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Abstract001

Geometry problem solving, a crucial aspect of002
mathematical reasoning, is vital across various003
domains, including education, the assessment004
of AI’s mathematical abilities, and multimodal005
capability evaluation. The recent surge in deep006
learning technologies, particularly the emer-007
gence of multimodal large language models,008
has significantly accelerated research in this009
area. This paper presents a survey of the appli-010
cations of deep learning in geometry problem011
solving, including (i) a comprehensive sum-012
mary of the relevant tasks in geometry problem013
solving; (ii) a thorough review of related deep014
learning methods; (iii) a detailed analysis of015
evaluation metrics and methods; and (iv) a crit-016
ical discussion of the current challenges and017
future directions that can be explored. Our ob-018
jective is to offer a comprehensive and practical019
reference of deep learning for geometry prob-020
lem solving, thereby fostering further advance-021
ments in this field. We create a continuously022
updated list of papers: https://anonymous.023
4open.science/r/papers-4Km8Pz2Q.024

1 Introduction025

As a core aspect of mathematical reasoning, Ge-026

ometry Problem Solving (GPS) has long been027

closely tied to education and the assessment of028

mathematical proficiency in Artificial Intelligence029

(AI) systems (Narboux et al., 2018). Given the in-030

herent connection between geometry problems and031

diagrams, GPS has naturally emerged as a repre-032

sentative multimodal mathematical task. Solving033

geometry problems in the format of educational034

exams requires AI systems not only to interpret ge-035

ometric diagrams but also to perform robust logical036

reasoning and numerical computation, making it037

an ideal benchmark for assessing perception and038

reasoning in deep learning models. In recent years,039

the rise of Multimodal Large Language Models040

(MLLMs) has further advanced this field, showcas-041

ing the great potential of deep learning in complex042
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Figure 1: Overview of the survey’s structure

visual understanding and reasoning tasks. The num- 043

ber of papers on deep learning for GPS has grown 044

rapidly, from just 1 in 2018 to 110 in 2024, and 045

continues to increase in 2025 (see Figure 5). 046

Although many surveys have reviewed deep 047

learning methods and Large Language Models 048

(LLMs) in the broader field of mathematical reason- 049

ing (Lu et al., 2023; Ahn et al., 2024; Saraf et al., 050

2024; Yan et al., 2024), the subfield of GPS remains 051

underexplored compared to other mathematical ar- 052

eas (Zhang, 2022; Li et al., 2024e). Recent surveys 053

on GPS are relatively limited in scope—either con- 054

centrating solely on multimodal plane geometry 055

problems (Cho et al., 2025b), or lacking a com- 056

prehensive summary of relevant datasets and deep 057

learning methods (Zhao et al., 2025b). 058

In this study, we began with several classic pa- 059

pers in this field, conducted a single round of for- 060

ward and backward snowballing, searched Google 061

Scholar with the keyword “geometry”, and manu- 062

ally screened to ensure the relevance of the papers. 063

As a result, we collected more than 310 academic 064

papers that involved deep learning for GPS, and 065

conducted a comprehensive and in-depth survey. 066

In the following sections, we will first summa- 067

rize the tasks related to GPS in depth (§2). Then, 068

we will comprehensively review the various meth- 069

ods used in the field of GPS (§3). After that, we 070

perform a systematic analysis of the evaluation 071

metrics and methods (§4). Finally, we will discuss 072
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the current challenges facing this field and look073

