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ABSTRACT

Unsupervised retrievers offer scalability by learning semantic similarity from un-
labeled documents via contrastive learning. However, they struggle to capture
the temporal relevance, often retrieving semantically related but temporally mis-
aligned documents–an important aspect when a document collection spans multi-
ple time periods (e.g., For the query “Who is the president in 2019?” retrieving
from related documents spanning 2018–2025 introduces temporal ambiguity if
relying solely on semantics). Existing methods rely on supervised training with
explicit timestamps, which are not always feasible. We propose TPOUR (Temporal
Preference Optimization for Unsupervised Retriever), which integrates our novel
training method Temporal Retrieval Preference Optimization (TRPO). TRPO rein-
terprets preference learning in the temporal dimension, guiding the retriever to
favor temporally aligned documents. TPOUR constructs temporally aligned and
misaligned document pairs by leveraging document corpora collected at differ-
ent times and trains the retriever without supervision to prioritize temporally
aligned over misaligned documents. Furthermore, TPOUR generalizes to unseen
time periods by interpolating time vectors, enabling continuous temporal align-
ment. Experiments on temporal QA with a mixed-timestamp document collection
show that TPOUR outperforms both unsupervised and supervised baselines. Com-
pared to Nomic Embed v2 MoE, TPOUR Contriever improves nDCG@5 by +7.13
(+23.5%) on explicit and +7.76 (+25.5%) on implicit queries on average.

1 INTRODUCTION

Document retrieval is the process of identifying relevant documents from document collections (Gao
et al., 2024; Zhao et al., 2024a;b; Zhu et al., 2025; Li et al., 2025). It is widely used for vari-
ous applications, including search engines (Brin & Page, 1998; Li et al., 2025), recommendation
systems (Bobadilla et al., 2013; Zhang et al., 2019; Singh, 2023; Li et al., 2024), question answer-
ing (Karpukhin et al., 2020; Zhang et al., 2023a;b), and retrieval-augmented generation (Lewis et al.,
2020; Zhao et al., 2024a; Fan et al., 2024; Kwon et al., 2025). Retrieval training methods generally
fall into supervised and unsupervised methods. Supervised methods utilize labeled query-document
pairs (e.g., Dense Passage Retrieval (Karpukhin et al., 2020)), whereas unsupervised methods lever-
age term-frequency signals (e.g., BM25 (Robertson & Zaragoza, 2009)) or contrastive learning from
unlabeled data (e.g., Contriever (Izacard et al., 2022)).

Despite advancements in retrieval research, most retrieval systems overlook temporal misalignment
(i.e., a mismatch between the temporal context of user queries and the timestamps of retrieved doc-
uments). Temporal retrieval aims to address this limitation by incorporating temporal context into
the retriever. As shown in Fig. 1, queries may contain explicit (e.g., “in 2019”) or implicit (e.g., “this
year”) temporal information. While explicit references clearly anchor the query in time, implicit
ones require interpretation. We adopt an approach that trains the retriever to prefer documents from
a specific time period and interpret implicit queries accordingly. For example, a retriever trained on
2018 data would interpret “this year” as referring to 2018. Thus, the retriever learns temporal align-
ment during training. Temporal retrieval is important in domains such as news (Litty K Mathews,
2012; Wang et al., 2012; Luu et al., 2022) and legal search (Schilder & McCulloh, 2005), where
the relevance of information depends on its publication date. For instance, the query “What was the
minimum wage law in effect in 2019?” should retrieve the regulation in effect at that time.
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Query: Who was the champion in women’s singles at Roland Garros (in 2019, this year)?

Index: 3
2019 Ballon d’Or. Lionel Messi 
won sixth award ...

Index: 1
Simona Halep won her first 
major in 2018 French Open

Index: 2
Ashleigh Barty won the 2019 
French Open champion …

TPOUR

Time 
Unaware

Index: 4
2015 Worlds Championship is 
won by SK Telecom T1 …

2 1 3 4
Consider semantic 
similarity and 
temporal alignment

Consider solely on 
semantic similarity

Ranked 
Index Order:

Ranked 
Index Order:

?
VS.

2

1
3 4

Figure 1: Comparison between TPOUR aligned at 2019 and a time-unaware retriever for queries with
explicit (e.g., in 2019) or implicit (e.g., this year) temporal information. Left: A mixed-timestamp
document collection containing (i) semantically and temporally aligned documents (green), (ii) se-
mantically relevant but temporally misaligned documents (yellow), and (iii) irrelevant documents
(red). Right: Ranked retrieval results. The time-unaware retriever, trained solely for semantic
similarity, struggles to rank the temporally aligned document (green) over the misaligned (yellow)
document. In contrast, the TPOUR-trained retriever prioritizes the temporally aligned document.

However, existing retrieval methods often neglect temporal signals, particularly when timestamps
are implicit rather than explicitly stated in the query. For instance, consider the query “Who is the
current president?”, which implicitly requires an answer at the time the query is raised, despite the
absence of an explicit timestamp. Time-unaware retrievers such as Contriever (Izacard et al., 2022)
are trained to maximize semantic similarity, and thus often retrieve temporally unaligned documents
that are solely semantically relevant. While documents may contain explicit timestamps, this alone
does not guarantee that a retriever captures the correct temporal alignment between the query and the
candidate documents. Fig. 1 illustrates this limitation–a time-unaware retriever fails to differentiate
between temporally misaligned and aligned documents when solely considering semantic similarity.

Addressing temporal misalignment is challenging. On the one hand, supervised approaches may
capture temporal relevance, but they require large amounts of labeled data, making them impractical
at scale. On the other hand, unsupervised approaches based on contrastive learning (Shao et al.,
2021; Izacard et al., 2022; Wu et al., 2022; Deng et al., 2022) are scalable but solely optimize for
semantic similarity and ignore temporal relevance.

To embed temporal relevance in unsupervised retrieval, we propose TPOUR (Temporal Preference
Optimization for Unsupervised Retriever), which integrates our novel training method Temporal Re-
trieval Preference Optimization (TRPO) with contrastive learning. TRPO incorporates a temporal
preference signal into the retriever, reinterpreting preference learning in the temporal dimension us-
ing training signals from document corpora collected at different time periods. Rather than relying
solely on semantic similarity, we use TRPO to prioritize temporally aligned documents over mis-
aligned ones. Thus, TPOUR preserves semantic similarity while learning temporal relevance, even
when explicit time information is missing from the query or document.

TPOUR does not require retraining to adapt to specific time periods. We validate that the time vec-
tor, originally proposed as a temporal embedding for generative models (Nylund et al., 2024), can
be applied to our encoder-based TPOUR retriever. By extracting time vectors from TPOUR retriev-
ers fine-tuned on a specific time period and interpolating them, we achieve continuous temporal
alignment to intermediate periods without retraining. Our main findings are as follows:

1. Temporal misalignment occurs in existing retrieval models. We demonstrate that in realistic
scenarios involving a document collection with mixed-timestamps, time-unaware retrievers tend
to retrieve semantically relevant but temporally misaligned documents.

2. Integrating preference optimization helps capture temporal awareness. We propose TPOUR,
which learns to prefer temporally aligned over misaligned documents, improving temporal re-
trieval and enabling timestamp prediction.

3. Time vectors enable continuous temporal generalization. We validate that time vector in-
terpolation (Nylund et al., 2024) can be applied to TPOUR-trained retrievers, allowing them to
generalize to intermediate time periods without additional training.

4. Temporal awareness reveals time sensitivity in general retrieval tasks. On the BEIR bench-
mark, TPOUR uncovers alignment between dataset publication year and optimal retrieval perfor-
mance, suggesting that temporal modeling improves even general retrieval tasks.
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2 RELATED WORK

2.1 UNSUPERVISED LEARNING FOR RETRIEVAL TRAINING

Unsupervised learning has enabled retrievers to scale with large amounts of unlabeled documents,
from early statistical methods (Jatowt et al., 2005; 2013; Berberich et al., 2010; Kanhabua & Nørvåg,
2010; Kanhabua et al., 2012) like BM25 (Robertson & Zaragoza, 2009) to recent neural embedding
models (Nussbaum & Duderstadt, 2025). While traditional approaches rely on statistics, unsuper-
vised dense retrievers leverage contrastive learning. In dense retriever, DPR (Karpukhin et al., 2020)
is a supervised dense retriever trained on labeled query-passage pairs. In contrast, Contriever (Izac-
ard et al., 2022) utilizes fully unsupervised contrastive learning. REALM (Guu et al., 2020) intro-
duces a retrieval-augmented masked language modeling. SimCSE (Gao et al., 2021) applies in-batch
contrastive learning for sentence embeddings. E5 (Wang et al., 2024b) extends this with weak su-
pervision over large-scale web data. CPT (Neelakantan et al., 2022) shows that scaling contrastive
learning improves both text and code embeddings. GTE (Li et al., 2023) improves generalization
by training on diverse datasets, while M3-Embedding (Chen et al., 2024) uses self-distillation to
unify signals from multiple retrieval paradigms. Most recently, Nomic Embed v2 (Nussbaum &
Duderstadt, 2025) adopts a sparse mixture-of-experts for general-purpose embedding.

Contrastive learning is the core of unsupervised retriever training, where a query Q is paired with a
positive document D+, and a set of negative documents {D−

1 , ..., D
−
K}. The loss (Eq., 1) is calcu-

lated using a similarity function S(·, ·) with a query encoder πq and document (i.e., key) encoder πk.
This loss encourages models to maximize similarity between a query and its positive document while
minimizing similarity to negatives. However, embeddings are solely optimized for semantic simi-
larity. As a result, retrievers such as Contriever (Izacard et al., 2022) degrade in mixed-timestamp
document collection settings, failing to distinguish between documents from different time periods.

L(Q,D+) = − exp(S(πq(Q), πk(D
+)))

exp(S(πq(Q), πk(D+))) +
∑K

i=1 exp(S(πq(Q), πk(D
−
i )))

(1)

Unsupervised retrieval training commonly utilizes either (1) in-batch negative (Lee et al., 2019), or
(2) MoCo (Momentum Contrast) (He et al., 2020). The former is effective with large batch sizes,
while MoCo simulates large batches with lower memory. In MoCo, the query encoder πq and key
encoder πk are both updated during training. After updating πq’s weight θq via the contrastive loss
in Eq. 1, the key encoder weight θk is updated via momentum θk ← m× θk +(1−m)× θq . In this
work, we adopt MoCo for unsupervised retrieval to enable efficient training under limited resources.

