
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MCUCODER: ADAPTIVE BITRATE LEARNED VIDEO
COMPRESSION FOR IOT DEVICES

Anonymous authors
Paper under double-blind review

ABSTRACT

The rapid growth of camera-based Internet of Things (IoT) devices demands the
need for efficient video compression, particularly for edge applications where
devices face hardware constraints, often with only 1 or 2 MB of RAM and unstable
internet connections. Traditional and deep video compression methods are designed
for high-end hardware, exceeding the capabilities of these constrained devices.
Consequently, video compression in these scenarios is often limited to Motion-
JPEG (M-JPEG) due to its high hardware efficiency and low complexity. This
paper introduces MCUCoder, an open-source adaptive bitrate video compression
model tailored for resource-limited IoT settings. MCUCoder features an ultra-
lightweight encoder with only 10.5K parameters and a minimal 350KB memory
footprint, making it well-suited for edge devices and Microcontrollers (MCUs).
While MCUCoder uses a similar amount of energy as M-JPEG, it reduces bitrate by
55.65% on the MCL-JCV dataset and 55.59% on the UVG dataset, measured in MS-
SSIM. Moreover, MCUCoder supports adaptive bitrate streaming by generating a
latent representation that is sorted by importance, allowing transmission based on
available bandwidth. This ensures smooth real-time video transmission even under
fluctuating network conditions on low-resource devices. Source code available at
[Link removed due to double-blind policy, code submitted in ZIP].

M
-J
PE
G

M
CU

Co
de

r

(BPP / MS-SSIM)
0.27/ 6.27 0.30 / 7.54 0.37 / 9.87 0.43 / 11.36 0.69 / 15.77 0.73 / 16.12

0.08 / 7.04 0.16 / 11.49 0.24 / 13.35 0.31 / 14.63 0.73 / 17.93 0.77 / 18.00
(BPP / MS-SSIM)

0.08 / 6.53 0.15 / 9.76 0.21 / 11.32 0.28 / 11.95 0.69 / 14.74 0.74 / 14.87
(BPP / MS-SSIM)

0.25 / 5.77 0.28 / 6.55 0.34/ 8.05 0.40 / 9.16 0.68 / 12.46 0.72 / 12.73
(BPP / MS-SSIM)

...

...

...

...

...

...

...

...

Latent:

Figure 1: Qualitative comparison of MCUCoder and M-JPEG across various compression rates on
two videos from the MCL-JCV (Wang et al., 2016) and UVG (Mercat et al., 2020) datasets. As we
can see, MCUCoder offers a significantly better MS-SSIM/bpp trade-off. For instance, at 0.15 bpp in
the left example, with MCUCoder we can see the person’s face whereas with M-JPEG we need at
least 0.34 bpp to make out the face. Note that the images in each column do not necessarily have the
same bitrate. More examples are reported in Appendix A.

1 INTRODUCTION

Motivation: The number of camera-based IoTs devices using always-on MCU is growing rapidly,
reaching tens of billions (Lin et al., 2020). These devices are widely used in applications such as

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

surveillance cameras (Hu et al., 2020; Josephson et al., 2019; Naderiparizi et al., 2018), wearable
cameras (Veluri et al., 2023), robotics (Nakanoya et al., 2023), wildlife monitoring (Iyer et al., 2020),
road monitoring (Hojjat et al., 2024), and smart farming (Koh et al., 2021). Typically, they capture
raw frames through a camera sensor, encode them, and transmit the compressed version to a server via
the Internet for further processing, including human observation or AI tasks such as object detection
and classification (Yao et al., 2020). Therefore, a video encoder is necessary to efficiently compress
the captured frames before transmission. However, in IoT environments, there are two primary
limitations: constrained hardware resources and limited communication bandwidth.

104 106 108

#Params

MCUCoder
Xie (CVPR23)
Liu (CVPR23)

DPICT (CVPR23)
Toderici (CVPR17)

CTC (CVPR23)
Ballé (ICLR18)

SwinT (ICLR22)
SSF (CVPR20)
DVC (CVPR19)

MCU RAM LIMIT

Figure 2: Number of parameters of
MCUCoder and other learned im-
age compression (Ballé et al., 2018;
Toderici et al., 2017; Lee et al.,
2022; Jeon et al., 2023; Liu et al.,
2023; Xie et al., 2021; Zhu et al.,
2022) and video compression mod-
els (Agustsson et al., 2020; Lu et al.,
2019).

1 - Limited Hardware: Although traditional video codecs like
H.264 (Wiegand et al., 2003), H.265 (Sullivan et al., 2012),
and the newer H.266 (Bross et al., 2021) provide excellent
performance, they demand significant hardware for extracting
the intra and inter-frame correlations. For example, H.265 en-
coding involves highly computationally intensive tasks such as
motion estimation with sub-pixel accuracy, Rate Distortion Op-
timization (RDO) for choosing optimal intra-prediction modes,
and Context Adaptive Binary Arithmetic Coding (CABAC)
for entropy coding. Additionally, a single video frame at
224× 224 resolution requires about 150 KB of RAM, which
is a lot for the low-cost, low-energy MCUs used in IoT devices
that typically have only 1–2 MB of RAM. Consequently, inter-
frame compression or any other kind of multi-frame analysis
is not practically feasible on such constrained devices. Simi-
larly, while Neural Networks (NNs) and AI-based compression
methods outperform traditional models (Agustsson et al., 2020;
Lu et al., 2019), they also often require considerable RAM and
GPU resources. For instance, just storing a model with 1M pa-

rameters requires around 4 MB of RAM; see Fig. 2. As a result, in such settings, devices are typically
limited to using M-JPEG (Pennebaker and Mitchell, 1992), a video compression format where each
frame is compressed individually as a JPEG image, which is efficient and hardware-friendly.