forward to future development directions (§5).074

2 Geometry Problem Solving Tasks075

In this section, we outline the tasks related to GPS,076

which are categorized into fundamental, core, and077

composite tasks. Fundamental tasks cover the basic078

abilities required for solving geometry problems,079

core tasks are directly tied to GPS, and composite080

tasks treat GPS as part of broader complex tasks.081

The taxonomy of tasks and datasets is shown in082

Figure 2, and a detailed summary of the datasets083

can be found in Table 1 and Table 2.084

2.1 Fundamental Tasks085

In order to solve geometry problems, a deep learn-086

ing system must first have a variety of fundamen-087

tal capabilities, including understanding geometric088

diagrams, semantic parsing of geometry problem089

texts, extraction of geometric relationships, and090

prediction of geometric knowledge.091

Geometric Diagram Understanding. Geometric092

diagram understanding is committed to fully un-093

derstanding the information in geometric diagrams.094

It consists of multiple subtasks at different levels.095

First, detect and identify basic geometric elements096

(such as points, lines, angles, and polygons) and097

their attributes (such as quantity and size) (Lu et al.,098

2015; Song et al., 2017, 2020). This task is called099

Geometric Element Recognition. Second, based on100

the recognition of geometric elements, further iden-101

tify and construct the structure and spatial relation-102

ship between elements (Xia and Yu, 2021; Huang103

et al., 2023), namely Geometric Structure Recogni-104

tion. These two tasks are often jointly considered105

as Geometric Perception tasks (Kamoi et al., 2024;106

Xing et al., 2024). Third, based on geometric per-107

ception capabilities, generate formal language for108

geometric diagrams (Hao et al., 2022; Wei et al.,109

2024). This task is also known as Geometric Di-110

agram Parsing. Finally, some studies use natural111

language to provide an accurate description of ge-112

ometric diagrams. These descriptions are either113

generated based on diagram parsing or directly114

generated from geometric diagrams (Zhang and115

Moshfeghi, 2024; Huang et al., 2025f), which is116

referred to as Geometric Diagram Captioning.117

Semantic Parsing for geometry problem texts. Se-118

mantic parsing is essential for converting problem119

text into machine-readable formal statements (Mat-120

suzaki et al., 2017), and was a core component121

of early deep learning frameworks for GPS (Joshi 122

et al., 2018; Sun et al., 2019). Geometry problem 123

texts often contain multiple sentences and com- 124

plex geometric information, making cross-sentence 125

references and domain-specific content challeng- 126

ing (Hopkins et al., 2017). Some studies also inte- 127

grate diagram parsing with semantic parsing, aim- 128

ing to achieve the joint parsing of text and dia- 129

grams (Boob et al., 2023; Zhou et al., 2024c). 130

Geometric Relation Extraction. Geometric re- 131

lation extraction is a well-defined task that in- 132

volves extracting geometric relationships either 133

from the question text (Huang et al., 2022), or 134

jointly from both text and diagrams (Gan et al., 135

2017), and representing them in structured formats 136

such as triples (Zhou et al., 2022) or knowledge 137

graphs (Wang et al., 2025h). The model achieves a 138

deep understanding of the problem by extracting ge- 139

ometric relationships in geometry problems rather 140

than using natural language (Gan et al., 2019b,a). 141

Geometric Knowledge Prediction. Geometric 142

knowledge prediction aims to evaluate the model’s 143

understanding of geometry by predicting the ge- 144

ometric principles (Xu et al., 2025b) and theo- 145

rems (Lu et al., 2021) (i.e., geometric knowledge) 146

required to solve geometry problems (Ning et al., 147

2025). The model needs to predict the relevant 148

geometric knowledge required to solve the prob- 149

lem based on the input question and apply it in the 150

reasoning process (Wu et al., 2024a). 151

2.2 Core Tasks 152

GPS can be categorized into geometry theorem 153

proving and geometric numerical calculation (Chen 154

et al., 2022). On the premise of having the capabil- 155

ities covered by the fundamental tasks, the model 156

needs to solve geometry problems in the format of 157

educational exams. See Figure 3 for an example. 158

Geometry Theorem Proving. Geometry theo- 159

rem proving is a long-standing task in the field 160

of AI (Gelernter et al., 1960; Kapur, 1986). The in- 161

put is a geometry theorem that requires proof, and 162

the goal is to output a detailed derivation process 163

of the proof, usually focusing on plane geometry. 164

Geometric Numerical Calculation. Geomet- 165

ric numerical calculation has gradually emerged 166

with the introduction of new datasets in recent 167

years (Seo et al., 2015; Sachan et al., 2017). The 168

input is a geometry problem involving the calcula- 169

tion of a certain geometric value (such as length or 170

angle), and the desired output is a concise answer 171

to the problem, without necessarily providing a 172
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Tasks and
Datasets(§2)

Composite
Tasks(§2.3) Mathematical Reasoning E.g., MATH (2021), MathVista (2024), Math-Vision (2024a), MathVerse (2024g)