2.2 TEMPORAL RELEVANCE MODELING

Temporal relevance has been explored in language models (Lazaridou et al., 2021; Röttger & Pier-
rehumbert, 2021; Rosin et al., 2022; Su et al., 2023; Wang et al., 2023). For instance, Dhingra
et al. (2022) jointly models timestamps with text to improve temporal generalization in language
modeling. In retrieval, recent work incorporates temporal information for time-aware search (Wu
et al., 2024; Abdallah et al., 2025). For example, Gade et al. (2025) applies retrieval-augmented
generation on explicit temporal annotation for both queries and documents, and Qian et al. (2024)
addresses implicit temporal awareness through query rewriting over a knowledge graph.

Another line of work extracts time vectors from generative language models fine-tuned on data from
distinct periods (Nylund et al., 2024). These latent vectors capture temporal context and allow inter-
polation. They show that adjacent time vectors are close in weight space, enabling generalization to
intermediate periods without retraining. We extend time vector extraction from generative language
models to TPOUR, enabling continuous temporal alignment of retrievers to unseen periods.

2.3 DIRECT PREFERENCE OPTIMIZATION

RLHF (Reinforcement Learning from Human Feedback) aligns language models with human pref-
erences (Ouyang et al., 2022). It involves training a reward model on human-labeled preferences and
optimizing the policy πθ to maximize the reward using PPO (Proximal Policy Optimization) (Schul-
man et al., 2017) or DPO (Direct Preference Optimization) (Rafailov et al., 2023).

LDPO = − log σ

(
β log

πθ(y
w | x)

πref(yw | x)
− β log

πθ(y
l | x)

πref(yl | x)

)
(2)
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Building on DPO, we introduce TRPO, which incorporates temporal preferences into unsupervised
retrieval. TRPO constructs preference pairs from document corpora across time and learns to prefer
temporally aligned documents without explicit supervision. Unlike DPO, which aligns generation
policies using labeled human preferences, TRPO adapts preference optimization to retrieval by re-
placing log-likelihoods with embedding similarity from unlabeled temporal preference signals.

3 TEMPORAL PREFERENCE OPTIMIZATION FOR UNSUPERVISED RETRIEVER

3.1 INCORPORATING TEMPORAL PREFERENCES INTO CONTRASTIVE LEARNING

We propose TPOUR (Temporal Preference Optimization for Unsupervised Retriever), a training
framework that integrates temporal preferences into contrastive learning for unsupervised retrieval.
Built upon MoCo, TPOUR jointly learns semantic similarity and temporal relevance by combining
contrastive learning with a preference-based objective from TRPO. This enables the retriever to en-
code both content relevance and implicit temporal preferences from unlabeled data. We illustrate
this with a case study on unlabeled document training in Appendix F.

As shown in Fig. 2, the training phase consists of a query document Qi, a temporally aligned docu-
ment Dt

i , and an unaligned document Dt′

i . The encoder πθ encodes these inputs, while a momentum-
based reference encoder πref maintains a queue of negatives for contrastive learning. The training
objective combines two losses. The first is a contrastive loss that brings the query closer to its rel-
evant document while distinguishing it from negatives, where T is a temperature, and S(·, ·) is the
similarity function. Here, we define Sθ(y

w
i ) = S(πθ(Qi), πθ(D

t
i)), which denotes similarity with

the temporally aligned document (preferred) and Sθ(y
l
i) = S(πθ(Qi), πθ(D

t′

i )), the similarity with
the unaligned document (less preferred). The values Sref(y

w
j ) and Sref(y

l
j) correspond to negative

pairs from the previous batch queue j, where D−
j ∈ {Dt

j , D
t′

j }:

LCE = − log
exp(S(πθ(Qi), πθ(D

t
i))/T )

exp(S(πθ(Qi), πθ(Dt
i))/T ) +

∑
j<i exp(S(πref(Qi), πref(D

−
j ))/T )

(3)

= − log
exp(Sθ(y

w
i )/T )

exp(Sθ(ywi )/T ) +
∑

j<i

{
exp(Sref(ywj )/T ) + exp(Sref(ylj)/T )

} (4)

To model temporal preferences, TRPO aligns the preference gap between the current and reference
models, where Sθ(y) and Sref(y) denote scores from the current and reference models given output
y, respectively. Given a pair ywi (preferred) and yli (less preferred), the TRPO loss is defined as
Eq. 5. A detailed theoretical basis of TRPO is provided in Appendix C.1.

LTRPO = − log σ
(
β
[
(Sθ(y

w
i )− Sθ(y

l
i))− (Sref(y

w
i )− Sref(y

l
i))

])
, (5)

The total loss is computed as Ltotal = λLCE +(1−λ)LTRPO, where λ ∈ [0, 1] balances the influence
of semantic and temporal signals. The encoder πθ is optimized using Ltotal, while the reference
encoder weights θref are updated via momentum as θref ← m× θref + (1−m)× θ, where m is the
momentum coefficient and θ is the current weight of πθ. After training, TPOUR-trained retrievers
can use the inference pipeline as general-purpose retrieval systems, as illustrated in Appendix Fig. 6.

3.2 CONTINUOUS TEMPORAL REPRESENTATION

Discrete temporal models are limited in their ability to effectively handle continuous time. Since
time is inherently continuous, a retriever needs to generalize to queries that fall between two sepa-
rately trained temporal retrievers. To address this, we adopt time vector extraction from language
modeling (Nylund et al., 2024) and extend it to TPOUR for unsupervised retrieval.

We extract time vectors from TPOUR-trained retrievers fine-tuned on specific time periods (e.g., the
years 2018 and 2021). Interpolating between these vectors allows the model to adjust its temporal
alignment and generalize to intermediate periods without retraining. Tab. 1 and Fig. 3, 4 show the
generalization capability through time vector interpolation across continuous time shifts.

Formally, let θbase denote the base encoder weight and θt the encoder weight fine-tuned on data from
time period t. The time vector τt for time period t is computed as τt = θt − θbase, where τt captures

4
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Clemson Tigers football // Once again the teams 
did battle in the 2018 Sugar Bowl in New 
Orleans, Louisiana with a trip to the 2018 
College Football Playoff National 
Championship game on the line …

(𝐷!") Document Collected at Time 𝑡

National Football League Christmas games // On 
March 19, 2021, the NFL and its broadcast 
partners agreed to an 11-year contract which will 
run from 2023 through 2033. As part of the deal, 
Fox acquired ….
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Alabama would win the national …
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Figure 2: Overview of TPOUR. Given a query Qi and two documents Dt
i (temporally aligned) and

Dt′

i (temporally misaligned), each input is encoded using both the main encoder πθ and the reference
encoder πref. 1 Similarity scores are computed between the query and each document using πθ.
2 A contrastive loss LCE, which calculate semantic similarity between Qi and Dt

i , and a TRPO
loss LTPRO for preferring temporally aligned documents are calculated to get combined loss Ltotal.
3 The reference embeddings πref(D

t
i) and πref(D

t′

i ) are added to a queue as negatives for future
batches. 4 The encoder πθ is updated using Ltotal, and πref is updated via momentum from πθ.

the temporal shift between the base model and the model adapted to time period t. To obtain an
encoder for an intermediate time period tmid, given two time vectors τtstart and τtend corresponding to
the tstart (earlier) and tend (later), respectively, we interpolate using a coefficient α ∈ [0, 1], as defined
in Eq. 6. Further theoretical details are provided in Appendix Sec. C.2.

θtmid = θbase + (1− α)τtstart + ατtend , where tstart ≤ tmid ≤ tend (6)

This interpolation allows the model to adjust its temporal alignment without retraining. For example,
interpolating between 2018 and 2021 vectors enables retrieval for queries from 2019 or 2020. Tab. 8,
Tab. 9, and Tab. 10 in the Appendix show that interpolation improves generalization to intermediate
time periods even when the temporal information is not given in the query.

3.3 INFERRING DOCUMENT TIMESTAMPS FROM LEARNED REPRESENTATIONS

In addition to the retrieval task, TPOUR can also be used to infer a document’s timestamp. Following
Gunasekaran et al. (2023), we formulate timestamp inference as a classification task and introduce a
timestamp predictor based on a mixture of TPOUR retrievers, referred to as the mixture-of-TPOUR.
As illustrated in Appendix Fig. 7, the mixture-of-TPOUR uses a set of frozen retrievers πt1

θ , . . . , πtn
θ ,

each specialized for a distinct time period ti. Given a document D, each retriever encodes D into a
temporally-aware embedding. These embeddings are concatenated and passed to a shared trainable
linear classification head to train and predict the timestamp.

We compare against a baseline predictor using a single frozen retriever πθ trained on the full time
range. To ensure a fair comparison, we match the total number of trainable parameters by stacking
multiple linear layers in the baseline classifier, equal in number to the retrievers in the mixture model.
As shown in Tab. 2, the mixture-of-TPOUR achieves better temporal prediction performance.

4 EXPERIMENTS AND ANALYSIS

This section presents experiments to answer three main research questions regarding TPOUR:

5
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RQ1. Do TPOUR-trained retrievers learn temporally aligned representations? We evaluate
whether TPOUR-trained retrievers retrieve temporally aligned documents and whether interpolation
and timestamp prediction reveal embedded temporal representations in the retriever.

RQ2. Does temporal awareness improve performance on temporal QA tasks? We assess tem-
poral awareness by evaluating retrieval on temporal QA across time-based splits and measuring
gains in intermediate periods via time vector interpolation.

RQ3. Can temporal awareness reveal time sensitivity in general retrieval tasks? We conduct a
case study on the BEIR benchmark (Thakur et al., 2021), which spans diverse domains and publica-
tion years, to assess whether temporal awareness in TPOUR-trained models reveals time sensitivity.

4.1 EVALUATION BENCHMARKS AND METRICS

To assess TPOUR, we use two temporal QA datasets, SituatedQA and RealTimeQA, for temporal
retrieval, and the BEIR for general retrieval tasks. (1) SituatedQA (Zhang & Choi, 2021) is a yearly
temporal QA dataset containing 2,795 queries spanning 1700–2021. Since years prior to 2018 each
have fewer than 130 queries, we focus on the 2018–2021 subsets, which contain 291, 411, 501, and
491 queries, respectively. (2) RealTimeQA (Kasai et al., 2023) is a monthly temporal QA dataset,
providing weekly evaluations from June 2022 to January 2024, with approximately 130 queries per
month. For evaluation, we use the queries from January to December 2023. (3) BEIR (Thakur et al.,
2021) is a benchmark comprising 18 datasets across diverse domains (e.g., medical, financial). We
use BEIR to show that temporal awareness reveals time sensitivity in general retrieval tasks.