2 - Limited Internet: Many IoT devices are located in remote areas where Internet connection is
weak and unstable, making it necessary for the encoder to have an Adaptive Bitrate Encoding that
can generate video streams with varying bitrate. This feature allows the encoder to dynamically
adjust its quality according to the available bandwidth, ensuring continuous and smooth playback.
This is especially important for real-time applications like live monitoring, where it is crucial to
avoid interruptions and maintain a consistent user experience despite fluctuating network conditions.
However, implementing an adaptive bitrate encoder adds complexity, as it requires mechanisms to
prioritize bit stream information based on its impact on frame quality (e.g., PSNR or MS-SSIM),
which is challenging for constrained devices.

Approach: To address these challenges, we introduce MCUCoder, an adaptive bitrate deep video
compression model tailored for resource-limited IoT devices. Our approach focuses on creating an
"asymmetric" compression model that features an ultra-lightweight encoder designed to be both
computationally efficient and memory-friendly. Also, MCUCoder produces an "adaptive bitrate"
bitstream. Specifically, in MCUCoder, we train the encoder using stochastic dropout such that,
instead of explicitly detecting the important parts, it produces latent channels that are sorted based on
importance. Afterward, based on the available internet bandwidth, the encoder transmits the first k
channels to the decoder; see Fig. 1. This approach is beneficial for low-power MCUs since it shifts the
complexity of identifying important data to the training phase rather than the inference phase. Also,
by employing stochastic dropout training, the decoder can reconstruct the frame even with partial data
availability, which is essential for maintaining smooth and uninterrupted video transmission in real-
time applications, where network conditions can vary. Additionally, MCUCoder’s encoder is INT8
quantized, allowing it to utilize Digital Signal Processor (DSP) and CMSIS-NN (ARM-software,
2024) accelerators for faster processing and reduced power consumption.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

𝑭𝒓
𝒂𝒎

𝒆 𝒕
:3
x2
24

x2
24

Importance based ordered

Co
nv

 7
x7

, 1
6

Co
nv

 5
x5

, 1
6

Co
nv

 3
x3

, 1
2

Sending channels 
based on available 

bandwidth

Received

De
Co

nv
, ↑

𝑄
𝑢𝑎
𝑛𝑡
. !

𝑄
𝑢𝑎
𝑛𝑡
. "

𝑄
𝑢𝑎
𝑛𝑡
.$

…

𝑄
𝑢𝑎
𝑛𝑡
.%

𝑄
𝑢𝑎
𝑛𝑡
. &

𝑄
𝑢𝑎
𝑛𝑡
. '

𝐷
𝑒𝑄
𝑢𝑎
𝑛𝑡
. !

𝐷
𝑒𝑄
𝑢𝑎
𝑛𝑡
. "

…
Zeroing out 
unreceived At

te
nt

io
n 

(x
1)

 
Re

sB
ot

tle
(x

3)

At
te

nt
io

n 
(x

1)
 

Re
sB

ot
tle

(x
3)

At
te

nt
io

n 
(x

1)
 

Re
sB

ot
tle

(x
3)

x2

De
Co

nv
, ↑

At
te

nt
io

n

𝑭𝒓
𝒂𝒎

𝒆 𝒕
:3
x2
24

x2
24

INT8 Quantized

Encoder (on MCU) Decoder (on Cloud)

Figure 3: Overview of MCUCoder architecture. With stochastic dropout training, the encoder
compresses the input frame into a sorted latent space. Subsequently, channels are independently
quantized and transmitted according to the available bandwidth. The decoder reconstructs the frame
by zeroing out missing channels.

Contributions:

1. MCUCoder has an ultra-lightweight encoder with only 10.5K parameters and a minimal
memory footprint of roughly 350KB RAM on nRF5340 and STM32F7 MCUs, making it
suitable for such low-resource IoT devices.

2. MCUCoder has an energy-efficient INT8 quantized encoder, which leverages the MCU’s
DSP and CMSIS-NN accelerators to achieve JPEG-level energy efficiency. Compared to
its main baseline, M-JPEG, it saves 55.65% overall bit rate on the MCL-JCV dataset and
55.59% on the UVG dataset, measured in MS-SSIM.

3. MCUCoder produces a progressive bitstream that enables adaptive bitrate streaming, allow-
ing robust video transmission under varying network conditions.

2 RELATED WORK

In this section, we provide an overview of both traditional and NN based video compression tech-
niques, as well as video compression methods tailored specifically for IoT environments.

2.1 TRADITIONAL AND NN BASED VIDEO COMPRESSION

Video compression is a field that has been evolving for decades. Beyond traditional codecs like H.264
(Wiegand et al., 2003), H.265 (Sullivan et al., 2012), and H.266 (Bross et al., 2021), deep learning-
based approaches often replace conventional modules such as motion compensation (Agustsson et al.,
2020; Yang et al., 2020), transform coding (Zhu et al., 2022; Gao et al., 2021), and entropy coding
(Xiang et al., 2023; Mentzer et al., 2022). Also, some work has been done regarding the end-to-end
optimization of video compression models (He et al., 2020; Van Rozendaal et al., 2021; Khani et al.,
2021).Lu et al. (2019) introduce DVC, the first end-to-end deep video compression model. Hu et al.
(2022; 2021) extend DVC to operate in both pixel and feature domains. Li et al. (2021) and Liu
et al. (2020) reduce bitrates by modeling probabilities over video frames using conditional coding.
Also, in recent years, there has been growing interested in using implicit neural representations for
video compression (Kwan et al., 2024; Chen et al., 2021). However, due to their substantial hardware
requirements, these models are unsuitable for deployment on low-resource IoT devices.

