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Abstract

Recent studies on deep ensembles have identified the sharpness of the local minima
of individual learners and the diversity of the ensemble members as key factors
in improving test-time performance. Building on this, our study investigates
the interplay between sharpness and diversity within deep ensembles, illustrat-
ing their crucial role in robust generalization to both in-distribution (ID) and
out-of-distribution (OOD) data. We discover a trade-off between sharpness and
diversity: minimizing the sharpness in the loss landscape tends to diminish the
diversity of individual members within the ensemble, adversely affecting the en-
semble’s improvement. The trade-off is justified through our theoretical analysis
and verified empirically through extensive experiments. To address the issue of
reduced diversity, we introduce SharpBalance, a novel training approach that
balances sharpness and diversity within ensembles. Theoretically, we show that our
training strategy achieves a better sharpness-diversity trade-off. Empirically, we
conducted comprehensive evaluations in various data sets (CIFAR-10, CIFAR-100,
TinyImageNet) and showed that SharpBalance not only effectively improves the
sharpness-diversity trade-off, but also significantly improves ensemble performance
in ID and OOD scenarios. Our code has been made open-source.†

1 Introduction

There has been interest in understanding the properties of neural networks (NNs) and their implications
for robust generalization to both in-distribution (ID) and out-of-distribution (OOD) data [Hendrycks
and Dietterich, 2019a]. Two properties of particular importance, sharpness (or flatness) [Granziol,
2020, Andriushchenko et al., 2023, Yang et al., 2021, Dinh et al., 2017, Yao et al., 2020] and
diversity [Laviolette et al., 2017, Fort et al., 2019, Yao et al., 2020, Dietterich, 2000, Ortega et al.,
2022, Theisen et al., 2023], have been shown to have a significant influence on performance. In the
context of deep ensembles [Ovadia et al., 2019, Lakshminarayanan et al., 2017, Fort et al., 2019,
Mehrtash et al., 2020, Ganaie et al., 2022], diversity (which measures the variance in output between
independently-trained models) is shown to be critical in enhancing ensemble accuracy. Sharpness, on
the other hand, quantifies the curvature of local minima and is believed to be empirically correlated
with an individual model’s generalization ability.

*First four authors contributed equally.
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Figure 1: (Sharpness-diversity trade-off and SharpBalance). (a) Caricature illustrating the
sharpness-diversity trade-off that emerges in an ensemble’s loss landscape induced by the Sharpness-
aware Minimization (SAM) optimizer. We propose SharpBalance to address this trade-off. Each
black circle represents an individual NN in a three-member ensemble. The distance between circles
represents the diversity between NNs and the ruggedness of the basin represents the sharpness of each
NN. (b) Theoretically proving the existence of the sharpness-diversity trade-off and improvement
from SharpBalance, plotting the analytic representation of sharpness and diversity from Theorem 1
and Theorem 2 by changing the perturbation radius ρ of SAM. SharpBalance achieves a larger di-
versity for the same level of sharpness. (c) Empirical results of verifying sharpness-diversity trade-off
improvement from SharpBalance. Each marker represents a three-member ResNet18 ensemble
trained on CIFAR-10. Diversity is measured by the variance of individual models’ predictions, and
sharpness is measured by the adaptive worst-case sharpness, both defined in Section 2.

Recent research on loss landscapes [Yang et al., 2021] highlights that a single structural property
of the loss landscape is insufficient to fully capture a model’s generalizability, and it underscores
the importance of a joint analysis of sharpness and diversity. Despite significant efforts in studying
sharpness and diversity individually, a gap persists in understanding their relationship, particularly
in the context of ensemble learning. Our work seeks to bridge this gap by investigating ensemble
learning through the lens of loss landscapes, with a specific focus on the interplay between sharpness
and diversity.

Sharpness-diversity trade-off. Our examination of loss landscape structure for ensembling revealed
a “trade-off” between the diversity of individual NNs and the sharpness of the local minima to which
they converge. This trade-off introduces a potential limitation to the achievable performance of the
deep ensemble: the test accuracy of individual NN can be improved as the sharpness is reduced, but
it simultaneously reduces diversity, thereby compromising the ensembling improvement (evidence
in Section 4.2 and 4.4). This trade-off is visually summarized in the lower transition branch in
Figure 1a. We also developed theories (in Section 3) to verify the trade-off. The theoretical results
characterizing this phenomenon are visualized in Figure 1b, and the experimental observation is
presented in Figure 1c. In Section 4.2, we also verified the existence of the trade-off by varying the
experimental setting to include different datasets and different levels of overparameterization (e.g.,
changing model width).

SharpBalance mitigates the trade-off and improves ensembling performance. To address the
challenge presented by the sharpness-diversity tradeoff, we propose a novel ensemble training method
called SharpBalance. This method aims to simultaneously reduce the sharpness of individual
NNs and prevent diversity reduction among them, as demonstrated in the upper transition branch
of Figure 1a. This method is designed based on our theoretical results, which suggest that training
different ensemble members using a loss function that aims to reduce sharpness on different subsets
of the training data can improve the trade-off between sharpness and diversity. Our theoretical results
are summarized in Figure 1b. Aligned with theoretical insights, our SharpBalance method lets each
ensemble member minimize the sharpness objective exclusively on a subset of training data, termed
the sharpness-aware set. The sharpness-aware set of each ensemble member is diversified by an
adaptive strategy based on data-dependent sharpness measures. As shown in Figure 1c, we verify
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that SharpBalance improves the sharpness-diversity tradeoff in training the ResNet18 ensemble on
CIFAR10. We conducted experiments on three classification datasets to show that SharpBalance
boosts ensembling performance in ID and OOD data.

Our contributions are summarized as follows:

• Comprehensive identification of the sharpness-diversity trade-off: This work provides a thor-
ough examination of the phenomenon sharpness-diversity trade-off where reducing the sharpness
of individual models can decrease diversity between models within an ensemble. We demonstrate
this effect through extensive experiments across various settings,using different sharpness and
diversity measures, as well as different model capacities. Our findings show that this trade-off can
negatively affect the ensemble improvements.

• Novel theory: We prove the existence of the trade-off under a novel theoretical framework based on
rigorous analysis of sharpness-aware training objectives [Foret et al., 2021, Behdin and Mazumder,
2023]. Our analysis borrows tools from analyzing Wishart moments [Bishop et al., 2018], and
characterizes the exact dynamics of training, bias-variance tradeoff, and the upper and lower bounds
of sharpness. Notably, our novel theoretical analysis generalizes existing analysis to ensemble
members trained with different data, which is the key to analyzing our own training method
SharpBalance.

• Effective approach: To mitigate the sharpness-diversity trade-off, we introduce SharpBalance,
an ensemble training approach. Our theoretical framework demonstrates that SharpBalance
provably achieves improvements on the sharpness-diversity trade-off by reducing sharpness while
mitigating the decrease in diversity. Empirically, we confirm this improvement and demonstrate
that SharpBalance enhances overall ensemble performance, outperforming baseline methods
in CIFAR-10, CIFAR-100 [Krizhevsky, 2009], TinyImageNet [Le and Yang, 2015], and their
corrupted versions to assess OOD performance.

We provide a more detailed discussion on related work in Appendix B.

2 Background

Preliminaries. We use a NN denoted as fθ : Rdin → Rdout , where θ ∈ Rp denotes the trainable
parameters. The training dataset comprises n data-label pairs D = {(x1,y1) , . . . , (xn,yn)}. The
training loss of NN fθ over a dataset D can be defined as LD(θ) =

1
n

∑n
i=1 ℓ (fθ (xi) ,yi). Here

ℓ(·) is a loss function, which, for instance, can be the cross entropy loss or ℓ2 loss. We construct a
deep ensemble consisting of m distinct NNs fθ1

, . . . , fθm
. For classification tasks, the ensemble’s

output is derived by averaging the predicted logits of these individual networks. We use flat ensemble
to mean the deep ensemble in which each ensemble member is trained using a sharpness-aware
optimization method [Foret et al., 2021], differentiating it from other ensemble approaches.