Core
Tasks(§2.2)

Numerical Calculation E.g., GEOS (2015), GeoQA (2021), Geometry3K (2021), PGPS9K (2023a)

Theorem Proving E.g., Proving2H (2021), UniGeo (2022), IMO-AG-30 (2024), MO-TG-225 (2024b)

Fundamental
Tasks(§2.1)

Knowledge Prediction E.g., GeoSense (Xu et al., 2025b), GNS-260K (Ning et al., 2025)

Relation Extraction E.g., GeoC50 (Gan et al., 2017), GeoRE (Yu et al., 2021a)

Semantic Parsing E.g., RSP (Joshi et al., 2018), Arsenal (Gonzalez et al., 2021), 2StepMemory (2020)

Diagram Understanding E.g., Tangram (2024a), Geoclidean (2022), PGDP5K (2022), AutoGeo (2025f)

Figure 2: Taxonomy of Tasks and Datasets for Geometry Problem Solving.

complete reasoning process. Its question types can173

usually be divided into several categories, includ-174

ing plane geometry, solid geometry, and analytic175

geometry.176

Geometry Theorem Proving Geometric Numerical Calculation

A

B

C

D

Question: Given AC bisects 

∠BAC and ∠B =∠D. Prove 

that BC = CD.

Answer: AC bisects∠BAC , so 

∠BAC =∠CAD. Since ∠BAC 

=∠CAD, ∠B =∠D and AC = 

AC, we can conclude that 

△ABC ≌△ADC (AAS). Since 

△ABC ≌△ADC, BC = CD.

10

35

Question: Consider the 

following cylinder with 

a height of 35𝑐𝑚. Find 

the surface area of the 

cylinder (𝑐𝑚2). Round 

your answer to two 

decimal places.

Answer: 2827.43.

Figure 3: An example of geometry theorem proving and
geometric numerical calculation problem.

