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ABSTRACT

Soft labels can improve the generalization of a neural network classifier in many
domains, such as image classification. Despite its success, the current literature
has overlooked the efficiency of label smoothing in node classification with graph-
structured data. In this work, we propose a simple yet effective label smoothing for
the transductive node classification task. We design the soft label to encapsulate
the local context of the target node through the distribution of the neighborhood
label. We apply the smoothing method for seven baseline models to show its ef-
fectiveness. The label smoothing methods improve the classification accuracy in
10 node classification datasets in most cases. In the following analysis, we find
that incorporating global label statistics in posterior computation is the key to the
success of label smoothing. Further investigation reveals that the soft labels miti-
gate overfitting during training, leading to better generalization performance. Our
code is available at https://anonymous.4open.science/r/PosteL.

1 INTRODUCTION

Adding a uniform noise to the ground truth labels has shown remarkable success in training neural
networks for various classification tasks, including image classification and natural language pro-
cessing (Szegedy et al., 2016; Vaswani et al., 2017; Müller et al., 2019; Zhang et al., 2021a). Despite
its simplicity, label smoothing acts as a regularizer for the output distribution and improves gener-
alization performance (Pereyra et al., 2017). More sophisticated soft labeling approaches have been
proposed based on the theoretical analysis of label smoothing (Li et al., 2020; Lienen & Hüllermeier,
2021).

In the graph domain, soft labels have been employed to improve the performance of node classifi-
cation tasks. Based on the homophilic assumption, where the nodes with the same label are likely
to be connected, previous studies often employed neighborhood labels to soften the ground truth
labels (Wang et al., 2021; Zhou et al., 2023). Despite the success of these approaches, their perfor-
mance on heterophilic graphs, where nodes tend to connect with others that are dissimilar or belong
to different classes, still remains questionable (Zhu et al., 2021; Luan et al., 2022; Chanpuriya &
Musco, 2022).

In this work, we propose a simple yet effective smoothing method for transductive node classification
that can be used for both homophilic and heterophilic graphs. Inspired by the previous work sug-
gesting predicting the local context of a node (Hu et al., 2019; Rong et al., 2020), such as subgraph
prediction, helps to learn better representations, we propose a smoothing method that can potentially
reflect the local context of the target node. To encode the neighborhood information into the node
label, we propose to relabel the node with a posterior distribution of the label given neighborhood
labels.

Under the assumption that the neighborhood labels are conditionally independent given the label
of the node to be relabeled, we factorize the likelihood into the product of conditional distributions
between two adjacent nodes. To compute the posterior, we estimate the conditionals and prior from
a graph’s global label statistics, making the posterior incorporate the local structure and global label
distributions. Since the posterior obtained in this way does not preserve the ground truth label, we
finally interpolate the posterior with the ground truth label, resulting in a soft label.

1

https://anonymous.4open.science/r/PosteL


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

The posterior, however, may pose high variance when there are few numbers of neighborhood nodes.
To mitigate the issue with the sparse labels, we further propose iterative pseudo labeling to re-
estimate the likelihood and prior based on the pseudo labels. Specifically, we use the pseudo labels
of validation and test sets to update the likelihood and prior, along with the ground truth labels of
the training set.

We apply our smoothing method to seven different baseline neural network models, including MLP
and variants of graph neural networks, and test its performance on ten benchmarks, including ho-
mophilic and heterophilic graphs. Our empirical study finds that the soft label with iterative pseudo
labeling improves the accuracy in 76 out of 80 cases despite its simplicity. We analyze the cases
where the soft label decreases the accuracy and reveals characteristics of label distributions with
which the soft labeling may not work. Further analysis shows that using local neighborhood struc-
ture and global label statistics is the key to its success. Through the loss curve analysis, we find that
the soft label prevents overfitting, leading to a better generalization performance in classification.

2 RELATED WORK

In this section, we introduce previous studies related to our method. We begin by discussing various
node classification methods, followed by an exploration of the application of soft labels in model
training.

2.1 NODE CLASSIFICATION

Graph structures are utilized in various ways for node classification tasks. Some studies propose
model frameworks based on the assumption of specific graph structures. For example, GCN (Kipf
& Welling, 2016), GraphSAGE (Hamilton et al., 2017), and GAT (Veličković et al., 2017) aggregate
neighbor node representations based on the homophilic assumption. To address the class-imbalance
problem, GraphSMOTE (Zhao et al., 2021), ImGAGN (Qu et al., 2021), and GraphENS (Park
et al., 2022) are proposed for homophilic graphs. H2GCN (Zhu et al., 2020) and U-GCN (Jin
et al., 2021) aggregate representations of multi-hop neighbor nodes to improve performance on
heterophilic graphs. Other studies concentrate on learning graph structure. GPR-GNN (Chien et al.,
2020) and CPGNN (Zhu et al., 2021) learn graph structures to determine which nodes to aggregate
adaptively. Besides, research such as ChebNet (Defferrard et al., 2016), APPNP (Gasteiger et al.,
2018), and BernNet (He et al., 2021) focus on learning appropriate filters from the graph signals.

2.2 CLASSIFICATION WITH SOFT LABELS

Hinton et al. (2015) demonstrate that a small student model trained using soft labels generated by
the predictions of a large teacher model shows better performance than a model trained using one-
hot labels. This approach, known as knowledge distillation (KD), is recognized as effective for
compression or performance improvement (Liu et al., 2019; Jiao et al., 2020; Tang & Wang, 2018).

On the other hand, simpler alternatives to generate soft labels are considered. The label smoothing
(LS) (Szegedy et al., 2016) generates soft labels by adding uniform noise to the labels. The benefits
of LS have been widely explored. Müller et al. (2019) show that LS improves model calibration.
Lukasik et al. (2020) establish a connection between LS and label-correction techniques, revealing
LS can address label noise.

While label smoothing has been widely adopted in computer vision (Zhang et al., 2021a; Lukov
et al., 2022; Vasudeva et al., 2024) and NLP (Vaswani et al., 2017; Song et al., 2020; Guo et al.,
2021), the efficiency of smoothing in the graph domain has been less explored. To the best of
our knowledge, there are two papers that propose label smoothing methods for node classification.
SALS (Wang et al., 2021) proposes a method for smoothing node labels to make them more similar
to the labels of neighboring nodes. Similarly, ALS (Zhou et al., 2023) generates soft node labels by
aggregating neighborhood labels and applying adaptive label refinement. Both methods rely on the
homophilic assumption that connected nodes should have similar labels, which may negatively im-
pact performance on heterophilic graphs (Zhu et al., 2021; Luan et al., 2022; Chanpuriya & Musco,
2022).
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Figure 1: Overall illustration of posterior node relabeling. To relabel the node label, we compute
the posterior distribution of the label given neighborhood labels. Note that the node features are not
considered in the relabeling process.

Meanwhile, smoothing at the prediction output has been proposed (Zhang et al., 2021b; Xie et al.,
2023) to adjust the final prediction based on a graph structure. The motivation of these approaches
is significantly different from the label smoothing discussed in this paper.

3 METHOD

In this section, we describe our approach for label smoothing for the node classification problem
and provide a new training strategy that iteratively refines the soft labels via pseudo labels obtained
from the training procedure.

3.1 POSTERIOR LABEL SMOOTHING

Consider a transductive node classification with graph G = (V, E ,X), where V and E denotes the
set of nodes and edges respectively, and X ∈ R|V|×d denotes d-dimensional node feature matrix.
For each node i in a training set, we have a label yi ∈ [K], where K is the total number of classes.
We use the notation ei ∈ {0, 1}K for one-hot encoding of yi, i.e., eik = 1 if yi = k and

∑
k eik = 1.

In a transductive setting, we observe the connectivity between all nodes, including the test nodes,
without having true labels of the test nodes.

