
Rewire-then-Probe: A Contrastive Recipe for Probing Biomedical
Knowledge of Pre-trained Language Models

Anonymous ACL submission

Abstract

Knowledge probing is crucial for understand-001
ing the knowledge transfer mechanism behind002
the pre-trained language models (PLMs). De-003
spite the growing progress of probing knowl-004
edge for PLMs in the general domain, spe-005
cialised areas such as biomedical domain are006
vastly under-explored. To facilitate this, we007
release a well-curated biomedical knowledge008
probing benchmark, MedLAMA, constructed009
based on the Unified Medical Language Sys-010
tem (UMLS) Metathesaurus. We test a wide011
spectrum of state-of-the-art PLMs and prob-012
ing approaches on our benchmark, reaching at013
most 3% of acc@10. While highlighting vari-014
ous sources of domain-specific challenges that015
amount to this underwhelming performance,016
we illustrate that the underlying PLMs have a017
higher potential for probing tasks. To achieve018
this, we propose Contrastive-Probe, a novel019
self-supervised contrastive probing approach,020
that adjusts the underlying PLMs without us-021
ing any probing data. While Contrastive-022
Probe pushes the acc@10 to 28%, the per-023
formance gap still remains notable. Our hu-024
man expert evaluation suggests that the prob-025
ing performance of our Contrastive-Probe is026
still under-estimated as UMLS still does not027
include the full spectrum of factual knowl-028
edge. We hope MedLAMA and Contrastive-029
Probe facilitate further developments of more030
suited probing techniques for this domain.1031

1 Introduction032

Pre-trained language models (PLMs; Devlin et al.033

2019; Liu et al. 2020) have orchestrated incredi-034

ble progress on myriads of few- or zero-shot lan-035

guage understanding tasks, by pre-training model036

parameters in a task-agnostic way and transferring037

knowledge to specific downstream tasks via fine-038

tuning (Brown et al., 2020; Petroni et al., 2021).039

To better understand the underlying knowledge040

transfer mechanism behind these achievements,041

1Code and data are attached in the submission.
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Riociguat
has physiologic effect [Mask].

Vasodilation

Entecavir
may prevent [Mask].

Hepatitis B

Invasive Papillary Breast Carcinoma
disease mapped to gene [Mask].

[ERBB2 Gene, CCND1 Gene]
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Posttraumatic arteriovenous fistula
is associated morphology of [Mask].

Traumatic arteriovenous
fistula

Acute Myeloid Leukemia with Mutated RUNX1
disease mapped to gene [Mask].

RUNX1 Gene

Magnesium Chloride
may prevent [Mask].

Magnesium Deficiency

Table 1: Example probing queries from MedLAMA. Bold
font denotes UMLS relation.

many knowledge probing approaches and bench- 042

mark datasets have been proposed (Petroni et al., 043

2019; Jiang et al., 2020a; Kassner et al., 2021; 044

Zhong et al., 2021). This is typically done by for- 045

mulating knowledge triples as cloze-style queries 046

with the objects being masked (see Table 1) and 047

using the PLM to fill the single (Petroni et al., 048

2019) or multiple (Ghazvininejad et al., 2019) 049

[Mask] token(s) without further fine-tuning. 050

In parallel, it has been shown that specialised 051

PLMs (e.g., BioBERT; Lee et al. 2020, Blue- 052

BERT; Peng et al. 2019 and PubMedBERT; Gu 053

et al. 2020) substantially improve the performance 054

in several biomedical tasks (Gu et al., 2020). The 055

biomedical domain is an interesting testbed for in- 056

vestigating knowledge probing for its unique chal- 057

lenges (including vocabulary size, multi-token en- 058

tities), and the practical benefit of potentially dis- 059

posing the expensive knowledge base construction 060

process. However, research on knowledge probing 061

in this domain is largely under-explored. 062

To facilitate research in this direction, we 063

present a well-curated biomedical knowledge 064

probing benchmark, MedLAMA, that consists of 065

19 thoroughly selected relations. Each relation 066

contains 1k queries (19k queries in total with at 067

most 10 answers each), which are extracted from 068

the large UMLS (Bodenreider, 2004) biomedical 069

knowledge graph and verified by domain experts. 070
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We use automatic metrics to identify the hard ex-071

