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ABSTRACT

The rapid growth of camera-based Internet of Things (IoT) devices demands the
need for efficient video compression, particularly for edge applications where
devices face hardware constraints, often with only 1 or 2 MB of RAM and unstable
internet connections. Traditional and deep video compression methods are designed
for high-end hardware, exceeding the capabilities of these constrained devices.
Consequently, video compression in these scenarios is often limited to Motion-
JPEG (M-JPEG) due to its high hardware efficiency and low complexity. This
paper introduces MCUCoder, an open-source adaptive bitrate video compression
model tailored for resource-limited IoT settings. MCUCoder features an ultra-
lightweight encoder with only 10.5K parameters and a minimal 350KB memory
footprint, making it well-suited for edge devices and Microcontrollers (MCUs).
While MCUCoder uses a similar amount of energy as M-JPEG, it reduces bitrate by
55.65% on the MCL-JCV dataset and 55.59% on the UVG dataset, measured in MS-
SSIM. Moreover, MCUCoder supports adaptive bitrate streaming by generating a
latent representation that is sorted by importance, allowing transmission based on
available bandwidth. This ensures smooth real-time video transmission even under
fluctuating network conditions on low-resource devices. Source code available at
[Link removed due to double-blind policy, code submitted in ZIP].

M
-J
PE
G

M
CU

Co
de

r

(BPP / MS-SSIM)
0.27/ 6.27 0.30 / 7.54 0.37 / 9.87 0.43 / 11.36 0.69 / 15.77 0.73 / 16.12

0.08 / 7.04 0.16 / 11.49 0.24 / 13.35 0.31 / 14.63 0.73 / 17.93 0.77 / 18.00
(BPP / MS-SSIM)

0.08 / 6.53 0.15 / 9.76 0.21 / 11.32 0.28 / 11.95 0.69 / 14.74 0.74 / 14.87
(BPP / MS-SSIM)

0.25 / 5.77 0.28 / 6.55 0.34/ 8.05 0.40 / 9.16 0.68 / 12.46 0.72 / 12.73
(BPP / MS-SSIM)

...

...

...

...

...

...

...

...

Latent:

Figure 1: Qualitative comparison of MCUCoder and M-JPEG across various compression rates on
two videos from the MCL-JCV (Wang et al., 2016) and UVG (Mercat et al., 2020) datasets. As we
can see, MCUCoder offers a significantly better MS-SSIM/bpp trade-off. For instance, at 0.15 bpp in
the left example, with MCUCoder we can see the person’s face whereas with M-JPEG we need at
least 0.34 bpp to make out the face. Note that the images in each column do not necessarily have the
same bitrate. More examples are reported in Appendix A.

1 INTRODUCTION

Motivation: The number of camera-based IoTs devices using always-on MCU is growing rapidly,
reaching tens of billions (Lin et al., 2020). These devices are widely used in applications such as
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surveillance cameras (Hu et al., 2020; Josephson et al., 2019; Naderiparizi et al., 2018), wearable
cameras (Veluri et al., 2023), robotics (Nakanoya et al., 2023), wildlife monitoring (Iyer et al., 2020),
road monitoring (Hojjat et al., 2024), and smart farming (Koh et al., 2021). Typically, they capture
raw frames through a camera sensor, encode them, and transmit the compressed version to a server via
the Internet for further processing, including human observation or AI tasks such as object detection
and classification (Yao et al., 2020). Therefore, a video encoder is necessary to efficiently compress
the captured frames before transmission. However, in IoT environments, there are two primary
limitations: constrained hardware resources and limited communication bandwidth.

104 106 108

#Params

MCUCoder
Xie (CVPR23)
Liu (CVPR23)

DPICT (CVPR23)
Toderici (CVPR17)

CTC (CVPR23)
Ballé (ICLR18)

SwinT (ICLR22)
SSF (CVPR20)
DVC (CVPR19)

MCU RAM LIMIT

Figure 2: Number of parameters of
MCUCoder and other learned im-
age compression (Ballé et al., 2018;
Toderici et al., 2017; Lee et al.,
2022; Jeon et al., 2023; Liu et al.,
2023; Xie et al., 2021; Zhu et al.,
2022) and video compression mod-
els (Agustsson et al., 2020; Lu et al.,
2019).