Diversity metrics. Distinct measures of diversity have been proposed in the literature [Laviolette
et al., 2017, Fort et al., 2019, Dietterich, 2000, Baek et al., 2022, Ortega et al., 2022, Theisen
et al., 2023], and they are primarily calculated using the predictions made by individual models.
Ortega et al. [2022] define diversity D(θ) to be the variance of model outputs averaged over the
data-generating distribution, which we adopt in the theoretical analysis:

D(θ) = ED[Var(fθ(D))]. (1)

In our experiments, diversity is measured using variance defined above, as well as two other widely
used metrics in ensemble learning, namely Disagreement Error Ratio (DER) [Theisen et al., 2023]
defined in equation (2), and KL divergence [Kullback and Leibler, 1951] defined in equation (11)
in the appendices. We show in Section 4.2 that our main claim generalizes to these three metrics
in characterizing the diversity between members within an ensemble. Specifically, denote P as the
distribution of model weights θ after training. Then, the DER is defined as

DER =
Eθ,θ′∼P [Dis(fθ, fθ′ )]

Eθ∼P [E(fθ)]
, (2)

where Dis(fθ, fθ′ ) is the prediction disagreement [Masegosa, 2020, Mukhoti et al., 2021, Jiang
et al., 2022] between two classifier fθ, fθ′ , and E(fθ) is the prediction error.
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Sharpness Metric. In accordance with the definition proposed by Foret et al. [2021], we char-
acterize the first-order sharpness of a model as the worst-case perturbation within a radius of ρ0.
Mathematically, the sharpness κ of a model θ is expressed as follows:

κ(θ; ρ0) = max
∥ε∥2≤ρ0

LD(θ + ε)− LD(θ).

Empirically, we measure the sharpness of the NN via the adaptive worst-case sharpness [Kwon et al.,
2021, Andriushchenko et al., 2023]. The adaptive worst-case sharpness captures how much the loss
can increase within the perturbation radius ρ0 of θ:

max
∥T−1

θ ε∥2≤ρ0

LD(θ + ε)− LD(θ), (3)

where θ = [θ1, . . . , θl], and Tθ = diag (|θ1| , . . . , |θl|). T−1
θ is a normalization operator to make

sharpness “scale-free”, that is, such that scaling operations on θ that do not alter NN predictions will
not impact the sharpness measure.

Ensembling. We characterize the effectiveness of ensembling by the metric called ensemble im-
provement rate (EIR) [Theisen et al., 2023], which is defined as the ensembling improvement over
the average performance of single models. Let Eens denote the test error of an ensemble; the EIR is
then defined as follows:

EIR =
Eθ∼P [E(fθ)]− Eens

Eθ∼P [E(fθ)]
. (4)

Sharpness Aware Minimization (SAM). SAM [Foret et al., 2021] has been shown to be an effective
method for improving the generalization of NNs by reducing the sharpness of local minima. It
essentially functions by penalizing the maximum loss within a specified radius ρ of the current
parameter θ. The training objective of SAM is to minimize the following loss function:

LSAM
D (θ) := max

∥ε∥2≤ρ
LD(θ + ε) + λ∥θ∥22, (5)

where λ is the hyperparameter of a standard ℓ2 regularization term.

3 Theoretical Analysis of Sharpness-diversity Trade-off

This section theoretically analyzes the sharpness-diversity trade-off. The diversity among individual
models is quantified using equation (1). The first theorem establishes the existence of a trade-off
between sharpness and diversity. The second theorem demonstrates that training models with only
a subset of data samples leads to a more favorable trade-off between these two metrics.

Sharpness and Diversity of SAM. Assume the training data matrix A ∈ Rntr×din and test data matrix
T ∈ Rnte×din are random with entries drawn from Gaussian N (0, 1

din
I). Suppose the model weight at

the 0-th time step, θ0, is initialized randomly such that E[θ0] = 0 and E[θ0θT
0 ] = σ2I and updated

with a quadratic optimization objective through SAM. The learned weight matrix after k time steps is
denoted as θk. Let θ∗ be the teacher model (i.e., ground-truth model) such that Aθ∗ = y(A) and
Tθ∗ = y(T), where y(D) is the label vector for data matrix D. Given a perturbation radius ρ0, the
sharpness of a model after k iteration under the random matrix assumption is defined as

κ(θk; ρ0) = EA[ max
∥ε∥2≤ρ0

f (Eθ0 [θk] + ε;A)− f (Eθ0 [θk] ;A)],

which is the expected fluctuation of the model output after perturbation over the data distribution.
For simplicity, we denote κ(θSAM

k ; ρ0) = κSAM
k for the rest of the paper. We derive an explicit

formulation of diversity and upper and lower bounds of sharpness for models optimized with SAM in
Theorem 1. Detailed proof can be found in Appendix C.1.
Theorem 1 (Diversity and Sharpness of SAM). Let θ0 be initialized randomly such that E[θ0] = 0
and E[θ0θT

0 ] = σ2I. Suppose θSAM
k is the model weight after k iterations of training with SAM on

A ∈ Rntr×din and evaluated on T ∈ Rnte×din . Let η be the step size, ρ be the perturbation radius in
SAM and ρ0 be the radius for measuring sharpness κSAM

k . Then

D(θSAM
k ) = ϕ(2k, 0)σ2,

ρ20
2

(√
ntr

din
− 1

)2

+ ρ0
√
ϕ(2k, 2)∥θ∗∥2 −G ≤κSAM

k ≤ ρ20
2

(√
ntr

din
+ 1

)2

+ ρ0
√
ϕ(2k, 2)∥θ∗∥2,
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where

ϕ(i, j) :=1j=0 +
∑

k1+k2+k3=i

i!

k1!k2!k3!
(−η)k2+k3ρk3

(
ntr

din

)m m∑
l=1

(
din

ntr

)m−l

O(1 + 1/din)Nm,l,

G = ϕ(4k,4)−ϕ(2k,2)2

2ϕ(2k,2)3/2∥θ∗∥2
, and m = k2 + 2k3 + j. Nm,l =

1
l

(
m−1
l−1

)(
m
l−1

)
is the Narayana number.

To provide a clearer understanding of the relationship between sharpness and diversity, Figure 2
presents a trade-off curve between these two metrics. The estimated sharpness and diversity are
displayed on the x and y axes, respectively. Each point in the plot corresponds to a model trained
using SAM with a different ρ value, showcasing the outcome of varying perturbation radius. In these
experiments, we evaluated the sharpness and diversity of the models empirically and compared them
to the estimates obtained using Theorem 1. The soundness of Theorem 1 and tightness of the derived
bounds are further supported by empirical evidence, as depicted in Figure 2. Further verification
results supporting our theoretical analysis are provided in Appendix C.3

Figure 2: (Theoretical vs. Simulated
sharpness-diversity trade-off). This figure
illustrates the relationship between sharpness
(upper and lower bounds) and diversity as
predicted by Thereom 1 and as observed in
simulations. Note that the upper and lower
bounds correspond to the sharpness values
plotted along the x-axis, with the upper bound
positioned to the right and the lower bound to
the left. Also, note that the bounds provided
are for the expected sharpness, which means
that random fluctuations can cause the sim-
ulation results to move beyond these bounds.

Training with Data Subsets. Assume A is par-
titioned into S horizontal submatrices, such that
A = [AT

1 ,A
T
2 , . . . ,A

T
S ]

T . We show in Theorem
2 a similar analysis of the sharpness and diversity
of ensembles for which each model is trained with
a submatrix. Under this setting, we first selected a
subset of data As uniformly at random and then train
the model with the selected subset with SAM.
Theorem 2 (Diversity and Sharpness when Models
are Trained on Subsets). Suppose the training data
matrix A is partitioned into S horizontal submatrices.
Let θ0 be initialized randomly such that E[θ0] = 0

and E[θ0θT
0 ] = σ2I. Let θSharpBal

k be the model
weight trained with SAM for k iterations on the sub-
matrix As ∈ R

ntr
S ×din , selected uniformly at random,

and evaluated on test data T ∈ Rnte×din . Let η be
the step size, ρ be the perturbation radius in SAM, ρ0
be the radius for measuring sharpness κSAM

k , and
r = ntr

Sdin
. Then

D(θSharpBal
k ) =ϕ′(2k, 0)σ2

+
S − 1

dinS

(
ϕ′(2k, 0)− ϕ′(k, 0)2

)
∥θ∗∥22,

and

κSharpBal
k (ρ0) ≤

ρ20
2

(√
ntr

din
+ 1

)2

+
ρ0
S

√
C∥θ∗∥2,

where

C =Sϕ′(2k, 2) + 2rS(S − 1)ϕ′(2k, 1) + 2S(S − 1)ϕ′(k, 2)ϕ′(k, 0)

+ r(1 + r)S(S − 1)ϕ′(2k, 0) + 2S(S − 1)ϕ′(k, 1)ϕ′(k, 1)

+
3

2
r(1 + r)S(S − 1)(S − 2)ϕ′(k, 0)2 +

3

2
r2S(S − 1)(S − 2)ϕ′(2k, 0)

+ 3rS(S − 1)(S − 2)ϕ′(k, 0)ϕ′(k, 1) + r2S(S − 1)(S − 2)(S − 3)ϕ′(k, 0)2,

ϕ′(i, j) := 1j=0 +
∑

k1+k2+k3=i

i!

k1!k2!k3!
(−η)k2+k3ρk3

(
ntr

Sdin

)m m∑
l=1

(
Sdin

ntr

)m−l

O(1 +
1

din
)Nm,l,

where m = k2 + 2k3 + j. Nm,l =
1
l

(
m−1
l−1

)(
m
l−1

)
is the Narayana number.

