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ABSTRACT

Goal-conditioned Hierarchical Reinforcement Learning (HRL) has shown re-
markable potential for solving complex control tasks. However, existing methods
struggle in tasks that require generalization since the learned subgoals are highly
task-specific and therefore hardly reusable. In this paper, we propose a novel
HRL framework called ϵ-Invariant HRL that uses abstract, task-agnostic subgoals
reusable across tasks, resulting in a more generalizable policy. Although such
subgoals are reusable, a transition mismatch problem caused by the inevitable in-
correct value evaluation of subgoals can lead to non-stationary learning and even
collapse. We mitigate this mismatch problem by training the high-level policy to
be adaptable to the stochasticity manually injected into the low-level policy. As a
result, our framework can leverage reusable subgoals to constitute a hierarchical
policy that can effectively generalize to unseen new tasks. Theoretical analysis
and experimental results in continuous control navigation tasks and challenging
zero-shot generalization tasks show that our approach significantly outperforms
state-of-the-art methods.

1 INTRODUCTION

Goal-conditioned Hierarchical Reinforcement Learning (HRL) methods have shown remarkable po-
tential to solve complex tasks(Nachum et al., 2018b)(Kim et al., 2021)(Costales et al., 2021), such as
continuous control tasks that require long-horizon navigation (Li et al., 2021)(Gürtler et al., 2021).
Goal-conditioned HRL uses subgoals to decompose the original task into several sub-tasks, training
a high-level policy to output subgoals and a low-level policy that executes raw actions conditioned on
the subgoals. Therefore, the performance of goal-conditioned HRL mainly relies on a well-designed
subgoal space. In particular, in many complex realistic scenarios such as robotics, reusable subgoals
are necessary for building a generalizable policy that is widely applicable to different tasks.

Prevailing strategies usually utilize task-specific subgoals such as representations extracted from
essential states or trajectories (Nachum et al., 2018a)(Li et al., 2021)(Jiang et al., 2019b), or select a
subgoal space based on prior knowledge such as (a subspace of) the raw state space (Nachum et al.,
2018b) (Zhang et al., 2020). Such subgoals depend on the specific task and thus often cannot be
reused in different tasks. For instance, in a maze navigation task, a subgoal representing coordinates
in a maze may not be reachable in another maze, although the two mazes can be similar. As a result,
policies based on these subgoals cannot be reused in different tasks.

To construct reusable subgoals, a readily applicable choice is to use invariable abstract physical
quantities as subgoals such as directions in a navigation task. These abstract subgoals are usually
task-agnostic and thereby naturally reusable. However, how to build a generalizable policy based
on these abstract subgoals remains a challenge due to the transition mismatch problem, which is
common in HRL (Zhang et al., 2022) (Levy et al., 2018) and can lead to the non-stationary learning
process. In general, the transition mismatch problem emerges when the high-level policy evaluates
the subgoals with incorrect transition and rewards due to an inadequately trained low-level policy.
To introduce the problem clearly, we will show it in a prevailing challenging task considered by
prior HRL methods, i.e., a long-horizon maze navigation problem based on a legged robot, despite
our idea is not limited to this particular task. Consider that the high-level produces a subgoal to
go to position with coordinates (x, y), but the immature low-level policy reached (x′, y′). Then,
the high-level will evaluate the subgoal by the incorrect reward from (x′, y′), which will lead to
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inaccurate value estimation and even the collapse of the hierarchical policy learning process (Igl
et al., 2020b)(Wang et al., 2021). Previous work proposes to alleviate the mismatch problem in
single-task settings by refining the wrong transition, such as relabeling the wrong transition by the
correct transition obtained from the replay buffer (Levy et al., 2018) (Nachum et al., 2018b) (Kim
et al., 2021). However, these methods fail to solve the transition mismatch problem in the multi-task
setting, where this problem can be exacerbated by the confusion of changeable tasks with the same
abstract subgoals. As successful trajectories are not identical across different tasks, relabeling by
sampled trajectories may aggravate the mismatch problem.

In this paper, we propose a novel HRL framework called ϵ-Invariant HRL to leverage task-agnostic
abstract subgoals as well as alleviate the influence of the transition mismatch problem. We propose
a method called ϵ-Invariant Randomization to inject controllable stochasticity into the low-level
policy during the training of the high-level policy. The key idea is to see the mismatch as a kind of
randomness and train the high-level policy to be adaptable to this randomness. We term the subgoals
introduced with randomness ϵ-Invariant subgoals (the definition is in 3.1). Based on this framework,
we propose a parallel synchronous algorithm from A2C Mnih et al. (2016) to evaluate the online
policy and update the network by an expected gradient from multiple trajectories sampled with the
same parameter instead of updating by a single gradient, which can alleviate the mismatch problem
with the expected transition, reducing of influence of incorrect transitions and rewards. The parallel
algorithm is proven to possess the potential to solve changeable scenarios and randomness in the
environments (Hou et al., 2022)(Espeholt et al., 2018). After solving the mismatch problem, our
HRL policy can leverage general task-agnostic subgoals and generalize even to unseen tasks.

To demonstrate the superiority of our HRL framework, we extend the widely-used benchmark based
on (Duan et al., 2016)’s work using the MuJoCo (Todorov et al., 2012) simulator. These experi-
ments are designed to control high-dimensional robots to solve long-horizon maze navigation tasks
in different mazes with sparse rewards (see details in section 4.1). Some tasks are in a stochastic
environment with changeable structures to check the robustness of policy. In these difficult tasks,
our method achieves state-of-the-art results compared with the most advanced RL and HRL meth-
ods. Our method also shows novel abilities in generalization tasks, in which the structures of the
mazes are unseen, even with unseen pre-trained robots. To the best of our knowledge, such complex
generalization tasks can hardly be solved by previous methods, and we are the first to build an HRL
policy that exhibits generalization capability across different mazes and different robots.

In summary, our contributions are three-fold:

1. We devise an HRL framework for generalizing in high-dimensional controlling maze nav-
igation tasks with a theoretical guarantee.

2. We propose a randomization method for the transition mismatch problem in generalization
tasks along with an algorithm that enables stable learning.

3. We provide a new benchmark for evaluating the approaches for high-dimensional maze
navigation tasks, and our method outperforms SOTA algorithms. To the best of our knowl-
edge, we are the first to build policies that can generalize to such zero-shot navigation tasks
with unseen mazes and unseen robots.

2 PRELIMINARIES

We formulate the task in this paper as a goal-conditioned Markov decision process (MDP) (Sutton &
Barto, 2018), defined as a tuple < S,G,A, P,R, γ >. S is the state space,A is the action space, and
G is the goal space, which is a set of consistent invariant actions. In this paper we focus on maze-
navigating tasks, so that we choose the relative displacement of directions “up, down, left, right” (or
“x+, x−, y+, y−” in the coordinate system of the environment) as the goals (see details in Section
3.1). P is the transition probability matrix and P (s′|s, a) is the one-step transition probability.
R(s, a) is the reward function, γ ∈ [0, 1) is the discount factor.