We propose a simple and effective relabeling method to allocate a new label of a node based on the
label distribution of the neighborhood nodes. Specifically, we consider the posterior distribution of
node labels given their neighbors. Let N (i) be a set of neighborhood nodes of node i. If we assume
the distribution of node labels depends on the graph connectivity, then the posterior probability of
node i’s label, given its neighborhood labels, is

P (Yi = k|{Yj = yj}j∈N (i)) =
P ({Yj = yj}j∈N (i)|Yi = k)P (Yi = k)∑K
ℓ=1 P ({Yj = yj}j∈N (i)|Yi = ℓ)P (Yi = ℓ)

. (1)

The likelihood measures the joint probability of the neighborhood labels given the label of node
i. To obtain the likelihood, we assume that the neighborhood labels are conditionally independent
given the label of the node to be relabeled. The likelihood is then approximated by the product
of empirical conditional label distribution between adjacent nodes, i.e., P ({Yj = yj}j∈N (i)|Yi =
k) ≈

∏
j∈N (i) P (Yj = yj |Yi = k, (i, j) ∈ E), where P (Yj = yj |Yi = k, (i, j) ∈ E) is the

conditional of between adjacent nodes. The conditional between adjacent nodes i and j with label
n and m, respectively, is estimated by

P̂ (Yj = m|Yi = n, (i, j) ∈ E) := |{(u, v) | yv = m, yu = n, (u, v) ∈ E}|
|{(u, v) | yu = n, (u, v) ∈ E}|

. (2)

The prior distribution is also estimated from the empirical observations. We use the empirical pro-
portion of label as a prior, i.e., P̂ (Yi = m) := |{u | yu = m}|/|V|. We also explore alternative
designs for the likelihood and compare their performances in Section 4.2.
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Note that, in implementation, all empirical distributions are computed only with the training nodes
and their labels. The empirical distribution might be updated after node relabeling through the
posterior computation, but we keep it the same throughout the relabeling process.

The posterior distribution can be used as a soft label to train the model, but we add uniform noise ϵ
to the posterior to mitigate the risk of the posterior becoming overly confident if there are few or no
neighbors. In addition, since the most probable label from the posterior might be different from the
ground truth label, we interpolate the posterior with the ground truth label. To this end, we obtain
the soft label êi of node i as

êi = αẽi + (1− α)ei , (3)
where ẽik ∝ P (Yi = k | {Yj = yj}j∈N (i)) + βϵ. α and β control the importance of interpolation
and uniform noise. By enforcing α < 1/2, we can keep the most probable label of soft label the same
as the ground truth label, but we find that this condition is not necessary in empirical experiments.
We name our method as PosteL (Posterior Label smoothing). The detailed algorithm of PosteL is
shown in Algorithm 1. We provide an in-depth analysis of the underlying assumptions of PosteL
and an analysis of PosteL’s characteristics in heterophilic graphs in Appendix A.

Algorithm 1 PosteL: Posterior label smoothing

Require: The set of training nodes Vtrain ⊂ V , the number of classes K, one-hot encoding of
training node labels {ei}i∈Vtrain

, and hyperparameters α and β.
Ensure: The set of soft labels {êi}i∈Vtrain

.
Estimate prior distribution for m ∈ [K]: P̂ (Yi = m) =

∑
u∈Vtrain

eum/|Vtrain|.
Define the set of training neighbors for each node u: Ntrain(u) = N (u) ∩ Vtrain.
Estimate the empirical conditional for n,m ∈ [K]:

P̂ (Yj = m|Yi = n, (i, j) ∈ E) ∝
∑

u:u∈Vtrain,yu=n

∑
v∈Ntrain(u)

evm.

for each i ∈ Vtrain such that Ntrain(i) ̸= ∅ do
Approximate likelihood:

P ({Yj = yj}j∈Ntrain(i)|Yi = k) ≈
∏

j∈Ntrain(i)
P̂ (Yj = yj |Yi = k, (i, j) ∈ E).

Compute posterior distribution: P (Yi = k | {Yj = yj}j∈Ntrain(i)) using Equation (1).
Add uniform noise: ẽik ∝ P (Yi = k | {Yj = yj}j∈Ntrain(i)) + βϵ.
Obtain soft label: êi = αẽi + (1− α)ei.

end for

3.2 ITERATIVE PSEUDO LABELING

Posterior relabeling is a method used to predict the label of a node based on the labels of its neighbor-
ing nodes. However, in transductive node classification tasks where train, validation, and test nodes
coexist within the same graph, the presence of unlabeled nodes can hinder the accurate prediction of
posterior labels. For instance, when a node has no labeled neighbors, the likelihood becomes one,
and the posterior only relies on the prior. Moreover, in cases where labeled neighbors are scarce,
noisy labels among the neighbors can significantly compromise the posterior distribution. Such
challenges are particularly prevalent in sparse graphs. For example, 26.35% of nodes in the Cornell
dataset have no neighbors with labels. In such scenarios, the posterior relabeling can be challenging.

To address these limitations, we propose to update the likelihoods and priors through the pseudo
labels of validation and test nodes. We first train a graph neural network with the soft labels obtained
via Equation (3) and predict the labels of validation and test nodes to obtain the pseudo labels. We
choose the most probable label as a pseudo label from the prediction. We then update the likelihood
and prior with the pseudo labels of the validation and test nodes while keeping the ground-truth
labels of the training nodes. This process re-calibrates the posterior smoothing and soft labels.
By repeating training and re-calibration until the best validation loss of the predictor no longer
decreases, we can maximize the performance of node classification. We assume that if posterior
label smoothing improves classification performance with a better estimation of likelihood and prior,
the pseudo labels obtained from the predictor can benefit the posterior estimation as long as there are

4
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not many false pseudo labels. The detailed algorithms for PosteL using pseudo labels, in addition to
the training process involving iterative pseudo labeling, are shown in Algorithm 2 and Algorithm 3
in Appendix B. Furthermore, we discuss the distinct behavior of PosteL compared to SALS and
ALS in Appendix C.

4 EXPERIMENTS

The experimental section is composed of two parts. First, we evaluate the performance of our
method for node classification through various datasets and models. Second, we provide a compre-
hensive analysis of our method, investigating the conditions under which it performs well and the
importance of each design choice.

4.1 NODE CLASSIFICATION

In this section, we assess the enhancements in node classification performance across a range of
datasets and backbone models. Our aim is to validate the consistent efficacy of our method across
datasets and backbone models with diverse characteristics.

Datasets We assess the performance of our method across 10 node classification datasets. To
examine the effect of our method on diverse types of graphs, we conduct experiments on both ho-
mophilic and heterophilic graphs. Adjacent nodes in a homophilic graph are likely to have the same
label. Adjacent nodes in a heterophilic graph are likely to have different labels. For the homophilic
datasets, we use five datasets: the citation graphs Cora, CiteSeer, and PubMed (Sen et al., 2008;
Yang et al., 2016), and the Amazon co-purchase graphs Computers and Photo (McAuley et al.,
2015). For the heterophilic datasets, we use five datasets: the Wikipedia graphs Chameleon and
Squirrel (Rozemberczki et al., 2021), the Actor co-occurrence graph Actor (Tang et al., 2009), and
the webpage graphs Texas and Cornell (Pei et al., 2020). Detailed statistics of each dataset are
illustrated in Appendix D.

Experimental setup and baselines We evaluate the performance of PosteL across various back-
bone models, ranging from MLP, which ignores underlying structure between nodes, to seven
widely used graph neural networks: GCN (Kipf & Welling, 2016), GAT (Veličković et al., 2017),
APPNP (Gasteiger et al., 2018), ChebNet (Defferrard et al., 2016), GPR-GNN (Chien et al., 2020),
BernNet (He et al., 2021), and OrderedGNN (Song et al., 2023). We follow the experimental setup
and backbone implementations of He et al. (2021). Specifically, we use fixed 10 train, validation,
and test splits with ratios of 60%/20%/20%, respectively, and measure the accuracy at the lowest
validation loss. The model is trained for 1,000 epochs, and we apply early stopping when validation
loss does not decrease during the last 200 epochs. We report the mean performance and 95% confi-
dence interval. The detailed experimental setup, including the search spaces of the hyperparameters,
is provided in Appendix E.

We compare our method with two domain-agnostic soft labeling methods, including label smoothing
(LS) (Szegedy et al., 2016) and knowledge distillation (KD) (Hinton et al., 2015), along with two
label smoothing methods tailored for node classification, SALS (Wang et al., 2021) and ALS (Zhou
et al., 2023).

Results In Table 1, the classification accuracy and 95% confidence interval for each of the seven
models across the 10 datasets are presented. In most cases, PosteL outperforms baseline methods
across various settings, demonstrating significant performance enhancements and validating its ef-
fectiveness for node classification. Specifically, our method performs better in 76 cases out of 80
settings against the ground truth labels. Furthermore, among these settings, 41 cases show improve-
ments over the 95% confidence interval. Notably, on the Cornell dataset with the GCN backbone,
our method achieves a substantial performance enhancement of 14.43%. When compared to the
other soft label methods, PosteL performs better in most cases as well. The knowledge distillation
method shows comparable performance with the GPR-GNN baseline, but even in this case, there
are marginal differences between the two approaches. Our method outperforms SALS and ALS
on both homophilic and heterophilic datasets. Specifically, our method demonstrates performance
enhancement compared to SALS across all experimental settings and outperforms ALS in 71 out of
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Table 1: Classification accuracy on 10 node classification datasets. ∆ represents the performance
improvement achieved by PosteL compared to the backbone model trained with the ground truth
label. All results of the backbone model trained with the ground truth label are sourced from He
et al. (2021).