2.3 Composite Tasks177

Recently, GPS has also often appeared as a sub-178

task of composite tasks, mainly used to explore the179

model’s ability in mathematical reasoning.180

Mathematical Reasoning. Geometry is an impor-181

tant part of mathematics, and geometric diagrams182

are also a typical type of mathematical synthetic183

image. Therefore, geometry problems are often184

included in single-modal or multi-modal mathe-185

matical benchmarks (Hendrycks et al., 2021; Lu186

et al., 2024) to evaluate the performance of models187

in mathematical reasoning tasks.188

3 Methods for Geometry Problem Solving189

This section comprehensively reviews deep learn-190

ing methods for GPS. We first introduce the rel-191

evant architectures, then classify and summarize192

other methods according to the training and infer-193

ence stages. The taxonomy of these methods is194

shown in Figure 4.195

3.1 Architectures for Geometry Problem196

Solving197

In GPS, the classic deep learning architecture is198

the Encoder-Decoder architecture (Sutskever et al.,199

2014), which also encompasses the widely used200

MLLMs in recent years. Other architectures have201

also been explored, including Generative Adver- 202

sarial Networks (GANs)(Goodfellow et al., 2014), 203

Graph Neural Networks (GNNs) (Scarselli et al., 204

2008), and Decoder-Only architectures. These ar- 205

chitectures are outlined in more detail in Table 4. 206

3.1.1 Encoder-Decoder Architecture 207

The encoder-decoder architecture can be divided 208

into the following five key parts: text encoder, dia- 209

gram encoder, multimodal fusion module, decoder, 210

and optional knowledge module. 211

Text Encoder. Text encoder can convert the text 212

content of the geometry problem into formalized 213

statements or encode it into vectors, enabling deep 214

learning systems to process the text information. 215

Early studies usually use Long Short-Term Mem- 216

ory network (LSTM) (Hochreiter and Schmidhuber, 217

1997), Gated Recurrent Unit (GRU) (Cho et al., 218

2014) and their bidirectional variants as text en- 219

coders, while more recent work employs Trans- 220

formers (Vaswani et al., 2017) or pre-trained lan- 221

guage models. 222

Diagram Encoder. Parsing geometric diagrams 223

into formal statements or encoding them into vec- 224

tor information is of great significance for solv- 225

ing multimodal geometry problems. Early stud- 226

ies mainly used various Convolutional Neural Net- 227

works (CNNs) (LeCun et al., 1998) to encode geo- 228

metric diagrams, while recent studies have widely 229

used pre-trained diagram encoders (Dosovitskiy 230

et al.; Radford et al., 2021). In addition, there are 231

also studies that use LSTM, GNN, and other struc- 232

tures for diagram parsing. 233

Multimodal Fusion Module. For multimodal 234

geometry problems, the multimodal fusion mod- 235

ule fuses and aligns text and diagram information 236

extracted from the original problem or encoders, 237

then passes it to the decoder. Some works use 238

a co-attention module (Yu et al., 2019) for multi- 239

modal fusion, and in MLLMs, structures such as 240

MLP (Liu et al., 2024a) are widely used. Addition- 241
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Methods(§3)

Inference(§3.3)

Knowledge-Augmented

Others E.g., Learning to Plan (Guo et al., 2024b), EM2 (2024)

Visual Aids E.g., VAP (Xiao et al., 2024b), VisuoThink (2025f)

Few-shot Learning E.g., ICL (Vu et al., 2025), RAG (Sharma et al., 2025)

Test-Time Scaling

Others E.g., R3V (Cheng et al., 2024), CEO (Jin et al., 2025)

Verification E.g., PRM (2024), LECO (2024), GenRM (2025a)

Search E.g., Beam Search (2023), MCTS (2024), PRS (2025f)

X-of-Thought E.g., CoT (2024c), PoT (2024b), MCoT (2024)

Training(§3.2)

Reinforcement Learning
LLM Alg. E.g., DPO (2025a), GRPO (2025), GPG (2025)

Non-LLM Alg. E.g., DQN (Peng et al., 2023), PPO (2023)

Supervised Fine-Tuning

Data Filtering E.g., ThinkLite-VL (2025e), GeoGPT4V (2024b)

Data Augmentation E.g., GeoQA+ (2022), Geo170K (2025b)

Data Generation E.g., GeomVerse (2024a), GeoGen (2025)

Pre-Training
Pre-Training Data E.g., AMPS (2021), SynthGeo228k (2025e)

Pre-Training Task E.g., MEP (2022), JLP (2021), PMP (2024h)

Archs. (§3.1)

Other Architectures E.g., GAN (2023), GNN (2023), Decoder-Only (2024), Hybrid (2025a)

Encoder-Decoder Arch.

Knowledge Module E.g., Knowledge Extractor and Integrator (2022), Theo-
rem Predictor (2022), Answer Verifier (2024f)

Decoder E.g., LSTM (2024a), GRU (2024h), LLM (2025a)

Fusion Module E.g., co-attention (2021), MLP (2025e)

Diagram Encoder E.g., CNN (2023a), ViT (2023), VQ-VAE (2023)

Text Encoder E.g., LSTM (2021), GRU (2021), Transformer (2024a)

Figure 4: Taxonomy of Deep Learning Methods for Geometry Problem Solving.