The proof of Theorem 2 is provided in Appendix C.2. Similar experimental validations are conducted
to verify Theorem 2, with results also presented in Appendix C. The main insight from Theorem 2 is
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that training models on a randomly selected data subset offers a better trade-off between sharpness
and diversity compared to training on the complete dataset. This idea is further illustrated in Figure
1b, where we compare the sharpness upper bound and diversity of models trained on the full dataset
(labeled as SAM) and those trained on subsets (labeled as SharpBalance). The results demonstrate
that SharpBalance achieves a more favorable trade-off. For a given level of sharpness, deep
ensembles with models trained on subsets of the data exhibit higher diversity compared to those
trained on the entire dataset. This indicates that minimizing sharpness on randomly sampled data
subsets for each model within the ensemble promotes the diversity among the models, thereby
enhancing the sharpness-diversity trade-off.

4 Experiments

In this section, we describe our experiments. In particular, following Section 4.1 where we describe
our experimental setup, in Section 4.2, we provide an empirical evaluation across various datasets
to explore the trade-off between sharpness and diversity. We also examine how this trade-off
changes with different levels of overparameterization. Then, in Section 4.3 and 4.4, we elaborate the
SharpBalance algorithm and compare its performance with baseline methods.

4.1 Experimental setup

Here, we describe the experiment setup for Section 4.2. Each ensemble member is trained
individually using SAM with a consistent perturbation radius ρ, as defined in equation (5). We adjust ρ
across different ensembles to achieve varying levels of minimized sharpness. Sharpness for each NN
was measured using the adaptive worst-case sharpness metric, defined in equation (3). The sharpness
measurement was done on the training set, using 100 batches of size 5. The diversity between
NNs is measured using DER defined in equation (2). The diversity between ensemble members
is tested on OOD data. We evaluated this trade-off using a variety of image classification datasets,
including CIFAR-10, CIFAR-100 [Krizhevsky, 2009], TinyImageNet [Le and Yang, 2015], and their
corrupted versions [Hendrycks and Dietterich, 2019b]. For the setup of Section 4.4, we used the
same datasets and architecture. The hyperparameters of the baseline methods has been carefully
tuned. The hyperparameters for conducting the experiments are detailed in Appendix D.
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Figure 3: (Varying diversity measure in empirical study). Three different metrics are employed to
measure the diversity of individual models within an ensemble, i.e., Variance in equation (1), DER in
equation (2), and KL divergence in equation (11). The results of the three metrics show consistent
trends, demonstrating the sharpness-diversity trade-off: lower sharpness is correlated with lower
diversity. The experiment is conducted by training a three-member ResNet18 ensemble on CIFAR10.

4.2 Empirical validation of Sharpness-diversity trade-off

We provide empirical observation to validate and explore the sharpness-diversity trade-off. Figure 3
presents the validation of observing the trade-off phenomenon on training ResNet18 ensembles on
CIFAR10 applying three different metrics to measure the diversity. The results demonstrate that
this trade-off phenomenon generalizes to the three diversity metrics defined in Section 2. Figure 4
presents the validation on three different datasets. In the following empirical study, DER will be the
primary metric for measuring diversity of models.
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(a) CIFAR-10 (b) CIFAR-100 (c) TinyImageNet

Figure 4: (Empirical observations of sharpness-diversity trade-off). The identified trade-off
shows that while reducing sharpness enhances individual model performance, it concurrently lowers
diversity and thus diminishes the ensemble improvement rate. First row: the color encoding represents
the ensemble improvement rate (EIR) defined in equation (4), from red to blue means ensembling
improvement decreases. Second row: the color encoding represents the individual ensemble member’s
OOD accuracy, from blue to red means individual performance becomes better. Each marker
represents a three-member ResNet18 ensemble trained with SAM with a different perturbation radius.

Experimental results obtained with the other two metrics are available in Appendix E. The three sets
of results first verify that minimizing individual member’s sharpness indeed reduces diversity. This is
confirmed by the consistent trends of markers moving from upper right to lower left. Second, the first
row of Figure 4 shows that an ensemble with decreased diversity (lower in y-axis) shows a lower
ensemble improvement rate (from red to blue), highlighting the negative impact of this trade-off.
Lastly, the second row shows when the sharpness of the individual model is reduced (lower in x-axis),
the individual model’s OOD accuracy is improved (from blue to red), demonstrating the benefits of
minimizing sharpness. We verify the robustness of the phenomenon by measuring the sharpness and
diversity using different metrics in Appendix E.

Figure 5 illustrates the trade-off curves as the overparameterization level of the model is adjusted by
changing width or sparsity (introduced using model pruning). This visualization confirms that the
trade-off is a consistent phenomenon across models of different sizes, and the ensemble provides
less improvement (blue color) at the lower left end of each trade-off curve. It also highlights that
models with smaller or sparser configurations show a more significant trade-off effect, as evidenced
by the steeper slopes and higher coefficient values of the linear fitting curves. As sparse ensembles
are now being used to demonstrate the benefits of ensembling for efficient models [Liu et al., 2022,
Diffenderfer et al., 2021, Whitaker and Whitley, 2022, Kobayashi et al., 2022, Zimmer et al., 2024],
addressing the conflict between sharpness and diversity becomes particularly crucial.

4.3 Our SharpBalance method

Here, we describe the design and implementation of our main method, SharpBalance. Figure 6
provides an overview. Our approach is motivated by the theoretical analysis in Section 3, which
suggests that having each ensemble member minimize sharpness on diverse subsets of the data
can lead to a better trade-off between sharpness and diversity. SharpBalance aims to achieve the
optimal balance by applying SAM to a carefully selected subset of the data, while performing standard
optimization on the remaining samples. More specifically, for each ensemble member NN fθi

, our
method divides the entire training dataset D into two distinct subsets: sharpness-aware set Di

SAM and
normal set Di

Normal. The model is trained to optimize the sharpness reduction objective on Di
SAM,
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Figure 5: (Sharpness-diversity trade-off in models varying overparameterization levels).
Different types of markers represent models with varying degrees of overparameterization,
determined by changing the model width (a) or sparsity (b). Each marker represents a three-member
ensemble trained with SAM with a different perturbation radius. The β reflects the rate of decline
in the trade-off curve, calculated via applying linear fitting over the ensembles at each level of
overparameterization. A higher β points to a steeper decline in the trade-off. Ensembles with
narrower widths or increased sparsity display more pronounced trade-off effects. The model used
in ResNet18 and the dataset is CIFAR-10.

while it optimizes the normal training objective on Di
Normal. These training objectives are denoted

as LSAM
Di

SAM
(θi) and LDi

Normal
(θi), respectively. The Di

SAM is selected by an adaptive strategy from the
whole dataset D: it is composed of the union of samples that are deemed “sharp” by all other members
of the ensemble except the i-th. Specifically, for each model, we pick the subset of data samples with
the top-k% highest “per-data-sample sharpness.” Then, we take the union of all such subsets expect
the i-th for creating the subset Di

SAM. This partition of data samples can be efficiently computed in
parallel as there is no sequential dependency on the training of the ensemble members. However,
SharpBalance can be easily adapted for sequential training if memory constraints permit training
only one model at a time.

per-data-sample sharpness

Ensemble

sharpness reduction objective

normal objective 
Dataset

Top-

Top-

optimization

Union of Top-

Figure 6: (System diagram of SharpBalance). Each ensemble member fθi optimizes the sharpness
reduction objective on subset Di

SAM and the normal training objective on Di
Normal. Di

SAM is formed
by selecting data samples from D that significantly affect the loss landscape sharpness of other
ensemble members.