Homophilic Heterophilic

Cora CiteSeer PubMed Computers Photo Chameleon Actor Squirrel Texas Cornell

GCN 87.14±1.01 79.86±0.67 86.74±0.27 83.32±0.33 88.26±0.73 59.61±2.21 33.23±1.16 46.78±0.87 77.38±3.28 65.90±4.43

+LS 87.77±0.97 81.06±0.59 87.73±0.24 89.08±0.30 94.05±0.26 64.81±1.53 33.81±0.75 49.53±1.10 77.87±3.11 67.87±3.77

+KD 87.90±0.90 80.97±0.56 87.03±0.29 88.56±0.36 93.64±0.31 64.49±1.38 33.33±0.78 49.38±0.64 78.03±2.62 63.61±5.57

+SALS 88.10±1.08 80.52±0.85 87.23±0.13 88.88±0.54 93.80±0.31 63.00±1.75 33.24±0.92 49.16±0.77 70.00±3.93 58.36±7.54

+ALS 88.10±0.85 81.02±0.52 87.30±0.30 89.18±0.36 93.88±0.27 64.11±1.29 34.05±0.49 47.44±0.76 77.38±2.13 71.64±3.28

+PosteL 88.56±0.90 82.10±0.50 88.00±0.25 89.30±0.23 94.08±0.35 65.80±1.23 35.16±0.43 52.76±0.64 80.82±2.79 80.33±1.80
∆ +1.42(↑) +2.24(↑) +1.26(↑) +5.98(↑) +5.82(↑) +6.19(↑) +1.93(↑) +5.98(↑) +3.44(↑) +14.43(↑)
GAT 88.03±0.79 80.52±0.71 87.04±0.24 83.32±0.39 90.94±0.68 63.13±1.93 33.93±2.47 44.49±0.88 80.82±2.13 78.21±2.95

+LS 88.69±0.99 81.27±0.86 86.33±0.32 88.95±0.31 94.06±0.39 65.16±1.49 34.55±1.15 45.94±1.60 78.69±4.10 74.10±4.10

+KD 87.47±0.94 80.79±0.60 86.54±0.31 88.99±0.46 93.76±0.31 65.14±1.47 35.13±1.36 43.86±0.85 79.02±2.46 73.44±2.46

+SALS 88.64±0.94 81.23±0.59 86.49±0.25 88.75±0.36 93.74±0.37 62.76±1.42 33.91±1.41 42.29±0.94 74.92±4.43 65.57±10.00

+ALS 88.60±0.92 81.09±0.68 87.06±0.24 89.57±0.35 94.16±0.36 66.15±1.25 34.05±0.52 46.85±1.45 78.03±3.11 75.08±3.77

+PosteL 89.21±1.08 82.13±0.64 87.08±0.19 89.60±0.29 94.31±0.31 66.28±1.14 35.92±0.72 49.38±1.05 80.33±2.62 80.33±1.81
∆ +1.18(↑) +1.61(↑) +0.04(↑) +6.28(↑) +3.37(↑) +3.15(↑) +1.99(↑) +4.89(↑) −0.49(↓) +2.12(↑)
APPNP 88.14±0.73 80.47±0.74 88.12±0.31 85.32±0.37 88.51±0.31 51.84±1.82 39.66±0.55 34.71±0.57 90.98±1.64 91.81±1.96

+LS 89.01±0.64 81.58±0.61 88.90±0.32 87.28±0.27 94.34±0.23 53.98±1.47 39.44±0.78 36.81±0.98 91.31±1.48 89.51±1.81

+KD 89.16±0.74 81.88±0.61 88.04±0.39 86.28±0.44 93.85±0.26 52.17±1.23 41.43±0.95 35.28±1.10 90.33±1.64 91.48±1.97

+SALS 88.97±0.90 81.53±0.56 88.50±0.31 86.49±0.50 93.74±0.38 52.82±1.95 39.66±0.64 36.34±0.65 83.44±3.93 89.51±3.77

+ALS 88.93±0.94 81.75±0.59 89.30±0.30 87.32±0.23 94.33±0.24 53.44±1.99 39.89±0.67 36.11±0.81 90.82±2.62 92.13±1.48

+PosteL 89.62±0.84 82.47±0.66 89.17±0.26 87.46±0.29 94.42±0.24 53.83±1.66 40.18±0.70 36.71±0.60 92.13±1.48 93.44±1.64
∆ +1.48(↑) +2.00(↑) +1.05(↑) +2.14(↑) +5.91(↑) +1.99(↑) +0.52(↑) +2.00(↑) +1.15(↑) +1.63(↑)
MLP 76.96±0.95 76.58±0.88 85.94±0.22 82.85±0.38 84.72±0.34 46.85±1.51 40.19±0.56 31.03±1.18 91.45±1.14 90.82±1.63

+LS 77.21±0.97 76.82±0.66 86.14±0.35 83.62±0.88 89.46±0.44 48.23±1.23 39.75±0.63 31.10±0.80 90.98±1.64 90.98±1.31

+KD 76.32±0.94 77.75±0.75 85.10±0.29 83.89±0.53 88.23±0.38 47.40±1.75 41.32±0.75 32.58±0.83 89.34±1.97 91.80±1.15

+SALS 77.29±1.05 77.00±0.90 85.78±0.33 82.55±0.51 89.11±0.52 43.68±1.69 39.47±0.73 30.88±0.68 86.39±5.09 89.11±0.52

+ALS 77.59±0.69 77.24±0.82 86.43±0.43 84.26±0.66 89.86±0.43 48.03±1.38 39.98±0.94 31.33±0.89 91.64±3.44 91.64±1.31

+PosteL 78.39±0.94 78.40±0.71 86.51±0.33 84.20±0.55 89.90±0.27 48.51±1.66 40.15±0.46 33.11±0.60 92.95±1.31 93.61±1.80
∆ +1.43(↑) +1.82(↑) +0.57(↑) +1.35(↑) +5.18(↑) +1.66(↑) −0.04(↓) +2.08(↑) +1.50(↑) +2.79(↑)
ChebNet 86.67±0.82 79.11±0.75 87.95±0.28 87.54±0.43 93.77±0.32 59.28±1.25 37.61±0.89 40.55±0.42 86.22±2.45 83.93±2.13

+LS 87.22±0.99 79.70±0.63 88.48±0.29 89.55±0.38 94.53±0.37 66.41±1.16 39.39±0.73 42.55±1.11 87.21±2.62 84.59±2.30

+KD 87.36±0.95 80.80±0.72 88.41±0.20 89.81±0.30 94.76±0.30 61.47±1.23 40.68±0.50 43.88±1.97 84.75±3.61 83.61±2.30

+SALS 87.31±0.94 79.71±0.83 88.46±0.30 89.52±0.35 94.19±0.27 56.94±2.52 39.25±0.67 41.61±0.93 74.26±3.61 73.44±6.89

+ALS 87.39±0.97 79.81±0.81 88.80±0.33 89.88±0.36 95.21±0.23 61.09±0.63 39.61±1.12 41.98±0.85 85.57±3.28 86.39±2.30

+PosteL 88.57±0.92 82.48±0.52 89.20±0.31 89.95±0.40 94.87±0.25 66.83±0.77 39.56±0.51 50.87±0.90 86.39±2.46 88.52±2.63
∆ +1.90(↑) +3.37(↑) +1.25(↑) +2.41(↑) +1.10(↑) +7.55(↑) +1.95(↑) +10.32(↑) +0.17(↑) +4.59(↑)
GPR-GNN 88.57±0.69 80.12±0.83 88.46±0.33 86.85±0.25 93.85±0.28 67.28±1.09 39.92±0.67 50.15±1.92 92.95±1.31 91.37±1.81