SituatedQA provides only queries and associated answers, while RealTimeQA includes a query, a
single associated document, and an answer, which is still insufficient for evaluating retrieval per-
formance, since duplicated documents created or updated at different timestamps are not present.
To address this, we construct a custom retrieval benchmark based on these datasets, following the
BEIR custom dataset guidelines1, to create a temporal QA benchmark tailored for retrieval evalu-
ation. Each custom dataset requires a set of documents related to each query. To construct these,
we use Contriever (Izacard et al., 2022) to retrieve the top-10 documents per query from a fixed
document collection. For instance, when building the document set for queries from the 2018 test
set, we use the 2018 Wikipedia document collection, retrieve the top-10 documents using Con-
triever (Izacard et al., 2022), filter out documents that do not contain the answer, retaining only the
answer-containing ones as gold documents. We also perform an evaluation bias test with a different
retriever to check whether the performance trends remain, as reported in Sec. E.6 of the Appendix.

We evaluate retrieval performance using normalized discounted cumulative gain (nDCG@k, de-
noted as N@k), which captures relevance and ranking in the top-k. Recall@k, the percentage of
queries with at least one correct document in the top-k, is reported in Appendix E. For timestamp
prediction, we report accuracy, which is the ratio of correct predictions to total examples.

4.2 TRAINING DATASETS

We construct our training corpus from English Wikipedia database dumps (Johnson et al., 2024)
collected at different times to capture temporal differences, retaining newly added or modified doc-
ument content across the corpus. For the yearly corpus, we use Wikipedia dumps from December
2018 and 2021, which serve as the yearly time span used for SituatedQA. For the monthly corpus,
we use dumps from January and December 2023 for RealTimeQA. An additional dump is also used
for temporal diversity. To prevent data leakage, we filter out documents that serve as gold documents
in SituatedQA and RealTimeQA. Details on training data construction are provided in Appendix B.2
and Tab. 4, and the training setup and hyperparameters are in Appendix B.3.1.

4.3 BASELINES

We consider seven baselines for comparison. (1) Berberich et al. (2010) is an early probabilis-
tic model that explored temporal expressions represented as tuples. (2) DPR (Karpukhin et al.,
2020) is a supervised bi-encoder with 110M parameters, trained with BM25 hard negatives. (3)
Contriever (Izacard et al., 2022) is an unsupervised retriever with 110M parameters, trained via

1https://github.com/beir-cellar/beir/wiki/Load-your-custom-dataset
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0.37 0.28 0.19 0.15

0.33 0.31 0.22 0.15

0.31 0.27 0.27 0.15

0.32 0.28 0.24 0.17

2018 2019 2020 2021

2021

2020

2019

2018 0.30 0.27 0.22 0.21
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Figure 3: Distribution of retrieved document timestamps with time vector interpolation. Heatmaps
show the normalized distribution of retrieved document timestamps in years (x-axis) for each test
year (y-axis) on SituatedQA. Each heatmap corresponds to a TPOUR Contriever interpolated be-
tween retrievers trained on tstart = 2018 and tend = 2021, using weights α, where 0.0 represents the
2018 and 1.0 represents the 2021 model. Retrieved documents are concentrated around the test year
when the interpolation weights align, and shift across intermediate years (2019, 2020) as interpola-
tion value changes, showing temporal alignment in intermediate years.

Table 1: Interpolation of TPOUR Contriever
between tstart and tend periods reduces tem-
poral misalignment in intermediate periods.

Method SituatedQA RealTimeQA
N@5 N@10 N@5 N@10

TPOUR Contriever (tstart) 29.05 32.13 30.29 29.87
TPOUR Contriever (tend) 31.72 34.30 29.32 27.97
α = 0.5 35.71 39.23 30.47 30.36
Best Interpolation α 42.47 44.59 38.77 37.30
Eval-year fine-tuned 42.47 43.96 37.30 36.98

Table 2: Performance of the mixture-of-TPOUR
timestamp predictor after 10k training steps. The
mixture-of-TPOUR achieves the lowest evaluation
loss (Eval Loss) as well as the highest year (Y-
Acc) and month accuracy (M-Acc).

Eval Loss ↓ M-Acc ↑ Y-Acc ↑
Baseline 3.13 22.22 50.18
Mixture-of-TPOUR 2.66 27.41 76.56

MoCo-based contrastive learning. (4) REALM (Guu et al., 2020) is a 134M parameter retriever
that combines retrieval with language modeling in an end-to-end setup. (5) SimCSE (Gao et al.,
2021) is a 110M parameter retriever that learns sentence embeddings via contrastive learning and
can be adapted for retrieval. (6) Nomic Embed v2 MoE (Nussbaum & Duderstadt, 2025) is a recent
general-purpose embedding model with 475M parameters, utilizing a sparse mixture-of-experts ar-
chitecture. (7) TimeR4 (Qian et al., 2024) proposes a time-aware retriever with 113M parameters,
trained on temporal knowledge graphs. Detailed information about each baseline is in Appendix D.2.

4.4 RESULTS AND ANALYSIS

4.4.1 DO TPOUR-TRAINED RETRIEVERS LEARN TEMPORALLY ALIGNED REPRESENTATIONS?

We evaluate whether TPOUR learns temporally aligned representations by analyzing the document
timestamps distribution and timestamp prediction. Fig. 3 shows that interpolation α smoothly shifts
retrieval distributions toward intermediate time periods. Full distributions for SituatedQA and Re-
alTimeQA are in Appendix Fig. 8 and 9. Interestingly, we also observe that the TPOUR-trained
retriever captures temporal patterns without explicit supervision (Appendix Sec. E.5 and Tab. 11).

To further assess whether TPOUR encodes temporal information, we evaluate its timestamp pre-
diction accuracy as a classification task, with year prediction as 4 classes (2018–2021) and month
prediction as 12 classes. As shown in Tab. 2, the mixture-of-TPOUR achieves 76.56% year accuracy
and 27.41% month accuracy, outperforming the baseline predictor built on Contriever (50.18% year,
22.22% month accuracy) with 10,000 training steps. The evaluation loss also decreases from 3.13 to
2.66. These results indicate that TPOUR embeddings preserve temporal signals for inference tasks
that are both temporally aligned and predictive. The detailed evaluation setup is in Appendix Fig. 7.

4.4.2 DOES TEMPORAL AWARENESS IMPROVE PERFORMANCE ON TEMPORAL QA TASKS?

We evaluate the impact of temporal awareness on retrieval using SituatedQA and RealTimeQA.
Tab. 3 shows nDCG@5/10 across different test periods. For interpolated TPOURContriever (denoted
as TPOUR Contriever), we apply a heuristic interpolation strategy, selecting the interpolated model
whose α corresponds to the tmid of the test set. For example, for the 2019 test set, we use the
interpolated model with α = 0.3. The TPOUR Contriever consistently outperforms all baselines.
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Table 3: Retrieval performance on mixed-timestamp document collections across SituatedQA and
RealTimeQA. We compare baselines against the TPOUR-trained retriever, TPOUR Contriever (t).
TPOUR Contriever outperforms the baselines across time periods, showing higher accuracy and
generalization regardless of whether the query contains explicit or implicit temporal information.
Notably, TPOUR Contriever achieves strong retrieval performance for intermediate periods (2019,
2020, and June) without the need for time-specific retraining.

SituatedQA RealtimeQA
2018 2019 2020 2021 January June DecemberRetriever N@5 N@10 N@5 N@10 N@5 N@10 N@5 N@10 N@5 N@10 N@5 N@10 N@5 N@10

Query with Explicit Temporal Information

Berberich et al. (2010) 8.64 9.41 9.36 10.15 8.48 9.63 9.91 10.88 15.84 16.33 8.61 8.74 22.47 24.91
Contriever 29.30 33.35 29.67 34.49 31.25 35.77 37.85 41.05 21.76 22.36 33.04 33.12 45.96 43.99
REALM 22.37 21.57 12.26 14.04 13.92 15.23 9.34 10.03 14.66 14.22 18.23 16.83 19.57 17.83
SimCSE 25.17 25.17 19.62 19.62 17.84 17.84 18.25 18.25 18.40 17.98 21.46 21.73 19.18 19.56
Supervised:DPR 28.67 31.20 27.58 30.76 27.91 31.24 32.76 34.62 22.90 22.55 30.27 29.03 35.65 34.49
Nomic Embed v2 MoE 29.61 33.62 29.67 32.46 30.77 35.17 31.09 33.74 22.38 22.12 31.45 30.64 36.99 36.28
TimeR4 33.65 37.71 27.62 32.24 31.09 34.71 31.33 34.97 26.45 25.34 31.36 29.47 8.94 8.60
TPOUR Contriever (2018) 44.10 46.57 30.83 32.84 21.66 24.30 14.00 17.68 — — — — — —
TPOUR Contriever (2021) 22.61 27.25 19.71 23.21 24.62 27.44 40.83 41.34 — — — — — —
TPOUR Contriever (Jan) — — — — — — — — 32.08 32.18 29.41 28.64 29.36 28.78
TPOUR Contriever (Dec) — — — — — — — — 8.41 9.33 29.57 27.84 49.98 46.75
TPOUR Contriever 44.10 46.57 32.84 36.45 29.67 33.19 40.83 41.34 32.08 32.18 32.39 31.72 49.98 46.75

Query with Implicit Temporal Information

Berberich et al. (2010) 9.14 9.35 8.14 9.37 7.43 8.19 8.05 8.68 13.21 13.35 7.13 7.79 20.43 22.91
Contriever 29.89 34.60 30.96 36.20 31.00 34.43 33.06 37.08 27.38 28.48 32.46 32.83 40.03 38.77
REALM 22.41 22.09 13.22 14.74 15.35 16.29 10.41 11.09 16.44 16.12 19.86 18.39 19.95 18.30
SimCSE 24.31 27.26 22.66 26.42 22.67 24.36 20.73 23.68 23.00 23.08 26.37 26.75 22.95 23.83
Supervised:DPR 32.75 35.18 30.31 34.45 28.46 31.71 31.17 34.29 29.21 28.38 27.87 28.38 33.82 32.45
Nomic Embed v2 MoE 29.23 33.27 30.61 33.81 30.55 34.86 30.42 33.08 25.78 25.88 30.66 31.37 35.82 34.94
TimeR4 35.50 39.52 28.43 32.90 32.02 36.17 30.86 34.22 26.95 26.08 8.79 8.38 32.76 32.52
TPOUR Contriever (2018) 44.63 46.37 30.78 33.99 22.14 25.57 14.83 18.57 — — — — — —
TPOUR Contriever (2021) 23.89 28.49 28.28 31.99 29.75 33.91 38.40 41.33 — — — — — —
TPOUR Contriever (Jan) — — — — — — — — 32.82 33.07 29.45 29.61 27.78 28.00
TPOUR Contriever (Dec) — — — — — — — — 11.80 13.45 33.47 31.68 53.12 48.59
TPOUR Contriever 44.63 46.37 34.62 38.73 33.14 36.90 38.40 41.33 32.82 33.07 30.68 32.17 53.12 48.59
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Figure 4: Temporal retrieval performance of interpolated TPOUR Contriever. nDCG@10 on Left:
SituatedQA (Yearly) and Right: RealTimeQA (Monthly) using interpolated TPOUR Contriever,
evaluated with explicit and implicit temporal information in queries. The x-axis indicates the inter-
polation weight α between 2018 and 2021. Each colored line denotes an evaluation set, and star
markers (⋆) indicate the interpolation achieving peak performance. Peaks aligning with the corre-
sponding time period show temporal generalization across intermediate periods.

