

= W (H) · · · W (l+2) · A
(l+1)
j · I

(l)
i,j · B

(l−1)
i · W l−2 · · · W 1 · ∥x∥ (7)

Let M’(l,i,j) be a matrix such that
M ′

l,i,j = A
(l+1)
j · I

(l)
i,j · B

(l−1)
i

Although we have scalar values taking spectral norm on both sides of eq 7 we get∣∣∣∣∣∂ϕ(w, x)
∂w

(l)
i,j

∣∣∣∣∣ =
H∏

k=1
∥W (k)∥σ

∥M ′
l,i,j∥σ

∥W (l+1)∥σ · ∥W (l)∥σ · ∥W (l−1)∥σ
∥x∥

Now lets define another matrix Ml such that (p, q)th element of matrix Ml[p, q] = ∥M ′
l,i,j∥σ. Now the

expression for 2, 2 norm (Frobenius norm) of the gradient vector directly gives us the required expression for
Lipschitz constants.

We can give a similar argument for bounding KS , for some w
(l1)
i1,j1

and w
(l2)
i2,j2

we have

∣∣∣∣∣ ∂2ϕ(w, x)
∂w

(l2)
i2,j2

∂w
(l1)
i1,j1

∣∣∣∣∣ ≤
H∏

k=1
∥W (k)∥σ

(∥M ′
l1,i1,j1

∥σ

∥W (l1+1)∥σ · ∥W (l1)∥σ · ∥W (l1−1)∥σ

)

·
(∥M ′

l2,i2,j2
∥σ

∥W (l2+1)∥σ · ∥W (l2)∥σ · ∥W (l2−1)∥σ

)
∥x∥

Note that the above equation is exactly if l1 + 2 < l2 or l1 − 2 > l2 and for the rest of the case we can use
this as the upper bound this is because for a matrix M spectral norm ∥M∥σ is upper bound for when we set
all except one row or column of matrix to zero and calculate the spectral norm. Now if we take the 2, 2 norm
(Frobenius norm) of the Hessian matrix we get the desired result.

19

	Introduction
	Related Work
	a.s. Support Stability and Generalization
	Terminology
	A Weakening of Uniform Stability
	Exponential Convergence of Generalization Error

	Proof of a. s. Support Stability of Stochastic Gradient Descent
	Some Properties of Parameterized Functions
	a.s. Support Stability of SGD

	Neural Networks with ReLU Activation
	Support Stability of Neural Networks with ReLU Activation
	Experimental Validation of Results

	Random Labelling Case
	Discussion on the Applicability of Our Results

	Conclusion
	Modification of McDiarmid's Theorem
	a.s. Support Stability of SGD Proved
	Neural Networks: Characterization and Proofs
	A Polynomial-based Characterization Neural Networks
	Neural Network Terminology
	Multivariate Polynomials Associated with a Neural Network

	Proof of Theorem 5.2