Per-data-sample sharpness. This metric is designed to efficiently assess the sharpness of a model
for individual data samples. For each data point (xj ,yj), sharpness is quantified using the Fisher
Information Matrix (FIM), which is expressed as ∇θℓ(fθ(xj),yj)∇θℓ(fθ(xj),yj)

T . Following a
well-established approach [Bottou et al., 2018], we approximate the trace of the FIM by computing
the squared ℓ2 norm of the gradient: ∥∇θℓ(fθ(xj),yj)∥22. Other common sharpness metrics, such as
worst-case sharpness, trace of the Hessian, or Hessian eigenvalues, are computationally slightly more
expensive to approximate [Yao et al., 2020, 2021], but are expected to lead to similar results.
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4.4 Empirical evaluation of SharpBalance
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Figure 7: (Main results: SharpBalance improves the overall ensembling performance and
mitigates the reduced ensembling improvement caused by sharpness-diversity trade-off). The
three-member ResNet18 ensemble is trained with different methods on three datasets. The first row
reports the OOD accuracy and the second row reports the ID accuracy. The lower part of each bar
with the diagonal lines represents the individual model performance. The upper part of each bar
represents the ensembling improvement. The results are reported by averaging three ensembles, and
each ensemble is comprised of three models.

We evaluate SharpBalance by benchmarking it against both a standard Deep Ensemble, trained
using SGD, and a Deep Ensemble enhanced with SAM. The results are presented in Figure 7 for
CIFAR-10, CIFAR-100, and TinyImageNet. The comparison between the middle and left bars shows
that SAM enhances individual model performance by reducing sharpness. However, this reduction
in sharpness also diminishes the overall ensemble effectiveness by lowering diversity, exemplifying
the sharpness-diversity trade-off discussed in Section 4.2. Further comparison between the right
and middle bars shows that SharpBalance maintains or improves individual performance while
improving ensemble effectiveness.

We also evaluate SharpBalance on different ensemble sizes. As shown in Figure 8, SharpBalance
demonstrates more pronounced empirical improvements as the number of ensemble models increases.
The accuracy difference between SharpBalance and the baseline methods becomes more significant,
especially on corrupted data. Specifically, SharpBalance outperforms the baselines by up to 1.30%
when ensembling 5 models on CIFAR100-C dataset.

To further evaluate SharpBalance, we provide corroborating results in Appendix F, which includes:

• We evaluate SharpBalance on different severity of the corruption on CIFAR10-C, CIFAR100-C
and Tiny-ImageNet-C. SharpBalance increasingly outperforms the baselines as the severity of
the corruption increases. We also evaluate the proposed method using uncertainty metrics such as
negative log-likelihood and expected calibration error.

• We further evaluate SharpBalance on other model architectures and tasks, such as WideResNet,
ViT, and ALBERT [Lan et al., 2020] on language tasks.

• We compare our method of measuring sharpness with another method of measuring the curvature
of the loss around a data point [Garg and Roy, 2023] and show the strong correlation between these
two methods.

• We further compare SharpBalance with ensemble baseline EoA [Arpit et al., 2022], an improved
version of SAM (for which individual models in an ensemble are trained with different ρ values) and
GSAM [Zhuang et al., 2022]. Results show that SharpBalance can significantly outperform the
baselines.
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CIFAR10 CIFAR100 CIFAR10-C CIFAR100-C

CIFAR10 CIFAR100 CIFAR10-C CIFAR100-C

Figure 8: SharpBalance achieves more pronounced improvement when increasing the number
of ensembling models. "EIR" represents the ensemble inprovement rate, which is defined in Section 2,
the larger the better. x-axis represents the number of individual models in one ensemble.

• We demonstrate that, compared to training a deep ensemble with SAM, our method adds only
minimal computational cost. The extra time complexity is dominated by the computation of Fisher
trace for evaluating per-sample sharpness, which empirically increases the training time by 1%.

5 Conclusion

Our theoretical and empirical analyses demonstrate the existence of a sharpness-diversity trade-off
when sharpness-minimization training methods are applied to deep ensembles. This leads to two
main insights that are relevant for improving model performance. First, reducing the sharpness in
individual models proves to be beneficial in enhancing the performance of the ensemble as a whole.
Second, the accompanying reduction in diversity suggests that popular ensembling methods have
limitations, and also highlights the potential for more sophisticated designs that promote diversity
among models with lower sharpness. These results are particularly timely, given recent theoretical
work on characterizing ensemble improvement [Theisen et al., 2023]. In response to these findings,
we have proposed SharpBalance, which “diagnoses” the training data by evaluating the sharpness
of each sample and then fine-tunes the training of individual models to focus on a diverse subset of
the sharpest training data samples. This targeted approach helps maintain diversity among models
while also reducing their individual sharpness. Extensive evaluations indicate that SharpBalance
not only improves the sharpness-diversity trade-off but also delivers superior OOD performance
for both dense and sparse models across various datasets and architectures when compared to other
ensembling approaches.

Limitations. One limitation of the study is that our theoretical analysis in Section 3 relies on the
assumption that the data matrices A,T follow a Gaussian distribution and assumed the optimization
objective to be quadratic, which may not always hold in practice. Despite the potentially strong
assumptions, our empirical findings in Section 4 show that the conclusions remain robust in real-world
datasets with various model architectures. This suggests the insights discovered in our study are
applicable to a wider range of real-world scenarios, beyond just those strictly adhering to the Gaussian
assumption. Nevertheless, future research could explore how such assumptions can be relaxed and
extend the theoretical analysis to a weaker condition.
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Appendix

A Impact Statement

This paper uncovers a trade-off between sharpness and diversity in deep ensembles and introduces
a novel training strategy to achieve an optimal balance between these two crucial metrics. While
the proposed method could potentially be misused for malicious purposes, we believe that the study
itself does not pose any direct negative societal impact. More importantly, this research advances the
field of ensemble learning and contribute to the development of more reliable deep ensemble models.
These advancements consequently result in enhanced robustness when dealing with OOD data and
enable the quantification of uncertainty, thereby strengthening the reliability and applicability of deep
learning systems in real-world scenarios.

B Related work

Ensembling. Diversity is one of the major factors that contribute to the success of the ensembling
method. Popular ensemble techniques have been developed for tree-type individual learners, which
are known to have a high variance. This is evident such as in [Breiman, 2001, Chen and Guestrin,
2016, Freund, 1995, Freund and Schapire, 1997]. In contrast, more stable algorithms, such as
support vector machines (SVM) type learners, are less commonly used for ensembles, unless they are
tuned to a low-bias, high-variance regime, as explored in [Valentini and Dietterich, 2003]. When it
comes to diversity and ensembling, NNs are known to exhibit properties different than traditional
models, e.g., as described in recent theoretical and empirical work on loss landscapes and emsemble
improvement [Theisen et al., 2023, Yang et al., 2021]. Therefore, ensembling techniques that work
well for traditional models (e.g., tree-type models) often underperform the simple yet efficient deep
ensembles method [Fort et al., 2019, Ortega et al., 2022] that uses the independent initialization
and optimization. Previous literature has explored various new methods to learn diverse NNs [Lee
et al., 2022, Rame et al., 2022, Pang et al., 2019, Parker-Holder et al., 2020]. Our work is different
from previous work in that we study flat ensembles obtained from sharpness-aware training methods,
especially focusing on diversifying flat ensembles by reducing the overlap between sharpness-aware
data subsets. While our work demonstrates significant improvements in OOD generalization, it is
known that (in some cases, see also Theisen et al. [2023]) deep ensembling is a simple, yet effective
method to improve OOD performance [Diffenderfer et al., 2021]. Therefore, we compare the OOD
performance of SharpBalance to deep ensembles.

Sharpness and generalization. A large body of work has studied the relationship between the
sharpness (or flatness) of minima and the generalizability of models [Hochreiter and Schmidhuber,
1997, Hinton and van Camp, 1993, Keskar et al., 2016, Neyshabur et al., 2018, Yang et al., 2021,
Kaddour et al., 2022, Yao et al., 2021, 2020]. Works such as those by [Hochreiter and Schmidhuber,
1997] and [Hinton and van Camp, 1993] use Bayesian learning and minimum description length to
explain why we should train models to flat minima. [Keskar et al., 2016] introduces a sharpness-based
metric, demonstrating how large-batch training can skew NNs towards sharp local minima, adversely
affecting generalization. In addition, [Neyshabur et al., 2018] uses a PAC-Bayesian framework to
prove bounds on generalization, which can be interpreted as the relationship between sharpness and
test accuracy. Furthermore, [Cha et al., 2021] presents a theoretical exploration of the link between
the sharpness of minima and OOD generalization.