On SituatedQA 2018 (Implicit), TPOUR achieves an nDCG@5 of 44.63, substantially surpassing
Contriever (29.89). Similar improvements are observed across later years, including +3.7 nDCG@5
in 2019 and +5.3 in 2021 over Contriever. On RealTimeQA, TPOUR also maintains an advantage
across months in January and December. Notably, performance gains remain consistent across time
periods, regardless of whether temporal information is provided explicitly or implicitly in the query.

Tab. 1 shows interpolated TPOUR Contriever performance. On SituatedQA, interpolated retrievers
achieve an average improvement of +13.4 nDCG@5 over the start-year retriever and +10.8 over
the end-year retriever, relative to the best interpolation setting. RealTimeQA shows similar trends,
with interpolation improving nDCG@5 by +9.0 points on average compared to retrievers trained
on fixed January or December snapshots. Importantly, interpolated retrievers match or outperform
retrievers trained directly at the middle time (i.e., α = 0.5), demonstrating that interpolation enables
continuous generalization across time without explicit retraining. Full results across all years and
months are provided in Tab. 8, 9, and 10 in the Appendix.
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Fig. 4 illustrates how interpolation enables TPOUR to adapt to continuous time shifts. Retrieval
performance peaks when the interpolation weight aligns with the test timestamp. For instance,
interpolated TPOUR Contriever achieves peak nDCG@10 on the 2019 (green line) and 2020 (blue
line) test sets in SituatedQA when interpolation is around the intermediate period. Similarly, on
RealTimeQA, the interpolated retriever peaks on the June test set (orange line). We also conduct an
ablation study on the loss weight λ, which balances semantic and temporal supervision, as shown in
Appendix Fig. 10. We find that moderate values of λ (0.7–0.85) yield the optimal performance.

4.4.3 CAN TEMPORAL AWARENESS REVEAL TIME SENSITIVITY IN GENERAL RETRIEVAL?

MS MARCO

TREC-COVID

NFCorpus
NQ

HotpotQA

FiQA

ArguAna

Touché-2020Quora

DBPedia
SciDocsFEVER

Climate-FEVER
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Figure 5: Best-performing interpolation α for
each BEIR dataset, shown with respect to its cre-
ation year. Each point represents a dataset, where
α denotes interpolation weight for 2021 between
TPOUR Contriever (2018) and (2021). The red
regression line shows that datasets tend to pre-
fer retrievers temporally aligned with their pub-
lication year. For example, Climate-FEVER, cre-
ated in 2020, achieves its best performance with
α = 0.7. Interestingly, time-sensitive datasets
such as TREC-COVID favor higher α, while less
sensitive datasets like SciFact and SciDocs per-
form well with lower interpolation weights. The
full performance table is in Appendix Tab. 7.

To assess whether temporal awareness can pro-
vide insights into general retrieval tasks, we
evaluate TPOUR on the BEIR benchmark span-
ning diverse domains and creation years. As
shown in Fig. 5 and Appendix Tab. 7, inter-
polated TPOUR Contriever between 2018 and
2021, along with interpolation values α for
2021, reveal clear trends. Older datasets (e.g.,
MS MARCO) perform best when α = 0.0,
while newer datasets (e.g., TREC-COVID and
Climate-FEVER) peak when interpolated to-
ward 2021 (i.e., α = 1.0). These results show
that temporal awareness reveals time sensitivity
in retrieval, aligning with dataset years.

We conduct a qualitative case study compar-
ing the outputs from Contriever and TPOUR
Contriever. As shown in Appendix Tab. 14
and 15, TPOUR Contriever retrieves documents
that are both semantically relevant and tempo-
rally aligned to the query. For example, for the
query “When did the Golden State Warriors win
the Finals as of 2018”, TPOUR Contriever re-
trieves documents referencing the 2018 NBA
Finals. In contrast, Contriever retrieves general
NBA Finals descriptions.

5 CONCLUSION AND FUTURE WORK

We propose TPOUR, a training method for embedding temporal information into unsupervised dense
retrievers. By integrating our TRPO into contrastive learning, TPOUR enables retrievers to learn
both semantic similarity and temporal preferences from unlabeled data. We show that time-unaware
retrievers suffer from temporal misalignment and that training with TRPO improves on temporal re-
trieval tasks on SituatedQA and RealTimeQA. We further show that time vector interpolation allows
TPOUR-trained retrievers to generalize across continuous time periods without retraining. Beyond
temporal retrieval, TPOUR retrievers also exhibit temporal preferences on the BEIR benchmark,
indicating that temporal modeling benefits both time-sensitive and general retrieval tasks.

We show that TPOUR improves temporal retrieval, and several promising directions remain for future
work. (1) Relaxing the requirement for temporally distributed document collections could broaden
applicability. (2) Further analysis of temporal grounding could enhance interpretability across im-
plicit and explicit queries, as the benefits of TPOUR are more pronounced in explicit than in implicit
setups. (3) We show that temporal alignment relates to general retrieval. Further studies could ex-
pand its usability (e.g., appropriate α selection). Our current setup sets α heuristically based on the
test-set time (e.g., α = 0.3 between 2018 and 2021 retrievers for the 2019 test set). (4) Time vector
extrapolation could enable TPOUR-trained retriever to generalize beyond the training period. Our
preliminary results (Appendix G.4, Tab. 22) show that TPOUR can be applied to extrapolation. We
provide more details on each aspect of our future work with preliminary results, in Appendix G.
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6 REPRODUCIBILITY STATEMENT

We provide detailed descriptions of our training and inference architecture (Fig. 2, Fig. 6, and Fig. 7),
dataset construction process (Sec. B.2, Tab. 4, Tab. 5), and training setup (Sec. B.3.1, Tab. 6). All
preprocessing steps are specified for reproducibility. We report hardware specifications in Sec. B.3.1,
hyperparameters in Tab. 6, and computational costs in Sec. B.3.2 for both TPOUR-trained retrievers
and mixture-of-TPOUR predictors. All experimental details are in Appendix B. We plan to release
the full code and dataset including preprocessing upon acceptance.2

7 ETHICS STATEMENT

This work does not involve human subjects, personal data, or crowdsourced annotations, and all
experiments were conducted on publicly available datasets (Wikipedia dumps, SituatedQA, Real-
TimeQA, and BEIR) under their respective licenses.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used GPT-5 (OpenAI, 2025) as a writing assistant to polish grammar and improve readability.
We did not use LLMs for research methodology or designing experiments.

B REPRODUCIBILITY STATEMENT

B.1 SYSTEM ARCHITECTURE AND INFERENCE PROCESS

What was at stake when the Clemson Tigers 
faced off in the Sugar Bowl now?

(𝑄!) Query

𝑡 Aligned Encoder

𝜋! Document 
Index

Clemson Tigers football // Once again the teams 
did battle in the 2018 Sugar Bowl in New 
Orleans, Louisiana with a trip to the 2018 
College Football Playoff National 
Championship game on the line …

Document Collected at Time 𝑡, 𝑡"
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Clemson Tigers football // Once again the teams did battle in the 2018 Sugar Bowl in New Orleans, Louisiana with a trip to the 
2018 College Football Playoff National Championship game on the line …

Top 1 Retrieved Document

𝑡 Aligned Encoder

Figure 6: An illustration of TPOUR inference. Like standard retrieval, we use the trained encoder
πθ to pre-compute representations for all documents at mixed timestamps t and t′, which are then
stored in the document index. At inference, a query Qi is encoded as πθ(Qi), and retrieves the
document from the index with the highest similarity to the query. The retrieved document is both
semantically relevant and temporally aligned with the query.

𝜋!
"!

Clemson Tigers football // Once again the teams 
did battle in the 2018 Sugar Bowl in New 
Orleans, Louisiana with a trip to the 2018 
College Football Playoff National 
Championship game on the line …

Documents 𝐷 with random timestamp

𝜋!
""

!!!

𝜋!
"#

!!!

Mixture-of-TPOUR Encoder

𝜋!
""(𝐷)

𝜋!
"#(𝐷)

𝜋!
"!(𝐷) Linear

Predicted 
Timestamp 𝑡

𝜋!
Clemson Tigers football // Once again the teams 
did battle in the 2018 Sugar Bowl in New 
Orleans, Louisiana with a trip to the 2018 
College Football Playoff National 
Championship game on the line …

Documents 𝐷 with random timestamp Single Baseline
Encoder

𝜋!(𝐷) Linear

Predicted 
Timestamp 𝑡

Linear

Linear

Baseline Timestamp Predictor
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Figure 7: An illustration of the Baseline and the mixture-of-TPOUR Timestamp Predictor under a
setup where the linear classifier has the same number of parameters. Given a document, the baseline
model (upper) uses a single encoder to generate a representation, which is then passed to a linear
classifier to predict the timestamp. In contrast, the mixture-of-TPOUR (lower) uses a set of frozen
retrievers {πt1

θ , . . . , πtn
θ }, each specialized for a different time period, to produce temporally-aware

embeddings. These are concatenated and fed into a linear classification layer to predict the most
likely timestamp. For a fair comparison, we matched the total number of trainable parameters by
stacking multiple linear layers in the baseline predictor equal to the number of TPOUR encoders.
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B.2 TRAINING DATASET CONSTRUCTION PROCEDURE

We extract document texts from each dump using Wikiextractor (Attardi, 2015). As summarized in
Tab. 4, we first filter out short documents (>50 words), which are mostly hyperlink pages with no
content. We then identify overlapping documents across timestamps (Intersection) and retain only
those with content changes (Filtered Intersection). Finally, we include timestamp-specific unique
documents (Unique) to build the final dataset (Final), ensuring that each timestamp-specific collec-
tion contains meaningful temporal differences. Lastly, we remove all documents that appear in the
test sets to prevent any data leakage during evaluation.