2.2 VIDEO COMPRESSION FOR IOT

We can categorize IoT-based video encoders into two parts: hardware-based and software-based.
Hardware approaches primarily focus on designing more power-efficient camera sensors (Morishita
et al., 2021; Ji et al., 2016; Bejarano-Carbo et al., 2022) and more efficient MCU circuits and pro-
cessors (Lefebvre et al., 2021; Rossi et al., 2021; Xu et al., 2020). Due to its simplicity, scalability,
low latency, and very low energy consumption, the most common software-based video encoder on
IoT devices is M-JPEG (Pennebaker and Mitchell, 1992). Nevertheless, there have been few works
exploring alternative software-based models: Veluri et al. (2023) employ M-JPEG on the encoder to
capture black-and-white and colorized frames at two different resolutions and uses super-resolution

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Channel 1 Channel 2 Channel 3

Channel 4 Channel 5 Channel 6

Channel 7 Channel 8 Channel 9

Channel 10 Channel 11 Channel 12

Figure 4: MCUCoder latent channels:
Early channels (important ones) capture low-
frequency features, while later channels cap-
ture high-frequency features, similar to the
DCT in JPEG.

𝑭𝒕

𝑭𝒕"𝟏

𝑭𝒕"𝟐

𝑭𝒕"𝟑

Bi
tr

at
e 

Co
nt

ro
l

In
pu

t

En
c.

De
c.…

Sending filters one by one

𝑭𝒕

Re
ce
iv
ed

Figure 5: An example of MCUCoder bitrate adap-
tation under dynamic network bandwidth, where
the bitrate control module acts as a gate to deter-
mine the number of channels to send.

methods to interpolate and colorize frames on the decoder. However, unlike MCUCoder, it is not
adaptive and relies on a JPEG encoder on MCUs. Hu et al. (2020) propose a deep image encoder
model for MCUs, but it is also non-adaptive. Additionally, they patchify the input, which significantly
increases encoding time, making it impractical for real-time video compression. MCUCoder com-
bines the advantages of both worlds: it offers the adaptive bitrate feature of more complex encoders,
while maintaining the efficiency necessary for low-resource devices, making it an ideal solution for
IoT video compression.

3 MCUCODER

In this section, we introduce MCUCoder, an adaptive bitrate asymmetric video compression model,
specifically designed for IoT settings. We begin by detailing the asymmetric encoder-decoder
architecture of MCUCoder, including the customized quantization processes. Then, we present the
stochastic dropout training method, which trains the encoder of MCUCoder to store information in
its channels based on importance.

3.1 ASYMMETRIC COMPRESSION

MCUs are characterized by highly constrained hardware resources, such as limited RAM, CPU,
FLASH, and power availability. Additionally, existing MCU-specific NN frameworks like TFLite
Micro support only a limited set of NN layers (Hu et al., 2020). To address these constraints, we
propose an asymmetric (Yao et al., 2020) encoder-decoder architecture optimized for constrained
devices. Due to hardware constraints, MCUCoder encodes each frame independently, as inter-frame
compression is not feasible. The encoder contains only 10.5K parameters, while the decoder utilizes
approximately 3M parameters and leverages SOTA image decompression blocks; see Fig. 3. The
encoding process begins by passing input frame ft through three convolutional layers. To maximize
the data range for subsequent quantization, no activation function is applied in the final encoder layer,
avoiding the negative truncation caused by ReLU. Afterward, each channel of the latent is quantized
into INT8 individually, followed by a further reduction to 5-bit precision to enhance compression
efficiency. For the decoder, inspired by He et al. (2022), we integrate a combination of attention
blocks (Cheng et al., 2020) and residual bottleneck blocks (He et al., 2016) to reconstruct the frame;
see Fig. 3.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8
Bits per Pixel (bpp)

6

8

10

12

14

16

M
S-

SS
IM

KODAK (224X224)
JPEG
MCUCoder
MCUCoder(int8)

0.0 0.2 0.4 0.6 0.8
Bits per Pixel (bpp)

6

8

10

12

14

16

18

M
S-

SS
IM

CLIC (224X224)
JPEG
MCUCoder
MCUCoder(int8)

0.0 0.2 0.4 0.6 0.8
Bits per Pixel (bpp)

5.0

7.5

10.0

12.5

15.0

17.5

20.0

M
S-

SS
IM

UVG (224X224)

M-JPEG
H264
H265
MCUCoder
MCUCoder(int8)

0.0 0.2 0.4 0.6 0.8
Bits per Pixel (bpp)

5.0

7.5

10.0

12.5

15.0

17.5

20.0

M
S-

SS
IM

MCL-JCV (224X224)

M-JPEG
H264
H265
MCUCoder
MCUCoder(int8)

Figure 7: Comparison of MCUCoder (quantized and non-quantized model) and baselines on the
image (KODAK (Eastman Kodak, 1993), CLIC (cli, 2020)) and video (MCL-JCV (Wang et al.,
2016), UVG (Mercat et al., 2020)) compression datasets. For context, we also compare with H.264
and H.265 on video datasets, despite being impractical for MCUs due to high hardware demands. All
datasets are resized to 224× 224.