Goal-conditional HRL. We consider the framework that consists of two hierarchies: a high level
policy πH = π(g|s; θh) and a low-level policy πL = π(a|s, g; θl), where θh, θl is the parameter
of the two policies parameterized by neural networks respectively. At a high-level timestep t, the
high-level policy generates a high-level action, i.e. subgoal gt ∈ G by gt ∼ π(g|st; θh). The
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Figure 1: Illustration of Zero-shot Generalization Maze Task. From left to right is Maze-g2, Maze-
g3, Maze-g1. Details are in section 4.1

high-level policy gives a goal every k steps and the low-level policy executes the subgoal gt in k
steps. Then the high-level policy receives the accumulative external rewards from the environment
rht =

∑tk+k−1
i=tk R(si, ai) in k steps. The goal of the high-level is to maximize the expected return

E[
∑H

t=0 γ
trht ] by driving the low-level policy.

The low-level policy receives additional intrinsic reward rl for efficient learning as follows:

rl(stk, gt, atk, stk+1) = α · cos < gt, φ(stk+1)− φ(stk) > ·||φ(stk+1)− φ(stk)|| (1)

where gt = gt is an invariable direction vector of “{x+, x−, y+, y−}”, the φ is a coordinate
extracting function form state s and α is a constant coefficient. The reward means that the further
the agent goes towards the goal direction, the more reward can it obtain. Different from current HRL
methods as done in (Kim et al., 2021)(Nachum et al., 2018b), we do not use the relative distance
of specific coordinates as the intrinsic reward function but use the fixed distance towards invariable
and orthogonal goal directions. By this reward function, the agent will learn to walk towards an
abstracted direction according to the subgoal instead of towards a specific location, which preserves
the generalization potential for different tasks.

3 APPROACH WITH ANALYSIS

Figure 2: HRL framework illustration. By the ϵ-
invariant subgoals, the high-level policy can adapt
to different maze tasks and different pre-trained
low-level robots.

Motivation. We hope to build an HRL policy
to solve maze-navigation and generalization
tasks of high-dimensional continuous control-
ling robots. The difficulty of these tasks is
usually caused by large exploration space and
sparse rewards. Thus we aim to build a sub-
goal setting, which can not only reduce the
difficulty of exploration but also are reusable
in different tasks. Consider that many previ-
ous RL works research on tabular mazes, such
as the BabyAI platform (Chevalier-Boisvert
et al., 2018), if the maze with continuous
state space can be discretized into several
blocks, the learning process will be more ef-
ficient than the original one. So that we set
the subgoal space by abstracted task-agnostic
subgoals like directions of ”front, back, left,
right”. These subgoals mean the agent should
move in the direction of a fixed step. In such
setting, the maze is divided into blocks ac-
cording to the distance of the movement in the high-level perspective. The high-level policy can
make a decision on finite discrete space, which will significantly improve the exploration efficiency.
Meanwhile, such subgoals are physically invariable so that can be reused in any maze. Policy based
on these subgoals can also be general among tasks.

Challenges. Although the motivation is concise, it needs to overcome three challenges for imple-
mentation. (1) Will the hierarchical policy in our setting seriously break the performance of the
original optimal policy? How to evaluate the error? Is the error controllable? (2) In HRL the fixed
oracle subgoals setting with respective learning process often lead to collapse due to the mismatch
of the two hierarchies . How to let the agent learn stably and safely and overcome the mismatch?

In the following paragraphs, we will answer the two questions respectively by theoretical analysis
for discussing the effectiveness of our method, and framework building with algorithm design for
stable policy learning.
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3.1 THEORETICAL ANALYSIS

Limited by the length of the paper, in this section we just show the main idea of proof. The details
can be seen in Appendix A.

Our main idea to prove the effectiveness of our method is to prove the error between optimal policy
and ours in a metric is bounded and can be controlled so that our methods can be used as a sub-
optimal policy to approximate the optimal one. The results in stochastic MDPs show that the error
between our hierarchical policy and the optimal policy can be bounded.

Firstly, we give the mathematical definition of the ϵ-invariant subgoals (as the high-level abstracted
actions).
Definition 3.1. (ϵ-invariant subgoals) For every environment E and an ϵ-invariant subgoal g∆ ∈
G∆, transitions of the subgoal from ’s’ to ’s′’ and ’s′’ to ’s′′’ with optimal low-level policy, for any
s, satisfying:

Es′ [φ(s)− φ(s′)] = Es′′ [Es′ [φ(s
′)]− φ(s′′)] (2)

where σφ(s′),x, σφ(s′),y ≤ ϵ

Here πH(g|s) is the high-level policy. s′ and s′′ are the achieved states by the ϵ-invariant subgoal
g∆ with optimal low-level policy. φ is the coordinate extracting function and φ(s) is the coordinate
vector of observation s. σφ(s′),x, σφ(s′),y are the variance of achieved state in x, y directions. We
consider our high-level policy learning in stochastic MDP so that the s′ is a random variable de-
pending on s and g∆, and we limit the variance of s′ by a little constant ϵ. The equation means such
subgoals will give an excepted invariable direction in the coordinate system with a little randomness.

Error Bound in Stochastic MDP. As shown in Fig 3, the trajectories of RL method, traditional
HRL method, and our method are different, and for that, we build our high-level policy in stochastic
MDP with stochastic subgoals.

We consider a goal-conditional HRL where the high-level policy makes a decision every k steps. To
compare with the HRL method, the optimal value function of original RL methods in deterministic-
MDP can be rewritten with k step as:

V ∗
k (st) = Eτk [R(τk) + γkV (St+k)] (3)

where τk is a trajectory in k steps with optimal policy π∗(τk|st), R(τk) is the accumulative dis-
counted reward in k steps. And equation 3 can be rewritten as: V ∗

k (st) =
∑

τk
Pπ(τk|st)[R(τk) +

γkV (St+k)].

With equation 3, we can define the error between traditional RL method and our method: |V ∗
k (st)−

V̂ ϵ
H(st)|. To analyze and control the error, we introduce the value V ∗

H(st) in optimal stochastic HRL
with coordinates as subgoals:

|V ∗
k (st)− V̂ ϵ

H(st)| ≤ |V ∗
k (st)− V ∗

H(st)|︸ ︷︷ ︸
HRL error

+ |V ∗
H(st)− V̂ ϵ

H(st)|︸ ︷︷ ︸
subgoal error

(4)

Here we only give the conclusion of our analysis, that is:

||V ∗
k − V ∗

H ||∞ ≤
νkkRmax

2(1− γk)
+

γkνkRmax

2(1− γk)2
(5)

and

||V ∗
H − V̂ ϵ

H ||∞ ≤
Lφ(2δmax + 3

√
2ϵ)Rmax

2(1− γk)
(k +

γk

1− γk
) (6)

where δmax = max
g,g∆
{||g||, ||g∆||}, Rmax is the bound of reward function, νk is the transition mis-

match rate between optimal RL method and HRL method with stochastic coordinate subgoals. Lφ

is the Lipschitz constant. The proof is shown in Appendix A.