amples based on the hardness of exposing answers072

from their query tokens. See Table 1 for a sample073

of easy and hard examples from MedLAMA.074

A considerable challenge in probing in biomed-075

ical domain is handling multi-token encoding of076

the answers (e.g. in MedLAMA only 2.6% of the077

answers are single-token, while in the English set078

of mLAMA; Kassner et al. 2021, 98% are single-079

token), where all existing approaches (i.e., mask080

predict; Petroni et al. 2019, retrieval-based; Dufter081

et al. 2021, and generation-based; Gao et al.082

2020) struggle to be effective.2 For example, the083

mask predict approach (Jiang et al., 2020a) which084

performs well in probing multilingual knowledge085

achieves less than 1% accuracy on MedLAMA.086

To address the aforementioned challenge, we087

propose a new method, Contrastive-Probe, that088

first adjusts the representation space of the under-089

lying PLMs by using a retrieval-based contrastive090

learning objective (like ‘rewiring’ the switchboard091

to the target appliances Liu et al. 2021c) then re-092

trieves answers based on their representation sim-093

ilarities to the queries. Notably, our Contrastive-094

Probe does not require using the MLM heads dur-095

ing probing, which avoids the vocabulary bias096

across different models. Additionally, retrieval-097

based probe is effective for addressing the multi-098

token challenge, as it avoids the need to gener-099

ate multiple tokens from the MLM vocabulary.100

We show that Contrastive-Probe facilitates abso-101

lute improvements of up-to ∼6% and ∼25% on the102

acc@1 and acc@10 probing performance com-103

pared with the existing approaches.104

We further highlight that the elicited knowledge105

by Contrastive-Probe is not gained from the addi-106

tional random sentences, but from the original pre-107

trained parameters, which echos the previous find-108

ing of Liu et al. (2021b); Glavaš and Vulić (2021).109

Additionally, we demonstrate that different state-110

of-the-art PLMs and transformer layers are suited111

for different types of relational knowledge, and112

different relations requires different depth of tun-113

ing, suggesting that both the layers and tuning114

depth should be considered when infusing knowl-115

edge over different relations. Furthermore, ex-116

pert evaluation of PLM responses on a subset of117

2Prompt-based probing approaches such as Auto-
Prompt (Shin et al., 2020a), SoftPrompt (Qin and Eisner,
2021), and OptiPrompt (Zhong et al., 2021) need additional
labelled data for fine-tuning prompts, but we restrict the scope
of our investigation to methods that do not require task data.

MedLAMA highlights that expert-crafted resources 118

such as UMLS still do not include the full spec- 119

trum of factual knowledge, indicating that the fac- 120

tual information encoded in PLMs is richer than 121

what is reflected by the automatic evaluation. 122

The findings of our work, along with the pro- 123

posed MedLAMA and Contrastive-Probe, highlight 124

both the unique challenges of the biomedical do- 125

main and the unexploited potential of PLMs. We 126

hope our research to shed light on what domain- 127

specialised PLMs capture and how it could be bet- 128

ter resurfaced, with minimum cost, for probing. 129

2 MedLAMA 130

To facilitate research of knowledge probing in 131

the biomedical domain, we create the MedLAMA 132

benchmark based on the largest biomedical knowl- 133

edge graph UMLS (Bodenreider, 2004). UMLS3 134

is a comprehensive metathesaurus containing 3.6 135

million entities and more than 35.2 million knowl- 136

edge triples over 818 relation types which are 137

integrated from various ontologies, including 138

SNOMED CT, MeSH and the NCBI taxonomy. 139

Creating a LAMA-style (Petroni et al., 2019) 140

probing benchmark from such a knowledge graph 141

poses its own challenges: (1) UMLS is a col- 142

lection of knowledge graphs with more than 150 143

ontologies constructed by different organisations 144

with very different schemata and emphasis; (2) 145

a significant amount of entity names (from cer- 146

tain vocabularies) are unnatural language (e.g., 147

t(8;21)(q22;q22) denoting an observed karyotypic 148

abnormality) which can hardly be understood by 149

the existing PLMs, with tokenisation tailored for 150

natural language; (3) some queries (constructed 151

from knowledge triples) can have up to hundreds 152

of answers (i.e., 1-to-N relations), complicating 153

the interpretation of probing performance; and (4) 154

some queries may expose answers in themselves 155

(e.g., answer within queries), making it challeng- 156

ing to interpret relative accuracy scores. 157

Selection of Relationship Types. In order to 158

obtain high-quality knowledge queries, we con- 159

ducted multiple rounds of manual filtering on the 160

relation level to exclude uninformative relations or 161

relations that are only important in the ontolog- 162

ical context but do not contain interesting seman- 163

tics as a natural language (e.g, taxonomy and mea- 164

surement relations). We also excluded relations 165

3Release version 2021AA: https://download.nlm.
nih.gov/umls/kss/2021AA/umls-2021AA-full.zip
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Figure 1: Left: Count over full and hard sets. Right:
Percentage of answers over number of tokens.

with insufficient triples/entities. Then, we manu-166

ally checked the knowledge triples for each rela-167

tion to filter out those that contain unnatural lan-168

guage entities and ensure that their queries are se-169

mantically meaningful. Additionally, in the cases170

of 1-to-N relations where there are multiple gold171

answers for the same query, we constrained all the172

queries to contain at most 10 gold answers. These173

steps resulted in 19 relations with each contain-174

ing 1k randomly sampled knowledge queries. See175

Appendix for the detailed relation names and their176

corresponding prompts.177

Easy vs. Hard Queries. Recent works (Poerner178

et al., 2020; Shwartz et al., 2020) have discovered179

that PLMs are overly reliant on the surface form180

of entities to guess the correct answer of a knowl-181

edge query. The PLMs “cheat” by detecting lex-182

ical overlaps between the query and answer sur-183

face forms instead of exercising their abilities of184

predicting factual knowledge. For instance, PLMs185

can easily deal with the triple <Dengue virus live186

antigen CYD serotype 1, may-prevent, Dengue>187

since the answer is part of the query. To miti-188

gate such bias, we also create a hard query set189

for each relation by selecting a subset of their cor-190

responding 1k queries using token and matching191

metrics (i.e., exact matching and ROUGE-L (Lin192

and Och, 2004)). For more details see the Ap-193

pendix. We refer to the final filtered and original194

queries as the hard sets and full sets, respectively.195

Figure 1 (left) shows the count of hard vs. full sets.196

The Multi-token Issue. One of the key chal-197

lenges for probing MedLAMA is the multi-token de-198

coding of its entity names. In MedLAMA there are199

only 2.6% of the entity names that are single-200

token4 while in the English set of mLAMA (Kass-201

ner et al., 2021) and LAMA (Petroni et al., 2019)202

the percentage of single-token answers are 98%203

and 100%, respectively. Figure 1 (right) shows the204

percentage of answers by different token numbers.205

206

4Tokenized by Bert-base-uncased.

Approach Type Answer space MLM
Fill-mask (Petroni et al., 2019) MP PLM Vocab 3

X-FACTR (Jiang et al., 2020a) MP PLM Vocab 3

Generative PLMs (Lewis et al., 2020) GB PLM Vocab 7

Mask average (Kassner et al., 2021) RB KG Entities 3

Contrastive-Probe (Ours) RB KG Entities 7

Table 2: Comparison of different approaches. Types
of probing approaches: Mask predict (MP), Retrieval-
based (RB) and Generation-based (GB).