3.2 STOCHASTIC DROPOUT TRAINING

…

La
te

nt
 S

am
pl

in
g 

D
ur

in
g 

Tr
ai

ni
ng Iter = 1

Iter = 2

Iter = 3

Iter = 4

Iter = N

Af
te

r
Tr

ai
ni

ng
:

Sorted by importance

Figure 6: Stochastic
dropout training

Bitrate adaptation is a feature that typically introduces additional complexity
to the encoding process, which can be challenging to implement on MCUs
due to resource constraints. In the literature, dropout (Srivastava et al., 2014)
serves as a powerful tool for enhancing generalization in NNs. Building on
this insight, we employ a "biased" version of dropout to train MCUCoder
in a way that instead of random dropping, it drops from the tail of the latent
(Hojjat et al., 2023). Specifically, on each iteration, after the encoder E gets
the input frame ft, it generates the latent representation zN , where N is the
number of the channels of the latent. Afterward, from a uniform distribution,
denoted as U(0,1), it generates a number, denoted as k, and drops (zero out)
the last ⌊k ×N⌋ channels from zN . As a result, instead of zN , the decoder
D gets z[0:⌊k×N⌋], fills the missing channels with zero, and then reconstructs
the output.

ft −→ E(ft) −→ zN
k∼U(0,1)−−−−−→ z[0:⌊k×N⌋] −→ D(z[0:⌊k×N⌋]) −→ f̂t (1)

This tailored version of dropout biases the training to prioritize the earlier channels over the later
ones. Consequently, the encoder learns to encode more critical information (low frequency) in the
initial feature maps and less important (high frequency) details in the subsequent ones; see Fig 6.
This prioritization enables flexible bitrate adaptation: upon encoding each frame, the encoder starts
transmitting the most significant channels first. Depending on the available bandwidth, the bitrate
control module determines how many channels need to be sent to the decoder to ensure uninterrupted
streaming; see Fig 5. Importantly, because the latent features are pre-ordered by significance, the
bitrate control module basically acts like a simple gate and does not add any extra computational
complexity to the encoder.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8
Bits per Pixel (bpp)

20

22

24

26

28

30

32

PS
NR

KODAK (224X224)
JPEG
MCUCoder
MCUCoder(int8)

0.0 0.2 0.4 0.6 0.8
Bits per Pixel (bpp)

20

22

24

26

28

30

32

PS
NR

CLIC (224X224)
JPEG
MCUCoder
MCUCoder(int8)

0.0 0.2 0.4 0.6 0.8
Bits per Pixel (bpp)

20

22

24

26

28

30

32

34

PS
NR

UVG (224X224)

M-JPEG
H264
H265
MCUCoder
MCUCoder(int8)

0.0 0.2 0.4 0.6 0.8
Bits per Pixel (bpp)

20

22

24

26

28

30

32

34

PS
NR

MCL-JCV (224X224)

M-JPEG
H264
H265
MCUCoder
MCUCoder(int8)

Figure 8: Comparison of MCUCoder (quantized and non-quantized model) and baselines on the
image (KODAK (Eastman Kodak, 1993), CLIC (cli, 2020)) and video (MCL-JCV (Wang et al.,
2016), UVG (Mercat et al., 2020)) compression datasets. For context, we also compare with H.264
and H.265 on video datasets, despite being impractical for MCUs due to high hardware demands.
MCUCoder is designed for IoT environments, prioritizing structural integrity over fine detail and
therefore it is optimized for MS-SSIM. In contrast, JPEG optimizes for PSNR, which is why M-JPEG
performs slightly better in PSNR at higher bitrates.

4 EVALUATION

This section presents a comprehensive evaluation of MCUCoder across both image and video com-
pression tasks. We compare its performance against JPEG,M-JPEG, and traditional codecs, with a
focus on metrics such as MS-SSIM, PSNR, and BD-rate. Additionally, we analyze MCUCoder’s
efficiency on resource-constrained MCU devices, highlighting its computational and energy perfor-
mance.

4.1 SETTINGS

We train MCUCoder on the 300K largest ImageNet images (Deng et al., 2009) and apply noise-
downsampling preprocessing (He et al., 2021; Ballé et al., 2018). We use Adam with an initial
learning rate of 10−4 and a batch size of 16, and train for 1M iterations, lowering the learning
rate to 10−5 in the final 50K iterations (He et al., 2022). To address quantization effects, we add
random noise to the latent. Since MCUCoder is specifically designed for IoT environments, where
the structure of the output is more critical than fine details, we use MS-SSIM as the loss function.
We also quantize inputs, weights, and activations to INT8 for RAM efficiency and to leverage DSP
and CMSIS-NN accelerators (ARM-software, 2024) in MCUs. We use post-training quantization
existing in TFLite-Micro (TensorFlow, 2023) to reduce latency, processing power, and model size
with minimal degradation in model accuracy. For all comparisons, we report performance metrics for
both the FLOAT32 and INT8 models.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: MCUCoder (Quantized) BD-rate re-
sults. The anchor is M-JPEG.

Dataset MS-SSIM PSNR

MCL-JCV -55.65% -47.39%
UVG -55.59% -35.28%

KODAK -55.75% -43.01%
CLIC -49.54% -38.02%

Table 2: Resource demands of MCUCoder
on nRF5340 and STM32F7 MCUs.

nRF5340 STM32F7

Exec (ms) 1,969 237
RAM (KB) 344 (33%) 360 (17%)
Flash (KB) 100 (10%) 107 (5%)

0.2

0.4

0.6

0.8

bp
p

[0:1]
[0:2]
[0:3]

[0:4]
[0:5]
[0:6]

[0:7]
[0:8]
[0:9]

[0:10]
[0:11]
[0:12]

0 50 100 150 200 250 300
Frame Index

7.5
10.0
12.5
15.0
17.5

M
S-

SS
IM

Figure 9: MS-SSIM and bpp for the SunBath video
from UVG (Mercat et al., 2020) dataset. [0:k] shows
the use of the first k channels (out of 12) for decoding.

4.2 QUANTITATIVE RESULTS

Due to the limited hardware resources of MCUs, inter-frame compression is not practically feasible.
As a result, in such devices, video compression is limited to M-JPEG where each frame is compressed
independently. Therefore, in addition to evaluating MCUCoder and its baselines from the perspective
of video compression, we also assess its performance on image compression datasets. Given the
lower resolution commonly encountered in IoT scenarios, we resize all the videos and images to
224× 224.