The result shows that the error between our method and optimal policy indeed can be bounded and
controlled. That means our policy can be used as a sub-optimal policy to approximate the original
optimal one.
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3.2 FRAMEWORK

In this section, we will show how to build a hierarchical framework to handle the abstracted ϵ-
invariant subgoals. Generally, the high-level policy decides the direction as subgoals by pixel ob-
servation, and the low-level policy receives the expected direction and walks towards the direction
for a distance. Thanks to the abstractness of the subgoals defined in 3.1, although the high-level and
the low-level policy can learn together, we train them respectively to accelerate the learning process.
So that our method decomposes the learning process into two stages with discrete general subgoals,
where the high level learns by external rewards and the low level learns by intrinsic rewards. Es-
sentially, the discrete general subgoals are invariable displacement of fixed directions, which will
reduce the difficulty of exploration and improve learning efficiency by discretizing the state space
into little blocks. Meanwhile, they are reusable and general in any maze-navigation tasks, so as to
preserve the generalization abilities of the high-level policy.

Figure 3: Comparison of different frame-
works. ϵ-invariant subgoals (invariable di-
rections with little randomness) can be
reused in different navigating tasks.

Modular Pixel Observation. As we utilize the di-
rection as abstracted subgoals for the high-level pol-
icy, the influence of the subgoals can hardly be per-
ceived by the agent with the posture of the robot. We
add a pixel observation at the top view to look down
at the agent. (See in figure 2) It will observe a re-
gion of fixed size by a camera following the robot.
From this perspective, the influence of the subgoal of
directions is invariable and consistent among maze
environments. The agent can observe the change in
the environment close to the robot. Meanwhile, pixel
observation is more adaptable than raw data of pos-
ture, which can improve generalization abilities. We
provide the pixel observation for the high-level pol-
icy to decide which direction to go.

ϵ-Invariant Randomization. As we train the two hi-
erarchies respectively with abstracted subgoals, we
train the high-level by the movement directly from
the simulator instead of the real walking of the robot
for faster learning. However, abstracted subgoals will
bring the mismatch problem between the two levels.
Because to control a robot moving by legs strictly to-
wards a direction is very hard for RL methods. So
that even the well-learned walk policy will contain
a slight deviation in the vertical direction of the goal direction. Such inevitable deviation (a per-
formance of mismatch) will cause incorrect evaluation of the subgoals, which will lead to non-
stationarity and even collapse in a changeable environment.

To alleviate the problem, we introduce the ϵ-Invariant Randomization method to build the high-level
learning process as a stochastic MDP. When training the high-level policy, the simulator moves
the robot with random postures and random positions. The postures are sampled from the walking
postures of well-learned low-level policy with random subgoals and recorded as offline data. The
random position means that a random deviation will be added to the original movement. For in-
stance, the high-level policy gives a “x+” direction as subgoals, then the simulator will move the
robot to “x+” with a little offset of ∆x,∆y ∼ N (0, σ), where σ ≤ ϵ is much less than the moving
distance. As a result, if the high-level policy can overcome the randomness, the wrong execution of
the low-level policy will be seen as a sample of the distribution of randomness, which will improve
the affordance of the high-level policy.

Network structure and more details can be seen in Appendix C.

Algorithm. As we introduce randomness into the learning process to alleviate the mismatching
problem, the high level should overcome the stochasticity in the environment to obtain a well-
performed policy. To solve the randomness, we propose a parallel algorithm called the parallel
expected gradient advantage actor-critic (PEG-A2C) algorithm because the parallel algorithm is
proven to possess the potential to adapt to a changeable environment (Hou et al., 2022)(Espeholt

5



Under review as a conference paper at ICLR 2023

Figure 4: An illustration of the shape of maze environments of our benchmark. They are Random
Square, ⊃ Maze, S-shaped Maze, and Spiral Maze respectively. The blue arrow is the successful
trajectory.

et al., 2018). The main idea of our algorithm is to sample multiple trajectories with the same pa-
rameter by several agents, then concentrate the trajectories and calculate the expected gradients of
different trajectories and different steps and update the parameters synchronously. That is, different
from previous works which update parameters θ by θ ← θ+ α∇θ, we utilize θ ← θ+ αEτ [∇θ(τ)]
to train the high-level policy. Such gradients can hopefully reduce the impact of randomness, as
taking the expectation can be seen as a special kind of automatic gradient clipping by tasks (Zhang
et al., 2019)(Bjorck et al., 2021). That is our algorithm evaluates subgoals by expected return and
high-level transition. It will alleviate the non-stationarity of the learning process.

The pseudo code is shown in Appendix B.

4 EXPERIMENTS

In our experiments we aim to answer the following questions: (1) Can our method learn stably in
different complex maze navigation by a robot with high-dimensional action space? (2) How does our
method perform compared with advanced RL and HRL algorithms? (3) Can our method generalize
to different unseen maze tasks even unseen robots without retraining?

4.1 ENVIRONMENTS SETTING

We evaluate a suite of MuJoCo (Todorov et al., 2012) maze-navigating tasks modified from the
benchmark from (Duan et al., 2016). Different from the setting of (Kim et al., 2021)(Nachum et al.,
2018b), we utilize sparse external rewards to make them more challenging. In these tasks, the agent
should control an ant robot to achieve a specified area in the maze which is far away from the initial
position. To compare completely, we also add experiments on dense reward, where the reward is
1/(1 + d) of Euclidean distance d between the agent and the current goal in the coordinate system
for every step. The mazes are Ant ⊃-Maze, Ant Random Square Maze, Ant S-shaped Maze,
Ant Spiral Maze, Ant Spiral Maze, and Generalization Maze (See in Fig 4). They are all difficult
mazes with the long navigating horizon. In these mazes, the goal is to pass the door or go to a
specific region. Especially Ant Random Square Maze is a task in a stochastic environment with
random initial positions of both the agent and the door. Generalization Maze is a task with three
unseen mazes of different structures. Ant S-shaped Maze and Ant Spiral Maze are extremely
long-horizon mazes that require at least thousands of steps by the optimal policy. More details can
be seen in Appendix D.