Motivated by the good generalization property of flat minima, variants of sharpness-guided opti-
mization techniques have been proposed [Yao et al., 2018, 2021, Du et al., 2024, Jiang et al., 2023],
including sharpness-aware minimization [Foret et al., 2021]. The DiWA method [Rame et al.,
2022] observed that SAM can decrease the diversity of models in the context of weight averaging
(WA) [Izmailov et al., 2018]. However, WA imposes constraints on different models, requiring them
to share the same initialization and stay close to each other in the parameter space. In contrast, our
work focuses on deep ensembles that do not pose additional constraints on the training trajectories of
individual ensemble members. Previous work by [Behdin and Mazumder, 2023] provided a theoreti-
cal characterization of important statistical properties for kernel regression models and single-layer
ReLU networks, optimized using SAM on noisy datasets. Our theoretical analysis borrows ideas
from [Behdin and Mazumder, 2023] and extends the analysis using random matrix theory. DASH was
proposed in [Bui et al., 2024] to minimize the generalization loss by adding KL divergence constraint
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on the output logits of ensemble members. The authors believe that the decrease in diversity is a result
of models being initialized closely and updated with the same direction. In contrast, SharpBalance
observed that the sharpness-diversity trade-off is ubiquitous across various settings and provides
a rigorous theoretical quantification that characterizes the interplay of the two metrics. Compare
to DASH, SharpBalance provably achieves improved performance and is simple, effective, and
computationally cheap to implement.

C Proof of Theorems in Section 3

Recall that SAM updates the model weights, ignoring the normalization constant and regularization,
through the following recursive rule

θSAM
k+1 = θSAM

k − η∇f
(
θSAM
k + ρ∇f(θSAM

k )
)
.

We first show an unrolling of the iterative optimization on a quadratic objective.
Theorem 3 (Unrolling SAM). Let θ∗ be the teacher model. Let θ0 be randomly initialized and
updated with SAM to solve a quadratic objective LA(θ) = 1

2 (θ − θ∗)TATA(θ − θ∗). Then,

θSAM
k+1 = η

k∑
i=0

Bi
(
ATA+ ρ(ATA)2

)
θ∗ +Bk+1θ0,

where B = I− ηATA− ηρ(ATA)2.

Proof. The gradient of the objective f is given by ∇f(θ) = ATA(θ − θ∗). Therefore,

θSAM
k + ρ∇f(θSAM

k ) = (I+ ρATA)θSAM
k − ρATAθ∗.

With SAM update,

θSAM
k+1 = θSAM

k − η∇f
(
θSAM
k + ρ∇f(θSAM

k )
)

= θSAM
k − ηATA

(
θSAM
k + ρ∇f(θSAM

k )− θ∗)
= θSAM

k − ηATA
(
(I+ ρATA)θSAM

k − ρATAθ∗ − θ∗)
=
(
I− ηATA− ηρ(ATA)2

)
θSAM
k + η

(
ATA+ ρ(ATA)2

)
θ∗

= η

k∑
i=0

Bi
(
ATA+ ρ(ATA)2

)
θ∗ +Bk+1θ0,

where the last equation is obtained by recursively unrolling the weight by previous updates.

Theorem 3 offers a valuable tool to analyze the statistical behavior of the models optimized by
SAM. However, one more ingredient is required to arrive at the interesting conclusions claimed in
Section 3, the random matrix theory. Recall that the data matrix A ∈ Rntr×din is random with entries
drawn from Gaussian N (0, I/din). As a result, entries in ATA follows the Wishart distribution and
according to Corollary 3.3 in Bishop et al. [2018], for k ≥ 1,

E[(ATA)k] =

(
ntr

din

)k k∑
i=1

(
din

ntr

)k−i

O (1 + 1/din)Nk,iI, (6)

where Nk,i =
1
i

(
k−1
i−1

)(
k

i−1

)
is the Narayana number. With the help of this Corollary, we now prove a

proposition on the expectation of Bk.
Proposition 1 (Expectation of Wishart Moments). Let i, j be non-negative integers, then

EA[Bi(ATA)j ] = ϕ(i, j)I,

where

ϕ(i, j) :=1j=0 +
∑

k1+k2+k3=i

i!

k1!k2!k3!
(−η)k2+k3ρk3

(
ntr

din

)m m∑
l=1

(
din

ntr

)m−l

O(1 + 1/din)Nm,l,

and m = k2 + 2k3 + j.
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Proof. By Multinomial Theorem,

Bi(ATA)j =

( ∑
k1+k2+k3=i

i!

k1!k2!k3!
Ik1(−ηATA)k2(−ηρ(ATA)2)k3

)
(ATA)j

=
∑

k1+k2+k3=i

i!

k1!k2!k3!
(−η)k2+k3ρk3(ATA)k2+2k3+j .

Let m = k2 + 2k3 + j and taking the expectation with equation (6) gives

EA[Bi(ATA)j ] =
∑

k1+k2+k3=i

i!

k1!k2!k3!
(−η)k2+k3ρk3EA[(ATA)k2+2k3+j ]

=
∑

k1+k2+k3=i

i!

k1!k2!k3!
(−η)k2+k3ρk3

(
ntr

din

)m m∑
l=1

(
din

ntr

)m−l

O(1 + 1/din)Nm,lI.

If j = 0, then there is a case when k2 = k3 = 0, and the expectation of (ATA)0 simply becomes I.
Therefore,

EA[Bi(ATA)j ] = 1j=0I+
∑

k1+k2+k3=i

i!

k1!k2!k3!
(−η)k2+k3ρk3

(
ntr

din

)m m∑
l=1

(
din

ntr

)m−l

O(1 + 1/din)Nm,lI

= ϕ(i, j)I.

C.1 Proof of Theorem 1

In this subsection, we show a proof for Theorem 1.

Proof. Apply Singular Value Decomposition (SVD) to obtain A = VΣUT and ATA = UΣ2UT .
Let D = Σ2. By Theorem 3,

θSAM
k = η

k−1∑
i=0

Bi(ATA+ ρ(ATA)2)θ∗ +Bkθ0

= η

k∑
i=0

(
I− ηATA− ηρ(ATA)2

)i (
ATA+ ρ(ATA)2

)
θ∗ +Bkθ0

= η

k−1∑
i=0

U(I− ηD− ηρD2)iUTU(D+ ρD2)UTθ∗ +Bkθ0

= ηU · diag

{k−1∑
i=0

(1− ηdj − ηρd2j )
i(dj + ρd2j )

}din

j=1

UTθ∗ +Bkθ0

= ηU · diag

{1− (1− ηdj − ηρd2j )
k

ηdj + ηρd2j
(dj + ρd2j )

}din

j=1

UTθ∗ +Bkθ0

= U
(
I− (I− ηD− ηρD2)k

)
UTθ∗ +

(
I− ηATA− ηρ(ATA)2

)k
θ0

= θ∗ +
(
I− ηATA− ηρ(ATA)2

)k
(θ0 − θ∗).
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As a result, Eθ0
[θSAM

k ] = θ∗ −
(
I− ηATA− ηρ(ATA)2

)k
θ∗ = θ∗ −Bkθ∗. By definition,

nteBias2(θSAM
k ) = EA,T[

p∑
i=1

(Eθ0
[f(θSAM

k ;Ti)]− y
(T)
i )2]

= EA,T[(Eθ0
[θSAM

k ]− θ∗)TTTT(Eθ0
[θSAM

k ]− θ∗)]

= EA[(Eθ0 [θ
SAM
k ]− θ∗)TET[T

TT](Eθ0 [θ
SAM
k ]− θ∗)]

=
nte

din
EA[(θ∗)TB2kθ∗]

=
nte

din
ϕ(2k, 0)∥θ∗∥22,

nteError(θSAM
k ) = EA,T,θ0 [

p∑
i=1

(y
(T)
i − f(θSAM

k ;Ti))
2]

= EA,T,θ0 [(θ
∗ − θSAM

k )TTTT(θ∗ − θSAM
k )]

= EA,T,θ0 [(θ
∗ − θ0)

TBkTTTBk(θ∗ − θ0)]

= EA,T,θ0 [(θ
∗)TBkTTTBkθ∗] + EA,T,θ0 [θ

T
0 B

kTTTBkθ0]

=
nte

din
ϕ(2k, 0)∥θ∗∥22 + nteϕ(2k, 0)σ

2,

Since ET[T
TT] = nte

din
I and E[θ0θT

0 ] = σ2I. Hence,

D(θSAM
k ) = Var

(
f(θSAM

k ;T)
)
=

1

nte

(
nteError(θSAM

k )− nteBias2(θSAM
k )

)
= ϕ(2k, 0)σ2.