3 Existing Multi-token Knowledge 207

Probing Approaches 208

While the pioneer works in PLM knowledge prob- 209

ing mainly focused on the single-token entities, 210

many recent works have started exploring the so- 211

lutions for the multi-token scenario (Kassner et al., 212

2021; Jiang et al., 2020a; De Cao et al., 2021). 213

These knowledge probing approaches can be cat- 214

egorised, based on answer search space and re- 215

liance on MLM head, into three categories: mask 216

predict, generation-based, and retrieval-based. 217

Table 2 summarises their key differences. 218

Mask Predict. Mask predict (Petroni et al., 2019; 219

Jiang et al., 2020a) is one of the most commonly 220

used approaches to probe knowledge for masked 221

PLMs (e.g. BERT). The mask predict approach 222

uses the MLM head to fill a single mask token 223

for a cloze-style query, and the output token is 224

subjected to the PLM vocabulary (Petroni et al., 225

2019). Since many real-world entity names are 226

encoded with multiple tokens, the mask predict 227

approach has also been extended to predict multi- 228

token answers using the conditional masked lan- 229

guage model (Jiang et al., 2020a; Ghazvininejad 230

et al., 2019). Figure 2(a) shows the prediction pro- 231

cess. Specifically, given a query, the probing task 232

is formulated as: 1) filling masks in parallel in- 233

dependently (Independent); 2) filling masks from 234

left to right autoregressively (Order); 3) filling to- 235

kens sorted by the maximum confidence greed- 236

ily (Confidence). After all mask tokens are re- 237

placed with the initial predictions, the predictions 238

can be further refined by iteratively modifying one 239

token at a time until convergence or until the max- 240

imum number of iterations is reached (Jiang et al., 241

2020a). For example, Order+Order represents 242

that the answers are initially predicted by Order 243

and then refined by Order. In this paper we exam- 244

ined two of these approaches, i.e. Independent and 245

Order+Order, based on our initial exploration. 246

Generation-based. Recently, many generation 247

based PLMs have been presented for text gener- 248

ation tasks, such as BART (Lewis et al., 2020) and 249
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Figure 2: Comparison of different probing approaches. (d) is our proposed Contrastive-Probe.

T5 (Raffel et al., 2020). These generative PLMs250

are trained with a de-noising objective to restore251

its original form autoregressively (Lewis et al.,252

2020; Raffel et al., 2020). Such an autoregressive253

generation process is analogous to the Order prob-254

ing approach, thus the generative PLMs can be255

directly used to generate answers for each query.256

Specifically, we utilize the cloze-style query with257

a single [Mask] token as the model input. The258

model then predicts the answer entities that cor-259

respond to the [Mask] token in an autoregressive260

manner. An illustration is provided in Figure 2(b).261

Retrieval-based. Mask predict and Generation-262

based approaches need to use the PLM vocabulary263

as their search spaces for answer tokens, which264

may generate answers that are not in the answer265

set. In particular, when probing the masked PLMs266

using their MLM heads, the predicted result might267

not be a good indicator for measuring the amount268

of knowledge captured by these PLMs. This is269

mainly because the MLM head will be eventually270

dropped during the downstream task fine-tuning271

while the MLM head normally accounts for more272

than 20% of the total PLM parameters. Alterna-273

tively, the retrieval-based probing (Dufter et al.,274

2021; Kassner et al., 2021) are applied to address275

this issue. Instead of generating answers based on276

the PLM vocabulary, the retrieval-based approach277

finds answers by ranking the knowledge graph278

candidate entities based on the query and entity279

representations, or the entity generating scores.280

To probe PLMs on MedLAMA, we use mask aver-281

age (Kassner et al., 2021), an approach that takes282

the average log probabilities of entity’s individual283

tokens to rank the candidates. The retrieval-based284

approaches address the multi-token issue by re-285

stricting the output space to the valid answer set286

and can be used to probe knowledge in different287

types of PLMs (e.g. BERT vs. fastText; Dufter288

et al. 2021). However, previous works (Kassner 289

et al., 2021; Dufter et al., 2021) only report results 290

based on the type-restricted candidate set (e.g. re- 291

lation) which we observed to decay drastically un- 292

der the full entity set. 293

4 Contrastive-Probe: Cloze-style Task as 294

a Self-retrieving Game 295

To better transform the PLM encoders for the 296

cloze-style probing task, we propose Contrastive- 297

Probe which pre-trains on a small number 298

of sentences sampled from the PLM’s origi- 299

nal pre-training corpora with a contrastive self- 300

supervising objective, inspired by the Mirror- 301

BERT (Liu et al., 2021b). Our contrastive pre- 302

training does not require the MLM head or any ad- 303

ditional external knowledge, and can be completed 304

in less than one minute on 2 × 2080Ti GPUs. 305

Self-supervised Contrastive Rewiring. We ran- 306

domly sample a small set of sentences (e.g. 10k, 307

see §5.2 for stability analysis of Contrastive- 308

Probe on several randomly sampled sets), and re- 309

place their tail tokens (e.g. the last 50% exclud- 310

ing the full stop) with a [Mask] token. Then these 311

transformed sentences are taken as the queries of 312

the cloze-style self-retrieving game. In the follow- 313

ing we show an example of transforming a sen- 314

tence into a cloze-style query: 315

Sentence: Social-distancing largely reduces coron-
avirus infections.
Query: Social-distancing largely [Mask].