Implementation. We build our HRL agent by two policies. The high-level policy is learned by
our PAG-A2C algorithm, and the low-level policy is a goal-conditioned policy modified from DroQ
(Hiraoka et al., 2021) algorithm, of which the subgoals are directions of ’x+’,’y+’,’x-’,’y-’. As the
simulator in MoJoCo allows direct movement of coordinates, we train the two policies respectively
in two stages. The high-level policy learns with direct movement with randomness, and the low-level
learns by intrinsic reward defined in equation 1. As the subgoals and the low-level policy can be
reused in different tasks, we mainly show the high-level training curves and success rates in different
tasks and use the same well-learned low-level policy for the ant robot.

4.2 BASELINES

We compare our method to several state-of-the-art (SOTA) model-free RL and HRL algorithms in
the high-dimensional continuous control tasks said above.

DroQ. It is the SOTA RL algorithm for high-dimensional continuous control tasks (Hiraoka et al.,
2021), which is the most efficient RL method. It is effective for both simple robots like Hopper and
complex robots with large numbers of degrees of freedom like Humanoid.
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Figure 5: Comparative experiment results with strong baselines in sparse-reward tasks. The mean
and variance are calculated by 3 runs.

HIGL. It is the SOTA HRL algorithm for high-dimensional maze-navigating tasks with both sparse
rewards and dense rewards for MuJoCo suite (Kim et al., 2021).

HESS. It is one of the most advanced subgoal learning HRL methods for continuous control tasks
(Li et al., 2021).

RAND-H. It is a variety of our HRL method, of which the high-level policy is a random policy and
the low-level policy is well-learned. The baseline is used as an ablation study of our method to show
the capabilities of our subgoal setting.

our-oracle. It is a variety of our HRL method, of which the high-level policy is trained without the
low-level policy. The robot will walk by the oracle movement of coordinates executed directly by
the simulator instead of the low-level policy. The baseline is also used as an ablation study of our
method to show the efficiency of the high-level policy.

4.3 RESULTS OF COMPARATIVE EXPERIMENTS

For a fair comparison, we utilize the evaluated reward curves with both the high-level and the low-
level, although our hierarchical policies can be trained respectively. The curves are shown in figure
5. We can see that our method outperforms both the SOTA RL and HRL methods. The curves are
cut by the same episode to align the results of different methods. All the curves are smoothed by a
sliding window. More details can be seen in Appendix D.

Robustness to Stochasticity and Mismatch. In these tasks, the ’Ant Random Square’ is a square
maze with a random initial position of robots and goals. In this task, the mismatch problem will be-
come critical as the successful trajectory is episodically changeable. So that correction by historical
samples is invalid. As shown in the curve in figure 5, the HIGL method can obtain a reward at first,
but gradually reduced it with a downward trend. Our method can learn with a gradually increasing
return. The curve shows that our method can adapt to such a stochastic environment and learn stably,
proving that our algorithm indeed can overcome randomness. But other methods can hardly adapt
to such a stochastic environment.

Comparative Result. The non-hierarchical method DroQ performs poorly in all the tasks with
sparse rewards, demonstrating the strength of the hierarchical structures in solving long-horizon
tasks with sparse rewards. HESS method also performs not so well with little accumulate return,
due to the requirement of large exploration episode steps for sparse reward, which is consistent with
the results reported in their paper (Li et al., 2021). The SOTA HIGL method outperforms other
baselines while underperforming our method, which learns with a gradually rising average reward
but slower than ours, showing the superiority of our methods.

In tasks with dense rewards (figure 6), we utilize average step reward and goal-reaching success rate
to evaluate the performance of these methods. The performance of previous methods is improved a
lot but the curves of success rate are still under our method.

Ablation Study. The RAND-H and our-oracle show the ablation result of our method. The high-
level policy with oracle movement (our-oracle) can learn stably with our algorithm. We can see that
the low-level policy (RAND-H) can obtain rewards in a certain frequency with our subgoal setting
even with random high-level policy, so as to preserve stable feedback for the learning process. The
two ablation experiment curves show the reason why our method learns faster.
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Figure 6: Comparative experiment results in dense-reward tasks. (a) is curve of average reward of
every step. (b) is curve of average success rate = achieved goals/total goals

Table 1: Generalization Task Result for Different Mazes (Zero-shot Success Rate %). ’Maze-ori’ is
the trained maze, and the other three are zero-shot generalization maze .

Method/Maze Maze-ori Maze-g1 Maze-g2 Maze-g3

Ours 51.8± 4.4 45.6± 5.2 27.8± 6.7 73.6± 4.6
Ours-Oracle 66.4± 5.4 72.0± 6.3 58.4± 8.3 84.8± 6.6

HIGL 25.4± 5.3 ≤ 1 ≤ 1 ≤ 1

4.4 RESULTS OF ZERO-SHOT GENERALIZATION EXPERIMENTS

Zero-shot Maze. In these experiments, we utilize the policy trained in ’Ant Square Maze’ and test
in new unseen mazes of fixed shapes without retraining. We compare our method with the HIGL
method by the well-performed policy of training process in the Ant Random Square environment
with sparse reward. Result is shown in table 1. The test mazes are fixed shapes without randomness.
so that sometimes the test result can be better than the training result.

Zero-shot Robot. In this experiment, we test the single high-level policy with the oracle movement
and the whole HRL policy respectively. In table 2 we show zero-shot result of the mere high-level
policy in ’Maze ⊃ shape’. It is to show the adaptive capabilities of our high-level policy with our
subgoal setting.

From the results, we can see that such generalization tasks can hardly be solved by previous RL and
HRL methods due to the specific subgoal or goal setting. They can neither adapt to different maze
tasks nor change the low-level policy without retraining the high-level policy. Our HRL method
uses invariable abstracted subgoals and can adapt to different scenarios. Our method is also flexible
and can adapt to different unseen robots with the low-level policy receiving the same subgoals with
a certain success rate.

Visualization Results. To show the generalization ability of our HRL policy, we show the heatmap
of trajectories of our method and HIGL (figure 7). We can see that the HIGL agent mainly moves
near the initial position and is blocked by unseen structures, but our agent can achieve the door more
frequently.

Table 2: Generalization Task Result for Different Robot (Zero-shot Success Rate %). Except ’Ant’,
the other robot are unseen. Average success rate = achieved goals/total goals

Method/Robot Ant Point Swimmer Humanoid

Ours-Oracle 99.6± 0.5 53.2± 1.4 47.0± 2.4 48.2± 1.3
HIGL 67.0± 5.2 — — —

5 RELATED WORK

Goal-conditioned HRL methods. In the recent few years, hierarchical reinforcement learning
methods have been widely studied for complex high-dimensional control and long-horizon tasks.
There are many goal-conditioned HRL methods for subgoals learning, handling and discovery for
these difficult tasks (Nachum et al., 2018b)(Li et al., 2021)(Kim et al., 2021)(Gürtler et al., 2021)(Li
et al., 2020)(Zhang et al., 2020). These methods usually leverage task-specific subgoals such as spe-

8
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Figure 7: Visualization result of zero-shot maze generalization tasks. The red and blue points rep-
resent the achieved positions in the maze. The more lightly the position is, the more frequently
the agent achieving. The histogram is to straightly show the frequency of the achievement of every
position.

cific coordinate (Nachum et al., 2018b), sampled abstracted or original states (Nachum et al., 2018a)
or abstracted trajectory descriptions (Jiang et al., 2019a) to complete complex tasks. Different from
previous methods, our framework utilizes the ϵ-invariant subgoals (direction with randomness) as
abstracted high-level actions, which do not stand for task-specific descriptions but the invariable
relative effects of action sequences. Such subgoals can be reused ignoring the change of states in
different tasks, which are more general.