Video compression: We evaluate MCUCoder on the UVG (Mercat et al., 2020) and MCL-JCV
(Wang et al., 2016) datasets, comparing its performance to M-JPEG , see Fig. 7. For additional context,
we include comparisons with traditional video codecs such as H.264 (Wiegand et al., 2003) and
H.265 (Sullivan et al., 2012), even though these codecs are impractical for deployment on MCUs due
to their significant computational and hardware demands. Also, we report the Bjøntegaard Delta (BD)
rate (Bjøtegaard, 2001) for both datasets in Table 1. The results indicate that MCUCoder achieves a
significantly higher MS-SSIM per bit compared to M-JPEG, highlighting its ability to deliver better
video quality at lower bitrates. This is especially valuable for IoT applications, where achieving high
compression rates with minimal computational overhead is crucial due to limited hardware resources.
Additionally, MCUCoder has 12 "stacked" channels in its latent space, which provides 12 levels of
quality that can be dynamically adjusted based on the available network bandwidth. In Fig. 9, we
illustrate the bpp and MS-SSIM for each frame in a video from the UVG dataset for all 12 levels of
quality. The results show that using more channels for decoding leads to a higher MS-SSIM, which
verifies the effectiveness of the proposed stochastic dropout training.

Image compression: To assess the image compression capabilities of MCUCoder, we conduct
experiments on the CLIC (cli, 2020) and KODAK (Eastman Kodak, 1993) datasets, see Fig. 7.
The results in Table 1 show that MCUCoder achieves an impressive average bitrate reduction of
55.75% on the KODAK dataset and 49.54% on the CLIC dataset, compared to JPEG. As previously
mentioned, MCUCoder is specifically designed for IoT environments, where preserving the structural
integrity of the output is more important than capturing fine detail, leading to its optimization for
MS-SSIM. In contrast, JPEG is more focused on optimizing PSNR (Wang et al., 2004), which
explains why M-JPEG performs slightly better in PSNR at higher bitrates, see Fig.8.

4.3 LATENT ORDERING AND DCT-JPEG ALIGNMENT

Fig. 4 illustrates the 12 latent channels derived from training with the stochastic dropout method.
These channels display an intriguing hierarchical structure, where the early channels capture broad,

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 500 1000 1500 2000
Time to compress one frame (ms)

0
1
2
3
4
5

Cu
rre

nt
 (m

A)

M-JPEG
MCUCoder

M-JPEG

MCUCoder
0

5

10

15

20

Po
we

r (
m

J)

15.95 14.98

Figure 10: Energy (Millijoule) and current (Milliampere) consumption of MCUCoder compared
to M-JPEG for compressing one frame on the nRF5340. MCUCoder achieves comparable energy
efficiency to M-JPEG while exceeding it in BD-rate. However, the nRF5340 exhibits relatively slow
processing speeds for both MCUCoder and M-JPEG, suggesting that its energy efficiency is better
suited for event-driven applications rather than real-time streaming, where the STM32F7 excels.

low-frequency features, while the later channels progressively focus on finer, high-frequency details.
This pattern closely resembles the Discrete Cosine Transform (DCT) basis matrix utilized in JPEG
compression. In JPEG, the DCT plays a pivotal role in transforming image data into frequency
components, allowing for efficient compression by prioritizing lower frequencies, which tend to
carry more significant visual information. Similarly to MCUCoder, progressive JPEG leverages this
frequency ordering, encoding data in a manner that allows the decoder to initially reconstruct the
image using only low-frequency components, and as decoding progresses, higher-frequency details
are incrementally added, resulting in a progressively refined image reconstruction.

4.4 STOCHASTIC DROPOUT TRAINING ANALYSIS

One potential challenge with stochastic dropout training is the risk of overfitting to specific loss
functions when optimizing multiple losses concurrently. To evaluate this, we track the MS-SSIM of
MCUCoder on the KODAK (Eastman Kodak, 1993) dataset across varying numbers of active latent
channels during training. The training logs, shown in Fig. 11, demonstrate that all the sub-latents are
trained in parallel without overfitting to any specific sub-latent, which verifies the effectiveness of the
uniform latent sampling strategy employed in the training, see Fig. 6.

4.5 PERFORMANCE ON MCUS

We implement MCUCoder on two widely-used MCU platforms, the STM32F7 and nRF5340 MCUs,
using TFLite-Micro and Zephyr RTOS. The STM32F7 features 2 MB of Flash memory, 2 MB of
RAM, and a Cortex-M7 processor, while the nRF5340 is equipped with 1 MB of Flash, 512 KB
of RAM, and a Cortex-M33 processor. Both MCUs support DSP and CMSIS-NN acceleration,
making them well-suited for running lightweight deep learning models. As detailed in Table 2,
MCUCoder demonstrates a low memory footprint, consuming 360 KB of RAM on the STM32F7
and 344 KB on the nRF5340, which is significantly efficient for such constrained devices. This
compact memory usage highlights the suitability of MCUCoder for low-power, resource-constrained
IoT applications. To assess the energy efficiency of MCUCoder, we conducted a comparative
analysis against M-JPEG. Specifically, we measured the energy consumption of MCUCoder and an
optimized JPEG encoder for the Cortex-M series1 on the nRF5340 platform; see Fig.10. The results
indicate that MCUCoder achieves comparable energy consumption to JPEG, while providing superior
performance in terms of BD-rate, as shown in Table1. However, the nRF5340 exhibits noticeably
slower processing performance compared to the STM32F7 for both MCUCoder and M-JPEG. This
discrepancy suggests that while the nRF5340 is energy-efficient, its lower computational capabilities
make it more appropriate for event-driven applications rather than real-time streaming tasks, where
the STM32F7 excels.