316

where “reduces coronavirus infections” is marked 317

as a positive answer of this query. 318

Given a batch, the cloze-style self-retrieving 319

game is to ask the PLMs to retrieve the positive an- 320

swer from all the queries and answers in the same 321

batch. Our Contrastive-Probe tackles this by op- 322

timising an InfoNCE objective (Oord et al., 2018), 323
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324

L = −

N∑
i=1

log
exp(cos( f (xi), f (xp))/τ)∑

x j∈Ni

exp(cos( f (xi), f (x j))/τ)
, (1)325

where f (·) is the PLM encoder (with the MLM326

head chopped-off and [CLS] as the contextual rep-327

resentation), N is batch size, xi and xp are from328

a query-answer pair (i.e., xi and xp are from the329

same sentence), Ni contains queries and answers330

in the batch, and τ is the temperature. This objec-331

tive function encourages f to create similar rep-332

resentations for any query-answer pairs from the333

same sentence and dissimilar representations for334

queries/answers belonging to different sentences.335

Retrieval-based Probing. For probing step, the336

query is created based on the prompt-based tem-337

plate for each knowledge triple (see Appendix for338

our manual prompts), as shown in the following:339

Triple: <Elvitegravir, may-prevent, Epistaxis>
Query: Elvitegravir may prevent [Mask].

340

and we search for nearest neighbours from all the341

entity representations encoded by the same model.342

5 Experiments343

In this section we conduct extensive experiments344

to verify whether Contrastive-Probe is effective345

for probing biomedical PLMs. First, we experi-346

ment with Contrastive-Probe and existing prob-347

ing approaches on MedLAMA benchmark (§5.1).348

Then, we conduct in-depth analysis of the stability349

and applicability of Contrastive-Probe in prob-350

ing biomedical PLMs (§5.2). Finally, we report an351

evaluation of a biomedical expert on the probing352

predictions and highlight our findings (§5.3).353

Contrastive-Probe Rewiring. We train our354

Contrastive-Probe based on 10k sentences which355

are randomly sampled from the PubMed texts5 us-356

ing a mask ratio of 0.5. The best hyperparameters357

and their tuning options are provided in Appendix.358

Probing Baselines. For the mask predict ap-359

proach, we use the original implementation of X-360

FACTR (Jiang et al., 2020a), and set the beam size361

and the number of masks to 5. Both mask pre-362

dict and retrieval-based approaches are tested un-363

der both the general domain and biomedical do-364

main BERT models, i.e. Bert-based-uncased (De-365

vlin et al., 2019), BlueBERT (Peng et al., 2019),366

BioBERT (Lee et al., 2020), PubMedBERT (Gu367

5We use the text from PubMed used for pre-training of
BlueBERT model (Peng et al., 2019).

Approach PLM Full Set

acc@1 acc@10

Generative PLMs

BART-base 0.16 1.39
SciFive-base 0.53 2.02
SciFive-large 0.55 2.03
T5-small 0.70 1.72
T5-base 0.06 0.19

X-FACTR (Confidence)
BERT 0.05 -
BlueBERT 0.74 -
BioBERT 0.17 -

X-FACTR (Order+Order)
BERT 0.06 -
BlueBERT 0.50 -
BioBERT 0.11 -

Mask average
BERT 0.06 0.73
BlueBERT 0.05 1.39
BioBERT 0.28 3.03

Contrastive-Probe (Ours)

BERT 0.94 4.96
BlueBERT 5.20 20.06
BioBERT 4.54 19.59
PubMedBERT 7.32 27.70

Table 3: Performance of different probing approaches
on the full set of MedLAMA. Since the MLM head of
PubMedBERT is not available, the mask predict and
mask average approaches cannot be applied. Best re-
sults are in bold and the second bests are underlined.

et al., 2020).6 For generation-based baselines, we 368

test five PLMs, namely BART-base (Lewis et al., 369

2020), T5-small and T5-base (Raffel et al., 2020) 370

that are general domain generation PLMs, and 371

SciFive-base & SciFive-large (Phan et al., 2021) 372

that are pre-trained on large biomedical corpora. 373

5.1 Benchmarking on MedLAMA 374

Comparing Various Probing Approaches. Ta- 375

ble 3 shows the overall results of various probing 376

baselines on MedLAMA. It can be seen that the per- 377

formances of all the existing probing approaches 378

(i.e. generative PLMs, X-FACTR and mask pre- 379

dict) are very low (<1% for acc@1 and <4% for 380

acc@10) regardless of the underlying PLM, which 381

are not effective indicators for measuring knowl- 382

edge captured. In contrast, our Contrastive- 383

Probe obtains absolute improvements by up-to ∼ 384

6% and ∼ 25% on acc@1 and acc10 respectively 385

comparing with the three existing approaches, 386

which validates its effectiveness on measuring the 387

knowledge probing performance. In particular, 388

PubMedBERT model obtains the best probing per- 389

formance (7.32% in accuracy) for these biomedi- 390

cal queries, validating its effectiveness of captur- 391

ing biomedical knowledge comparing with other 392

PLMs (i.e. BERT, BlueBERT and BioBERT). 393

Benchmarking with Contrastive-Probe. To fur- 394

ther examine the effectiveness of PLMs in captur- 395

6The MLM head of PubMedBERT is not publicly avail-
able and cannot be evaluated by X-FACTR and mask average.
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Model acc@1/acc@10

Full Set Hard Set

BERT (Devlin et al., 2019) 0.94/4.96 0.74/2.31
BlueBERT (Peng et al., 2019) 5.20/20.06 4.34/18.91
BioBERT (Lee et al., 2020) 4.54/19.59 3.84/15.01
ClinicalBERT (Huang et al., 2019) 1.03/5.61 0.66/4.38
SciBERT (Beltagy et al., 2019) 4.17/16.90 2.83/14.78
PubMedBERT (Gu et al., 2020) 7.32/27.70 4.86/23.51

SapBERT (Liu et al., 2021a) 4.65/24.53 2.02/21.78
UmlsBERT (Michalopoulos et al., 2021) 1.68/7.19 0.94/5.68
CoderBERT (Yuan et al., 2020) 8.38/24.05 6.40/21.79