Generalizable Policy Learning. Constructing policies can be reuse (or generalize) in new (even
unseen) tasks is a long-standing challenge, which is researched by many works in different perspec-
tives (Igl et al., 2020a)(Xu et al., 2022)(Wang et al., 2019)(Wang et al., 2020). Recent works are
mainly three lines for generalizable policy learning. (1) Learning reusable or transferable skills, op-
tion or policies for different tasks(Shah et al., 2021) (Nam et al., 2021)(Klissarov & Precup, 2021).
(2) Learning policies adapting to a distribution of environments or tasks with different dynamics
by risk-sensitive objective functions(Lyle et al., 2022) (Lei & Ying, 2020)(Kirsch et al., 2019). (3)
Learning to extract reusable abstracted representations like language, logical symbols or graph from
visual observation or state-action trajectories (Jain et al., 2020)(Agarwal et al., 2020)(Vaezipoor
et al., 2021).

Our method is related to the third line, i.e., utilize the abstracted representations for improving the
generalization abilities of the policy. But the difference is that we do not leverage representations
expressing tasks in a distribution or invariable abstracted trajectories. Instead, we use the abstracted
representation to represent the physically invariable relative locomotion. Such representations are
usually general in the kind of maze-navigation tasks, thus leading to strong generalization abilities.

6 CONCLUSION

In this paper, we propose a novel HRL framework to build a generalizable hierarchical policy with
abstract task-agnostic subgoals. We give theoretical analysis to prove the effectiveness of our method
and design algorithm to overcome the transition mismatch problem in generalization tasks to con-
struct a stable policy learning process. Strong results in challenging experiments show the superior-
ity of our method. Meanwhile, our method can achieve zero-shot generalization in different unseen
tasks, which cannot be dealt with by previous methods. We believe that idea of our method could
be used beyond our task setting. For future work, we will focus on more general policy learning to
solve more complex tasks, not limiting to HRL.
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Nico Gürtler, Dieter Büchler, and Georg Martius. Hierarchical reinforcement learning with timed
subgoals. Advances in Neural Information Processing Systems, 34:21732–21743, 2021.

Takuya Hiraoka, Takahisa Imagawa, Taisei Hashimoto, Takashi Onishi, and Yoshimasa Tsuruoka.
Dropout q-functions for doubly efficient reinforcement learning. In International Conference on
Learning Representations, 2021.

Xiaohan Hou, Zhenyang Guo, Xuan Wang, Tao Qian, Jiajia Zhang, Shuhan Qi, and Jing Xiao.
Parallel learner: A practical deep reinforcement learning framework for multi-scenario games.
Knowledge-Based Systems, 236:107753, 2022.

Maximilian Igl, Gregory Farquhar, Jelena Luketina, Wendelin Boehmer, and Shimon Whiteson.
Transient non-stationarity and generalisation in deep reinforcement learning. In International
Conference on Learning Representations, 2020a.

Maximilian Igl, Gregory Farquhar, Jelena Luketina, Wendelin Boehmer, and Shimon Whiteson.
Transient non-stationarity and generalisation in deep reinforcement learning. In International
Conference on Learning Representations, 2020b.

Ayush Jain, Andrew Szot, and Joseph Lim. Generalization to new actions in reinforcement learning.
In International Conference on Machine Learning, pp. 4661–4672. PMLR, 2020.

Yiding Jiang, Shixiang Shane Gu, Kevin P Murphy, and Chelsea Finn. Language as an abstrac-
tion for hierarchical deep reinforcement learning. Advances in Neural Information Processing
Systems, 32, 2019a.

Yiding Jiang, Shixiang Shane Gu, Kevin P Murphy, and Chelsea Finn. Language as an abstrac-
tion for hierarchical deep reinforcement learning. Advances in Neural Information Processing
Systems, 32, 2019b.

Junsu Kim, Younggyo Seo, and Jinwoo Shin. Landmark-guided subgoal generation in hierarchical
reinforcement learning. Advances in Neural Information Processing Systems, 34:28336–28349,
2021.

Louis Kirsch, Sjoerd van Steenkiste, and Juergen Schmidhuber. Improving generalization in meta
reinforcement learning using learned objectives. In International Conference on Learning Repre-
sentations, 2019.

10



Under review as a conference paper at ICLR 2023

Martin Klissarov and Doina Precup. Flexible option learning. Advances in Neural Information
Processing Systems, 34:4632–4646, 2021.

Yunwen Lei and Yiming Ying. Sharper generalization bounds for learning with gradient-dominated
objective functions. In International Conference on Learning Representations, 2020.

Andrew Levy, George Konidaris, Robert Platt, and Kate Saenko. Learning multi-level hierarchies
with hindsight. In International Conference on Learning Representations, 2018.

Siyuan Li, Lulu Zheng, Jianhao Wang, and Chongjie Zhang. Learning subgoal representations with
slow dynamics. In International Conference on Learning Representations, 2020.

Siyuan Li, Jin Zhang, Jianhao Wang, Yang Yu, and Chongjie Zhang. Active hierarchical exploration
with stable subgoal representation learning. In International Conference on Learning Represen-
tations, 2021.

Clare Lyle, Mark Rowland, Will Dabney, Marta Kwiatkowska, and Yarin Gal. Learning dynam-
ics and generalization in deep reinforcement learning. In Kamalika Chaudhuri, Stefanie Jegelka,
Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th Inter-
national Conference on Machine Learning, volume 162 of Proceedings of Machine Learning
Research, pp. 14560–14581. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.
press/v162/lyle22a.html.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937. PMLR, 2016.

Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. Near-optimal representation learning
for hierarchical reinforcement learning. In International Conference on Learning Representa-
tions, 2018a.

Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
reinforcement learning. Advances in neural information processing systems, 31, 2018b.

Taewook Nam, Shao-Hua Sun, Karl Pertsch, Sung Ju Hwang, and Joseph J Lim. Skill-based meta-
reinforcement learning. In International Conference on Learning Representations, 2021.