ally, some studies treat this module together with242

the decoder as a unified encoder-decoder architec-243

ture.244

Decoder. This module decodes the geometric245

knowledge and information to output the final an-246

swer to the question. Many studies use LSTM or247

GRU as the decoder of deep learning systems. In248

addition, there are also a lot of studies using pre-249

trained LLMs.250

Knowledge Module. Some GPS systems integrate251

knowledge modules based on deep neural networks252

to more efficiently retrieve and apply knowledge253

and theorems in the field of geometry and verify254

the correctness of solutions. The knowledge mod-255

ules can be mainly divided into three categories:256

the first is Knowledge Extractor and Integrator,257

which is used to extract and integrate geometric258

knowledge (Xiao et al., 2024a); the second is The-259

orem Predictor, which is used to predict the geo-260

metric theorems required for the current solution261

step (Guo and Jian, 2022); and the third is Answer262

Verifier, which is used to ensure the correctness of263

the solution (Pan et al., 2025).264

More details about the encoder-decoder architec-265

ture can be found in Appendix C.266

3.1.2 Other Architectures 267

In addition to the encoder-decoder architecture, 268

some deep learning systems for solving geometry 269

problems have adopted other architectures. Song 270

et al. (2023) adopts GAN architecture, while Peng 271

et al. (2023); Huang et al. (2024) use GNN to solve 272

geometry problems. Many studies adopt Decoder- 273

Only Architecture, for example, the AlphaGeom- 274

etry series (Trinh et al., 2024; Sinha et al.; Cher- 275

vonyi et al., 2025) uses a trained Transformer to 276

solve IMO geometry problems, and some work di- 277

rectly uses LLMs to solve unimodal geometry prob- 278

lems (Tong et al., 2024; Tang et al., 2024b). Other 279

studies have combined LLMs with other deep learn- 280

ing architectures (Zhao et al., 2025a; Cheng et al., 281

2025a), or multiple LLMs (Gao et al., 2024; Lei 282

et al., 2024; Liu et al., 2025b), to build Hybrid 283

Architectures for GPS. 284

3.2 Training Stage for Geometry Problem 285

Solving 286

3.2.1 Pre-Training 287

Pre-Training Task. Beyond directly applying pre- 288

trained models to geometry problems, many works 289

design targeted pre-training tasks to enhance per- 290
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formance. Some focus on the textual modality:291