1 - Limited Hardware: Although traditional video codecs like
H.264 (Wiegand et al., 2003), H.265 (Sullivan et al., 2012),
and the newer H.266 (Bross et al., 2021) provide excellent
performance, they demand significant hardware for extracting
the intra and inter-frame correlations. For example, H.265 en-
coding involves highly computationally intensive tasks such as
motion estimation with sub-pixel accuracy, Rate Distortion Op-
timization (RDO) for choosing optimal intra-prediction modes,
and Context Adaptive Binary Arithmetic Coding (CABAC)
for entropy coding. Additionally, a single video frame at
224× 224 resolution requires about 150 KB of RAM, which
is a lot for the low-cost, low-energy MCUs used in IoT devices
that typically have only 1–2 MB of RAM. Consequently, inter-
frame compression or any other kind of multi-frame analysis
is not practically feasible on such constrained devices. Simi-
larly, while Neural Networks (NNs) and AI-based compression
methods outperform traditional models (Agustsson et al., 2020;
Lu et al., 2019), they also often require considerable RAM and
GPU resources. For instance, just storing a model with 1M pa-

rameters requires around 4 MB of RAM; see Fig. 2. As a result, in such settings, devices are typically
limited to using M-JPEG (Pennebaker and Mitchell, 1992), a video compression format where each
frame is compressed individually as a JPEG image, which is efficient and hardware-friendly.

2 - Limited Internet: Many IoT devices are located in remote areas where Internet connection is
weak and unstable, making it necessary for the encoder to have an Adaptive Bitrate Encoding that
can generate video streams with varying bitrate. This feature allows the encoder to dynamically
adjust its quality according to the available bandwidth, ensuring continuous and smooth playback.
This is especially important for real-time applications like live monitoring, where it is crucial to
avoid interruptions and maintain a consistent user experience despite fluctuating network conditions.
However, implementing an adaptive bitrate encoder adds complexity, as it requires mechanisms to
prioritize bit stream information based on its impact on frame quality (e.g., PSNR or MS-SSIM),
which is challenging for constrained devices.

Approach: To address these challenges, we introduce MCUCoder, an adaptive bitrate deep video
compression model tailored for resource-limited IoT devices. Our approach focuses on creating an
"asymmetric" compression model that features an ultra-lightweight encoder designed to be both
computationally efficient and memory-friendly. Also, MCUCoder produces an "adaptive bitrate"
bitstream. Specifically, in MCUCoder, we train the encoder using stochastic dropout such that,
instead of explicitly detecting the important parts, it produces latent channels that are sorted based on
importance. Afterward, based on the available internet bandwidth, the encoder transmits the first k
channels to the decoder; see Fig. 1. This approach is beneficial for low-power MCUs since it shifts the
complexity of identifying important data to the training phase rather than the inference phase. Also,
by employing stochastic dropout training, the decoder can reconstruct the frame even with partial data
availability, which is essential for maintaining smooth and uninterrupted video transmission in real-
time applications, where network conditions can vary. Additionally, MCUCoder’s encoder is INT8
quantized, allowing it to utilize Digital Signal Processor (DSP) and CMSIS-NN (ARM-software,
2024) accelerators for faster processing and reduced power consumption.
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Figure 3: Overview of MCUCoder architecture. With stochastic dropout training, the encoder
compresses the input frame into a sorted latent space. Subsequently, channels are independently
quantized and transmitted according to the available bandwidth. The decoder reconstructs the frame
by zeroing out missing channels.

Contributions:

1. MCUCoder has an ultra-lightweight encoder with only 10.5K parameters and a minimal
memory footprint of roughly 350KB RAM on nRF5340 and STM32F7 MCUs, making it
suitable for such low-resource IoT devices.

2. MCUCoder has an energy-efficient INT8 quantized encoder, which leverages the MCU’s
DSP and CMSIS-NN accelerators to achieve JPEG-level energy efficiency. Compared to
its main baseline, M-JPEG, it saves 55.65% overall bit rate on the MCL-JCV dataset and
55.59% on the UVG dataset, measured in MS-SSIM.

3. MCUCoder produces a progressive bitstream that enables adaptive bitrate streaming, allow-
ing robust video transmission under varying network conditions.

2 RELATED WORK

In this section, we provide an overview of both traditional and NN based video compression tech-
niques, as well as video compression methods tailored specifically for IoT environments.