The resulting dataset comprises temporally distinct document collections from each Wikipedia
dump, with minimal explicit mentions of the target year. As shown in Tab. 5, fewer than 2.5%
of documents contain the target year explicitly within their content.

Table 4: Statistics of Wikipedia dumps used for monthly and yearly training & evaluation. (Orig-
inal) Starting from the full set of documents (>50 words), we filter out those with fewer than 50
words. (Intersection) We then identify overlapping documents across timestamps (Filtered Intersec-
tion), further filter for documents that changed between each dump set, and (Unique) add unique
documents that are created only at the specific dump set (Final) to obtain the final dataset.

# Docs - Monthly
Dump Set Original >50 words Intersection Filtered Intersection Unique Final

2023-01-01 16,228,228 4,876,682 4,842,453 736,527 34,229 770,756
2023-07-01 16,505,531 4,963,032 4,842,453 736,527 120,579 857,106
2023-12-20 16,619,644 5,011,040 4,842,453 736,527 168,587 905,114

# Docs - Yearly

2018-12-20 13,717,022 4,021,080 3,888,123 2,674,468 132,957 2,807,425
2021-12-20 15,567,219 4,706,705 3,888,123 2,674,468 818,582 3,493,050
2023-12-20 16,619,644 5,011,040 3,888,123 2,674,468 1,122,917 3,797,385

Table 5: Percentage of documents in each Wikipedia dump that contain an explicit mention of the
corresponding collection year. As shown, the majority of documents (>97%) do not include lexical
references to the target year, reinforcing that TPOUR learns temporal preferences from semantic drift
across documents collected at different times, rather than from explicit timestamp information.

Dump Set Target Year in Document (%) Target Year not in Document (%)

2018-12-20 2.50 97.50
2021-12-20 1.89 98.01
2023-12-20 1.10 98.90

B.3 TRAINING & EVALUATION ENVIRONMENT

B.3.1 TRAINING CONFIGURATION

We fully fine-tune TPOUR using Contriever (Izacard et al., 2022) as the base model (TPOUR Con-
triever) on a single NVIDIA A100 (80GB) GPU, an AMD EPYC 7763 64-core CPU, and 200GB
of memory. The hyperparameters used for TPOUR training are listed in Tab. 6. We use a learning
rate of 1e−6, 4,000 warmup steps, and a MoCo queue of length 131,060. The temporal preference
objective is combined with the contrastive loss using λ = 0.925. We apply token deletion augmen-
tation with a probability of 10%, and chunk input texts to a maximum length of 256 tokens. All
normalization options are disabled to preserve the original text form.
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Table 6: Hyperparameters used for training the TPOUR Contriever.

Hyperparameter Value

Contrastive / TRPO Loss Weight (λ) 0.925
Temperature (T ) 0.05
Optimizer AdamW
AdamW β1, β2, ϵ 0.9, 0.98, 1e−6
Learning Rate 1e−6
Scheduler / Warmup Steps Linear / 4000
Batch Size 10
MoCo Queue Size 131,060
Momentum (m) 0.9999
Projection Size 768
Dropout Rate 0.1
Chunk Length 256
Text Augmentation Deletion (prob = 0.1)
Normalization (Query / Doc / Text) False / False / False
Training Steps 100,000
Data Augmentation (Random Cropping / Delete) False / True (10%)

B.3.2 COMPUTATIONAL COST

TPOUR Contriever is based on BERT-base-uncased (110M parameters, 440MB). For interpolation
or mixture-of-TPOUR experiments, we train two TPOUR Contrievers (2018 and 2021), each taking
4.5 GPU hours on a single A100. These are then interpolated to produce 10 time-specific models,
resulting in a total storage of 4.4GB. For the mixture-of-TPOUR predictor, the training requires 16
GPU hours (10 hours for the baseline). The predictor uses 0.12M trainable parameters, of about
600KB in size, while all TPOUR retrievers remain frozen.
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C THEORETICAL BASIS OF TPOUR

C.1 TEMPORAL RETRIEVAL PREFERENCE OPTIMIZATION

Direct Preference Optimization (DPO) (Rafailov et al., 2023) forms a preference pair given a prompt
(x), preferred (yw) and less preferred response (yl) as (x, yw, yl). Like DPO, Temporal Retrieval
Preference Optimization (TRPO) forms (Q,Dt, Dt′) as a pairwise preference pair over a times-
tamped document corpus given a query Q, time-aligned document (Dt), and unaligned document
(Dt′ ). The goal of TRPO is to prefer temporally aligned document (Dt) over the misaligned (Dt′ )
given a query (Q) and minimizing the TRPO loss function (LTRPO) in Eq. 5.

LTRPO is based on the Bradley-Terry model. While DPO aligns model score with human-labeled
preference, TRPO aligns score with temporal relevance with an implicit signal derived from corpus-
level differences (preferring Dt over Dt′ ). In this view, TRPO requires working under the following
three conditions.

1. Temporal preference margin. There must be a certain temporal preference gap (i.e.,
margin) between aligned and misaligned document E[S(Q,Dt) − S(Q,Dt′)] > δ when
t′ ̸= t where δ is a minimum gap required. If the actual document update with temporal
change is too small relative to noise, TRPO learning could be unstable. To handle this
issue, we comprise a temporally distinct document collection by filtering the dataset in
Appendix B.2.

2. Similar semantic across corpora. Aligned and misaligned temporal corpora should cover
a similar set of topics (e.g., Wikipedia), so semantic similarity may remain high and the
only difference is the timestamp and the document content at that timestamp.

3. Model capacity. Encoder (π) should have sufficient capacity to represent latent temporal
signal as well as semantic similarity.

Under these conditions, TRPO encourages the model to rank temporally aligned documents higher.
The resulting scoring function Sθ is expected to approximate one that reflects temporal alignment
between query and document. This mirrors the theoretical guarantees for DPO by replacing “gener-
ation quality” with “temporal relevance” as the underlying reward (Wang et al., 2024a; Xiong et al.,
2024). To sum up, TRPO is a preference alignment variant, where preferences are defined by tem-
poral grounding between a versioned corpus. This generalizes preference learning to the temporal
dimension.

C.2 TIME VECTOR INTERPOLATION

The assumption that time vectors (i.e., model parameters trained on temporally adjacent corpora)
are close in weight space is supported both empirically in Fig. 3, where retrieved documents change
smoothly across interpolated models, showing continuity in the learned representation space.

Theoretically, time vector interpolation is supported in two parts.

Distributional similarity leads to weight-space proximity. Let Pt and Pt′ be training distributions
at time t and t′. If Pt ≈ Pt′ (e.g., under low KL(Pt|Pt′)), then under gradient descent, the learned
parameters θt ≈ θt′ will be nearby in weight space. The idea is formalized by Goodfellow & Vinyals
(2015) and aligns with our setup, where temporally adjacent corpora (e.g., 2018 vs. 2019) are close
in weight space. For adjacent periods, only temporal preferences differ, while the training data come
from similar Wikipedia distributions.

Interpolation preserves generalization. Prior work has shown that models trained on related tasks
or distributions often lie in connected regions of the loss landscape (Izmailov et al., 2018; Rame
et al., 2023). In our setting, θt and θt′ are trained on temporally adjacent corpora (e.g., 2018 vs.
2019), which tend to share topical and linguistic structures, yielding a time vector τ . As shown
by Izmailov et al. (2018), linearly interpolating such weight vectors, ατt+(1−α)τt′ , often produces
low-loss solutions if the endpoints lie in a shared basin. This smoothness in weight space supports
generalization and has been used in practice via stochastic weight averaging (SWA). Also, Rame
et al. (2023) shows that interpolating across models trained on diverse but related domains can
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produce generalizable models that outperform the individual components. Analogously, we treat
time as an axis of distributional change, and our interpolation procedure leverages this continuity to
produce retrievers that generalize to intermediate periods.

D RELATED WORK IN INFORMATION RETRIEVAL

D.1 EARLY WORK ON TEMPORAL ALIGNMENT IN INFORMATION RETRIEVAL

Berberich et al. (2010) explored the inherent uncertainty of temporal expressions and proposed
representing them as tuples, integrating this representation into a probabilistic language modeling
framework for information retrieval. Jatowt et al. (2005) proposed a re-ranking method that utilizes
archived web snapshots to prioritize documents based on content freshness and relevance. They also
introduced the concept of document focus time, which refers to the temporal period indicated by the
document content and is distinct from its creation time. Additionally, they proposed a method to
automatically estimate this temporal reference using large news collections and external knowledge
bases (Jatowt et al., 2013). Kanhabua & Nørvåg (2010) developed methods for determining the time
of implicit temporal queries by leveraging temporal language models trained on timestamped cor-
pora. They further proposed the first machine learning framework capable of automatically selecting
the most effective temporal ranking strategy for a given query (Kanhabua et al., 2012).

D.2 BASELINE MODELS

Temporal Language Modeling (Berberich et al., 2010) is a retrieval framework that integrates tem-
poral expressions into language models by explicitly modeling their inherent uncertainty. The pro-
posed Uncertainty-Aware model (LMTU) represents temporal expressions as interval distributions
and measures temporal relevance via overlap between query and document intervals.

DPR (Dense Passage Retrieval) (Karpukhin et al., 2020) is a supervised dense retriever trained on
query-passage pairs using a bi-encoder architecture. It optimizes retrieval by maximizing similarity
between queries and relevant passages while minimizing similarity to negative samples. DPR is
trained using hard negatives from BM25 to improve retrieval quality.

Contriever (Izacard et al., 2022) is a self-supervised dense retriever trained with contrastive learn-
ing, removing the need for labeled query-document pairs. It constructs high-quality negative sam-
ples using a momentum encoder (MoCo), enabling scalable pretraining on large unlabeled corpora.
This approach improves generalization and reduces dependency on task-specific data.

REALM (Retrieval-Augmented Language Model) (Guu et al., 2020) jointly trains a dense re-
triever and a language model in an end-to-end manner. During pretraining, the retriever is updated
to select relevant documents that improve language model performance. This integration enables the
model to dynamically leverage external knowledge, making it particularly effective for knowledge-
intensive NLP tasks such as open-domain QA.