Chen et al. (2022) proposes Mathematical Expres-292

sion Pretraining (MEP) to capture mathematical293

knowledge, while Zhang et al. (2023a, 2024f); Ma294

et al. (2024a) adopt Masked Language Modeling295

(MLM) to improve understanding and generation296

of textual descriptions. Others target diagram en-297

coders: Chen et al. (2021) introduces Jigsaw Lo-298

cation Prediction (JLP) and Geometry Elements299

Prediction (GEP), while Ning et al. (2023) applies300

Masked Image Modeling (MIM) and Multi-Label301

Classification (MLC) to optimize the diagram en-302

coder. There are also tasks focusing on match-303

ing multimodal relationships, such as LANS (Li304

et al., 2024h) with Structural-Semantic Pretrain-305

ing (SSP) and Point-Match Pretraining (PMP), and306

SANS (Lin et al., 2025) with Dual-Branch Visual-307

Textual Points Matching (DB-VTPM).308

Pre-Training Data. To address the scarcity of309

geometric pre-training data, AMPS (Hendrycks310

et al., 2021) and InfiMM-WebMath-40B (Han311

et al., 2024) offer large-scale mathematical and312

multimodal datasets, boosting model performance313

on geometry tasks. Given the gap between real-314

world images and geometric diagrams, some works315

construct dedicated datasets for diagram encoder316

pre-training. Geo-ViT (Xia et al., 2025) com-317

piles 120K+ diagrams for ViT training; CLIP-318

Math (Zhang et al., 2025c), GeoCLIP (Cho et al.,319

2025a), GeoGLIP (Zhang et al., 2025d), and DFE-320

GPS (Zhang et al., 2025e) use synthetic data for321

geometry-focused visual pretraining.322

3.2.2 Supervised Fine-tuning323

In GPS, deep learning models typically require Su-324

pervised Fine-Tuning (SFT), where training data325

plays a key role. In addition to collecting data from326

textbooks, exams, and the Internet, many studies fo-327

cus on data generation, augmentation, and filtering328

of training data.329

Data Generation. Rule-based approaches syn-330

thesize geometry problems using predefined gen-331

erators (Kim and Chun, 2022; Trinh et al., 2024;332

Kamoi et al., 2024; Huang et al., 2025b) or pro-333

gram templates that build complex diagrams from334

basic elements (Kazemi et al., 2024a; Zhang et al.,335

2025c; Sun et al., 2025c). Recent studies further336

produce high-quality question-answer pairs with337

reasoning steps by multi-component pipelines (Pan338

et al., 2025; Fu et al., 2025). LLM-based methods339

generate questions based on math concepts (Tang340

et al., 2024b; Huang et al., 2025e), with frame-341

works like GeoUni (Cheng et al., 2025a) and hy- 342

brid strategies combining rule-based image gener- 343

ation with LLM-based QA synthesis (Deng et al., 344

2024). Agent-based approaches are also emerg- 345

ing (Lee et al., 2025; Wen et al., 2025), includ- 346

ing competition-grade problems from Tonggeome- 347

try (Zhang et al., 2024b). 348

Data Augmentation. To improve robustness, many 349

works apply rule-based augmentation to diversify 350

text and diagrams (Cao and Xiao, 2022; Zhang 351

et al., 2023a, 2024d; Xiao and Zhang, 2023; Lin 352

et al., 2025; Zhuang et al., 2025), use geometry the- 353

orems to create new problems (Zhang et al., 2023c; 354

Wu et al., 2024a), or adopt LLMs to generate di- 355

verse QA pairs (Tong et al., 2024; Shi et al., 2024; 356

Anand et al., 2024a; Jaiswal et al., 2024; Cheng 357

et al., 2024). In addition, reasoning ability is en- 358

hanced by adding annotated reasoning traces, in- 359

cluding CoT (Gao et al., 2025b; Chen et al., 2024c; 360

Sun et al., 2025b; Luo et al., 2025; Huang et al., 361

2025d; Ning et al., 2025), PoT (Li et al., 2024d; 362

Sharma et al., 2025), and long CoT (Xu et al., 363

2024a; Xiang et al., 2024; Xu et al., 2025a; Du 364

et al., 2025). Other works improve geometric un- 365

derstanding by generating aligned diagrams for 366

unimodal geometry problems (Zhao et al., 2024; 367

Cai et al., 2024b) or incorporating diagram descrip- 368

tions such as literals and captions (Tey; Zhang et al., 369

2025e; Xia et al., 2025; Huang et al., 2025f). 370

Data Filtering. Sun et al. (2025b); Fu et al. (2025); 371

Wang et al. (2025e) use search algorithms to screen 372

data quality and difficulty, while Cai et al. (2024b); 373

Han et al. (2024); Luo et al. (2025); Jia et al. (2025); 374

Huang et al. (2025e) use LLMs to score samples to 375

screen out high-quality data. 376

3.2.3 Reinforcement Learning 377

Reinforcement Learning (RL) can significantly im- 378

prove the geometric reasoning capabilities of deep 379

learning models. 380

Non-LLM Algorithms. Some studies have used 381

Deep Reinforcement Learning (DRL) methods 382

without LLM to solve geometry problems (Zou 383

et al., 2024), such as the Deep Q-Network 384

(DQN) (Mnih et al., 2013) algorithm (Peng et al., 385

2023; Huang et al., 2024) and the Proximal Pol- 386

icy Optimization (PPO) (Schulman et al., 2017) 387

algorithm (Xiao and Zhang, 2023). 388

LLM Algorithms. In LLM-based approaches, 389

RL is typically introduced after SFT. Common al- 390

gorithms include PPO (Peng et al., 2024, 2025), 391

Direct Preference Optimization (DPO) (Rafailov 392
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et al., 2023; Zhang et al., 2025c; Xu et al., 2025a;393