2.1 TRADITIONAL AND NN BASED VIDEO COMPRESSION

Video compression is a field that has been evolving for decades. Beyond traditional codecs like H.264
(Wiegand et al., 2003), H.265 (Sullivan et al., 2012), and H.266 (Bross et al., 2021), deep learning-
based approaches often replace conventional modules such as motion compensation (Agustsson et al.,
2020; Yang et al., 2020), transform coding (Zhu et al., 2022; Gao et al., 2021), and entropy coding
(Xiang et al., 2023; Mentzer et al., 2022). Also, some work has been done regarding the end-to-end
optimization of video compression models (He et al., 2020; Van Rozendaal et al., 2021; Khani et al.,
2021).Lu et al. (2019) introduce DVC, the first end-to-end deep video compression model. Hu et al.
(2022; 2021) extend DVC to operate in both pixel and feature domains. Li et al. (2021) and Liu
et al. (2020) reduce bitrates by modeling probabilities over video frames using conditional coding.
Also, in recent years, there has been growing interested in using implicit neural representations for
video compression (Kwan et al., 2024; Chen et al., 2021). However, due to their substantial hardware
requirements, these models are unsuitable for deployment on low-resource IoT devices.

2.2 VIDEO COMPRESSION FOR IOT

We can categorize IoT-based video encoders into two parts: hardware-based and software-based.
Hardware approaches primarily focus on designing more power-efficient camera sensors (Morishita
et al., 2021; Ji et al., 2016; Bejarano-Carbo et al., 2022) and more efficient MCU circuits and pro-
cessors (Lefebvre et al., 2021; Rossi et al., 2021; Xu et al., 2020). Due to its simplicity, scalability,
low latency, and very low energy consumption, the most common software-based video encoder on
IoT devices is M-JPEG (Pennebaker and Mitchell, 1992). Nevertheless, there have been few works
exploring alternative software-based models: Veluri et al. (2023) employ M-JPEG on the encoder to
capture black-and-white and colorized frames at two different resolutions and uses super-resolution
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Figure 4: MCUCoder latent channels:
Early channels (important ones) capture low-
frequency features, while later channels cap-
ture high-frequency features, similar to the
DCT in JPEG.
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Figure 5: An example of MCUCoder bitrate adap-
tation under dynamic network bandwidth, where
the bitrate control module acts as a gate to deter-
mine the number of channels to send.

methods to interpolate and colorize frames on the decoder. However, unlike MCUCoder, it is not
adaptive and relies on a JPEG encoder on MCUs. Hu et al. (2020) propose a deep image encoder
model for MCUs, but it is also non-adaptive. Additionally, they patchify the input, which significantly
increases encoding time, making it impractical for real-time video compression. MCUCoder com-
bines the advantages of both worlds: it offers the adaptive bitrate feature of more complex encoders,
while maintaining the efficiency necessary for low-resource devices, making it an ideal solution for
IoT video compression.

3 MCUCODER

In this section, we introduce MCUCoder, an adaptive bitrate asymmetric video compression model,
specifically designed for IoT settings. We begin by detailing the asymmetric encoder-decoder
architecture of MCUCoder, including the customized quantization processes. Then, we present the
stochastic dropout training method, which trains the encoder of MCUCoder to store information in
its channels based on importance.

3.1 ASYMMETRIC COMPRESSION

MCUs are characterized by highly constrained hardware resources, such as limited RAM, CPU,
FLASH, and power availability. Additionally, existing MCU-specific NN frameworks like TFLite
Micro support only a limited set of NN layers (Hu et al., 2020). To address these constraints, we
propose an asymmetric (Yao et al., 2020) encoder-decoder architecture optimized for constrained
devices. Due to hardware constraints, MCUCoder encodes each frame independently, as inter-frame
compression is not feasible. The encoder contains only 10.5K parameters, while the decoder utilizes
approximately 3M parameters and leverages SOTA image decompression blocks; see Fig. 3. The
encoding process begins by passing input frame ft through three convolutional layers. To maximize
the data range for subsequent quantization, no activation function is applied in the final encoder layer,
avoiding the negative truncation caused by ReLU. Afterward, each channel of the latent is quantized
into INT8 individually, followed by a further reduction to 5-bit precision to enhance compression
efficiency. For the decoder, inspired by He et al. (2022), we integrate a combination of attention
blocks (Cheng et al., 2020) and residual bottleneck blocks (He et al., 2016) to reconstruct the frame;
see Fig. 3.
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Figure 7: Comparison of MCUCoder (quantized and non-quantized model) and baselines on the
image (KODAK (Eastman Kodak, 1993), CLIC (cli, 2020)) and video (MCL-JCV (Wang et al.,
2016), UVG (Mercat et al., 2020)) compression datasets. For context, we also compare with H.264
and H.265 on video datasets, despite being impractical for MCUs due to high hardware demands. All
datasets are resized to 224× 224.
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Figure 6: Stochastic
dropout training