+LS 88.82±0.99 79.78±1.06 88.24±0.42 88.39±0.48 93.97±0.33 67.90±1.01 39.72±0.70 53.39±1.80 92.79±1.15 90.49±2.46

+KD 89.33±1.03 81.24±0.85 89.85±0.56 87.88±1.11 94.23±0.51 66.76±1.31 42.00±0.63 53.26±1.07 94.26±1.48 88.52±1.97

+SALS 88.78±0.90 80.71±0.91 90.12±0.46 88.63±0.35 94.23±0.65 65.16±1.49 39.67±0.73 44.75±1.45 73.61±3.44 82.46±2.95

+ALS 88.93±1.31 80.31±0.71 90.23±0.50 89.14±0.48 94.55±0.53 67.79±1.07 40.09±0.72 51.34±1.00 92.95±1.31 89.18±2.13

+PosteL 89.20±1.07 81.21±0.64 90.57±0.31 89.84±0.43 94.76±0.38 68.38±1.12 40.08±0.69 53.54±0.79 93.28±1.31 92.46±0.99
∆ +0.63(↑) +1.09(↑) +2.11(↑) +2.99(↑) +0.91(↑) +1.10(↑) +0.16(↑) +3.39(↑) +0.33(↑) +1.09(↑)
BernNet 88.52±0.95 80.09±0.79 88.48±0.41 87.64±0.44 93.63±0.35 68.29±1.58 41.79±1.01 51.35±0.73 93.12±0.65 92.13±1.64

+LS 88.80±0.92 80.37±1.05 87.40±0.27 88.32±0.38 93.70±0.21 69.58±0.94 39.60±0.53 52.39±0.60 91.80±1.80 90.49±1.48

+KD 87.78±0.99 81.20±0.86 87.59±0.41 87.35±0.40 93.96±0.40 67.75±1.42 41.04±0.89 51.25±0.83 93.61±1.31 90.33±2.30

+SALS 88.77±0.85 81.20±0.61 88.61±0.35 88.87±0.33 94.22±0.43 64.62±0.85 40.15±1.07 46.19±0.78 85.90±4.10 88.03±3.12

+ALS 89.13±0.79 81.17±0.67 89.19±0.46 89.52±0.30 94.54±0.32 67.92±1.07 40.51±0.61 51.83±1.31 93.77±1.31 92.79±1.48

+PosteL 89.39±0.92 82.46±0.67 89.07±0.29 89.56±0.35 94.54±0.36 69.65±0.83 40.40±0.67 53.11±0.87 93.93±1.15 92.95±1.80
∆ +0.87(↑) +2.37(↑) +0.59(↑) +1.92(↑) +0.91(↑) +1.36(↑) −1.39(↓) +1.76(↑) +0.81(↑) +0.82(↑)
OrderedGNN 88.62±1.05 80.11±0.86 88.74±0.56 89.72±0.50 94.76±0.36 58.27±1.33 39.73±1.15 38.70±1.10 90.16±2.63 90.33±2.46

+LS 88.52±0.94 80.23±0.80 88.16±0.33 89.59±0.47 94.49±0.45 58.86±1.62 40.01±0.66 40.12±0.82 88.20±3.61 91.15±1.31

+KD 88.26±1.07 80.52±0.83 88.23±0.21 89.35±0.34 94.40±0.23 58.21±1.18 40.17±0.45 40.92±0.87 90.49±1.48 91.31±1.80

+SALS 88.44±0.97 80.93±0.72 88.08±0.62 88.94±0.51 93.87±0.35 59.30±1.25 39.52±0.41 40.85±0.86 77.70±4.75 84.75±4.10

+ALS 87.96±0.74 80.60±0.57 88.69±0.57 89.84±0.48 94.76±0.36 59.39±1.23 40.28±0.79 40.37±1.05 90.00±2.62 89.84±2.95

+PosteL 88.97±1.15 82.54±0.64 88.85±0.61 90.13±0.29 94.96±0.34 60.15±1.20 39.99±1.00 43.72±0.85 87.70±5.25 91.97±1.15
∆ +0.35(↑) +2.43(↑) +0.11(↑) +0.41(↑) +0.20(↑) +1.88(↑) +0.26(↑) +5.02(↑) −2.46(↓) +1.64(↑)

80 settings. Especially, we observe a significant performance gap on heterophilic datasets, which
aligns with our assumption that label smoothing methods relying on the homophilic assumption
should harm training for heterophilic datasets.

4.2 ANALYSIS

In this section, we analyze the main experimental result from various perspectives, including design
choices, ablations, and computational complexity.

Loss curves analysis We investigate the influence of soft labels on the learning dynamics of GNNs
by visualizing the loss function of GCNs with and without soft labels. Figure 2 visualizes the differ-
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Figure 2: Loss curve of GCN trained on PosteL, SALS, and ground truth labels on the Squirrel
dataset.
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Figure 3: Empirical conditional distributions between two adjacent nodes. We omit the adjacent
condition (i, j) ∈ E from the figures for simplicity.

ences between training, validation, and test losses with ground truth labels, SALS labels, and PosteL
labels on the Squirrel dataset. We observe that the gap between the training and the validation or
test loss of PosteL is smaller than that of other baselines. Furthermore, while other baselines exhibit
strong overfitting after 50 epochs, PosteL shows no signs of overfitting even up to 200 epochs. We
conjecture that predicting the correct PosteL label implies the correct prediction of the local neigh-
borhood structure since the PosteL labels contain the local neighborhood information of the target
node. Hence, the model trained with PosteL labels could have a better understanding of the graph
structure, potentially leading to a better generalization performance. A similar context prediction
approach has been proposed as a pertaining method in previous studies (Hu et al., 2019; Rong et al.,
2020). We provide the same curves for all datasets in Figure 8 and Figure 9 in Appendix H. All
curves across all datasets show similar patterns.

Influence of neighborhood label distribution Our approach assumes that the distribution of
neighborhood labels varies depending on the label of the target node. If there are no significant
differences between the neighborhood’s label distributions, the posterior relabeling assigns similar
soft labels for all nodes, making our method similar to the uniform noise method.

Figure 3 shows the neighborhood label distribution for three different datasets. In the PubMed and
Texas datasets, we observe a notable difference in the conditionals w.r.t the different labels of a
target node. The PubMed dataset is known to be homophilic, where nodes with the same labels are
likely to be connected, and the conditional distributions match the characteristics of the homophilic
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GT Labels PosteL Labels

(a) Chameleon

GT Labels PosteL Labels

(b) Squirrel

Figure 4: t-SNE plots of the final layer representation of the Chameleon and Squirrel datasets. For
each dataset, the left figure displays the representations trained on the ground truth labels, while the
right figure displays the representations trained on the PosteL labels.
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Figure 5: The impact of the iterative pseudo labeling: loss curves of GCN on the Cornell dataset.

dataset. The Texas dataset, a heterophilic dataset, shows that some pairs of labels more frequently
appear in the graph. For example, when the target node has the label of 1, their neighborhoods will
likely have the label of 5. On the other hand, the conditionals of the Actor dataset do not vary much
regarding the label of the target node. In such a case, the prior will likely dominate the posterior.
Therefore, the posterior may not provide useful information about neighborhood nodes, potentially
limiting the effectiveness of our method. This analysis aligns with the results in Table 1, where the
improvement of the Actor dataset is less significant than those of the PubMed and Texas datasets.
The neighborhood label distributions for all datasets are provided in Figure 10 and Figure 11 in
Appendix I.

Visualization of node embeddings Figure 4 presents the t-SNE (Van der Maaten & Hinton, 2008)
plots of node embeddings from the GCN with the Chameleon and Squirrel datasets. The node color
represents the label. For each dataset, the left plot visualizes the embeddings with the ground truth
labels, while the right plot visualizes the embeddings with PosteL labels. The visualization shows
that the embeddings from the soft labels form tighter clusters compared to those trained with the
ground truth labels. This visualization results coincide with the t-SNE visualization of the previous
work of Müller et al. (2019).

Effect of iterative pseudo labeling We evaluate the impact of iterative pseudo labeling by analyz-
ing the loss curve at each iteration. Figure 5 illustrates the loss curves for different iterations on the
Cornell dataset. As the iteration progresses, the validation and test losses after 1,000 epochs keep
decreasing. In this example, the model performs best after four iteration steps. We find that the best
validation performance is obtained from 1.13 iterations on average. We provide the average iteration
steps in Appendix F used to report the results in Table 1.

Design choices of likelihood model We explore various valid design choices for likelihood mod-
els. We introduce two variants of PosteL: PosteL (normalized) and PosteL (local-H). In Equa-
tion (2), each edge has an equal contribution to the conditional. The conditional can be influenced
by a few numbers of nodes with many connections. To reduce dependency on high-degree nodes,
we alternatively test the following conditional, denoted as PosteL (normalized):

P̂ norm.(Yj = m|Yi = n, (i, j) ∈ E) :=
∑

yu=n

∑
v∈N (u)

1
|N (u)| · 1[yv = m]

|{yu = n | u ∈ V}|
,

8
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Table 2: Classification accuracy with various choices of likelihood model. PosteL (local-1) and
(local-2) indicate that the likelihood is estimated within one- and two-hop neighbors of a target node,
respectively. PosteL (norm.), shortened from PosteL (normalized), indicates that the likelihood is
normalized based on the degree of a node.