Huang et al., 2025b), Group Relative Policy Opti-394

mization (GRPO) (Guo et al., 2025; Huang et al.,395

2025d; Deng et al., 2025b; Tan et al., 2025; Deng396

et al., 2025a; Huang et al., 2025c; Chen et al.,397

2025b; Liu et al., 2025a; Wang et al., 2025i), and398

Group Policy Gradient (GPG) (Chu et al., 2025).399

3.3 Inference Stage for Geometry Problem400

Solving401

3.3.1 Test-Time Scaling402

Test-Time Scaling (TTS) has recently gained atten-403

tion for significantly enhancing model reasoning404

during inference.405

X-of-Thought. X-of-Thought methods encourage406

LLMs to produce longer, more diverse outputs,407

which consume more computational resources than408

generating only short samples (Zhang et al., 2025b).409

Many works adopt different CoT (Wei et al., 2022)410

for GPS (Xu et al., 2024c; Fu et al., 2024; Taveekit-411

worachai et al., 2024), some of which involve mul-412

tiple rounds of interaction with the model (Zhang413

et al., 2023d; Zheng et al.). To boost arithmetic ac-414

curacy, PoT (Chen et al., 2023a) is used to generate415

complete programs (DAS et al., 2024; Chen et al.,416

2024b) or distributed subprograms (Singh et al.,417

2025). Some studies combine CoT and PoT (Duan418

et al., 2024; Liu et al., 2023), or integrate CoT with419

external tools (Qian et al., 2023; Gou et al., 2024).420

In addition, multimodal CoT approaches generate421

formal (Zhou et al., 2024c) or natural language (Jia422

et al., 2024; Tey; Singh et al., 2024) diagram de-423

scriptions before reasoning.424

Search Methods. Many deep learning systems425

for GPS integrate tree-based search algorithms to426

enhance robustness, including Beam Search (Trinh427

et al., 2024; Chervonyi et al., 2025; Peng et al.,428

2023; Zhang et al., 2024d; Xu et al., 2024a), Monte429

Carlo Tree Search (MCTS) (Coulom, 2006; Zou430

et al., 2024; Rabby et al., 2024; Yao et al., 2024;431

Dong et al., 2024; Wu et al., 2025), and Predictive432

Rollout Search (PRS) (Wang et al., 2025f). Graph433

search is also explored (Xiong et al., 2024).434

Verification Methods. A reliable verification435

method is crucial in TTS. Process Reward Models436

(PRMs) assess reasoning quality and often guide437

search paths (Xiang et al., 2024; Luo et al., 2025;438

Wang et al., 2025c; Tu et al., 2025; Dong et al.,439

2024; Hu et al., 2025). Other methods include us-440

ing logits-based confidence (Yuxuan et al., 2024) or441

training an outcome verifier (Zhang et al., 2025a).442

Others. Cheng et al. (2024) uses an LLM to select 443

correct answers from multiple generated candidate 444

solutions, while Jin et al. (2025) proposes an agent 445

framework to manage multiple agents and their 446

reasoning strategies dynamically. 447

3.3.2 Knowledge-Augmented Inference 448

Knowledge-augmented inference enhances reason- 449

ing by incorporating external knowledge sources. 450

Few-shot Learning. Few-shot learning (Brown 451

et al., 2020) guides models in solving similar ge- 452

ometry problems. Several studies provide exam- 453

ples through In-Context Learning (ICL) (Agrawal 454

et al., 2024; Cheng et al., 2025b), some of which 455

provide examples based on basic skills (Chen 456

et al., 2024a), some incorporate curriculum learn- 457

ing methods (Vu et al., 2025), and some place text 458

in images (Wang et al., 2024b). Others follow the 459

Retrieval-Augmented Generation (RAG) paradigm 460

to retrieve similar examples as hints (Xu et al., 461

2024b; Jaiswal et al., 2024; Sharma et al., 2025). 462

Visual Aids. For GPS, some studies process the 463

corresponding geometric diagrams during the in- 464

ference stage to help solve the problem. Xiao et al. 465

(2024b) uses drawing tools to convert text prob- 466

lems into multimodal input for reasoning, while Hu 467

et al.; Chen et al. (2025c); Qi et al. (2025); Wang 468

et al. (2025f) facilitate GPS by drawing auxiliary 469

lines or highlighting key features on diagrams. 470

Others. Guo et al. (2024b) employs learned task 471

plans to guide reasoning, and Yin et al. (2024) lever- 472

ages explicit memory updates to utilize contextual 473

knowledge captured during training. 474

4 Evaluations for Geometry Problem 475

Solving 476

In this section, we summarize the evaluation meth- 477

ods for GPS, including automatic and manual ap- 478

proaches. 479

4.1 Automatic Evaluation 480

Automatic metrics include performance-based met- 481

rics (outcome-based metrics and process-based 482

metrics) and efficiency-based metrics. 483

4.1.1 Performance-Based Metrics 484

Outcome-Based Metrics. Outcome-based metrics 485

focus on measuring the accuracy of final answers 486

without considering reasoning details. Top-k Accu- 487