1https://github.com/noritsuna/JPEGEncoder4Cortex-M

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
Training steps 1e6

8

10

12

14

16

18

20

M
S-

SS
IM

Rec w/ [0:1]
Rec w/ [0:2]
Rec w/ [0:3]
Rec w/ [0:4]

Rec w/ [0:5]
Rec w/ [0:6]
Rec w/ [0:7]
Rec w/ [0:8]

Rec w/ [0:9]
Rec w/ [0:10]
Rec w/ [0:11]
Rec w/ [0:12]

Figure 11: MS-SSIM values on the KODAK dataset during training. The notation [0 : k] represents
the MS-SSIM of the reconstructed image using the first k latent channels out of a total of 12. As
shown, with stochastic dropout training, all the sub-latents can be trained simultaneously without
overfitting to any particular sub-latent.

5 LIMITATIONS

The design of MCUCoder is inherently motivated by the resource constraints typical of IoT devices;
however, these constraints also constitute its limitations. One significant limitation arises from the
restricted RAM available on most IoT devices, which prevents the incorporation of intra-frame
compression techniques. Consequently, MCUCoder exhibits a performance drop when compared
to more computationally demanding video compression models, such as the H.26X series, which,
however, require significant hardware resources far beyond the capabilities of MCUs with only one or
two MB of RAM. Furthermore, limited RAM also constrains the resolution of input frames processed
by MCUCoder, which can negatively impact the visual fidelity of the compressed video, particularly
in applications requiring higher detail. Additionally, the low clock speeds of MCU’s processors,
necessitated by battery conservation needs, result in prolonged encoding times for MCUCoder. This
increased encoding duration ultimately leads to lower fps during video processing, which can hinder
real-time performance and responsiveness in streaming applications. However, these limitations are
not unique to MCUCoder. The state-of-the-art video compression model used in such constrained
devices, M-JPEG, faces similar issues. M-JPEG does not utilize intra-frame compression either
and requires more RAM to achieve higher resolutions, impacting visual fidelity. Like MCUCoder,
M-JPEG’s reliance on the low clock speeds of MCU processors results in longer encoding times
and reduced fps. Nonetheless, despite all of these limitations, MCUCoder significantly outperforms
M-JPEG in both image and video compression datasets.

6 CONCLUSION

In this paper, we presented MCUCoder, an open-source, ultra-lightweight video compression model
designed specifically for resource-constrained IoT devices. With only 10.5K parameters and a
350KB memory footprint, compared to M-JPEG, MCUCoder demonstrates significant bitrate re-
ductions—55.65% on the MCL-JCV dataset and 55.59% on the UVG dataset—while maintaining
hardware efficiency similar to M-JPEG. Furthermore, MCUCoder supports adaptive bitrate stream-
ing, enabling real-time video transmission under variable network conditions. These features make
MCUCoder a promising solution for video compression in edge applications where both hardware
and bandwidth are limited.

REFERENCES

2020. Workshop and Challenge on Learned Image Compression (CLIC). http://www.
compression.cc. 6.

Eirikur Agustsson, David Minnen, Nick Johnston, Johannes Balle, Sung Jin Hwang, and George
Toderici. 2020. Scale-space flow for end-to-end optimized video compression. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 8503–8512.

9

http://www.compression.cc
http://www.compression.cc


486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

ARM-software. 2024. CMSIS-NN: Efficient Neural Network Kernels for Arm Cortex-M CPUs.
https://github.com/ARM-software/CMSIS-NN Accessed: 2024-09-22.

Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin Hwang, and Nick Johnston. 2018. Variational
image compression with a scale hyperprior. arXiv preprint arXiv:1802.01436 (2018).

Andrea Bejarano-Carbo, Hyochan An, Kyojin Choo, Shiyu Liu, Qirui Zhang, Dennis Sylvester,
David Blaauw, and Hun-Seok Kim. 2022. Millimeter-scale ultra-low-power imaging system for
intelligent edge monitoring. arXiv preprint arXiv:2203.04496 (2022).

G Bjøtegaard. 2001. Calculation of average PSNR differences between RD-curves (vceg-m33). In
VCEG Meeting (ITU-T SG16 Q. 6), Austin, Texas, USA„ Tech. Rep. M, Vol. 16090.

Benjamin Bross, Ye-Kui Wang, Yan Ye, Shan Liu, Jianle Chen, Gary J Sullivan, and Jens-Rainer
Ohm. 2021. Overview of the versatile video coding (VVC) standard and its applications. IEEE
Transactions on Circuits and Systems for Video Technology 31, 10 (2021), 3736–3764.

Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser Nam Lim, and Abhinav Shrivastava. 2021. Nerv:
Neural representations for videos. Advances in Neural Information Processing Systems 34 (2021),
21557–21568.

Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro Katto. 2020. Learned image compres-
sion with discretized gaussian mixture likelihoods and attention modules. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 7939–7948.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition.
Ieee, 248–255.

Eastman Kodak. 1993. Kodak Lossless True Color Image Suite (PhotoCD PCD0992). http:
//r0k.us/graphics/kodak. 6.

Ge Gao, Pei You, Rong Pan, Shunyuan Han, Yuanyuan Zhang, Yuchao Dai, and Hojae Lee. 2021.
Neural image compression via attentional multi-scale back projection and frequency decomposition.
In Proceedings of the IEEE/CVF International Conference on Computer Vision. 14677–14686.

Dailan He, Ziming Yang, Weikun Peng, Rui Ma, Hongwei Qin, and Yan Wang. 2022. Elic: Efficient
learned image compression with unevenly grouped space-channel contextual adaptive coding. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 5718–
5727.

Dailan He, Yaoyan Zheng, Baocheng Sun, Yan Wang, and Hongwei Qin. 2021. Checkerboard context
model for efficient learned image compression. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 14771–14780.

Gang He, Chang Wu, Lei Li, Jinjia Zhou, Xianglin Wang, Yunfei Zheng, Bing Yu, and Weiying
Xie. 2020. A video compression framework using an overfitted restoration neural network. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.
148–149.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition.
770–778.