Bitrate adaptation is a feature that typically introduces additional complexity
to the encoding process, which can be challenging to implement on MCUs
due to resource constraints. In the literature, dropout (Srivastava et al., 2014)
serves as a powerful tool for enhancing generalization in NNs. Building on
this insight, we employ a "biased" version of dropout to train MCUCoder
in a way that instead of random dropping, it drops from the tail of the latent
(Hojjat et al., 2023). Specifically, on each iteration, after the encoder E gets
the input frame ft, it generates the latent representation zN , where N is the
number of the channels of the latent. Afterward, from a uniform distribution,
denoted as U(0,1), it generates a number, denoted as k, and drops (zero out)
the last ⌊k ×N⌋ channels from zN . As a result, instead of zN , the decoder
D gets z[0:⌊k×N⌋], fills the missing channels with zero, and then reconstructs
the output.

ft −→ E(ft) −→ zN
k∼U(0,1)−−−−−→ z[0:⌊k×N⌋] −→ D(z[0:⌊k×N⌋]) −→ f̂t (1)

This tailored version of dropout biases the training to prioritize the earlier channels over the later
ones. Consequently, the encoder learns to encode more critical information (low frequency) in the
initial feature maps and less important (high frequency) details in the subsequent ones; see Fig 6.
This prioritization enables flexible bitrate adaptation: upon encoding each frame, the encoder starts
transmitting the most significant channels first. Depending on the available bandwidth, the bitrate
control module determines how many channels need to be sent to the decoder to ensure uninterrupted
streaming; see Fig 5. Importantly, because the latent features are pre-ordered by significance, the
bitrate control module basically acts like a simple gate and does not add any extra computational
complexity to the encoder.
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Figure 8: Comparison of MCUCoder (quantized and non-quantized model) and baselines on the
image (KODAK (Eastman Kodak, 1993), CLIC (cli, 2020)) and video (MCL-JCV (Wang et al.,
2016), UVG (Mercat et al., 2020)) compression datasets. For context, we also compare with H.264
and H.265 on video datasets, despite being impractical for MCUs due to high hardware demands.
MCUCoder is designed for IoT environments, prioritizing structural integrity over fine detail and
therefore it is optimized for MS-SSIM. In contrast, JPEG optimizes for PSNR, which is why M-JPEG
performs slightly better in PSNR at higher bitrates.

4 EVALUATION

This section presents a comprehensive evaluation of MCUCoder across both image and video com-
pression tasks. We compare its performance against JPEG,M-JPEG, and traditional codecs, with a
focus on metrics such as MS-SSIM, PSNR, and BD-rate. Additionally, we analyze MCUCoder’s
efficiency on resource-constrained MCU devices, highlighting its computational and energy perfor-
mance.

4.1 SETTINGS

We train MCUCoder on the 300K largest ImageNet images (Deng et al., 2009) and apply noise-
downsampling preprocessing (He et al., 2021; Ballé et al., 2018). We use Adam with an initial
learning rate of 10−4 and a batch size of 16, and train for 1M iterations, lowering the learning
rate to 10−5 in the final 50K iterations (He et al., 2022). To address quantization effects, we add
random noise to the latent. Since MCUCoder is specifically designed for IoT environments, where
the structure of the output is more critical than fine details, we use MS-SSIM as the loss function.
We also quantize inputs, weights, and activations to INT8 for RAM efficiency and to leverage DSP
and CMSIS-NN accelerators (ARM-software, 2024) in MCUs. We use post-training quantization
existing in TFLite-Micro (TensorFlow, 2023) to reduce latency, processing power, and model size
with minimal degradation in model accuracy. For all comparisons, we report performance metrics for
both the FLOAT32 and INT8 models.
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Table 1: MCUCoder (Quantized) BD-rate re-
sults. The anchor is M-JPEG.

Dataset MS-SSIM PSNR

MCL-JCV -55.65% -47.39%
UVG -55.59% -35.28%

KODAK -55.75% -43.01%
CLIC -49.54% -38.02%

Table 2: Resource demands of MCUCoder
on nRF5340 and STM32F7 MCUs.

nRF5340 STM32F7

Exec (ms) 1,969 237
RAM (KB) 344 (33%) 360 (17%)
Flash (KB) 100 (10%) 107 (5%)
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Figure 9: MS-SSIM and bpp for the SunBath video
from UVG (Mercat et al., 2020) dataset. [0:k] shows
the use of the first k channels (out of 12) for decoding.