Cora CiteSeer Computers Photo Chameleon Actor Texas Cornell

GCN 87.14±1.01 79.86±0.67 83.32±0.33 88.26±0.73 59.61±2.21 33.23±1.16 77.38±3.28 65.90±4.43

+PosteL (local-1) 88.26±1.07 81.42±0.46 89.08±0.31 93.61±0.40 65.36±1.25 33.48±1.03 79.02±3.11 71.97±4.10

+PosteL (local-2) 88.62±0.97 81.92±0.42 88.62±0.48 93.95±0.37 65.10±1.55 34.63±0.46 78.20±2.79 73.28±4.10

+PosteL (norm.) 89.00±0.99 81.86±0.70 89.30±0.39 94.13±0.39 66.00±1.14 34.90±0.63 80.33±2.95 80.00±1.97

+PosteL 88.56±0.90 82.10±0.50 89.30±0.23 94.08±0.35 65.80±1.23 35.16±0.43 80.82±2.79 80.33±1.80

Table 3: Ablation studies on three main components of PosteL on GCN. PS stands for posterior label
smoothing without uniform noise, UN stands for uniform noise added to the posterior distribution,
and IPL stands for iterative pseudo labeling. We use ✓to indicate the presence of the corresponding
component in training and ✗ to indicate its absence. IPL with one indicates the performance with a
single pseudo labeling step.

PS UN IPL Cora CiteSeer Computers Photo Chameleon Actor Texas Cornell

✗ ✗ ✗ 87.14±1.01 79.86±0.67 83.32±0.33 88.26±0.73 59.61±2.21 33.23±1.16 77.38±3.28 65.90±4.43

✓ ✗ ✗ 88.11±1.22 80.95±0.52 88.86±0.40 93.55±0.30 64.53±1.23 33.48±0.62 78.52±2.46 68.52±4.43

✗ ✓ ✗ 87.77±0.97 81.06±0.59 89.08±0.30 94.05±0.26 64.81±1.53 33.81±0.75 77.87±3.11 67.87±3.77

✓ ✗ ✓ 88.56±0.90 81.64±0.57 88.70±0.27 93.70±0.37 64.25±1.93 34.71±0.76 80.82±2.79 80.16±1.97

✓ ✓ ✗ 87.83±0.92 82.09±0.44 89.17±0.31 93.98±0.34 66.19±1.60 34.91±0.48 79.51±3.61 71.97±5.25

✓ ✓ 1 87.96±0.90 82.33±0.52 89.16±0.30 94.06±0.27 65.89±1.51 34.96±0.48 80.16±2.79 80.33±1.97

✓ ✓ ✓ 88.56±0.90 82.10±0.50 89.30±0.23 94.08±0.35 65.80±1.23 35.16±0.43 80.82±2.79 80.33±1.80

where 1 is an indicator function.

In PosteL (local-H), we estimate the likelihood and prior distributions of each node from their
respective H-hop ego graphs. Specifically, the likelihood of PosteL (local-H) is formulated as
follows:

P̂ local-H(Yj = m|Yi = n, (i, j) ∈ E) := |{(u, v)|yv = m, yu = n, (u, v) ∈ E , u, v ∈ N (H)(i)}|
|{(u, v)|yu = n, (u, v) ∈ E , u, v ∈ N (H)(i)}|

,

where N (H)(i) denotes the set of neighborhoods of node i within H hops. Through the local
likelihood, we test the importance of global and local statistics in the smoothing process.

Table 2 shows the comparison between these variants. The likelihood with global statistics, e.g.,
PosteL and PosteL (normalized), performs better than the local likelihood methods, e.g., PosteL
(local-1) and PosteL (local-2) in general, highlighting the importance of simultaneously utilizing
global statistics. Especially in the Cornell dataset, a significant performance gap between PosteL
and PosteL (local) is observed. PosteL (normalized) demonstrates similar performance to PosteL.

Ablation studies To highlight the importance of each component in PosteL, we perform ablation
studies on three components: posterior smoothing without uniform noise (PS), uniform smoothing
(UN), and iterative pseudo labeling (IPL). Table 3 presents the performance results from the ablation
studies.

The configuration with all components included achieves the highest performance, underscoring the
significance of each component. The iterative pseudo labeling proves effective across almost all
datasets, with a particularly notable impact on the Cornell dataset. However, even without iterative
pseudo labeling, the performance remains competitive, suggesting that its use can be decided based
on available resources. Additionally, incorporating uniform noise into the posterior distribution
enhances performance on several datasets. Moreover, PosteL consistently outperforms the approach
using only uniform noise, a widely used label smoothing method.

Complexity analysis The computational complexity of calculating the posterior label is O(|E|K).
Since the labeling is performed before the learning stage, the time required to process the posterior
label can be considered negligible. The training time increases linearly w.r.t the number of iterations
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Figure 6: Hyperparameter sensitivity analysis on GCN.

Table 4: Accuracy of the model trained with sparse labels. The ratio indicates the percentage of
nodes used for training.

ratio Cora CiteSeer Computers Photo Chameleon Actor Texas Cornell

GCN

10%

80.66±0.89 73.52±1.43 84.47±0.99 92.38±0.41 45.01±3.52 24.62±5.83 67.05±14.92 58.36±19.19

+LS 80.72±0.95 73.48±1.71 85.32±0.68 92.82±0.39 47.61±2.91 27.59±2.52 69.34±14.92 59.34±16.23

+SALS 81.20±0.95 75.48±1.20 85.92±0.84 92.59±0.38 46.11±2.56 28.81±2.01 63.44±13.93 58.69±14.93

+ALS 80.97±0.89 74.02±1.54 85.24±0.79 92.87±0.34 45.49±3.09 27.59±2.13 67.87±14.26 61.48±15.57

+PosteL 82.33±1.28 76.15±1.05 85.50±0.50 92.99±0.31 51.49±2.28 31.25±2.59 71.48±13.93 67.54±16.40

GCN

20%

82.91±0.94 75.91±1.20 86.75±0.36 92.99±0.32 52.67±1.51 30.18±1.51 65.90±14.92 55.25±9.68

+LS 83.07±1.05 76.03±0.93 87.00±0.41 93.26±0.36 53.89±1.49 29.49±1.39 71.15±7.70 56.56±11.15

+SALS 84.25±1.30 77.09±1.02 87.23±0.39 93.10±0.34 54.60±2.04 29.90±1.36 64.43±11.64 52.62±13.45

+ALS 83.25±1.07 76.40±1.09 86.87±0.49 93.36±0.34 53.28±1.29 30.49±1.57 66.56±15.25 62.46±10.66

+PosteL 85.17±1.02 79.36±0.61 87.23±0.30 93.40±0.35 56.81±0.90 32.91±1.51 72.13±6.72 79.84±1.97

with the pseudo labeling. However, experiments show that an average of 1.13 iterations is needed,
making our approach feasible without having too many iterations. The proof of computational
complexity is in Appendix F.

Hyperparameter sensitivity analysis Figure 6 shows the performance with varying values of α
and β on GCN. The blue line indicates the performance with varying α, and the green line shows
the performance with varying β. The red dotted line represents the performance with the ground
truth label. Regardless of the values of α and β, the performance consistently outperforms the case
using ground truth labels, indicating that PosteL is insensitive to α and β. We observe that α values
greater than 0.8 may harm training, suggesting the necessity of interpolating ground truth labels.

4.3 TRAINING WITH SPARSE LABELS

Our method relies on global statistics estimated from training nodes. However, in scenarios where
training data is sparse, the estimation of global statistics can be challenging. To assess the effective-
ness of the label smoothing from graphs with sparse labels, we conduct experiments with varying
sizes of a training set. We conduct the classification experiments with the same settings as in the
previous section, but only used 10% to 20% of the training nodes defined in that section. The
percentage of validation and test nodes is set to 20% for all experiments. Table 4 provides the clas-
sification performance with sparse labels. Even in scenarios with sparse labels, PosteL consistently
outperforms models trained on ground truth labels in most cases. These results show that our method
can effectively capture global statistics even when training data is limited. We provide additional
experiments on extremely sparse labels in Appendix G.