Ali Hojjat, Janek Haberer, and Olaf Landsiedel. 2023. ProgDTD: Progressive Learned Image
Compression With Double-Tail-Drop Training. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops. 1130–1139.

Ali Hojjat, Janek Haberer, Tayyaba Zainab, and Olaf Landsiedel. 2024. LimitNet: Progressive,
Content-Aware Image Offloading for Extremely Weak Devices & Networks. In Proceedings of the
22nd Annual International Conference on Mobile Systems, Applications and Services (Minato-ku,
Tokyo, Japan) (MOBISYS ’24). Association for Computing Machinery, New York, NY, USA,
519–533. https://doi.org/10.1145/3643832.3661856

10

https://github.com/ARM-software/CMSIS-NN
http://r0k.us/graphics/kodak
http://r0k.us/graphics/kodak
https://doi.org/10.1145/3643832.3661856


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Pan Hu, Junha Im, Zain Asgar, and Sachin Katti. 2020. Starfish: Resilient image compression for
AIoT cameras. In Proceedings of the 18th Conference on Embedded Networked Sensor Systems.
395–408.

Zhihao Hu, Guo Lu, Jinyang Guo, Shan Liu, Wei Jiang, and Dong Xu. 2022. Coarse-to-fine deep
video coding with hyperprior-guided mode prediction. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 5921–5930.

Zhihao Hu, Guo Lu, and Dong Xu. 2021. FVC: A new framework towards deep video compression
in feature space. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 1502–1511.

Vikram Iyer, Ali Najafi, Johannes James, Sawyer Fuller, and Shyamnath Gollakota. 2020. Wireless
steerable vision for live insects and insect-scale robots. Science robotics 5, 44 (2020), eabb0839.

Seungmin Jeon, Kwang Pyo Choi, Youngo Park, and Chang-Su Kim. 2023. Context-Based Trit-Plane
Coding for Progressive Image Compression. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 14348–14357.

Suyao Ji, Jing Pu, Byong Chan Lim, and Mark Horowitz. 2016. A 220pJ/pixel/frame CMOS
image sensor with partial settling readout architecture. In 2016 IEEE Symposium on VLSI Circuits
(VLSI-Circuits). IEEE, 1–2.

Colleen Josephson, Lei Yang, Pengyu Zhang, and Sachin Katti. 2019. Wireless computer vision using
commodity radios. In Proceedings of the 18th International Conference on Information Processing
in Sensor Networks. 229–240.

Mehrdad Khani, Vibhaalakshmi Sivaraman, and Mohammad Alizadeh. 2021. Efficient video com-
pression via content-adaptive super-resolution. In Proceedings of the IEEE/CVF international
conference on computer vision. 4521–4530.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Balsub-
ramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. 2021. Wilds:
A benchmark of in-the-wild distribution shifts. In International conference on machine learning.
PMLR, 5637–5664.

Ho Man Kwan, Ge Gao, Fan Zhang, Andrew Gower, and David Bull. 2024. Hinerv: Video com-
pression with hierarchical encoding-based neural representation. Advances in Neural Information
Processing Systems 36 (2024).

Jae-Han Lee, Seungmin Jeon, Kwang Pyo Choi, Youngo Park, and Chang-Su Kim. 2022. DPICT:
Deep progressive image compression using trit-planes. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 16113–16122.

Martin Lefebvre, Ludovic Moreau, Rémi Dekimpe, and David Bol. 2021. 7.7 A 0.2-to-3.6 TOPS/W
programmable convolutional imager SoC with in-sensor current-domain ternary-weighted MAC
operations for feature extraction and region-of-interest detection. In 2021 IEEE International
Solid-State Circuits Conference (ISSCC), Vol. 64. IEEE, 118–120.

Jiahao Li, Bin Li, and Yan Lu. 2021. Deep contextual video compression. Advances in Neural
Information Processing Systems 34 (2021), 18114–18125.

Ji Lin, Wei-Ming Chen, Yujun Lin, Chuang Gan, Song Han, et al. 2020. Mcunet: Tiny deep learning
on iot devices. Advances in neural information processing systems 33 (2020), 11711–11722.

Jinming Liu, Heming Sun, and Jiro Katto. 2023. Learned Image Compression With Mixed
Transformer-CNN Architectures. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). 14388–14397.

Jerry Liu, Shenlong Wang, Wei-Chiu Ma, Meet Shah, Rui Hu, Pranaab Dhawan, and Raquel Urtasun.
2020. Conditional entropy coding for efficient video compression. In European Conference on
Computer Vision. Springer, 453–468.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Guo Lu, Wanli Ouyang, Dong Xu, Xiaoyun Zhang, Chunlei Cai, and Zhiyong Gao. 2019. Dvc: An
end-to-end deep video compression framework. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 11006–11015.

Fabian Mentzer, George Toderici, David Minnen, Sung-Jin Hwang, Sergi Caelles, Mario Lucic, and
Eirikur Agustsson. 2022. Vct: A video compression transformer. arXiv preprint arXiv:2206.07307
(2022).

Alexandre Mercat, Marko Viitanen, and Jarno Vanne. 2020. UVG dataset: 50/120fps 4K sequences
for video codec analysis and development. In Proceedings of the 11th ACM Multimedia Systems
Conference. 297–302.

Fukashi Morishita, Norihito Kato, Satoshi Okubo, Takao Toi, Mitsuru Hiraki, Sugako Otani, Hideaki
Abe, Yuji Shinohara, and Hiroyuki Kondo. 2021. A cmos image sensor and an ai accelerator
for realizing edge-computing-based surveillance camera systems. In 2021 Symposium on VLSI
Circuits. IEEE, 1–2.