SimCSE (Gao et al., 2021) is a sentence embedding model trained using contrastive learning in both
supervised and unsupervised settings. The unsupervised variant leverages dropout as noise, while
the supervised variant uses natural language inference (NLI) data. Though not originally intended
for retrieval, SimCSE embeddings can be used for dense retrieval by comparing query and document
representations in a shared semantic space.

Nomic Embed v2 MoE (Nussbaum & Duderstadt, 2025) is a sparse Mixture-of-Experts (MoE)
embedding model developed for efficient and scalable dense retrieval. It activates a small subset
of expert networks per input, balancing high capacity with low inference cost. Trained using hard
negative mining and consistency filtering, it achieves competitive retrieval performance compared
to fully dense models. As a general-purpose model, it is open-sourced and designed to perform well
across various domains and tasks without extensive fine-tuning.

TimeR4 (Qian et al., 2024) is a retrieval-augmented generation framework for temporal knowledge
graph question answering. It includes a time-aware dense retriever trained with contrastive learn-
ing to capture both semantic and temporal constraints. In our experiments, we adopt its retriever
component to evaluate temporal retrieval effectiveness on temporally grounded benchmarks.
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E ADDITIONAL EXPERIMENTAL RESULTS & ANALYSIS

E.1 FULL RESULTS ON BEIR BENCHMARK

Table 7: Retrieval performance (nDCG@10) on the BEIR benchmark, with dataset publication years
shown below each dataset name. Each benchmark exhibits specific temporal preferences that mostly
align with its creation date, suggesting that TPOUR can improve general retrieval performance by
adapting to the temporal characteristics of different datasets.
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E.2 FULL RESULTS ON INTERPOLATION

Table 8: TPOUR yearly transition in performance with interpolation on SituatedQA. The color satu-
ration indicates the relative performance, with darker green representing higher scores within each
column. The table shows the impact of time vector interpolation on retrieval performance across dif-
ferent time periods, where the highest scores are achieved at their corresponding evaluation times.
Gradual changes in performance are observed as the interpolation values shift.

Interpolation nDCG@5 nDCG@10 Recall@5 Recall@10
2018 2021 2018 2019 2020 2021 2018 2019 2020 2021 2018 2019 2020 2021 2018 2019 2020 2021

1 0 44.10 30.83 21.66 14.00 46.57 32.84 24.30 17.68 34.46 26.04 21.28 12.84 46.18 34.69 29.89 20.38
0.9 0.1 43.38 33.57 26.19 18.86 46.55 36.64 29.28 22.15 34.66 28.31 26.15 17.64 47.04 39.38 36.09 25.85
0.8 0.2 42.39 33.92 29.75 24.14 45.83 36.95 33.10 27.71 35.28 30.44 28.35 23.04 47.05 42.10 39.48 33.31
0.7 0.3 40.72 32.84 31.14 28.92 44.73 36.45 35.07 32.42 34.28 29.72 30.72 26.82 46.95 41.68 43.29 37.43
0.6 0.4 37.93 30.94 32.61 31.29 41.49 35.13 36.07 35.12 33.72 29.20 32.14 27.46 45.92 42.10 43.38 39.55
0.5 0.5 35.79 28.88 32.53 35.63 39.71 33.83 35.67 38.74 33.00 28.46 31.67 29.25 46.01 42.41 42.83 40.85
0.4 0.6 34.04 27.55 31.41 38.52 38.04 32.29 34.48 40.66 32.21 27.68 31.92 30.43 45.21 40.56 41.74 41.39
0.3 0.7 32.24 26.77 29.67 39.80 36.89 31.47 33.19 42.16 29.87 26.79 30.06 30.09 44.54 39.45 41.08 41.56
0.2 0.8 28.79 24.57 28.18 40.58 34.29 28.83 32.12 41.98 26.20 25.09 26.71 30.33 42.32 37.09 39.52 39.78
0.1 0.9 25.67 21.74 26.05 40.84 30.64 26.28 29.32 42.60 23.78 20.87 24.75 28.77 37.52 33.83 35.28 39.55
0 1 22.61 19.76 24.62 40.83 27.25 23.22 27.44 41.34 22.37 19.10 22.84 27.05 33.17 29.15 32.99 36.99

Table 9: Yearly transition in TPOUR performance with interpolation on SituatedQA, when time
information is given implicitly in the query.

Interpolation nDCG@5 nDCG@10 Recall@5 Recall@10
2018 2021 2018 2019 2020 2021 2018 2019 2020 2021 2018 2019 2020 2021 2018 2019 2020 2021

1 0 44.63 30.78 22.14 14.83 46.37 33.99 25.57 18.57 36.15 25.66 21.26 13.08 46.70 36.90 31.28 22.67
0.9 0.1 42.69 34.04 26.57 18.68 45.48 37.15 29.90 22.82 36.22 29.67 27.16 17.48 47.08 40.56 37.04 27.51
0.8 0.2 40.42 34.31 27.92 21.79 44.84 37.89 31.27 26.05 33.97 30.89 28.54 21.23 48.03 42.76 37.98 32.49
0.7 0.3 38.64 34.62 29.94 25.29 42.32 38.73 33.48 28.99 34.61 31.60 30.68 24.61 47.04 43.95 41.18 35.29
0.6 0.4 37.62 34.65 29.85 27.93 42.12 38.15 33.99 31.65 34.45 32.12 31.15 26.16 47.80 43.66 42.21 37.26
0.5 0.5 35.14 33.81 31.98 30.02 40.20 37.10 35.71 34.11 32.46 32.96 32.22 27.56 47.17 43.41 43.53 39.06
0.4 0.6 33.20 33.21 32.93 31.98 38.09 36.18 36.21 35.62 31.64 33.01 33.47 28.58 45.80 43.08 43.46 39.34
0.3 0.7 32.24 32.06 33.14 34.36 36.03 35.50 36.90 37.17 31.34 31.86 34.21 29.36 42.54 43.32 44.35 39.54
0.2 0.8 28.51 30.90 32.57 36.26 34.28 34.72 36.63 38.79 26.69 30.47 33.11 30.96 42.13 42.98 45.06 40.19
0.1 0.9 26.15 29.68 30.31 38.47 30.68 33.66 34.94 40.41 25.75 28.39 32.82 30.82 37.19 41.15 44.41 40.38
0 1 23.89 28.28 29.75 38.40 28.49 31.99 33.91 41.33 22.53 27.02 31.90 29.76 35.47 39.15 42.58 42.24

Table 10: TPOUR monthly performance with interpolation on RealTimeQA, when time information
is given explicitly (left) or implicitly (right) in the query. Results show temporal alignment in Jan-
uary (Jan), June (Jun), and December (Dec).

nDCG@5 nDCG@10 nDCG@5 nDCG@10
Interpolation Test Month (Explicit) Test Month (Implicit)

Jan Dec Jan Jun Dec Jan Jun Dec Jan Jun Dec Jan Jun Dec

1 0 32.08 29.41 29.36 32.18 28.64 28.78 32.82 29.45 27.78 33.07 29.61 28.00
0.9 0.1 28.80 28.67 34.36 30.19 28.89 33.77 33.53 30.01 30.13 32.46 30.15 28.80
0.8 0.2 25.26 29.98 40.20 25.73 29.67 38.85 33.55 29.88 31.59 32.07 30.08 29.62
0.7 0.3 21.96 30.01 44.43 21.54 29.64 41.58 32.03 30.19 33.64 30.56 30.34 32.39
0.6 0.4 17.58 30.79 47.23 18.33 30.51 44.34 29.30 29.91 37.83 28.76 30.90 35.53
0.5 0.5 16.00 32.39 49.87 16.09 31.72 46.06 25.32 30.68 39.72 25.50 32.17 38.05
0.4 0.6 14.41 32.88 49.99 14.78 31.49 47.36 20.19 31.16 42.67 23.12 32.34 40.73
0.3 0.7 12.95 31.77 49.94 13.65 31.94 47.63 17.20 32.02 45.12 20.86 32.69 42.90
0.2 0.8 10.86 31.80 50.98 12.53 30.90 48.54 15.24 33.57 48.10 18.55 32.76 45.03
0.1 0.9 9.82 30.98 51.13 11.21 29.99 47.44 13.07 34.04 50.80 15.75 32.55 46.54
0 1 8.41 29.57 49.98 9.33 27.84 46.75 11.80 33.47 53.12 13.45 31.68 48.59
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E.3 TIMESTAMP DISTRIBUTION OF RETRIEVED DOCUMENTS
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Figure 8: Normalized count of retrieved documents per year (X-axis) given the test set year (Y-axis)
on SituatedQA, with queries containing explicit (Explicit) or implicit (Implicit) temporal informa-
tion, when interpolated between 2018 (α = 0.0) and 2021 (α = 1.0).
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Figure 9: Normalized count of retrieved documents per year (X-axis) given the test set year (Y-
axis) on RealTimeQA, with queries containing explicit (Explicit) or implicit (Implicit) temporal
information, when interpolated between January (α = 0.0) and December (α = 1.0).

E.4 LAMBDA INTERPOLATION

Figure 10: Ablation of λ, the interpolation ratio between LTRPO (λ = 0.0) LCE (λ = 1.0), for
TPOUR Contriever 2018 and 2021, evaluated on SituatedQA 2018 and 2021 respectively. Perfor-
mance improves significantly with moderate λ values, showing that combining semantic and tem-
poral supervision is more effective than relying solely on either. Dashed lines at λ = 1.0 indicate
performance using contrastive-only training. Vertical arrows show the performance gap compared
to TPOUR ’s peak setting for each year.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

E.5 SEASONAL PREFERENCE OF TPOUR-TRAINED RETRIEVER

We further analyze preference on temporal patterns using TPOUR. While TPOUR does not explicitly
train to capture temporal patterns (e.g., seasonal recurrences), it learns to align with the document
distribution observed in corpora, which may naturally encode temporal patterns.

We analyze document distribution across a monthly set from two TPOUR retrievers (January and
June, 2023). The result of document distribution, computed as the ratio of retrieved to total doc-
uments per month, is in Tab. 11. We observe the January retriever favors winter months, while
the June retriever favors summer months across years. This shows TPOUR’s sensitivity to seasonal
patterns without explicit supervision.

Table 11: Monthly document distribution of TPOUR-trained retrievers. We report monthly retrieval
frequencies for two retrievers trained at different checkpoints (January 2023 and June 2023). The
January retriever exhibits stronger alignment with winter months (e.g., December–February), while
the June retriever favors summer months (e.g., May–August). This shows TPOUR can internalize
seasonal patterns present in the training corpus without being explicitly trained for temporal recur-
rences.