Table 4: Benchmarking biomedical PLMs on
MedLAMA (Full and Hard) via Contrastive-Probe. The
bottom panel are knowledge-enhanced PLMs.
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Figure 3: Performance over answer lengths.

ing biomedical knowledge, we benchmarked sev-396

eral state-of-the-art biomedical PLMs (including397

pure pre-trained and knowledge-enhanced mod-398

els) on MedLAMA through our Contrastive-Probe.399

Table 4 shows the probing results over the full and400

hard sets (detailed macro and micro accuracies are401

provided in Appendix). In general, we can observe402

that these biomedical PLMs always perform bet-403

ter than general-domain PLMs (i.e., BERT). Also,404

we observe the decay of performance of all these405

models on the more challenging hard set queries.406

While PubMedBERT performs the best under all407

metrics, CoderBERT (Yuan et al., 2020) (which408

is the knowledge infused PubMedBERT) achieves409

better performance on micro acc@1, highlighting410

the benefits of knowledge infusion pre-training.411

Comparison per Answer Length. Since different412

PLMs use different tokenizers, we use char length413

of the query answers to split MedLAMA into dif-414

ferent bins and test the probing performance over415

various answer lengths. Figure 3 shows the re-416

sult. We can see that the performance of retrieval-417

based probing in Contrastive-Probe increases as418

the answer length increase while the performance419

of mask predict dropped significantly. This result420

validates that our Contrastive-Probe (retrieval-421

based) are more reliable at predicting longer an-422

swers than the mask predict approach since the lat-423
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Figure 4: Performance over training steps on full set.
The shaded regions are the standard deviations.

ter heavily relies on the MLM head.7 424

5.2 In-depth Analysis of Contrastive-Probe 425

Since our Contrastive-Probe involves many hy- 426

perparameters and stochastic factors during self- 427

retrieving pre-training, it is critical to verify if it 428

behaves consistently under (1) different randomly 429

sampled sentence sets; (2) different types of rela- 430

tions; and (3) different pre-training steps. 431

Stability of Contrastive-Probe. To conduct this 432

verification, we sampled 10 different sets of 10k 433

sentences from the PubMed corpus8 and probed 434

the PubMedBERT model using our Contrastive- 435

Probe on the full set. Figure 4 shows the acc@1 436

performance over top 9 relations and the micro 437

average performance of all the 19 relations. We 438

can see that the standard deviations are small and 439

the performance over different sets of samples 440

shows the similar trend. This further highlights 441

that the probing success of Contrastive-Probe is 442

not due the selected pre-training sentences. In- 443

tuitively, the contrastive self-retrieving game (§4) 444

is equivalent to the formulation of the cloze-style 445

filling task, hence tuning the underlying PLMs 446

makes them better suited for knowledge elicita- 447

tion needed during probing (like ‘rewiring’ the 448

switchboards). Additionally, from Figure 4 we 449

can also observe that different relations exhibit 450

very different trends during pre-training steps of 451

Contrastive-Probe and peak under different steps, 452

suggesting that we need to treat different types of 453

relational knowledge with different tuning depths 454

when infusing knowledge. We leave further explo- 455

ration of this to future work. 456

7For the single-token answer probing scenario,
Contrastive-Probe does not outperform the mask pre-
dict approach, particularly in the general domain. This is
expected since most of the masked PLMs are pre-trained by
a single-token-filling objective.

8The tuning corpus itself is unimportant, since we can ob-
tain the similar results even using Wikipedia.
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Probing by Relations. To further analyse the457

probing variance over different relations, we also458

plot the probing performance of various PLMs459

over a subset of relations of MedLAMA in Figure 5460

(for full plot see the Appendix). We can observe461

that different PLMs exhibit different performance462

rankings over different types of relational knowl-463

edge (e.g. BlueBERT peaks at relation 12 while464

PubMedBERT peaks at relation 3). This result465

demonstrates that different PLMs are suited for466

different types of relational knowledge. We spec-467

ulate this to be reflective of their training corpora.468

Probing by Layer. To investigate how much469

knowledge is stored in each Transformer layer,470

we chopped the last layers of PLMs and applied471

Contrastive-Probe to evaluate the probing perfor-472

mance based on the first L ∈ {3, 5, 7, 9, 11, 12} lay-473

ers on MedLAMA. In general, we can see in Fig-474

ure 6 that the model performance drops signifi-475

cantly after chopping the last 3 layers, while its476

accuracy is still high when dropping only last one477

layer. In Figure 7, we further plot the layer-wise478

probing performance of PubMedBERT over dif-479

ferent relations. Surprisingly, we find that differ-480

ent relations do not show the same probing perfor-481

mance trends over layers. For example, with only482

the first 3 layers, PubMedBERT achieves the best483

accuracy (>15%) on relation 119 queries. This484

result demonstrates that both relation types and485

PLM layers are confounding variables in captur-486

ing factual knowledge, which helps to explain the487

9relation 11: [X] is associated morphology of [Y].
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Figure 7: Performance of PubMedBERT over layers.
See appendix for the full relation ID and their names.