Saman Naderiparizi, Mehrdad Hessar, Vamsi Talla, Shyamnath Gollakota, and Joshua R Smith.
2018. Towards {Battery-Free}{HD} video streaming. In 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18). 233–247.

Manabu Nakanoya, Sai Shankar Narasimhan, Sharachchandra Bhat, Alexandros Anemogiannis, Akul
Datta, Sachin Katti, Sandeep Chinchali, and Marco Pavone. 2023. Co-design of communication
and machine inference for cloud robotics. Autonomous Robots 47, 5 (2023), 579–594.

William B Pennebaker and Joan L Mitchell. 1992. JPEG: Still image data compression standard.
Springer Science & Business Media.

Davide Rossi, Francesco Conti, Manuel Eggiman, Stefan Mach, Alfio Di Mauro, Marco Guermandi,
Giuseppe Tagliavini, Antonio Pullini, Igor Loi, Jie Chen, et al. 2021. 4.4 A 1.3 TOPS/W@ 32GOPS
fully integrated 10-core SoC for IoT end-nodes with 1.7 µW cognitive wake-up from MRAM-based
state-retentive sleep mode. In 2021 IEEE International Solid-State Circuits Conference (ISSCC),
Vol. 64. IEEE, 60–62.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
2014. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research 15, 1 (2014), 1929–1958.

Gary J Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and Thomas Wiegand. 2012. Overview of the high
efficiency video coding (HEVC) standard. IEEE Transactions on circuits and systems for video
technology 22, 12 (2012), 1649–1668.

TensorFlow. Accessed: [2023]. https://www.tensorflow.org/lite/micro.

George Toderici, Damien Vincent, Nick Johnston, Sung Jin Hwang, David Minnen, Joel Shor, and
Michele Covell. 2017. Full resolution image compression with recurrent neural networks. In
Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 5306–5314.

Ties Van Rozendaal, Johann Brehmer, Yunfan Zhang, Reza Pourreza, Auke Wiggers, and Taco S
Cohen. 2021. Instance-adaptive video compression: Improving neural codecs by training on the
test set. arXiv preprint arXiv:2111.10302 (2021).

Bandhav Veluri, Collin Pernu, Ali Saffari, Joshua Smith, Michael Taylor, and Shyamnath Gollakota.
2023. NeuriCam: Key-Frame Video Super-Resolution and Colorization for IoT Cameras. In
Proceedings of the 29th Annual International Conference on Mobile Computing and Networking.
1–17.

Haiqiang Wang, Weihao Gan, Sudeng Hu, Joe Yuchieh Lin, Lina Jin, Longguang Song, Ping
Wang, Ioannis Katsavounidis, Anne Aaron, and C.-C. Jay Kuo. 2016. MCL-JCV: A JND-based
H.264/AVC video quality assessment dataset. In 2016 IEEE International Conference on Image
Processing (ICIP). 1509–1513. https://doi.org/10.1109/ICIP.2016.7532610

12

https://www.tensorflow.org/lite/micro
https://doi.org/10.1109/ICIP.2016.7532610


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. 2004. Image quality assessment: from
error visibility to structural similarity. IEEE Transactions on Image Processing 13, 4 (2004),
600–612. https://doi.org/10.1109/TIP.2003.819861

Thomas Wiegand, Gary J Sullivan, Gisle Bjontegaard, and Ajay Luthra. 2003. Overview of the H.
264/AVC video coding standard. IEEE Transactions on circuits and systems for video technology
13, 7 (2003), 560–576.

Jinxi Xiang, Kuan Tian, and Jun Zhang. 2023. Mimt: Masked image modeling transformer for video
compression. In The Eleventh International Conference on Learning Representations.

Yueqi Xie, Ka Leong Cheng, and Qifeng Chen. 2021. Enhanced invertible encoding for learned
image compression. In Proceedings of the 29th ACM international conference on multimedia.
162–170.

Han Xu, Ziru Li, Ningchao Lin, Qi Wei, Fei Qiao, Xunzhao Yin, and Huazhong Yang. 2020. Macsen:
A processing-in-sensor architecture integrating mac operations into image sensor for ultra-low-
power bnn-based intelligent visual perception. IEEE Transactions on Circuits and Systems II:
Express Briefs 68, 2 (2020), 627–631.

Ren Yang, Fabian Mentzer, Luc Van Gool, and Radu Timofte. 2020. Learning for video compression
with hierarchical quality and recurrent enhancement. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 6628–6637.

Shuochao Yao, Jinyang Li, Dongxin Liu, Tianshi Wang, Shengzhong Liu, Huajie Shao, and Tarek
Abdelzaher. 2020. Deep compressive offloading: Speeding up neural network inference by trading
edge computation for network latency. In Proceedings of the 18th Conference on Embedded
Networked Sensor Systems. 476–488.

Yinhao Zhu, Yang Yang, and Taco Cohen. 2022. Transformer-based transform coding. In International
Conference on Learning Representations.

13

https://doi.org/10.1109/TIP.2003.819861


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A EXAMPLES OF MCUCODER

Figure 12: Some samples from the MCL-JCV Wang et al. (2016) dataset. The columns represent
different frames, while the rows display progressively improving levels of quality from top to bottom,
produced by MCUCoder.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 13: Some samples from the MCL-JCV Wang et al. (2016) dataset. The columns represent
different frames, while the rows display progressively improving levels of quality from top to bottom,
produced by MCUCoder.

15


	Introduction
	Related Work
	Traditional and NN based video compression
	Video compression for IoT

	MCUCoder
	Asymmetric Compression
	Stochastic dropout training

	Evaluation
	Settings
	Quantitative results
	Latent ordering and DCT-JPEG alignment
	Stochastic dropout training analysis
	Performance on MCUs

	Limitations
	Conclusion
	Examples of MCUCoder