Devavrat Shah, Dogyoon Song, Zhi Xu, and Yuzhe Yang. Sample efficient reinforcement learning
via low-rank matrix estimation. Advances in Neural Information Processing Systems, 33:12092–
12103, 2020.

Dhruv Shah, Peng Xu, Yao Lu, Ted Xiao, Alexander T Toshev, Sergey Levine, et al. Value function
spaces: Skill-centric state abstractions for long-horizon reasoning. In International Conference
on Learning Representations, 2021.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Pashootan Vaezipoor, Andrew C Li, Rodrigo A Toro Icarte, and Sheila A Mcilraith. Ltl2action:
Generalizing ltl instructions for multi-task rl. In International Conference on Machine Learning,
pp. 10497–10508. PMLR, 2021.

Huan Wang, Stephan Zheng, Caiming Xiong, and Richard Socher. On the generalization gap in
reparameterizable reinforcement learning. In International Conference on Machine Learning, pp.
6648–6658. PMLR, 2019.

Rundong Wang, Runsheng Yu, Bo An, and Zinovi Rabinovich. I2hrl: Interactive influence-based
hierarchical reinforcement learning. In Proceedings of the Twenty-Ninth International Conference
on International Joint Conferences on Artificial Intelligence, pp. 3131–3138, 2021.

11

https://proceedings.mlr.press/v162/lyle22a.html
https://proceedings.mlr.press/v162/lyle22a.html


Under review as a conference paper at ICLR 2023

Yining Wang, Ruosong Wang, Simon Shaolei Du, and Akshay Krishnamurthy. Optimism in rein-
forcement learning with generalized linear function approximation. In International Conference
on Learning Representations, 2020.

Mengdi Xu, Yikang Shen, Shun Zhang, Yuchen Lu, Ding Zhao, Joshua Tenenbaum, and Chuang
Gan. Prompting decision transformer for few-shot policy generalization. In Kamalika Chaud-
huri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Pro-
ceedings of the 39th International Conference on Machine Learning, volume 162 of Proceed-
ings of Machine Learning Research, pp. 24631–24645. PMLR, 17–23 Jul 2022. URL https:
//proceedings.mlr.press/v162/xu22g.html.

Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates
training: A theoretical justification for adaptivity. In International Conference on Learning Rep-
resentations, 2019.

Tianren Zhang, Shangqi Guo, Tian Tan, Xiaolin Hu, and Feng Chen. Generating adjacency-
constrained subgoals in hierarchical reinforcement learning. Advances in Neural Information
Processing Systems, 33:21579–21590, 2020.

Tianren Zhang, Shangqi Guo, Tian Tan, Xiaolin Hu, and Feng Chen. Adjacency constraint for
efficient hierarchical reinforcement learning. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2022.

12

https://proceedings.mlr.press/v162/xu22g.html
https://proceedings.mlr.press/v162/xu22g.html


Under review as a conference paper at ICLR 2023

A THEORETICAL ANALYSIS

With equation 3, we can define the error between traditional RL method and our method: |V ∗
k (st)−

V̂ ϵ
H(st)|. To analyze and control the error, we introduce the value V ∗

H(st) in optimal stochastic HRL
with coordinates as subgoals:

|V ∗
k (st)− V̂ ϵ

H(st)| ≤ |V ∗
k (st)− V ∗

H(st)|︸ ︷︷ ︸
HRL error

+ |V ∗
H(st)− V̂ ϵ

H(st)|︸ ︷︷ ︸
subgoal error

(7)

so that we can control the error by two parts: (1) the error from RL policy to stochastic HRL policy
and (2) the error from ordinates subgoals to ϵ-invariant subgoals.

HRL Error. For the former (denote as eH = |V ∗
k (st)−V ∗

H(st)|), the error bound can be controlled
by the corollary of conclusion of Zhang’s work (Zhang et al., 2022). We firstly formalize a critical
factor termed transition mismatch rate between RL policy and stochastic HRL policy.
(The difference between our work and Zhang’s is that the factor in our work represents the difference
between RL and HRL policy, but the difference between two HRL methods in Zhang’s work.)
Definition A.1. (k-step transition mismatch)

For a goal-conditioned MDPM with P k(st+k|st, gt) as its k-step transition probability under an
optimal goal-conditioned policy πH(gt|st), the k-step transition mismatch rate ofM is defined as:

νk ≜ max
st,gt,st+k

|Pπ(τk|st)− πH(gt|st)P k(st+k|st, gt)| (8)

The mismatch rate νk captures the difference between RL policy and HRL policy by the part of
trajectories in k steps. The less uncertainty the high-level policy performs with, the less νk is.
The deterministic-MDP of high-level policy will lead to νk = 0. Then for error eH , we have the
conclusion as follows:
Lemma A.2. (Corollary of Theorem 2 in (Zhang et al., 2022)) With discounted factor γ, bounded
reward function Rmax = maxs,a R(s, a) and νk defined in equation 8, there is

||V ∗
k − V ∗

H ||∞ ≤
νkkRmax

2(1− γk)
+

γkνkRmax

2(1− γk)2
(9)

Proof. See Appendix.A.1

Lemma A.2 means the error between RL method and stochastic HRL method will be controlled by
νk. If the distribution of the randomness of subgoals is in a little region with little variance, the HRL
policy can approximate the optimal RL policy with controllable error.

Subgoal Error. To analyses the error caused by our subgoals (the latter error is denoted as eS =

|V ∗
H(st)−V̂ ϵ

H(st)| ), we should introduce a new metric. We first consider the actually reached region
caused by traditional coordinate subgoals and our ϵ-invariant subgoals. If the region and trajectories
of the two HRL policies are close to each other in the coordinate system, to some extent, that means
the policy and transition are similar. On the other hand, to measure the influence of the traditional
subgoals and the ϵ-invariant subgoals, the distance and trajectories in the coordinate system can
directly reflect the difference between them. Thus, we assume that:
Assumption A.3. (Lipschitz condition) In the k-step reachable region under an optimal goal-
conditioned policy, for a traditional goal-conditioned MDPM with subgoal gt and P k(st+k|st, gt)
as its k-step transition probability, as well as anMϵ with ϵ-invariant subgoals g∆ and transitions
P k(st+k|st, g∆), there is:

|P k(st+k|st, gt)− P k(s′t+k|st, g∆)| ≤ Lφ||φ(st+k)− φ(s′t+k)|| (10)

where Lφ is the Lipschitz constant, φ is the coordinate extracting function defined above.

The Lipschitz condition is common and widely used in many other RL or HRL works (Wang et al.,
2019)(Shah et al., 2020)(Gogianu et al., 2021). Assumption A.3 means that, if the low-level policy
learns well and can execute the subgoals given by the high-level policy, the difference between the
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two HRL policies can be measured by the Euclidean distance of displacement in the coordinate
system. The distance is in the reachable region with optimal low-level policy in k steps, from the
same start state st. If the reached states are closed, the policies are considered similar.