5 CONCLUSION

In this paper, we proposed a novel posterior label smoothing method, PosteL, designed to enhance
node classification performance in graph-structured data. Our approach integrates both local neigh-
borhood information and global label statistics to generate soft labels, thereby improving generaliza-
tion and mitigating overfitting. Extensive experiments across various datasets and models demon-
strated the effectiveness of PosteL, showing significant performance gains compared to baseline
methods despite its simplicity.
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A ANALYSIS OF ASSUMPTIONS AND CHARACTERISTICS OF POSTEL IN
HETEROPHILIC GRAPHS

A.1 IN-DEPTH ANALYSIS OF THE UNDERLYING ASSUMPTIONS OF POSTEL

Our posterior distribution, P (Yi = k|{Yj = yj}j∈N (i)), is based on the assumption that nodes with
similar neighborhood label distributions should exhibit similar characteristics. Xiao et al. (2024)
introduce neighborhood context similarity, S(G), defined as:

S(G) =
K∑

k=1

∑
u,v∈V∥

cos(d(u), d(v)), (4)

where Vk is the set of nodes with label k, d(u) is the neighborhood label distribution, and cos(·)
is the cosine similarity. (We omit some terms for simplicity.) S(G) represents the degree to which
the neighborhood distributions between nodes with the same label are similar. This metric is closely
related to our assumption: if S(G) is large, our assumption holds. The table below, from Xiao et al.
(2024), presents the edge homophily ratio H(G) and neighborhood context similarity S(G) for each
dataset.

Table 5: The edge homophily ratio, H(G), and neighborhood context similarity, S(G), of the node
classification datasets

Cora CiteSeer PubMed Computers Photo Chameleon Actor Squirrel Texas Cornell

H(G) 0.81 0.74 0.80 0.78 0.83 0.23 0.22 0.22 0.11 0.30
S(G) 0.89 0.81 0.87 0.90 0.91 0.67 0.68 0.73 0.79 0.40

From this table, we observe that the homophilic assumption holds well on homophilic graphs but
becomes fragile on heterophilic graphs. In contrast, our assumption is hold across both graph types.
Therefore, our assumption can be considered more general. Therefore, our assumption can be con-
sidered more general. We conjecture that this generality contributes to PosteL’s strong performance
on both homophilic and heterophilic datasets.

A.2 THEORETICAL ANALYSIS OF THE CHARACTERISTICS OF POSTEL WITH HETEROPHILIC
GRAPHS

In this subsection, we provide two additional lemmas showing the characteristics of PosteL with
heterophilic graphs. For simplicity, we focus on a binary classification problem with two classes: 0
and 1. To establish the theorem, we define the individual node homophily pi and class homophily
ck as follows:

pi :=
|{(i, j)|(i, j) ∈ E , yi = yj}|

|{(i, j)|(i, j) ∈ E}|
, ck :=

|{(i, j)|(i, j) ∈ E , yi = k, yj = k}|
|{(i, j)|(i, j) ∈ E , yi = k}|

. (5)

Then the posterior label of the node being labeled to 0 is:

P (Yi = 0|{Yj = yj}j∈N (i)) =
c
|N (i)|pi

0 (1− c0)
|N (i)|(1−pi)

c
|N (i)|pi

0 (1− c0)|N (i)|(1−pi) + c
|N (i)|(1−pi)
1 (1− c1)|N (i)|pi

. (6)

Lemma A.1. In a heterophilic graph with c0, c1 < 0.5, if two nodes have the same degree d, and
node i is connected to more nodes labeled 1 than node j, then PosteL assigns a higher probability
of node i being labeled 0 compared to node j.

Proof. Since the number of adjacent nodes with a different label is larger for node i, we have pi <
pj . The lemma can be expressed as follows:
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cdpi

0 (1− c0)
d(1−pi)

cdpi

0 (1− c0)d(1−pi) + c
d(1−pi)
1 (1− c1)dpi

>
c
dpj

0 (1− c0)
d(1−pj)

c
dpj

0 (1− c0)d(1−pj) + c
d(1−pj)
1 (1− c1)dpj

. (7)

Expanding the inequality:

c
d(pi+pj)
0 (1− c0)

d(2−pi−pj) + cdpi

0 (1− c0)
d(1−pi)c

d(1−pj)
1 (1− c1)

dpj (8)

> c
d(pi+pj)
0 (1− c0)

d(2−pi−pj) + c
dpj

0 (1− c0)
d(1−pj)c

d(1−pi)
1 (1− c1)

dpi . (9)

Subtracting c
d(pi+pj)
0 (1− c0)

d(2−pi−pj) from both sides:

cdpi

0 (1− c0)
d(1−pi)c

d(1−pj)
1 (1− c1)

dpj > c
dpj

0 (1− c0)
d(1−pj)c

d(1−pi)
1 (1− c1)

dpi . (10)

((1− c0)(1− c1))
d(pj−pi) > (c0c1)

d(pj−pi). (11)

Since c0 < 1− c0 and c1 < 1− c1 imply that (1− c0)(1− c1) > c0c1, and given (1− c0)(1− c1) >
c0c1 and pj − pi > 0, the inequality holds.

Lemma A.2. In a heterophilic graph with c0, c1 < 0.5, if two nodes are connected only to nodes la-
beled 1, and their respective degrees are n and m (n > m), then PosteL assigns a higher probability
of being labeled 0 to the node with the higher degree.

Proof. When nodes are connected only to nodes labeled 1, PosteL assigns the posterior probability
of the node being labeled 0 as follows:

P (Yi = 0|{Yj = 1}j∈N (i)) =
(1− c0)

deg(i)

(1− c0)deg(i) + c
deg(i)
1

, (12)

where deg(i) represents the degree of node i. The lemma can be expressed as follows:

(1− c0)
n

(1− c0)n + cn1
>

(1− c0)
m

(1− c0)m + cm1
. (13)

Expanding the inequality:

((1− c0)
m + cm1 )(1− c0)

n > ((1− c0)
n + cn1 )(1− c0)

m. (14)

(1− c0)
n(1− c0)

m + cm1 (1− c0)
n > (1− c0)

n(1− c0)
m + cn1 (1− c0)

m. (15)

cm1 (1− c0)
n > cn1 (1− c0)

m. (16)

(1− c0)
n−m > cn−m

1 . (17)

Since c0, c1 < 0.5, it follows that 1− c0 > c1. Thus, the inequality holds.

As a corollary we can show the following two properties.

• If two nodes have the same degree, the node connected to more nodes labeled 1 should
have a higher probability of being labeled 0.

• If two nodes are connected only to nodes labeled 1, the node with the higher degree should
have a higher probability of being labeled 0.

Although these lemmas and corollary may not reflect the real-world scenario, analyzing properties
of a model is an important step towards understanding its performance.
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B ALGORITHMS RELATED TO ITERATIVE PSEUDO LABELING

Algorithm 2 and Algorithm 3 present the detailed algorithms for PosteL using pseudo labels and the
training process involving iterative pseudo labeling.

Algorithm 2 Posterior label smoothing using pseudo labels

Require: The set of training nodes Vtrain and the set of nodes with pseudo label Vpseudo; the number
of classes K; one-hot encoding of node labels {ei}i∈Vtrain∪Vpseudo

; and the hyperparameters α
and β.

Ensure: The set of soft labels {êi}i∈Vtrain
.

Initialize the set of labeled nodes: Vlabeled = Vtrain ∪ Vpseudo

Estimate prior distribution for m ∈ [K]: P̂ (Yi = m) =
∑

u∈Vlabeled
eum/|Vlabeled|.

Define the set of labeled neighbors for each node u: Nlabeled(u) = N (u) ∩ Vlabeled.
Estimate the empirical conditional for n,m ∈ [K]:

P̂ (Yj = m|Yi = n, (i, j) ∈ E) ∝
∑

u:u∈Vlabeled,yu=n

∑
v∈Nlabeled(u)

evm.

for each i ∈ Vtrain such that Nlabeled(i) ̸= ∅ do
Approximate likelihood:

P ({Yj = yj}j∈Nlabeled(i)|Yi = k) ≈
∏

j∈Nlabeled(i)
P̂ (Yj = yj |Yi = k, (i, j) ∈ E).

Compute posterior distribution: P (Yi = k | {Yj = yj}j∈Nlabeled(i)) using Equation (1).
Add uniform noise: ẽik ∝ P (Yi = k | {Yj = yj}j∈Nlabeled(i)) + βϵ.
Obtain soft label: êi = αẽi + (1− α)ei.

end for

Algorithm 3 Training the GNN with PosteL involving iterative pseudo labeling

Require: The input graph G = (V, E ,X); the set of training nodes Vtrain and test nodes Vtest,
where Vtrain ∪ Vtest = V; one-hot encoded training labels {ei}i∈Vtrain ; and PosteL, as described
in Algorithm 2, along with its parameters K,α, and β.