difference of training steps over relations in Fig- 488

ure 4. This result also suggests that layer-wise 489

and relation-wise training could be the key to ef- 490

fectively infuse factual knowledge for PLMs. 491

5.3 Expert Evaluation on Predictions 492

To assess whether the actual probing performance 493

could be possibly higher than what is reflected 494

by the commonly used automatic evaluation, we 495

conducted a human evaluation on the prediction 496

result. Specifically, we sample 15 queries and 497

predict their top-10 answers using Contrastive- 498

Probe based on PubMedBERT and ask the asses- 499

sor10 to rate the predictions on a scale of [1,5]. 500

Figure 8 shows the confusion matrices.11 We ob- 501

serve the followings: (1) There are 3 UMLS an- 502

swers that are annotated with score level 1-4 (pre- 503

cisely, level 3), which indicates UMLS answers 504

might not always be the perfect answers. (2) There 505

are 20 annotated perfect answers (score 5) in the 506

top 10 predictions that are not marked as the gold 507

answers in the UMLS, which suggests the UMLS 508

does not include all the expected gold knowledge. 509

(3) In general, PubMedBERT achieves an 8.67% 510

(13/150) acc@10 under gold answers, but under 511

the expert annotation the acc@10 is 22%(33/150), 512

which means the probing performance is higher 513

than what evaluated using the automatically ex- 514

tracted answers. 515

6 Related Work and Discussion 516

Knowledge Probing Benchmarks for PLMs. 517

LAMA (Petroni et al., 2019), which starts this line 518

of work, is a collection of single-token knowledge 519

triples extracted from sources including Wikidata 520

and ConceptNet (Speer et al., 2017). To miti- 521

gate the problem of information leakage from the 522

10A senior Ph.D. graduate in Cell Biology.
11In the Appendix, we provide examples with their UMLS

gold answers, human annotated answers and probing predic-
tions of different probing approaches.
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head entity, Poerner et al. (2019) propose LAMA-523

UHN, which is a hard subset of LAMA that has524

less token overlaps in head and tail entities. X-525

FACTR (Jiang et al., 2020a) and mLAMA (Kass-526

ner et al., 2021) extend knowledge probing to the527

multilingual scenario and introduce multi-token528

answers. They each propose decoding methods529

that generate multi-token answers, which we have530

shown to work poorly on MedLAMA. BioLAMA531

(Sung et al., 2021) is a concurrent work that532

also releases a benchmark for biomedical knowl-533

edge probing. We provide a comparison between534

LAMA, BioLAMA and MedLAMA in terms of (#535

relations, # queries, avg # answers per query, avg536

# characters per answer) in the Appendix.12537

Probing via Prompt Engineering. Knowledge538

probing is sensitive to what prompt is used (Jiang539

et al., 2020b). To bootstrap the probing perfor-540

mance, Jiang et al. (2020b) mine more prompts541

and ensemble them during inference. Later works542

parameterised the prompts and made them train-543

able (Shin et al., 2020b; Fichtel et al., 2021; Qin544

and Eisner, 2021). We have opted out prompt-545

engineering methods that require training data in546

this work, as tuning the prompts are essentially547

tuning an additional (parameterised) model on top548

of PLMs. As pointed out by Fichtel et al. (2021),549

prompt tuning requires large amounts of training550

data from the task. Since task training data is used,551

the additional model parameters are exposed to the552

target data distribution and can solve the set set by553

overfitting to such biases (Cao et al., 2021). In554

our work, by adaptively finetuning the model with555

a small set of raw sentences, we elicit the knowl-556

12Our comparison indicated that MedLAMA and BioLAMA
have no overlaps in queries, allowing both resources to com-
plement each other.

edge out from PLMs but do not expose the data 557

biases from the benchmark (MedLAMA). 558

Biomedical Knowledge Probing. Nadkarni et al. 559

(2021) train PLMs as KB completion models and 560

test on the same task to understand how much 561

knowledge is in biomedical PLMs. BioLAMA fo- 562

cuses on the continuous prompt learning method 563

OptiPrompt (Zhong et al., 2021), which also re- 564

quires ground-truth training data from the task. 565

Overall, compared to BioLAMA, we have pro- 566

vided a more comprehensive set of probing exper- 567

iments and analysis, including proposing a novel 568

probing technique and providing human evalua- 569

tions of model predictions. 570

7 Conclusion 571

In this work, we created a carefully curated 572

biomedical probing benchmark, MedLAMA, from 573

the UMLS knowledge graph. We illustrated that 574

state-of-the-art probing techniques and biomedi- 575

cal pre-trained languages models (PLMs) struggle 576

to cope with the challenging nature (e.g. multi- 577

token answers) of this specialised domain, reach- 578

ing only an underwhelming 3% of acc@10. To 579

reduce the gap, we further proposed a novel con- 580

trastive recipe which rewires the underlying PLMs 581

without using any probing-specific data and illus- 582

trated that with a lightweight pre-training their ac- 583

curacies could be pushed to 28%. 584

Our experiments also revealed that different lay- 585

ers of transformers encode different types of in- 586

formation, reflected by their individual success at 587

handling certain types of prompts. Additionally, 588

using a human expert, we showed that the existing 589

evaluation criteria could overpenalise the models 590

as many valid responses that PLMs produce are 591

not in the ground truth UMLS knowledge graph. 592

This further highlights the importance of having a 593

human in the loop to better understand the poten- 594

tials and limitations of PLMs in encoding domain 595

specific factual knowledge. 596

Our findings indicate that the real lower bound 597

on the amount of factual knowledge encoded by 598

PLMs is higher than we estimated, since such 599

bound can be continuously improved by optimis- 600

ing both the encoding space (e.g. using our self- 601

supervised contrastive learning technique) and the 602

input space (e.g. using the prompt optimising 603

techniques (Shin et al., 2020a; Qin and Eisner, 604

2021)). We leave further exploration of integrat- 605

ing the two possibilities to future work. 606
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A Appendix780

A.1 Details Relation Names and Prompts781

Table 5 shows the detailed relation names and their782

manual prompts of our MedLAMA.783

A.2 Details of the Hardness Metrics784

In this paper, we use two automatic metrics to dis-785

tinguish hard and easy queries. In particular, we786

first filter out easy queries by an exact matching787

metric (i.e. the exactly matching all the words of788

answer from queries). Since our MedLAMA con-789

tains multiple answers for queries, we use a thresh-790

old on the average exact matching score, i.e. avg-791

match>0.1, to filter out easy examples, where792

avg-match is calculated by:793

avg-match =
Count(matched answers)