By the setting above, we have the following theorem which provides a suboptimality upper bound
for error eS :
Theorem A.4. With discounted factor γ, bounded reward function Rmax = maxs,a R(s, a), Lips-
chitz constant Lφ, variance bound ϵ defined above, with a high probability there is

||V ∗
H − V̂ ϵ

H ||∞ ≤
Lφ(2δmax + 3

√
2ϵ)Rmax

2(1− γk)
(k +

γk

1− γk
) (11)

where δmax = max
g,g∆
{||g||, ||g∆||}. ||g|| and ||g∆|| are the distance of the relative displacement from

any st to st+k by subgoal gt and g∆ respectively.

Proof. See in Appendix. A.2

The theorem A.4 means that the error between the traditional HRL method with coordinates as
subgoals and our method can be constrained by the similarity metric of the two policies. By the
conclusion above, our method has the theoretical guarantee to approximat to the original optimal
policy with a controllable error bound. Meanwhile, in our methods, the subgoals can be reused in
different maze environments, which leads to superiority in generalization tasks.

A.1 PROOF OF LEMMA 1

Proof. Consider a state st ∈ S, for the value function of k step:

V ∗
k (st) =

∑
τk

Pπ(τk|st)[R(τk|st) + γkV ∗(St+k)] (12)

where Pπ(τk|st) = Pπ(st+k|st) is the k-step transition probability with policy π, R(τk|st) =

R(st+k, st) =
∑t+k−1

i=t+1,si∈τk
γiR(si) is the bounded accumulative return in τk, τk is the possible

k-step trajectory by optimal policy π∗ executing k times. The optimal policy should maximize the
external reward from the environment:

π∗ = argmax
π

E(s,a)∼π[

T∑
t=1

γtR(st, at)] (13)

equation 12 can be rewritten as vector form for any state st ∈ S, i.e.:

V ∗
k (st) =

〈∑
τk

Pπ(st), R(st) + γkV ∗

〉
(14)

where ⟨·, ·⟩ is the inner product of vectors, Pπ(st) ∈ [0, 1]|S|,∀s ∈ S, ||Pπ(st)||1 = 1 denote
the probablistic distribution vector of the k-step trajectory starting from st under the policy π∗.
R(st) ∈ [0, kRmax]

|S| is the accumulative rewards vector of k-step of the k-step trajectory. V ∗ is
the optimal value vector function of all the states.

Similarly, value of HRL method with stochastic subgoals can be written as follow:

V ∗
H =

∑
g∈G

πH(gt|st)
∑

st+k∈S
P k(st+k|st, gt)[R(st+k, st) + γkV ∗

H(St+k)]

=

〈∑
g∈G

πH(gt|st)P k(gt, st), R(st) + γkV ∗
H

〉 (15)

where πH(gt|st) is the high-level policy to choose subgoal gt, P k(st+k|st, gt) is the k-step transi-
tion probability of the low-level policy with subgoal gt. R(st+k, st) is also the k-step accumulative
rewards. P k(st, gt) is the probablistic distribution vector of the k-step trajectory starting from st
with subgoal gt.
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Denote that P̄H(st, gt) ≜
∑

g∈G πH(gt|st)P k(gt, st), so that definition A.1 can be rewritten as:

νk = max
st,gt
||Pπ(st)− P̄H(st, gt)||∞ (16)

Then for every st ∈ S, there is:

|V ∗(st)− V ∗
H(st)|

=

∣∣∣∣∣∣
〈∑

τk

Pπ(st), R(st) + γkV ∗

〉
−

〈∑
g∈G

πH(gt|st)P k(gt, st), R(st) + γkV ∗
H

〉∣∣∣∣∣∣
≤

∣∣∣∣∣∣
〈∑

τk

Pπ(st)−
∑
g∈G

πH(gt|st)P k(gt, st), R(st)

〉∣∣∣∣∣∣
+γk

∣∣∣∣∣∣
〈∑

τk

Pπ(st), V
∗

〉
−

〈∑
g∈G

πH(gt|st)P k(gt, st), V
∗
H

〉∣∣∣∣∣∣

(17)

note that
〈∑

τk
Pπ(st),1

〉
= 1 and

〈∑
g∈G πH(gt|st)P k(gt, st),1

〉
= 1, where 1 is an all-one

vector of |S|-dimension, for the first term of equation 17, we have

∣∣∣∣∣∣
〈∑

τk

Pπ(st)−
∑
g∈G

πH(gt|st)P k(gt, st), R(st)

〉∣∣∣∣∣∣
=

∣∣∣∣∣∣
〈∑

τk

Pπ(st)−
∑
g∈G

πH(gt|st)P k(gt, st), R(st)−
kRmax

2
· 1

〉∣∣∣∣∣∣
(18)

by Holder inequality, there is:

(18) ≤

∥∥∥∥∥∥
∑
τk

Pπ(st)−
∑
g∈G

πH(gt|st)P k(gt, st)

∥∥∥∥∥∥
1

·
∥∥∥∥R(st)−

kRmax

2
· 1

∥∥∥∥
∞

≤max
st,gt

∥∥Pπ(st)− P̄H(st, gt)
∥∥
∞

∥∥∥∥R(st)−
kRmax

2
· 1

∥∥∥∥
∞

=
νkkRmax

2

(19)

The second term can be similarly bounded by:

γk

∣∣∣∣∣∣
〈∑

τk

Pπ(st), V
∗

〉
−

〈∑
g∈G

πH(gt|st)P k(gt, st), V
∗
H

〉∣∣∣∣∣∣
≤γk

∣∣∣∣∣
〈∑

τk

Pπ(st), V
∗

〉
−

〈∑
τk

Pπ(st), V
∗
H

〉∣∣∣∣∣
+γk

∣∣∣∣∣∣
〈∑

τk

Pπ(st), V
∗
H

〉
−

〈∑
g∈G

πH(gt|st)P k(gt, st), V
∗
H

〉∣∣∣∣∣∣

(20)

where
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γk

∣∣∣∣∣
〈∑

τk

Pπ(st), V
∗

〉
−

〈∑
τk

Pπ(st), V
∗
H

〉∣∣∣∣∣ ≤ γk ∥V ∗ − V ∗
H∥∞ (21)

and

γk

∣∣∣∣∣∣
〈∑

τk

Pπ(st), V
∗
H

〉
−

〈∑
g∈G

πH(gt|st)P k(gt, st), V
∗
H

〉∣∣∣∣∣∣
≤γk

∥∥∥∥∥∥
∑
τk

Pπ(st)−
∑
g∈G

πH(gt|st)P k(gt, st)