4.2 QUANTITATIVE RESULTS

Due to the limited hardware resources of MCUs, inter-frame compression is not practically feasible.
As a result, in such devices, video compression is limited to M-JPEG where each frame is compressed
independently. Therefore, in addition to evaluating MCUCoder and its baselines from the perspective
of video compression, we also assess its performance on image compression datasets. Given the
lower resolution commonly encountered in IoT scenarios, we resize all the videos and images to
224× 224.

Video compression: We evaluate MCUCoder on the UVG (Mercat et al., 2020) and MCL-JCV
(Wang et al., 2016) datasets, comparing its performance to M-JPEG , see Fig. 7. For additional context,
we include comparisons with traditional video codecs such as H.264 (Wiegand et al., 2003) and
H.265 (Sullivan et al., 2012), even though these codecs are impractical for deployment on MCUs due
to their significant computational and hardware demands. Also, we report the Bjøntegaard Delta (BD)
rate (Bjøtegaard, 2001) for both datasets in Table 1. The results indicate that MCUCoder achieves a
significantly higher MS-SSIM per bit compared to M-JPEG, highlighting its ability to deliver better
video quality at lower bitrates. This is especially valuable for IoT applications, where achieving high
compression rates with minimal computational overhead is crucial due to limited hardware resources.
Additionally, MCUCoder has 12 "stacked" channels in its latent space, which provides 12 levels of
quality that can be dynamically adjusted based on the available network bandwidth. In Fig. 9, we
illustrate the bpp and MS-SSIM for each frame in a video from the UVG dataset for all 12 levels of
quality. The results show that using more channels for decoding leads to a higher MS-SSIM, which
verifies the effectiveness of the proposed stochastic dropout training.

Image compression: To assess the image compression capabilities of MCUCoder, we conduct
experiments on the CLIC (cli, 2020) and KODAK (Eastman Kodak, 1993) datasets, see Fig. 7.
The results in Table 1 show that MCUCoder achieves an impressive average bitrate reduction of
55.75% on the KODAK dataset and 49.54% on the CLIC dataset, compared to JPEG. As previously
mentioned, MCUCoder is specifically designed for IoT environments, where preserving the structural
integrity of the output is more important than capturing fine detail, leading to its optimization for
MS-SSIM. In contrast, JPEG is more focused on optimizing PSNR (Wang et al., 2004), which
explains why M-JPEG performs slightly better in PSNR at higher bitrates, see Fig.8.

4.3 LATENT ORDERING AND DCT-JPEG ALIGNMENT

Fig. 4 illustrates the 12 latent channels derived from training with the stochastic dropout method.
These channels display an intriguing hierarchical structure, where the early channels capture broad,
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Figure 10: Energy (Millijoule) and current (Milliampere) consumption of MCUCoder compared
to M-JPEG for compressing one frame on the nRF5340. MCUCoder achieves comparable energy
efficiency to M-JPEG while exceeding it in BD-rate. However, the nRF5340 exhibits relatively slow
processing speeds for both MCUCoder and M-JPEG, suggesting that its energy efficiency is better
suited for event-driven applications rather than real-time streaming, where the STM32F7 excels.

low-frequency features, while the later channels progressively focus on finer, high-frequency details.
This pattern closely resembles the Discrete Cosine Transform (DCT) basis matrix utilized in JPEG
compression. In JPEG, the DCT plays a pivotal role in transforming image data into frequency
components, allowing for efficient compression by prioritizing lower frequencies, which tend to
carry more significant visual information. Similarly to MCUCoder, progressive JPEG leverages this
frequency ordering, encoding data in a manner that allows the decoder to initially reconstruct the
image using only low-frequency components, and as decoding progresses, higher-frequency details
are incrementally added, resulting in a progressively refined image reconstruction.

4.4 STOCHASTIC DROPOUT TRAINING ANALYSIS

One potential challenge with stochastic dropout training is the risk of overfitting to specific loss
functions when optimizing multiple losses concurrently. To evaluate this, we track the MS-SSIM of
MCUCoder on the KODAK (Eastman Kodak, 1993) dataset across varying numbers of active latent
channels during training. The training logs, shown in Fig. 11, demonstrate that all the sub-latents are
trained in parallel without overfitting to any specific sub-latent, which verifies the effectiveness of the
uniform latent sampling strategy employed in the training, see Fig. 6.