Count(total answers)
.794

This metric can remove all the queries that match795

the whole string of answers. However, some796

common sub-strings between queries and answers797

also prone to reveal answers, particularly ben-798

efiting those retrieval-based probing approaches.799

E.g. <Magnesium Chloride, may-prevent, Mag-800

nesium Deficiency>. Therefore, we further cal-801

culate the ROUGE-L score (Lin and Och, 2004)802

for all the queries by regarding <query, answers>803

pairs as the <hypothesis, reference> pairs, and fur-804

ther filter out the ROUGE-L>0.1 queries.805

A.3 Comparing with BioLAMA806

During the writing of this work, we notice that807

Sung et al. (2021) also released a biomedical808

knowledge probing benchmark, called BioLAMA,809

which is a work concurrent to ours. In Table 6,810

we compare our MedLAMA with LAMA (Petroni811

et al., 2019) and BioLAMA (Sung et al., 2021)812

in terms of their statistics. We found that there is813

only 1 overlapped relation (i.e. may treat) between814

BioLAMA and our MedLAMA, and no same query815

can be found. Moreover, Sung et al. (2021) only816

use two existing probing approach on their pro-817

posed BioLAMA, while in this paper we further818

proposed a new probing approach Contrastive-819

Probe. We also evaluate our Contrastive-Probe in820

BioLAMA, and the result is shown in Table 7. We821

can see that, without additional training data from822

the biomedical knowledge facts, our MedLAMA823

shows very competitive performance comparing824

with OptiPrompt approach, which needs further825

training data. Additionally, since Mask Predict826

and OptiPrompt require using the MLM head, it 827

is impossible to compare a model without MLM 828

head being released (e.g. PubMedBERT). In con- 829

trast, our Contrastive-Probe not only provides a 830

good indicator of comparing these models in terms 831

of their captured knowledge, but also makes layer- 832

wise knowledge probing possible. 833

A.4 Hyperparameters Tuning. 834

We train our Contrastive-Probe based on 10k 835

sentences which are randomly sampled from the 836

original pre-training corpora of the correspond- 837

ing PLMs. Since most of the biomedical BERTs 838

use PubMed texts as their pre-training corpora, 839

for all biomedical PLMs we sampled random sen- 840

tences from a version of PubMed corpus used 841

by BlueBERT model (Peng et al., 2019), while 842

for BERT we sampled sentences from its original 843

wikitext corpora. For the hyperparamters of our 844

Contrastive-Probe, Table 8 lists our search op- 845

tions and the best parameters used in our paper. 846

A.5 The Impact of Mask Ratios 847

To further investigate the impact of the mask ra- 848

tio to the probing performance, we also test our 849

Contrastive-Probe based on PubMedBERT over 850

different mask ratios ({0.1, 0.2, 0.3, 0.4, 0.5}) 851

under the 10 random sentence sets, the result of 852

which is shown in Figure 9. We can see that over 853

different mask ratios the Contrastive-Probe al- 854

ways reaches their best performance under certain 855

pre-training steps. And the performance curves 856

of mask ratios are different over the full and hard 857

sets, but they all achieves a generally good per- 858

formance when the mask ratio is 0.5, which val- 859

idates that different mask ratios favour different 860

types queries. 861
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Figure 9: Performance of Contrastive-Probe based on PubMedBERT over different mask ratios. The shaded
regions are the standard deviations under 10 different random sentence sets sampled from the PubMed corpus.
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ID Relation Manual Prompt

1 disease may have associated disease The disease [X] might have the associated disease [Y] .
2 gene product plays role in biological process The gene product [X] plays role in biological process [Y] .
3 gene product encoded by gene The gene product [X] is encoded by gene [Y] .
4 gene product has associated anatomy The gene product [X] has the associated anatomy [Y] .
5 gene associated with disease The gene [X] is associatied with disease [Y] .
6 disease has abnormal cell [X] has the abnormal cell [Y] .
7 occurs after [X] occurs after [Y] .
8 gene product has biochemical function [X] has biochemical function [Y] .
9 disease may have molecular abnormality The disease [X] may have molecular abnormality [Y] .
10 disease has associated anatomic site The disease [X] can stem from the associated anatomic site [Y] .
11 associated morphology of [X] is associated morphology of [Y] .
12 disease has normal tissue origin The disease [X] stems from the normal tissue [Y] .
13 gene encodes gene product The gene [X] encodes gene product [Y] .
14 has physiologic effect [X] has physiologic effect of [Y] .
15 may treat [X] might treat [Y] .
16 disease mapped to gene The disease [X] is mapped to gene [Y] .
17 may prevent [X] may be able to prevent [Y] .
18 disease may have finding [X] may have [Y] .
19 disease has normal cell origin The disease [X] stems from the normal cell [Y] .

Table 5: The 19 relations and their corresponding manual prompts in MedLAMA.

Benchmark # Relations # Queries Avg. # answer Avg. # Char % Single-Tokens

LAMA 41 41k 1 7.11 100%
BioLAMA 36 49k 1 18.40 2.2%
MedLAMA 19 19k 2.3 20.88 2.6%

Table 6: Comparison of LAMA, BioLAMA and our MedLAMA. Note that there is only 1 overlapped relation (i.e.
may treat) between BioLAMA and our MedLAMA, and no same query between them.