Recall that given a perturbation radius ρ0, the sharpness is defined as

κ(θk) = EA[ max
∥ε∥2≤ρ0

f (Eθ0
[θk] + ε)− f (Eθ0

[θk])].

We first compute

f
(
Eθ0

[
θSAM
k

]
+ ε;A

)
=

1

2
(Eθ0

[
θSAM
k

]
+ ε− θ∗)TATA(Eθ0

[
θSAM
k

]
+ ε− θ∗)

=
1

2
(ε−Bkθ∗)TATA(ε−Bkθ∗)

=
1

2
εTATAε− εTBkATAθ∗ +

1

2
(θ∗)TB2kATAθ∗. (7)

Similarly,

f
(
Eθ0

[
θSAM
k

]
;A
)
=

1

2
(θ∗)TB2kATAθ∗. (8)

Let λmin be the least eigenvalue of ATA. By subtracting equation (7) with equation (8), we have

κSAM
k = EA[ max

∥ε∥2≤ρ0

1

2
εTATAε− εTBkATAθ∗]

≥ EA[ max
∥ε∥2=ρ0

1

2
λmin∥UTε∥22 − εTBkATAθ∗]

≥ EA[ max
∥ε∥2=ρ0

ε=Uv

1

2
λmin∥UTε∥22 − εTBkATAθ∗]

= EA[ max
∥v∥2=ρ0

1

2
λmin∥v∥22 − min

∥ε∥2=ρ0

εTBkATAθ∗]

= EA[
1

2
λminρ

2
0 + ρ0∥BkATAθ∗∥2].

The smallest singular value λmin of a random n × din matrix A can be bounded by the following
inequality on the smallest singular value σmin(A) by Vershynin [2018], assuming ntr ≥ din, then
almost surely
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EA[σmin(A)] ≥
√

ntr

din
− 1.

Therefore, EA[λmin] ≥ EA[σmin(A)]2 ≥
(√

ntr
din

− 1
)2

. Now we show a lower bound on

EA[ρ0∥BkATAθ∗∥2]. By Gao et al. [2019], the Jensen gap (E[Z])1/2−E[(Z)1/2] is upper bounded
by Var(Z)

2 when Z is non-negative and E[Z] = 1. Notice that

EA[ρ0∥BkATAθ∗∥2] = ρ0EA[
(
(θ∗)TB2k(ATA)2θ∗)1/2],

and we let Z = (θ∗)TB2k(ATA)2θ∗. Then EA[Z] = ϕ(2k, 2)∥θ∗∥22 and

Var[Z] =
(
ϕ(4k, 4)− ϕ(2k, 2)2

)
∥θ∗∥22.

By normalizing Z and applying the Jensen gap upperbound, we have

EA[ρ0∥BkATAθ∗∥2] ≥ ρ0
√

ϕ(2k, 2)∥θ∗∥22 −
ϕ(4k, 4)− ϕ(2k, 2)2

2ϕ(2k, 2)3/2∥θ∗∥2
.

As a result,

κSAM
k ≥ ρ20

2

(√
ntr

din
− 1

)2

+ ρ0
√
ϕ(2k, 2)∥θ∗∥2 −

ϕ(4k, 4)− ϕ(2k, 2)2

2ϕ(2k, 2)3/2∥θ∗∥2
.

The derivation of the upper bound follows from a similar proof, ignoring the Jensen gap.

C.2 Proof of Theorem 2

Below we show a proof of Theorem 2.

Proof. We apply SVD to As to obtain As = VsΣsU
T
s and AT

s A = UsΣ
2
sU

T
s . Let Ds = Σ2

s and
Bs = I− ηAT

s As − ηρ(AT
s As)

2. By Theorem 3 and a similar derivation in the proof of Theorem 1,

θSharpBal
k = η

k−1∑
j=0

Bj
s

(
AT

s As + ρ(AT
s As)

2
)
θ∗ +Bk

sθ0

= θ∗ +
(
I− ηAT

s As − ηρ(AT
s As)

2
)k

(θ0 − θ∗).

As a result, Eθ0,s[θ
Sharpbal
k ] = Es[θ

∗ −Bk
sθ

∗] = θ∗ − 1
S

S∑
s=1

Bk
sθ

∗.

Applying Proposition 1, we have

EA[Bi
s(A

T
s As)

j ] = ϕ′(i, j),

where

ϕ′(i, j) = 1j=0 +
∑

k1+k2+k3=i

i!

k1!k2!k3!
(−η)k2+k3ρk3

(
ntr

Sdin

)m m∑
l=1

(
Sdin

ntr

)m−l

Nm,l.

Then,

nteBias2(θSAM
k ) = EA,T[

(
Eθ0,s[θ

Sharpbal
k ]− θ∗

)T
TTT

(
Eθ0,s[θ

Sharpbal
k ]− θ∗

)
]

=
nte

din
EA[(− 1

S

S∑
s=1

Bk
sθ

∗)T (− 1

S

S∑
s′=1

Bk
s′θ

∗)]

=
nte

dinS2
EA[

S∑
s=1

Bk
sθ

∗
S∑

s′=1

Bk
s′ ]∥θ∗∥22

=
nte

dinS

(
ϕ′(2k, 0) + (s− 1)ϕ′(k, 0)2

)
∥θ∗∥22.
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The last equality is the result of applying EA[Bi
s] = ϕ′(i, 0) with different combinations of Bs, Bs′ ,

counting multiplicity. Similarly,

nteError(θSharpbal
k ) = EA,T,θ0,s[(θ

∗)TBk
sT

TTBk
sθ

∗] + EA,T,θ0,s[θ
T
0 B

k
sT

TTBk
sθ0]

=
nte

din
ϕ′(2k, 0)∥θ∗∥22 + nteϕ

′(2k, 0)σ2.

Therefore,

Var
(
f(θSharpBal

k ;T)
)
=

1

nte

(
nteError(θSharpBal

k )− nteBias2(θSharpBal
k )

)
=ϕ′(2k, 0)σ2 +

S − 1

dinS

(
ϕ′(2k, 0)− ϕ′(k, 0)2

)
∥θ∗∥22.

When the model is trained on the submatrix, the sharpness of model θSharpBal
k is defined as

κSharpBal
k = EA[ max

∥ε∥2≤ρ0

f
(
Eθ0,s

[
θSharpBal
k

]
+ ε;A

)
− f

(
Eθ0,s

[
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k

]
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)
].

From a similar analysis of the proof for Theorem 1,
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k ≤ ρ20

2

(√
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≤

(θ∗)TEA[
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B′k
s
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AT
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∗

1/2

=(Sϕ′(2k, 2) + 2rS(S − 1)ϕ′(2k, 1) + 2S(S − 1)ϕ′(k, 2)ϕ′(k, 0)

+ r(1 + r)S(S − 1)ϕ′(2k, 0) + 2S(S − 1)ϕ′(k, 1)ϕ′(k, 1)

+
3

2
r(1 + r)S(S − 1)(S − 2)ϕ′(k, 0)2

+
3

2
r2S(S − 1)(S − 2)ϕ′(2k, 0)

+ 3rS(S − 1)(S − 2)ϕ′(k, 1)ϕ′(k, 0)

+ r2S(S − 1)(S − 2)(S − 3)ϕ′(k, 0)2)1/2∥θ∗∥2.

The last equality is the result of applying EA[Bi
s(A

T
s As)

j ] = ϕ′(i, j) with different combinations of
Bs, Bs′ , AT

j Aj , and AT
l Al, counting multiplicity and the fact that EA[(AT

s As)
2] = r(1 + r)I. In

conclusion,

κSharpBal
k ≤ ρ20

2

(√
ntr

din
+ 1

)2

+
ρ0
S

√
C∥θ∗∥2,

where
C =Sϕ′(2k, 2) + 2rS(S − 1)ϕ′(2k, 1) + 2S(S − 1)ϕ′(k, 2)ϕ′(k, 0)

+ r(1 + r)S(S − 1)ϕ′(2k, 0) + 2S(S − 1)ϕ′(k, 1)ϕ′(k, 1)

+
3

2
r(1 + r)S(S − 1)(S − 2)ϕ′(k, 0)2 +

3

2
r2S(S − 1)(S − 2)ϕ′(2k, 0)

+ 3rS(S − 1)(S − 2)ϕ′(k, 0)ϕ′(k, 1) + r2S(S − 1)(S − 2)(S − 3)ϕ′(k, 0)2.