Ensure: Trained GNN model f with pseudo labeled nodes.
Initialize the pseudo labeled node set: Vpseudo = ∅.
Initialize pseudo labels: {ei}i∈Vpseudo

= ∅.
while validation loss is decreasing do

Apply posterior label smoothing:

{êi}i∈Vtrain = PosteL(Vtrain,Vpseudo, {ei}i∈Vtraining∪Vpseudo
,K, α, β).

Train the GNN model f to predict soft labels for the training nodes {êi}i∈Vtrain
.

Obtain pseudo labels {ȳi}i∈Vtest
and their one-hot encodings {ēi}i∈Vtest

for test nodes:

{ȳi}i∈Vtest = {argmax f(G)i}i∈Vtest .

Update the pseudo labeled node set: Vpseudo = Vtest.
Update pseudo labels: {ei}i∈Vpseudo

= {ēi}i∈Vtest
.

end while

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Target Graph

0 0 0 1 1 1

0 0 0 1 1 1

0 0 0 1 1 1

1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

Adj Matrix

1 0

1 0

1 0

0 1

0 1

0 1

GT

0 1

0 1

0 1

1 0

1 0

1 0

SALS

1 1

1 1

1 1

1 1

1 1

1 1

ALS

1 0

1 0

1 0

0 1

0 1

0 1

PosteL

×𝐖

Generated Labels

Figure 7: The toy example of the soft labels on a binary node classification task with a bipartite
graph

C A CASE STUDY COMPARING SMOOTHING METHODS AND POSTEL

In this section, we aim to provide an in-depth explanation of the main differences between PosteL
and other label smoothing methods to offer insight into why PosteL performs well, especially on
heterophilic graphs.

C.1 THE EFFECT OF UTILIZING GLOBAL STATISTICS

PosteL leverages global statistics, specifically P̂ (Yj = m|Yi = n, (i, j) ∈ E) and P̂ (Yi = m),
to generate soft labels. In contrast, SALS (Wang et al., 2021) only utilizes information from 1-
hop neighbors. The use of global statistics in ALS (Zhou et al., 2023) is questionable due to the
presence of learnable component in their soft label. Figure 7 shows an example of the soft labels
on a binary node classification task with a bipartite graph. The toy example highlights the key
differences between existing methods and ours, which will be elaborated further below.

Conditional probability and its impact P̂ (Yj = m|Yi = n, (i, j) ∈ E) is the conditional prob-
ability of a label given the neighborhood label. We analyze the conditional distribution in balanced
binary classification. Let us define node-wise individual homophily pi and class homophily ck as:

pi :=
|{(i, j)|(i, j) ∈ E , yi = yj}|

|{(i, j)|(i, j) ∈ E}|
,

ck :=
|{(i, j)|(i, j) ∈ E , yi = k, yj = k}|

|{(i, j)|(i, j) ∈ E , yi = k}|
= P̂ (Yj = k|Yi = k, (i, j) ∈ E).

With PosteL, the probability that the posterior label is the same as the ground truth label is given by:

P (Yi = yi|{Yj = yj}j∈N (i)) =
c
|N (i)|pi
yi (1− cyi

)|N (i)|(1−pi)

c
|N (i)|pi
yi (1− cyi

)|N (i)|(1−pi) + c
|N (i)|(1−pi)
y′
i

(1− cy′
i
)|N (i)|(pi)

,

where yi is the ground truth label of node i and y′i is the other label.

With homophilic graphs where cy > (1 − cy), cy′ > (1 − cy′) and pi > (1 − pi) generally, the
posterior distribution of the ground truth label is higher than the negative label. With heterophilic
graphs, where cy < (1− cy), cy′ < (1− cy′) and pi < (1− pi) generally, the posterior distribution
of the ground truth is also higher than the negative label.
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A simple analysis shows that PosteL assigns a high probability to the ground truth label regardless of
whether the graph is homophilic or heterophilic. The presence of the global label statistics P̂ (Yj =
m|Yi = n, (i, j) ∈ E) plays an important role in these cases.

SALS (Wang et al., 2021) SALS interpolates the ground truth label with the neighborhood labels
to generate a soft label. Hence, when the graph is heterophilic, the soft label is likely to be dominated
by the negative labels. Figure 7 shows the example of SALS, where the soft label is dominated by
the negative label.

ALS (Zhou et al., 2023) The label smoothing of ALS consists of three processes: 1) ALS ag-
gregates the neighborhood labels using the formula 1

|N (i)|
∑

j∈N (i) ej , 2) the aggregated labels are
interpolated with the ground truth label, and 3) the interpolated labels are transformed via a linear
transform parameterized by learnable weight matrix W followed by softmax.

Analyzing the deterministic behavior of ALS (Zhou et al., 2023), as done previously for PosteL
and SALS, is non-trivial due to the presence of a learnable component. However, there are explicit
cases where ALS fails to distinguish nodes with different labels. When pi = 0, ALS generates a
soft label as softmax([1, 1]W), regardless of the value of yi. In such cases, ALS adds the same
noise regardless of the characteristics of nodes, which is identical to uniform smoothing. Figure 7
illustrates an example of ALS, where it assigns the same label to all nodes.

Global label distribution and imbalanced datasets Next, P̂ (Yi = m) := |{u|yu=m}|
|V| , repre-

sents the proportion of label m across all nodes. This enables PosteL to account for the overall label
distribution in the graph. When a label has a low proportion, PosteL assigns it a lower probabil-
ity. Reflecting the label distribution across the entire graph can be advantageous for graphs with
imbalanced labels. For example, PosteL demonstrates consistent performance improvement on the
imbalanced Computers dataset.

Discussion Based on these differences, we argue that PosteL is significantly distinguished from
other smoothing methods. This difference comes from the use of global statistics, P̂ (Yj = m|Yi =
n, (i, j) ∈ E), so we conjecture that it is the main factor behind PosteL’s superior performance. This
aligns with the results in Table 2 of our paper, which show that replacing global statistics with local
statistics decreases performance.

C.2 THE ADVANTAGE OF UTILIZING PSEUDO LABELING STRATEGY

Another distinction is the pseudo labeling strategy. SALS and ALS cannot work on sparse graphs,
as there will be no labeled neighborhoods. Our pseudo labeling strategy enables smoothing using
neighborhood label information even on sparse graphs. To the best of our knowledge, PosteL is the
first label smoothing approach in node classification to address sparse label scenarios.
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D DATASET STATISTICS

We provide detailed statistics and explanations about the dataset used for the experiments in Table 6
and the paragraphs below.

Table 6: Statistics of the dataset utilized in the experiments.

Dataset # nodes # edges # features # classes

Cora 2,708 5,278 1,433 7
CiteSeer 3,327 4,552 3,703 6
PubMed 19,717 44,324 500 3

Computers 13,752 245,861 767 10
Photo 7,650 119,081 745 8

Chameleon 2,277 31,396 2,325 5
Actor 7,600 30,019 932 5

Squirrel 5,201 198,423 2,089 5
Texas 183 287 1,703 5

Cornell 183 277 1,703 5

Cora, CiteSeer, and PubMed Each node represents a paper, and an edge indicates a reference
relationship between two papers. The task is to predict the research subjects of the papers.

Computers and Photo Each node represents a product, and an edge indicates a high frequency of
concurrent purchases of the two products. The task is to predict the product category.

Chameleon and Squirrel Each node represents a Wikipedia page, and an edge indicates a link
between two pages. The task is to predict the monthly traffic for each page. We use the classification
version of the dataset, where labels are converted by dividing monthly traffic into five bins.

Actor Each node represents an actor, and an edge indicates that two actors appear on the same
Wikipedia page. The task is to predict the category of the actors.

Texas and Cornell Each node represents a web page from the computer science department of a
university, and an edge indicates a link between two pages. The task is to predict the category of
each web page as one of the following: student, project, course, staff, or faculty.

E DETAILED EXPERIMENTAL SETUP

In this section, we provide the computer resources and search space for hyperparameters. Our
experiments are executed on AMD EPYC 7513 32-core Processor and a single NVIDIA RTX A6000
GPU with 48GB of memory.