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

TPOUR Contriever (January, 2023)

2022 0.45 0.448 0.403 0.438 0.419 0.365 0.44 0.517 0.536 0.534 0.524 0.656
2023 0.628 0.551 0.475 0.43 0.466 0.511 0.452 0.405 0.438 0.464 0.463 0.513

Total 1.078 0.999 0.878 0.868 0.885 0.876 0.892 0.922 0.974 0.998 0.987 1.169

TPOUR Contriever (June, 2023)

2022 0.27 0.333 0.245 0.326 0.376 0.472 0.458 0.419 0.387 0.383 0.399 0.402
2023 0.439 0.373 0.424 0.394 0.459 0.559 0.563 0.368 0.431 0.505 0.478 0.449

Total 0.709 0.706 0.669 0.72 0.835 1.031 1.021 0.787 0.818 0.888 0.877 0.851

E.6 EVALUATION BENCHMARK BIAS VALIDATION

Constructing custom benchmarks using Contriever may introduce bias in document selection and
temporal distribution. To address this, we constructed a SituatedQA benchmark using a different
retriever, DPR Karpukhin et al. (2020) and repeated evaluation. Tab. 12 shows the performance
trends remain consistent.

Table 12: Evaluation bias test on SituatedQA. To confirm that the dataset construction process is free
from bias introduced by using Contriever in benchmark creation, we built a separate gold document
collection with DPR (Karpukhin et al., 2020) as the retriever. The performance trends of TPOUR
Contriever (2018/2021) remain consistent, showing that retriever does not affect benchmark bias.

SituatedQA 2018/N@5 2018/N@10 2021/N@5 2021/N@10

Contriever 28.21 31.15 27.83 29.57
DPR (Dense Passage Retriever) 23.42 27.65 29.70 31.49
Nomic Embed v2 MoE 28.51 30.11 27.22 28.22
TPOUR Contriever (2018) 33.73 34.85 10.52 11.41
TPOUR Contriever (2021) 18.91 22.50 39.14 39.36
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F QUALITATIVE CASE STUDIES

F.1 TEMPORAL PREFERENCE LEARNING WITHOUT EXPLICIT TIME EXPRESSIONS

To illustrate how TPOUR captures temporal preferences without explicit timestamp expressions, we
present a qualitative case study using the Wikipedia article Office 1 Superstore. This example shows
how semantic changes across document versions serve as implicit temporal signals.

Tab. 13 compares three versions of the same document from the 2018, 2021, and 2023 Wikipedia
dumps used in TPOUR ’s training set. The 2018 version describes contraction following the 2008
economic crisis, including market exits and a shift to e-commerce. The 2021 version reflects a
structural change, emphasizing the 2018 acquisition by Panda Cooperation. By 2023, the company
is portrayed as having re-expanded globally under Panda’s ownership.

Notably, none of these documents contain explicit temporal information such as year strings. The
distinctions arise solely from semantic content. TPOUR ’s preference-based training setup contrasts
such temporally distinct documents, enabling the model to learn implicit temporal alignment cues.
As shown in Tab. 5, fewer than 2.5% of training documents include explicit year references, under-
scoring the importance of implicit signals in learning temporal preferences.

Table 13: Three versions of the same document are used in TPOUR training. Although no explicit
timestamp strings appear in the document content, the semantic update—retrenchment (2018), own-
ership transfer (2021), and re-expansion (2023)—shows real-world temporal progression. TPOUR
leverages such a document update to learn temporal preference without explicit supervision.

Timestamp Training Document Example (Title: Office 1 Superstore)

2018-09-16 Office 1 Superstores International Inc. (OFFICE 1) was founded in 1994 as a franchise
retail chain selling office products and supplies, including office furniture and electronics.
The company is headquartered in West Palm Beach, Florida, with international operations
run from a central office and warehouse in Sofia, Bulgaria. The company uses multiple
channels of distribution to reach customers, including retail stores, telemarketing, direct
mail, e-commerce, and contract sales. OFFICE 1 expanded its operations through mas-
ter franchises in Europe, Asia, Africa, Latin America, and the Caribbean, and at its
peak had stores in 25 countries. Post the 2008 economic crisis, the company retrenched
and closed vulnerable markets such as Italy, Slovenia, and Iceland, shifting focus to e-
commerce. It entered France (2010) and Germany (2011) through joint ventures.

2021-11-06 Office 1 International Inc. (Office 1) is an international franchise company established in
Florida, USA, and present in three countries—Bulgaria, France, and Greece. On February
20, 2018, Panda Cooperation officially acquired all trademark rights of the Office 1
Superstore portfolio. From a major franchisee in Bulgaria, Panda Cooperation became
the sole owner and representative of Office 1 brands worldwide. In 1998, Panda had
received a master franchise for Bulgaria, and by 2021, Office 1 Superstore was the largest
office supply chain in Bulgaria, serving over 130,000 business clients.

2023-11-06 Office 1 International Inc. (Office 1) is an international franchise company established
in Florida, USA, and currently present in 27 countries including Bulgaria, France, and
Greece, with over 600 locations. Office 1 was founded in 1989 by Mark Baccash. Panda
Cooperation, having acquired all Office 1 trademark rights in 2018, remains the sole global
owner and operator. Office 1 maintains an extensive store network in Bulgaria and has
expanded its online presence through multiple social media accounts.
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F.2 COMPARATIVE ANALYSIS OF RETRIEVED DOCUMENTS

Table 14: Retrieved documents comparison between TPOUR Contriever (2021) and Contriever for
three example queries. The text containing the correct answers is highlighted in bold.

Model Rank Document Timestamp

Query: Who has won the most Olympic medals in curling as of 2021?

TPOUR Contriever Top 1 Brad Gushue // [...] Defeating Edin in the final. [...] Defeating
Scotland’s Bruce Mouat in the final. [...]

2021-11-30

Top 2 United States Curling Association // [...] Skip John Shuster’s
team won the gold medal. John Shuster [...]

2021-11-30

Contriever Top 1 Canada at the Olympics // [...] Jones, Kaitlyn Lawes, Jill Officer,
Dawn McEwen and spare Kirsten Wall went unbeaten [...]

2018-12-06

Top 2 Canada at the Olympics // [...] Jones, Kaitlyn Lawes, Jill Officer,
Dawn McEwen and spare Kirsten Wall went unbeaten [...]

2020-11-27

Query: Who is the No. 1 ranked tennis player in the world as of 2021?

TPOUR Contriever Top 1 Juan Martin del Potro // [...] Lost his quarterfinal against world
number 1 Novak Djokovic [...]

2021-12-11

Top 2 Tennis in Spain // [...] Tying him with Federer and Novak
Djokovic. [...]

2021-11-09

Contriever Top 1 Tennis // [...] Novak Djokovic, a rival of both Nadal and Federer,
is also [...]

2020-12-06

Top 2 Alexander Zverev // [...] Novak Djokovic has said, ”Hopefully,
he can surpass me.” [...]

2018-12-12

Query: What is the current macOS operating system as of 2021?

TPOUR Contriever Top 1 macOS // [...] macOS Monterey was presented as version 12
in 2021. [...]

2021-12-05

Top 2 macOS Server // [...] macOS 12 (Server 5.12) [...] Operates on
macOS Monterey (12) and later. [...]

2021-12-15

Contriever Top 1 Personal Computer // [...] macOS is a Unix-based graphical op-
erating system, and [...]

2018-12-15

Top 2 macOS // [...] macOS Monterey was presented as version 12
in 2021. [...]

2021-12-05

Table 15: Retrieved documents comparison between TPOUR Contriever (2018) and Contriever for
three example queries. The text containing the correct answers is highlighted in bold.

Model Rank Document Timestamp

Query: When did the Golden State Warriors win the Finals as of 2018

TPOUR Contriever Top 1 Willie Green // [...] defeated the Cleveland Cavaliers in four
games of the 2018 NBA Finals. [...]

2018-11-25

Top 2 Jarron Collins // [...] Collins won his third championship in four
years when the Warriors defeated the Cleveland Cavaliers in the
2018 NBA Finals. [...]

2019-12-27

Contriever Top 1 National Basketball Association Criticisms and Controversies //
[...] Some NBA fans have accused the league of conspiring to
have large-market teams [...]

2019-12-30

Top 2 NBA Finals // [...] The Warriors swept the Cavaliers 4-0 [...] 2020-12-11

Query: What NFL player has the most NFL rings as of 2018

TPOUR Contriever Top 1 NFL Top 100 Players of 2018 // [...] It ended with reigning NFL
MVP Tom Brady being ranked #1 [...]

2018-12-07

Top 2 Jeff Stoutland // [...] Stoutland won his first Super Bowl ring
when the Eagles defeated the New England Patriots in Super
Bowl LII. [...]

2020-12-19

Contriever Top 1 Super Bowl Ring // [...] The New England Patriots’ Super Bowl
XLIX rings reportedly cost $36,500 each [...]

2019-12-30

Top 2 Super Bowl Ring // [...] Super Bowl LI ring has 283 diamonds,
to commemorate their comeback [...]

2020-12-19

Query: When did the Philadelphia Eagles play in the Super Bowl last as of February 23, 2018

TPOUR Contriever Top 1 Curse of Billy Penn // [...] On February 4, 2018, the Philadelphia
Eagles defeated the New England Patriots in Super Bowl LII
41-33 [...]

2018-12-07

Top 2 Jeff Stoutland // [...] Stoutland won his first Super Bowl ring
when the Eagles defeated the New England Patriots in Super
Bowl LII. [...]

2020-12-19

Contriever Top 1 2018 Philadelphia Eagles Season // [...] A new Super Bowl
champion would be crowned. [...]

2020-12-19

Top 2 Sports-Related Curses // [...] The Eagles accumulated a lot of
playoff heartbreak, including 2 Super Bowl losses [...]

2020-12-19
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G DISCUSSION ON FUTURE WORK

G.1 RELAXATION OF TEMPORALLY DISTRIBUTED CORPORA

As noted in Sec. 5, TPOUR requires temporally distributed corpora (e.g., Wikipedia dumps). Each
dump is treated as a snapshot of world knowledge at a specific point in time (Jatowt et al., 2005).
While documents may mention events from various eras, their dominant temporal context aligns
with the collection period (e.g., the phrase “last week” in a 2020 dump naturally grounds to that
year). This assumption allows TPOUR to induce temporal preferences at the corpus level without
requiring document-level timestamp supervision.

Such versioned corpora may not always be available in practice. However, we believe that utilizing
coarse-grained temporal signals is a promising future direction. Coarse-grained temporal signals of-
ten exist in other domains. For example, user-generated content typically carries internal timestamps
(e.g., server logs or metadata), even if not explicitly exposed.