The claims in Theorem 2 is further supported by the experimental validations with results presented
in Figure 9.
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(a) Varying perturbation radius ρ (b) Varying number of training iterations k

Figure 9: (Theoretical vs. Simulated sharpness-diversity trade-off in SharpBalance) This figure
illustrates the relationship between sharpness(upper bound) and diversity as predicted by Theorem 2
and as observed in simulations under different configurations. (a) validates our theoretical results by
varying the perturbation radius ρ from 1.0 to 0.4. (b) validates the derivation by varying number of
iterations k from 1 to 15. These results demonstrate the soundness of our derivation across a range of
parameters.

C.3 Empirical Verification of Theorem 1 and 2

To demonstrate the robustness and tightness of the bounds presented in Theorem 1, we provide
verification results across a range of parameter configurations. Interestingly, the observed model
behaviors closely align with the upper bound derived in Theorem 1, highlighting the effectiveness of
our theoretical analysis in capturing the underlying dynamics of the ensemble. Figure 10 illustrates
these results, with each sub-figure corresponding to a specific combination of k and η with ρ from
range 0.5 to 0.3. In these experiment, we generated 50 random data matrices A of size 3000× 150
and test data T of size 1000×150. For each random dataset, we initialized 50 random model weights
θ0 and collected the expected statistics of interest after training. To measure the sharpness κSAM

k , we
employed projected gradient ascent to find the optimal perturbation, using a step size of 0.01 and a
maximum of 50 steps. Similar experiments are performed to verify the derivations in Theorem 2 with
results presented in Figure 11, with the number of partitions S = 10.

D Hyperparamter setting

D.1 Datasets

We first evaluate on image classification datasets CIFAR-10 and CIFAR-100. The corresponding
OOD robustness is evaluated on CIFAR-10C and CIFAR-100C [Hendrycks and Dietterich, 2019b].
The experiments are carried out on ResNet18 [He et al., 2016]. We use a batch size of 128, a
momentum of 0.9, and a weight decay of 0.0005 for model training. TinyImageNet is an image
classification dataset consisting of 100K images for training and 10K images for in-distribution
testing. We evaluate ensemble’s OOD robustness on TinyImageNetC [Hendrycks and Dietterich,
2019b].

D.2 Hyperparamter setting for empirical sharpness-diversity trade-off

Here, we provide the hyperparameter for the experiments in Section 4.2. When using adaptive
worst-case sharpness for sharpness measurement, the size of neighborhood γ defined in equation (3)
needed to be specified, we use a γ of 0.5 for all the results in Figure 1 and Figure 5. Additionally,
when training NNs in the ensemble, we change the perturbation radius ρ of SAM so that we can study
the trade-off. The range of ρ for the results in Figure 1 is {0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.3},
the range of ρ for the results in Figure 5 is {0.01, 0.015, 0.02, 0.025, 0.03, 0.05, 0.1, 0.2, 0.3, 0.4}.
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(a) k = 2, η = 0.1 (b) k = 2, η = 0.05 (c) k = 2, η = 0.01

(d) k = 4, η = 0.1 (e) k = 4, η = 0.05 (f) k = 4, η = 0.01

(g) k = 8, η = 0.1 (h) k = 8, η = 0.05 (i) k = 8, η = 0.01

Figure 10: (Theoretical vs. Simulated sharpness-diversity trade-off in SAM). This figure compares
the sharpness and diversity as predicted by Theorem 1 and as observed in simulations under various
parameter configurations. Results demonstrates the robustness of our theoretical analysis and tightness
of the derived sharpness upper bound.

D.3 Hyperparamter setting for SharpBalance

Hyperparameter setting on CIFAR10/100. For experiments on CIFAR10/100, we train an NN
from scratch with basic data augmentations, including random cropping, padding by four pixels, and
random horizontal flipping. We use a batch size of 128, a momentum of 0.9, and a weight decay of
0.0005. For deep ensemble, we train each model for 200 epochs.

In addition, we use 10% of the training set as the validation set for selecting ρ and k based on the
ensemble’s performance. We make a grid search for ρ over {0.01, 0.02, 0.05, 0.1, 0.2, 0.5}. For
SharpBalance, we use the same ρ as SAM and search k over {0.2, 0.3, 0.4, 0.5, 0.6}. Td is another
hyperparameter introduced by SharpBalance, we use a Td of 10 for all experiments on CIFAR10,
a Td of 100 and 150 respectively when training dense and sparse models on CIFAR100. See Table
1 for the optimal ρ and k after grid search.

Hyperparameter setting on TinyImageNet. For experiments on TinyImageNet, we adopt basic data
augmentations, including random cropping, padding by four pixels, and random horizontal flipping.
We train each model for 200 epochs. We use a batch size of 128, a momentum of 0.9, a weight decay
of 5e-4, a Td of 100, an initial learning rate of 0.1, and decay it with a factor of 10 at Epoch 100
and 150. We search ρ and k in the same range as what we do on CIFAR10/100. See Table 1 for the
optimal ρ and k after grid search.
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(a) k = 4, η = 0.5 (b) k = 4, η = 0.3 (c) k = 4, η = 0.1

(d) k = 8, η = 0.5 (e) k = 8, η = 0.3 (f) k = 8, η = 0.1

(g) k = 12, η = 0.5 (h) k = 12, η = 0.3 (i) k = 12, η = 0.1

Figure 11: (Theoretical vs. Simulated sharpness-diversity trade-off in SharpBalance). This
figure compares the sharpness and diversity as predicted by Theorem 2 and as observed in simulations
under various parameter configurations. The observed model behaviors align closely with our derived
upper bounds.

Dataset Model Method ρ k Td

CIFAR10
ResNet18 Deep Ensemble - - -
ResNet18 Deep Ensemble+SAM 0.2 - -
ResNet18 SharpBalance 0.2 0.4 100

CIFAR100
ResNet18 Deep Ensemble - - -
ResNet18 Deep Ensemble+SAM 0.2 - -
ResNet18 SharpBalance 0.2 0.5 100

TinyImageNet
ResNet18 Deep Ensemble - - -
ResNet18 Deep Ensemble+SAM 0.2 - -
ResNet18 SharpBalance 0.2 0.3 100

Table 1: Hyperparamter setting for results in Section 4.4, we report the optimal ρ and k after grid
search. Each result in Figure 7 is averaged over three ensembles, which corresponds to 9 random
seeds, the random seeds we use are {13, 17, 27, 113, 117, 127, 43, 59, 223}.

E Ablation studies on loss landscape metrics

In this section, we show that the sharpness-diversity trade-off generalizes to different measurements
of sharpness and diversity. The results are presented in Figure 12.
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Figure 12: (Ablation study of varying sharpness and diversity metrics to corroborate existence
of sharpness-diversity trade-off). (a)(d) Varying sharpness metric by using the adaptive ℓ∞ worst-
case sharpness. (b)(e) Varying sharpness metric by using the adaptive ℓ2 average case sharpness.
(c)(f) Varying diversity metric by using the KL divergence. The sharpness-diversity trade-off is still
observed in all the settings. The x-axis and y-axis are in log scale. The notation β stands for the
slope of the linear regression function fitted on all the ensembles trained by SAM.

Sharpness metric. In the main paper, we use adaptive worst-case sharpness defined in equation (3),
the parameter neighborhood is bounded by ℓ2 norm. In this section, we consider two more sharpness
metrics [Kwon et al., 2021, Andriushchenko et al., 2023]: adaptive worst-case sharpness with the
parameter neighborhood bounded by ℓ∞ norm (referred to as adaptive ℓ∞ worst-case sharpness); and
adaptive average case sharpness bounded by ℓ2 norm (termed average case sharpness).
The adaptive ℓ∞ worst-case sharpness is defined as:

max
∥T−1

θ ε∥∞≤ρ0

LD(θ + ε)− LD(θ). (9)

The average case sharpness is defined as:

Eε∼N(0,ρ2
0 diag(Tθ

2)) LD(θ + ε)− LD(θ), (10)

where ρ0 is the neighborhood size of current parameter θ. Tθ is a normalization operator that ensures
the sharpness measure is invariant with respect to the re-scaling operation of the parameter. The results,
illustrated in Figures 12, corroborate our observation of a trade-off between sharpness and diversity.

Diversity metric. We consider Kullback–Leibler (KL) Divergence [Kullback and Leibler, 1951] as an
alternative diversity metric, which is also widely used in previous literature to gauge the diversity of
two ensemble members [Fort et al., 2019, Liu et al., 2022]. Specifically, the KL-divergence between
the outputs of two ensemble members given a data sample (x,y) is defined as:

KL (fθ1
(x), fθ2

(x)) = Efθ1 (x)
[log fθ1

(x)− log fθ2
(x)] . (11)

We measure the KL divergence on each data sample in the test data and then average the measured KL
divergence. The results for KL-divergence are shown in Figure 12, which demonstrate the trade-off
remains consistent for different diversity metrics.
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F More results

F.1 Evaluation on different corruption severity

SharpBalance ’s main advantage lies in OOD scenarios. As shown in Table 2-4, SharpBalance
consistently outperforms the baselines on different levels of corruption.