∥∥∥∥∥∥
1

·
∥∥∥∥V ∗

H −
kRmax

2(1− γk)
· 1

∥∥∥∥
∞

≤γk max
st,gt

∥∥Pπ(st)− P̄H(st, gt)
∥∥
∞

∥∥∥∥V ∗
H −

kRmax

2(1− γk)
· 1

∥∥∥∥
∞

≤γkνk
kRmax

2(1− γk)

(22)

So that with 19, 21 and 22, there is

|V ∗(st)− V ∗
H(st)| ≤

νkkRmax

2
+

γkνkkRmax

2(1− γk)
+ γk ∥V ∗ − V ∗

H∥∞ (23)

Since 24 holds for all s ∈ S, so there is:

∥V ∗ − V ∗
H∥∞ ≤

νkkRmax

2(1− γk)
+

γkνkkRmax

2(1− γk)2
(24)

A.2 PROOF OF THEOREM 1

Proof. Consider assumption A.3 there is:∥∥φ(st+k)− φ(s′t+k)
∥∥

=
∥∥φ(st+k)− φ(st) + φ(st)− φ(s′t+k)

∥∥ (25)

restate that the φ(st) is the coordinate of state st, so that φ(st+k)− φ(st) is the direction vector of
the movement from step t to t+ k.

By definition 3.1, we denote the relative displacement ∆t = ||g∆|| = Est+k
[φ(st) − φ(st+k)]

for any state st with ϵ-invariant subgoal g∆. So that the displacement vector can be written as
g⃗∆t = ∆⃗t + ∆⃗ϵ, where ∆⃗t is a fixed vector of expected direction and ∆⃗ϵ is a random vector.
∆ϵ,x,∆ϵ,y ∼ N (0, σ), where σ ≤ ϵ is much less than the moving distance ∆t. Thus, the equation 25
can be rewritten as:

25 =
∥∥∥φ(st+k)− φ(st)− (∆⃗t + ∆⃗ϵ)

∥∥∥
≤
∥∥∥φ(st+k)− φ(st)− ∆⃗t

∥∥∥+
∥∥∥∆⃗ϵ

∥∥∥ (26)

Consider that in normal distribution, the random variable has a high probability fall into the region
of [−3σ, 3σ]. So that with a high probability, there is ||∆⃗ϵ|| ≤

√
2× (3σ)2 ≤ 3

√
2ϵ. Thus, the

assumption A.3 can be rewritten as follows:

|P k(st+k|st, gt)− P k(s′t+k|st, g∆)| ≤ Lφ(2δmax + 3
√
2ϵ) (27)

where δmax = max
g,g∆
{||g||,∆t}.
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The equation 27 can be seen as the HRL transition mismatch rate between our method and optimal
HRL method with stochastic coordinate subgoals. It is bounded by the maximal k-step movement
of the agent with the variance of the random variable. With lemma A.2, the similar conclusion can
be obtained by changing the k-step transition mismatch to equation 27. Then we can get the result
of A.4.

B ALGORITHM

Our algorithm for the high-level policy learning is as follows (algorithm 1):

Algorithm 1 PEG-A2C Algorithm

1: Initialize multi-process actor parameters θia for i ∈ [1, n]
2: Initialize multi-process value parameters θiv for i ∈ [1, n]
3: for episodes in 1,M do
4: for i ∈ [1, n] do
5: Reset gradients: dθia and dθiv
6: Synchronize thread-specific parameters
7: repeat
8: Perform at according to policy π(at|st)
9: Receive reward rt and new state st+1

10: t← t+ 1
11: until terminal sT or t == tmax

12: Set R = r
13: for j ∈ {t− 1, . . . , 0} do
14: R← rj + γR
15: Accumulate gradients w.r.t. θ′a

dθa ← dθa +
1

n

1

t
∇θ′

a
log π(aj |sj ; θ′a)(Ri − V (si; θ

′
v))

16: Accumulate gradients w.r.t. θ′v

dθv ← dθv +
1

n

1

t

∂

∂θv
(Rj − V (sj ; θ

′
v))

2

17: end for
18: end for
19: Synchronize and update parameters
20: end for
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Figure 8: Structure of the network.

C DETAILS OF FRAMEWORK

C.1 NETWORKS

The structure of our high-level network is shown as follows (figure 8):

D DETAILS OF EXPERIMENTS

Ant ⊃-Maze. In this task, the agent should navigate from the bottom to the top. Different from the
setting in previous works, the maze is larger, and the agent will only attain reward ’1’ once when it
passes the corner and reach the final region.

Ant Random Square Maze. It is an empty room with a door and a robot. In this task, the agent
will start at a random initial position every episode, to walk towards the yellow door, which also has
a random position on the wall. Only when the agent passes the door will it obtain a reward.

Ant S-shaped Maze. In this task, the agent will start at the left region and should pass three doors.
The trajectory is circuitous and long-horizon, especially the final door is more difficult to achieve
than the region in Ant ⊃-Maze. Every first-time transiting of the doors will give the agent a reward.

Ant Spiral Maze. This task is in a large maze with spiral routes and five doors and the agent will
start at the middle region. Such a long-horizon task requires at least thousands of steps to move to
the final region. Also, every first time transiting the doors will give the agent a reward.

Generalization Maze. This task includes three fixed mazes of ’Maze-g1’, ’Maze-g2’, and ’Maze-
g3’ (figure 1), which are variants of ’Ant Random Square Maze’ with different unseen structures.
Only when the agent passes the door will it obtain a reward.

D.1 STEPS OF EVERY EPISODE OF DIFFERENT TASKS

Table 3 shows the maximal steps of every episode of every task.
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Table 3: Steps of every episode of different tasks

Maze Maze-random Maze-U Maze-S Maze-spiral Maze-g1 Maze-g2 Maze-g3

Steps per ep 600 600 1000 5000 600 600 600

D.2 DETAILS OF REWARD SETTING

For the sparse reward, it will be obtained by the agent when the agent goes across the door, i.e.,
the coordinates of the agent fall into a region of the door. For the dense reward, it is 1/(1 + d) of
Euclidean distance d between the agent and the current goal in the coordinate system for every step.
Once the agent goes to the current goal and gets the reward, the goal will update, and the reward will
be calculated by the new goal. As a result, the curves of average reward in these tasks may decline
sometimes.

D.3 HYPER-PARAMETERS

Table 4: Steps of every episode of different tasks

Hyper-parameters Value Details

Subgoal dimension 8 two-hot vector of four subgoals
Subgoals ↑, ↓,←,→ abstract subgoals Represented by vector

Room size {7*7, 7*7, 14*7, 21*21} grids of ’random’,’⊃’,’S’,’spiral’
Grid size 3*3 size in coordinates system of MuJoCo

Sparse reward 1
Dense reward [0.03, 1.0] range of dense reward

High-level frequency 25 steps of the low-level to execute
Intrinsic reward coefficient α 3
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