Probe Model CTD wikidata UMLS

acc@1 acc@5 acc@1 acc@5 acc@1 acc@5

Mask Predict
BERT 0.06 1.20 1.16 6.04 0.82 1.99

BioBERT 0.42 3.25 3.67 11.20 1.16 3.82
Bio-LM 1.17 7.30 11.97 25.92 3.44 8.88

OptiPrompt
BERT 3.56 6.97 3.29 8.13 1.44 3.65

BioBERT 4.82 9.74 4.21 12.91 5.08 13.28
Bio-LM 2.99 10.19 10.60 25.15 8.25 20.19

Contrastive-Probe
BlueBERT 1.62 5.84 6.64 25.97 2.63 11.46
BioBERT 0.20 0.99 1.04 4.51 0.89 3.89
Bio-LM 1.70 4.26 4.32 18.74 1.27 5.01

PubMedBERT 2.60 8.87 10.20 35.14 4.93 18.33

Table 7: Performance on BioLAMA benchmark. Note that both the mask predict and opti-prompt require using the
MLM head and opti-prompt needs further training data, so it is impossible to compare a model without MLM head
being released (e.g. PubMedBERT). In contrast, our Contrastive-Probe provides a good indicator of comparing
these models in terms of their captured knowledge.

Hyperparameters Search space

rewire training learning rate {1e-5, 2e-5∗, 5e-5}
rewire training steps 500
rewire training mask ratio {0.1, 0.2, 0.3, 0.4∗, 0.5∗}
τ in InfoNCE of rewire training {0.02,0.03∗,0.04,0.05}
rewire training data size {1k, 10k∗, 20k,100k}
step of checkpoint for probing {50, 150∗, 200, 250}
max_seq_length of tokeniser for queries 50
max_seq_length of tokeniser for answers 25

Table 8: Hyperparameters along with their search grid. ∗ marks the values used to obtain the reported results.
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Query 1: The gene product HLA Class II Histocompatibility Antigen, DP(W4) Beta Chain is encoded by gene [Y] .
UMLS Answers: MHC Class II Gene, HLA-DPB1 Gene, Immunoprotein Gene
Human Answers: MHC Class II Gene, HLA-DPB1 Gene

Model Contrastive-Probe (PubMedBERT) X-FACTR (BlueBERT) Generative PLMs (SciFive-large)

Top-5

MHC Class II Gene b HLA-DRB1
MHC Class I Gene hla encoding HLA
HLA-A Gene dqb1 DP(W)
HLA-DPB1 Gene locus dqb1 HLA-B
HLA-F Gene 2 , dq beta 2 HLA-DQ

Query 2: The gene product Tuberin is encoded by gene [Y] .
UMLS Answers: TSC2 Gene, Signaling Pathway Gene
Human Answers: TSC2 Gene, Tuberin

Model Contrastive-Probe (PubMedBERT) X-FACTR (BlueBERT) Generative PLMs (SciFive-large)

Top-5

TSC2 Gene family of tuberins “”
SKA2 Gene ##t1 TUB
TSPY1 Gene symbol tuber Tuberin
Tuberin ( tuber ) TUBE
TSC1 Gene a TUBB

Query 3: Refractory Monomorphic Post-Transplant Lymphoproliferative Disorder may have [Y] .
UMLS Answers: Lymphadenopathy, Aggressive Clinical Course, Extranodal Disease
Human Answers: Early post-transplant lymphoproliferative disorder, Lymphoproliferative disorder following transplantation ,
Refractory Polymorphic Post-Transplant Lymphoproliferative Disorder, Aggressive Clinical Course, Post transplant lymphoproliferative disorder
Neoplastic Post-Transplant Lymphoproliferative Disorder, Refractory Monomorphic Post-Transplant Lymphoproliferative Disorder

Model Contrastive-Probe (PubMedBERT) X-FACTR (BlueBERT) Generative PLMs (SciFive-large)

Top-5

Early post-transplant lymphoproliferative disorder manifestations similar to this
Lymphoproliferative disorder following transplantation relapses in this study
Refractory Polymorphic Post-Transplant Lymphoproliferative Disorder phenotype similar to our case
Aggressive Clinical Course - specific phenotype similar to ours
Post transplant lymphoproliferative disorder features similar to this case

Query 4: moexipril might treat [Y] .
UMLS Answers: Diabetic Nephropathies, Heart Failure, Hypertension, Ventricular Dysfunction, Left
Human Answers: Essential Hypertension, Hypertension

Model Contrastive-Probe (PubMedBERT) X-FACTR (BlueBERT) Generative PLMs (SciFive-large)

Top-5

Essential Hypertension hypertension “”
Posttransplant hyperlipidemia diabetes mellitus this
Hypertension essential hypertension them
Atherosclerotic Cardiovascular Disease diabetes migraine
Type 1 Diabetes Mellitus in patients with hypertension patients

Table 9: Example predictions of different probing approaches. The human answers are annotated based on the
Contrastive-Probe predictions.

Type Model Full set Hard set

macro acc@1/@10 micro acc@1/@10 macro acc@1/@10 micro acc@1/@10

Pure pre-trained

BERT (Devlin et al., 2019) 0.94/4.96 0.94/4.96 0.74/2.31 0.68/2.13
BlueBERT (Peng et al., 2019) 5.20/20.06 5.20/20.06 4.34/18.91 4.49/18.51
BioBERT (Lee et al., 2020) 4.54/19.59 4.54/19.59 3.84/15.01 3.90/14.91
ClinicalBERT (Huang et al., 2019) 1.03/5.61 1.03/5.61 0.66/4.38 0.61/3.74
SciBERT (Beltagy et al., 2019) 4.17/16.90 4.17/16.90 2.83/14.78 2.81/14.08
PubMedBERT (Gu et al., 2020) 7.32/27.70 7.32/27.70 4.86/23.51 4.71/22.88

Knowledge-enhanced

SapBERT (Liu et al., 2021a) 4.65/24.53 4.65/24.53 2.02/21.78 1.96/18.98
CoderBERT (Yuan et al., 2020) 8.38/24.05 8.38/24.05 6.40/21.79 6.24/20.32
UmlsBERT (Michalopoulos et al., 2021) 1.68/7.19 1.68/7.19 0.94/5.68 0.85/5.00

Table 10: Benchmarking biomedical PLMs on MedLAMA via our Contrastive-Probe.
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