Table 2: Results of different severity levels on CIFAR10-C.

Corruption Severity 1 2 3 4 5

Deep ensemble 88.90 83.67 77.56 70.37 58.63
Deep ensemble+SAM 89.44 84.24 78.16 71.04 58.77
SharpBalance 89.75 (+0.31) 84.80 (+0.56) 78.98 (+0.82) 72.25 (+1.21) 60.78 (+2.01)

Table 3: Results of different severity levels on CIFAR100-C.

Corruption Severity 1 2 3 4 5

Deep ensemble 65.78 57.77 51.30 44.33 34.16
Deep ensemble+SAM 66.39 58.47 51.89 44.90 34.81
SharpBalance 67.23 (+0.84) 59.53 (+1.06) 53.14 (+1.25) 46.19 (+1.29) 36.20 (+1.39)

Table 4: Results of different severity levels on Tiny-ImageNet-C.

Corruption Severity 1 2 3 4 5

Deep ensemble 43.62 36.65 28.96 22.08 16.86
Deep ensemble+SAM 45.20 38.04 30.19 22.98 17.71
SharpBalance 46.48 (+1.28) 39.53 (+1.49) 31.70 (+1.51) 24.27 (+1.29) 18.69 (+0.98)

F.2 Evaluation on different model architectures

We extend the evaluations on more architectures such as WideResNet (WRN), ViT, and ALBERT.
Here we describe the experimental setup. For vision tasks with WRN, we trained the ensemble
members from scratch on CIFAR-10 and CIFAR-100. For vision tasks with transformers, we
constructed the three-member ensemble by fine-tuning the pre-trained ViT-T/16 model on the CIFAR-
100 dataset, evaluated on in-distribution and CIFAR100-C test sets. For language tasks, we constructed
the three-member ensemble by fine-tuning the pre-trained ALBERT-Base model on Microsoft
Research Paraphrase Corpus (MRPC) dataset and evaluated the performance on its validation set.
The hyperparameter search and setup are the same as in Appendix D.3.

These results in Figure 13 and Table 5 confirm that SharpBalance consistently boosts both ID and
OOD performance across the models and datasets studied.

ViT-T/16 ALBERT-BMethod CIFAR100 CIFAR100-C MRPC

Deep ensemble 88.34 66.64 89.50
Deep ensemble + SAM 88.48 66.89 89.89

SharpBalance 88.68 67.21 90.11

Table 5: (Additional experiments on Transformer-architecture). The ensemble test accuracy
is reported and each ensemble comprises three members. The observation is consistent with the
residual network results in the main paper: SAM improves the Deep Ensemble, and SharpBalance
outperforms both two baselines.
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Figure 13: The three-member WRN-40-2 ensemble is trained with different methods on two datasets.
The first row reports the OOD accuracy and the second row reports the ID accuracy. The lower part
of each bar with the diagonal lines represents the individual model performance. The upper part
of each bar represents the ensembling improvement. The results are reported by averaging three
ensembles, and each ensemble is comprised of three models.

F.3 Sharpness-aware set: hard vs easy examples

SharpBalance aims to achieve the optimal balance by applying SAM to a carefully selected subset of
the data while performing standard optimization on the remaining samples. In our work, sharpness is
determined by the curvature of the loss around the model’s weights, whereas [Garg and Roy, 2023]
determines it based on the curvature of the loss around a data point. In Figure 14, we rank 1000
samples using both metrics and found a strong correlation between these two.
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Figure 14: Rank correlation between fisher trace and loss curvature around input data
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F.4 Comparison with more baselines

We compare SharpBalance with stronger ensemble method EoA [Arpit et al., 2022] and stronger
SAM methods. We carefully tuned the hyperparameters for EoA. EoA fine-tuned a pre-trained model;
and in our paper, all models are trained from scratch. We compare SharpBalance with another SAM
baseline: SAM+, where three individual models are trained with different ρ values, e.g., 0.05, 0.1, and
0.2, respectively. From Table 6, SharpBalance outperforms these two baselines both in-distribution
and OOD generalization.

In Table 7, we combine GSAM [Zhuang et al., 2022] with Deep Ensemble as a new baseline method
“Deep Ensemble + GSAM”, and incorporate the GSAM into our method SharpBalance. The results
show that the new baseline with GSAM outperforms the original baseline in ID and OOD performance
but still underperforms SharpBalance (w/ SAM). Furthermore, we enhance SharpBalance by replacing
the SAM with GSAM, which leads to better ID performance.

Dataset Method ACC cACC

SAM + 96.03 76.29
CIFAR10 EoA 95.55 75.57

SharpBalance 96.18 (+0.15) 77.32 (+1.03)

SAM + 79.67 51.28
CIFAR100 EoA 79.53 51.45

SharpBalance 79.84 (+0.17) 52.46 (+1.01)

Table 6: SharpBalance outperforms EoA and SAM + both in-distribution and OOD generalization
on CIFAR10 and CIFAR100.

Method CIFAR100 Acc CIFAR100-C Acc

Deep Ensemble 79.28 50.67

Deep Ensemble + SAM 79.50 51.28
SharpBalance (SAM) 79.84 52.46

Deep Ensemble + GSAM 79.74 51.37
SharpBalance (GSAM) 80.01 51.92

Table 7: (Comparing our method SharpBalance with stronger SAM baseline). The ensemble
test accuracy is reported and each ensemble comprises three members. GSAM improves the original
baseline method with SAM and SharpBalance. The model is ResNet18.
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Figure 15: (Uncertainty metrics on CIFAR100-C). “ECE” represents expected calibration error, and
“NLL” represents negative log-likelihood. Both metrics are lower the better. The model architecture
is ResNet-18. The uncertainty metrics demonstrate the superior performance of SharpBalance.
x-axis represents the number of individual models in one ensemble.
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F.5 Evaluation on uncertainty metrics

In Figure 15, we present the results of uncertainty metrics, i.e., negative log-likelihood and expected
calibration error. These uncertainty metrics exhibit trends similar to the accuracy metrics: "Deep
Ensemble + SAM" outperforms "Deep Ensemble", and our method outperforms both baselines. The
experiments were conducted using ResNet-18 on CIFAR100, with metrics reported on corrupted
datasets. Additionally, we observe that both metrics improve as the number of ensemble members
increases for all three methods.

G Experiments Compute Resources

All codes are implemented in PyTorch, and the experiments are conducted on 3 Nvidia Quadro
RTX 6000 GPUs for training an ensemble of 3 models. Compared to SAM, our method adds a
minimal computational cost. The extra time comes from using Fisher trace to compute the per-sample
sharpness. Therefore, computing the per-sample sharpness requires one single forward pass and one
backward pass. We report the additional training cost in Table 8. SharpBalance only increases the
training time by 1%: 0.83 (84.48− 0.83)× 100% ≈ 1%.

Additional training cost Total training cost

0.83 min 84.48 min

Table 8: Additional training cost introduced by SharpBalance. We train a ResNet18 on CIFAR10
for 200 epochs.

29



NeurIPS Paper Checklist
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Main claims made in the abstract and introduction accurately reflect the scope
and contribution of the paper, supported by our theoretical and experimental results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the work are discussed in Section 5.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Proofs of all theoretical results are provided in Appendix C and the assumptions
are clearly stated in the theorems.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper fully discloses all relevant information including detailed descrip-
tion of the algorithms, datasets, experimental set up in Section 4 and hyperparameters in
Appendix D to reproduce the main experimental results claimed in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The implementation can be found through the anonymous github repository
and the zip file uploaded as the supplementary materials.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental settings with hyperparameters are provided in both Section
4 and Appendix D.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The results are accompanied by error bars, for the experiments in Section 4.4
that support the main claims of the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The information on the computer resources for experiments can be found in
Appendix G.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The impact statement of the study can be found in Appendix A.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

33

https://neurips.cc/public/EthicsGuidelines


• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The original papers that produced the code or dataset are appropriately cited in
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
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Answer: [NA]

Justification: The paper does not release new assets.
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• The answer NA means that the paper does not release new assets.
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limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
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14. Crowdsourcing and Research with Human Subjects
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well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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or other labor should be paid at least the minimum wage in the country of the data
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15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
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Answer: [NA]
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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