The central insight of TPOUR is that even minimal corpus-level temporal signals can be sufficient
to induce temporal awareness in retrievers, without relying on explicit document-level timestamps.
Moreover, document-level annotations, while useful, are often noisy, missing, or inconsistent due to
edits, revisions, or formatting errors (Dhingra et al., 2022).

G.2 ANALYSIS OF TEMPORAL GROUNDING

In practice, temporal grounding is expected to occur at the time of querying (or inference), reflect-
ing the user’s current context for implicit queries. We first conducted a preliminary experiment to
test whether a TPOUR-trained retriever optimized to predict more recent times can surpass general
retriever baselines (e.g., Contriever, Nomic Embed v2 MoE). To empirically validate this assump-
tion, we evaluated the TPOUR-trained Contriever (2021) on RealtimeQA (2023) by aggregating all
monthly test sets from RealtimeQA. Tab. 16 shows that the TPOUR-trained Contriever (2021) out-
performs general retrievers (e.g., Contriever and Nomic Embed v2 MoE) when the test set contains
2023-related queries. This shows that TPOUR can train retrievers to handle recent queries better than
general-purpose retrievers.

To further analyze the impact of temporal grounding, we categorized RealTimeQA queries along
two different axes. We used GPT-4o OpenAI et al. (2024) to assign each of the 1,428 queries to both
a (1) Temporal Category and a (2) Topic Category. We then manually reviewed all queries to ensure
accurate classification. Queries from underrepresented topic categories (fewer than 30 examples)
were grouped under “Others” to stabilize analysis. Detailed information on each category is shown
at Tab. 17 and Tab. 18.

Given these queries assigned to each temporal/topic category, we evaluated NDCG@5 (N@5) per-
formance across categories. Here, ∆ represents the score difference between TPOUR Contriever
(2021) and baseline Contriever. Tab. 19 and 20. The temporal category results show an interest-
ing insight. TPOUR Contriever (2021) is especially effective on “Timeless” temporal queries, with
smaller improvements for “Distant Past” queries. In terms of topic category, timely categories such
as “Sports” and “Business” benefited the most, while “Health” and “Environment” showed relatively
smaller performance gains over Contriever.

Given the per-query ∆, we further investigate a case study to examine which examples TPOUR
Contriever (2021) performs better on compared to Contriever in Tab. 21. It shows that TPOUR
Contriever (2021) outperforms Contriever on queries requiring temporal grounding by retrieving
contextually and temporally aligned documents.

Table 16: Performance of the TPOUR-trained retriever aligned to recent time (TPOUR Contriever
(2021)), which surpasses general retrievers (e.g., Contriever and Nomic Embed v2 MoE).

RealtimeQA (2023) N@5 N@10

Contriever 44.39 45.25
Nomic Embed v2 MoE 35.20 35.88
TPOUR Contriever (2018) 22.48 23.92
TPOUR Contriever (2021) 48.43 51.22

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 17: Topic categories. RealTimeQA (2023) queries are categorized into topical domains such
as Sports, Business and Health. Queries from underrepresented domains are grouped under Others.

Category # Queries

Sports 122
Business 119
International 224
Entertainment 114
Politics 217
Environment 61
Health 99
Others 472

Table 18: Temporal categories. RealTimeQA (2023) queries are categorized as Timeless, Recent
Past, Immediate, or Distant Past based on their temporal information. Most queries fall into the
“Timeless” category, which implicitly requires retrieving temporally up-to-date documents.

Category # Queries Description / Example

Timeless 687 The query does not mention time, but requires up-to-date documents.
e.g., “Which Covid-19 variant of Omicron become the most dominant in US?”

Recent Past (≤ 1 year) 165 Explicitly references events from the recent past (e.g., “last year”).
e.g., “How many flights on private jets were made globally last year?”

Immediate 504 Refers to ongoing or very recent events (e.g., “this week”).
e.g., “The U.S. embassy in which country was evacuated this week?”

Distant Past (> 1 year) 72 Refers to events that occurred more than a year ago (e.g., “after the 2020”).
e.g., “Dominion Voting Systems settled with which TV network in a defama-
tion lawsuit over the broadcast of lies after the 2020 presidential election?”

Table 19: Temporal category performance. TPOUR Contriever (2021) is effective on “Timeless”
(+7.36) compared to baseline Contriever, while showing smaller gains on “Distant Past” (+2.23).

Model Timeless Recent Past (≤1 year) Immediate Distant Past (>1 year)

Contriever 46.08 44.50 43.14 50.81
Nomic Embed v2 MoE 37.50 35.16 32.69 40.04
TPOUR Contriever (2018) 23.17 23.05 21.30 23.72
TPOUR Contriever (2021) 53.44 50.53 48.05 53.04
∆ over Contriever +7.36 +6.03 +4.91 +2.23

Table 20: Topic category performance. Timely categories such as “Sports” (+10.81) and “Business”
(+7.39) benefited the most from TPOUR Contriever (2021), while “Health” (+3.06) and “Environ-
ment” (+4.71) showed relatively smaller gains over baseline Contriever.

Model Sports Business International Entertainment Politics Environment Health Others

Contriever 42.64 41.98 45.07 45.18 45.29 44.64 51.11 46.07
Nomic Embed v2 MoE 34.45 33.36 36.76 33.72 37.96 35.78 35.29 37.28
TPOUR Contriever (2018) 19.16 24.37 20.79 20.31 21.92 25.39 29.81 23.32
TPOUR Contriever (2021) 53.45 49.37 51.79 51.26 50.48 49.35 54.17 51.88
∆ over Contriever +10.81 +7.39 +6.72 +6.08 +5.19 +4.71 +3.06 +5.81
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Table 21: Example queries across temporal and topic categories. Each example illustrates how
TPOUR Contriever (2021) achieves substantial gains over baseline Contriever, with improvements
ranging from +48.52 (Environment, Recent Past) to +86.88 (Entertainment, Immediate).

Query Temporal Category Topic Category ∆ over Contriever

The Biden administration is monitoring a poten-
tially major labor strike brewing in which industry?

Timeless Politics +69.92

Newly released figures show that the amount of
electricity produced by which type of renewable en-
ergy hit a record high in Britain last year?

Recent Past Environment +48.52

The nominees for the 75th Emmy Awards televi-
sion’s top honor were announced this week. Which
show received the most nominations?

Immediate Entertainment +86.88

China’s birth rate declined for the first time in
decades in 2022. It has been the world’s most pop-
ulous nation since at least when?

Distant Past International +78.60

G.3 APPROPRIATE α SELECTION

Determining the optimal interpolation weight α is a non-trivial problem. We assume temporal
grounding for each query, determined by either explicit or implicit temporal intent. This offers
an advantage over using a single “global” retriever to handle queries from multiple time periods.

1. Reduced training burden. Avoids forcing a single global model to learn both semantic
and temporal alignment simultaneously.

2. Temporal sensitivity. A global retriever must balance signals across many time periods,
which can weaken or distort its sensitivity for specific periods.

3. Modularity. We can decouple the problem into two subproblems. (1) Router: Detecting a
query’s temporal intent and (2) Retriever: retrieving temporally aligned documents.

4. Interpretability. Interpolation weights α make it easy to trace how retrieval preferences
shift across time.

For explicit temporal queries (e.g., “in 2019”), tools like dateparser (Scrapinghub) can be used
to extract the timestamp, which directly maps α to select or interpolate among TPOUR retrievers.
For implicit temporal queries, we distinguish two types: (1) Queries referring to the current time
(e.g., “Who is the current prime minister?”, “What time is it?”). In such cases, defaulting to the
most recent TPOUR retriever is a viable approach, under the assumption that users intend to refer
to the present. TPOUR Contriever (2021), despite being trained two years earlier, still outperforms
general-purpose retrievers on the RealTimeQA (2023) benchmark, as shown in Tab. 16. (2) Queries
implying a specific but unstated time (e.g., “When was the 21st conference held?”). In these cases,
training and using a query intent classifier to predict the optimal α is feasible. Wu et al. (2024) has
already demonstrated that predicting query timestamps is possible, achieving 96% test accuracy.

G.4 TIME VECTOR EXTRAPOLATION

While TPOUR benefits from time vector interpolation to generalize to intermediate time periods
without additional training, we also conducted preliminary tests on time vector extrapolation for
temporal alignment with future time. Specifically, we utilize three time vectors, θfuture = θbase +
(1− α)τt2018/Dec/20 + α(τt2023/Jan/01 − τt2021/Dec/20) to obtain θfuture. Tab. 22 shows time vector extrapolation
performance using the RealTimeQA (2023, December) test set.
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Table 22: Results of time vector extrapolation using RealtimeQA (2023, December) test set. The
extrapolated model (α = 0.5) gained using three temporally outdated retriever (2018/2021/2023)
achieves higher performance than temporally outdated checkpoints.

Model N@5 N@10 Normalized Doc Count

Oracle: TPOUR Contriever (2023/Dec/20) 42.45 46.15 0.490

TPOUR Contriever (2018/Dec/20) 21.45 20.13 0.472
TPOUR Contriever (2021/Dec/20) 23.93 25.28 0.488
TPOUR Contriever (2023/Dec/01) 27.78 27.99 0.488
Extrapolated (α = 0.5) 30.00 30.40 0.488

H NOTATIONS

Table 23: Definitions of notations used in the above formalizations.

Symbol Definition

Q Query text
D Document text
D+ Positive document
D− Negative document
Dt Temporally aligned document
Dt′ Temporally misaligned document
S(·, ·) Similarity function
Sθ(y

w) Abbreviated form of S(πθ(Q), πθ(D
t))

Sθ(y
l) Abbreviated form of S(πθ(Q), πθ(D

t′))
πq Query encoder
πk Document encoder
πref Reference policy (encoder)
πθ Training target policy (encoder)
πt
θ Training target policy (encoder) that aligned at time t
L(·) Loss function
LTRPO(·) TRPO loss
LCE(·) Contrastive loss
Ltotal(·) Total loss
m Momentum hyperparameter
λ LTRPO and LCE balance hyperparameter
α Time vector interpolation hyperparameter
θq Query (policy) encoder weight
θk Document (policy) encoder weight
θref Reference policy weight
θ Training target policy (πθ) weight
θbase Base pretrained encoder weight
θt The encoder weight fine-tuned on data from time period t
yw Preferred output
yl Less preferred output
x Prompt input
σ(·) Sigmoid function
β DPO temperature parameter
T Contrastive loss temperature parameter
τt Time vector for time t
tstart Start time period
tmid Middle time period
tend End time period
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