4.5 PERFORMANCE ON MCUS

We implement MCUCoder on two widely-used MCU platforms, the STM32F7 and nRF5340 MCUs,
using TFLite-Micro and Zephyr RTOS. The STM32F7 features 2 MB of Flash memory, 2 MB of
RAM, and a Cortex-M7 processor, while the nRF5340 is equipped with 1 MB of Flash, 512 KB
of RAM, and a Cortex-M33 processor. Both MCUs support DSP and CMSIS-NN acceleration,
making them well-suited for running lightweight deep learning models. As detailed in Table 2,
MCUCoder demonstrates a low memory footprint, consuming 360 KB of RAM on the STM32F7
and 344 KB on the nRF5340, which is significantly efficient for such constrained devices. This
compact memory usage highlights the suitability of MCUCoder for low-power, resource-constrained
IoT applications. To assess the energy efficiency of MCUCoder, we conducted a comparative
analysis against M-JPEG. Specifically, we measured the energy consumption of MCUCoder and an
optimized JPEG encoder for the Cortex-M series1 on the nRF5340 platform; see Fig.10. The results
indicate that MCUCoder achieves comparable energy consumption to JPEG, while providing superior
performance in terms of BD-rate, as shown in Table1. However, the nRF5340 exhibits noticeably
slower processing performance compared to the STM32F7 for both MCUCoder and M-JPEG. This
discrepancy suggests that while the nRF5340 is energy-efficient, its lower computational capabilities
make it more appropriate for event-driven applications rather than real-time streaming tasks, where
the STM32F7 excels.

1https://github.com/noritsuna/JPEGEncoder4Cortex-M
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Figure 11: MS-SSIM values on the KODAK dataset during training. The notation [0 : k] represents
the MS-SSIM of the reconstructed image using the first k latent channels out of a total of 12. As
shown, with stochastic dropout training, all the sub-latents can be trained simultaneously without
overfitting to any particular sub-latent.

5 LIMITATIONS

The design of MCUCoder is inherently motivated by the resource constraints typical of IoT devices;
however, these constraints also constitute its limitations. One significant limitation arises from the
restricted RAM available on most IoT devices, which prevents the incorporation of intra-frame
compression techniques. Consequently, MCUCoder exhibits a performance drop when compared
to more computationally demanding video compression models, such as the H.26X series, which,
however, require significant hardware resources far beyond the capabilities of MCUs with only one or
two MB of RAM. Furthermore, limited RAM also constrains the resolution of input frames processed
by MCUCoder, which can negatively impact the visual fidelity of the compressed video, particularly
in applications requiring higher detail. Additionally, the low clock speeds of MCU’s processors,
necessitated by battery conservation needs, result in prolonged encoding times for MCUCoder. This
increased encoding duration ultimately leads to lower fps during video processing, which can hinder
real-time performance and responsiveness in streaming applications. However, these limitations are
not unique to MCUCoder. The state-of-the-art video compression model used in such constrained
devices, M-JPEG, faces similar issues. M-JPEG does not utilize intra-frame compression either
and requires more RAM to achieve higher resolutions, impacting visual fidelity. Like MCUCoder,
M-JPEG’s reliance on the low clock speeds of MCU processors results in longer encoding times
and reduced fps. Nonetheless, despite all of these limitations, MCUCoder significantly outperforms
M-JPEG in both image and video compression datasets.

6 CONCLUSION

In this paper, we presented MCUCoder, an open-source, ultra-lightweight video compression model
designed specifically for resource-constrained IoT devices. With only 10.5K parameters and a
350KB memory footprint, compared to M-JPEG, MCUCoder demonstrates significant bitrate re-
ductions—55.65% on the MCL-JCV dataset and 55.59% on the UVG dataset—while maintaining
hardware efficiency similar to M-JPEG. Furthermore, MCUCoder supports adaptive bitrate stream-
ing, enabling real-time video transmission under variable network conditions. These features make
MCUCoder a promising solution for video compression in edge applications where both hardware
and bandwidth are limited.
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A EXAMPLES OF MCUCODER

Figure 12: Some samples from the MCL-JCV Wang et al. (2016) dataset. The columns represent
different frames, while the rows display progressively improving levels of quality from top to bottom,
produced by MCUCoder.
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Figure 13: Some samples from the MCL-JCV Wang et al. (2016) dataset. The columns represent
different frames, while the rows display progressively improving levels of quality from top to bottom,
produced by MCUCoder.
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