We use the same hyperparameter search space as He et al. (2021). Specifically, the learning rate is
validated within {0.001, 0.002, 0.01, 0.05}, and weight decay within {0, 0.0005}. We set the num-
ber of layers for all models to two. The dropout ratio for the linear layers is fixed at 0.5. For the
GCN (Kipf & Welling, 2016), the hidden layer dimension is set to 64. The GAT (Veličković et al.,
2017) uses eight heads, each with a hidden dimension of eight. For the APPNP (Gasteiger et al.,
2018), a two-layer MLP with a hidden dimension of 64 is used, the power iteration step is set to 10,
and the teleport probability is chosen from {0.1, 0.2, 0.5, 0.9}. For the MLP, the hidden dimension
is set to 64. For the ChebNet (Defferrard et al., 2016), the hidden dimension is set to 32, and two
propagation steps are used. For the GPR-GNN (Chien et al., 2020), a two-layer MLP with a hidden
dimension of 64 is used as the feature extractor neural network, and the random walk path length is
set to 10. The PPR teleport probability is chosen from {0.1, 0.2, 0.5, 0.9}. For BernNet (He et al.,
2021), a two-layer MLP with a hidden dimension of 64 is used as the feature extractor, and the poly-
nomial approximation order is set to 10. The dropout ratio for the propagation layers in both GPR-
GNN and BernNet is chosen from {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. We validate two
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Table 7: Average iteration counts of iterative pseudo labeling for each backbone and dataset used to
report Table 1.

Cora CiteSeer PubMed Computers Photo Chameleon Actor Squirrel Texas Cornell

GCN+PosteL 2.5 2.2 1.5 1 0.9 0.9 1.1 0.7 1.8 2.5
GAT+PosteL 1.6 1.8 1 1.2 0.7 0.8 2 1.1 3.1 2.4

APPNP+PosteL 1.9 2 1.1 0.8 1.1 1 1.1 0.9 1.4 2.9
MLP+PosteL 1.7 2.2 0.4 0.7 0.7 0.1 0.8 0.6 0.9 2.4

ChebNet+PosteL 1.6 2.1 1.2 0.6 0.6 1 0.7 0.7 2 2
GPR-GNN+PosteL 0.8 1.1 0.8 0.5 1.3 1 0.3 0.7 1.1 1

BernNet+PosteL 1.5 1.8 0.9 0.8 1 1.5 1.5 0.5 1.2 2.1

hyperparameters for PosteL: posterior label ratio α ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}
and uniform noise ratio β ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

F COMPLEXITY ANALYSIS

In this section, we provide a detailed analysis of the time complexity of Section 3.1. Specifically,
we demonstrate the time complexity of obtaining the prior and likelihood distributions separately.
Finally, we determine the time complexity of computing the posterior distribution using these dis-
tributions.

First, the prior distribution P̂ (Yi = m) can be obtained as follows:

P̂ (Yi = m) =
|{u | yu = k}|

|V|
=

∑
u∈V eum

|V|
. (18)

The time complexity of calculating Equation (18) is O(|V|), so the time complexity of calculating
the prior distribution for K classes is O(|V|K).

Next, calculating the empirical conditional P̂ (Yj = m|Yi = n, (i, j) ∈ E) from Equation (2) can be
performed as follows:

P̂ (Yj = m|Yi = n, (i, j) ∈ E) ∝
∑

u:u∈V,yu=n

∑
v∈N (u)

evm. (19)

The time complexity of calculating Equation (19) for all possible pairs of m and n is
O(

∑
u∈V |N (u)|K). Since

∑
u∈V N (u) = 2|E|, the time complexity for calculating empirical

conditional is O(|E|K).

The likelihood is approximated through the product of empirical conditional distributions, denoted
as P ({Yj = yj}j∈N (i)|Yi = k) ≈

∏
j∈N (i) P̂ (Yj = yj |Yi = k, (i, j) ∈ E). Likelihood calculation

for all training nodes operates in O(
∑

u∈V |N (u)|K) time complexity. So the overall computational
complexity for likelihood calculation is O(|E|K).

After obtaining the prior distribution and likelihood, the posterior distribution is obtained by Bayes’
rule in Equation (1). Applying Bayes’ rule for |V| nodes and K classes can be done in O(|V|K). So
the overall time complexity is O ((|E|+ |V|)K). In most cases, |V| < |E|, so the time complexity
of PosteL is O(|E|K).

In Section 3.2, iterative pseudo labeling is proposed, which involves iteratively refining the pseudo
labels of validation and test nodes to calculate posterior labels. Since this process requires training
the model from scratch for each iteration, the number of iterations can be a significant bottleneck in
terms of runtime. Consequently, the iteration counts are evaluated to assess this aspect. The mean
iteration counts for each backbone and dataset in Table 1 are summarized in Table 7. With an overall
mean iteration count of 1.13, we argue that this level of additional time investment is justifiable for
the sake of performance enhancement.

Table 8 shows the training time of PosteL and the other baselines. With IPL, PosteL requires more
training time, being 1.3 times slower than ALS and 5.7 times slower than using GT labels. If this
computational overhead is too heavy, we can use PosteL without IPL or IPL with one iteration as
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an alternative. PosteL without IPL is 2 times faster than KD and ALS, and PosteL with IPL with
one iteration is also faster than KD and ALS while not sacrificing the accuracy. We reported the
accuracy of each variation in Table 3.

Table 8: Overall training time for each smoothing method. PosteL (w/o) refers to PosteL without
IPL, and PosteL (1) refers to PosteL with one iteration of pseudo labeling.

GCN +LS +KD +SALS +ALS +PosteL +PosteL (w/o) +PosteL (1)

time (s) 0.91 0.74 3.54 0.79 3.92 5.19 1.65 3.12

G ADDITIONAL EXPERIMENTS

Training with extremely sparse labels We evaluate the performance of PosteL with extremely
sparse labels. For all datasets, we randomly select 10 nodes per class as training nodes, resulting in
10K training nodes. In the case of the PubMed dataset, only 0.15% of nodes are used as training
nodes. Table 9 shows the performance of each label smoothing method with extremely sparse labels
on GCN. PosteL outperforms the baselines even in this extremely sparse setting, particularly on
heterophilic datasets, demonstrating that the pseudo-labeling strategy effectively mitigates the issue
of sparsity.

Table 9: The accuracy of the model trained with extremely sparse labels on GCN.

Cora CiteSeer PubMed Computers Photo Chameleon Actor Squirrel Texas Cornell

GCN 76.75±0.63 66.28±0.96 76.74±1.28 75.25±2.61 89.34±1.20 40.01±1.74 21.06±1.84 25.92±1.91 64.19±2.86 58.67±3.52

+LS 77.05±0.72 65.88±1.18 76.88±1.29 76.73±2.65 89.10±1.08 40.48±1.78 21.37±1.37 26.40±1.76 63.71±2.57 59.52±2.95

+SALS 77.09±0.94 66.36±1.00 76.85±1.21 76.23±2.53 88.80±1.20 39.54±1.56 20.90±2.46 26.20±2.06 62.86±4.76 55.90±5.05

+ALS 76.71±0.55 66.46±1.00 77.09±1.33 75.92±2.54 89.69±0.96 40.62±1.96 22.32±1.72 25.64±1.99 65.14±2.67 58.57±3.33

+PosteL 77.00±0.80 66.21±1.01 77.35±1.28 77.88±2.25 89.78±0.87 43.24±1.22 25.76±0.69 27.89±1.36 66.10±2.76 63.14±2.10

Scalability to large-scale graphs We measured the runtime of PosteL on the ogbn-products
dataset (Hu et al., 2020), which contains 2,449,029 nodes and 61,859,140 edges, to validate the
computational complexity on a large-scale graph. We measured the time excluding the training time
for iterative pseudo labeling. Using PosteL, generating soft labels takes 52.57 seconds, while train-
ing for one epoch requires 19.11 seconds. These results indicate that PosteL can efficiently generate
soft labels, even on large-scale graph structures.

Table 10: The accuracy of label smoothing methods on the ogbn-products dataset using GCN.

GCN +LS +SALS +ALS +PosteL

ogbn-products 80.62±0.68 80.99±0.50 81.12±0.13 80.46±0.38 81.20±0.68

Table 10 shows PosteL’s performance on the ogbn-products dataset on GCN. While the performance
improvement is not statistically significant, PosteL achieves the best performance compared to other
smoothing methods.
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H LEARNING CURVES ANALYSIS FOR ALL DATASETS

The learning curves for all datasets are provided in Figure 8 and Figure 9.
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Figure 8: Loss curve of GCN trained on PosteL labels, SALS labels, and ground truth labels on
homophilic datasets.
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Figure 9: Loss curve of GCN trained on PosteL labels, SALS labels, and ground truth labels on
heterophilic datasets.
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I EMPIRICAL CONDITIONAL DISTRIBUTION FOR ALL DATASETS

The empirical conditional distribution for all datasets is provided in Figure 10 and Figure 11.
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Figure 10: Empirical conditional distributions between two adjacent nodes on heterophilic graphs.
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Figure 11: Empirical conditional distributions between two adjacent nodes on homophilic graphs.
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