racy (Top-k Acc) and Pass@n (P@n) are two main 488

metrics for answer accuracy, measuring the propor- 489

tion of cases where a correct answer appears in the 490

6



top k predictions and the proportion of problems491

solved correctly at least once within n attempts,492

respectively. Other works also employ outcome-493

based metrics such as choice (proportion of select-494

ing the correct answer from multiple-choice op-495

tions, or randomly if undetermined) (Zhang et al.,496

2023a), F1 score (considering both precision and497

recall) (Mishra et al., 2022b; Cheng et al., 2025b),498

maj@k (proportion of obtaining the correct an-499

swer via majority vote among k samples) (Yue500

et al., 2024a), number of correct and wrong an-501

swers (Dou et al., 2024), and competition scores502

such as SAT (Seo et al., 2015) or IMO scores (Trinh503

et al., 2024). Most metrics are evaluated using rule-504

based methods, with some adopting the “LLM-as-505

a-Judge” paradigm (Li et al., 2024a).506

Process-Based Metrics. Recently, increasing at-507

tention has been paid to the reasoning process of508

deep learning systems, beyond just the final re-509

sults, to further improve model performance. To510

assess the executability of the reasoning process,511

Completion (Zhang et al., 2023a) measures the ac-512

curacy of selecting the first executable solution,513

while No Result (Chen et al., 2021) indicates the514

ratio of cases where the reasoning program fails515

to produce output. To evaluate the correctness516

of reasoning on benchmarks with standard CoT517

answers (Jaiswal et al., 2024; Qiao et al., 2024),518

some studies use metrics such as N-gram Similar-519

ity (Ma et al., 2024b), Step Accuracy Rate (Wang520

et al., 2025b), and CoT-E score (Chen et al., 2025a),521

and extract step answers via rule-based methods522

or LLMs. For other process-based metrics that523

are hard to quantify, such as step accuracy with-524

out reference CoT (Zhang et al., 2024g; Liu et al.,525

2024c; Zhou et al., 2024b) or logical coherence of526

CoT (Zhang et al., 2025e), scoring is typically done527

with the help of LLMs.528

4.1.2 Efficiency-Based Metrics529

Efficiency-based metrics measure the model’s re-530

source consumption and efficiency performance531

during reasoning, including the time required to532

solve the problem (Alvin et al., 2017), the failure533

rate within a time limit (timeout) (Zhang et al.,534

2023c), the number of inference steps (Wu et al.,535

2024a; Fang et al., 2024), and the cost of running536

the model (Balunović et al., 2025).537

4.2 Manual Evaluation538

Manual evaluation, which is rarely used in GPS,539

involves experts or annotators directly checking540

the model’s output or reasoning process. Core uses 541

include: (1) evaluating the correctness of complex 542

answers (e.g., judging whether 1√
2

equals
√
2
2 ) (Wu 543

et al., 2023); (2) assessing the interpretability of 544

the reasoning process (Sachan et al., 2017; Trinh 545

et al., 2024). Additionally, many studies manually 546

check the reasons for wrong and correct answers, 547

which is also called a case study (Lu et al., 2021; 548

He et al., 2024a). 549

5 Discussion 550

5.1 Challenges 551

Data. First, current GPS data have significant lim- 552

itations. In terms of task type, geometry theorem 553

proving is seriously underrepresented compared to 554

numerical calculation. In terms of geometry type, 555

solid and analytic geometry are lacking relative to 556

plane geometry. In terms of language type, the data 557

is mostly in English and Chinese, with little in other 558

languages. Second, a large gap remains between 559

synthetic data and real exam questions. Although 560

recent methods can generate large-scale synthetic 561

data for training, their performance improvement 562

is still limited (Pan et al., 2025; Fu et al., 2025), 563

which highlights the need for methods to synthe- 564

size more realistic and effective data. Additionally, 565

most datasets lack annotations for intermediate 566

steps and reasoning processes (Shi et al., 2024), 567

which future work should address. More discus- 568

sion is in Appendix A. 569

Evaluation. First, question types are monotonous. 570

Existing benchmarks mainly use multiple-choice 571

questions for evaluation (see Table 1), allowing 572

models to guess and compromising evaluation ac- 573

curacy. Some works mitigate this by permuting 574

options (Liu et al., 2024b) or by not providing can- 575

didate options (Fu et al., 2025), but these methods 576

have not yet become widespread. Second, there is 577

no standard method for evaluating the reasoning 578

process. As the demand for model improvement 579

grows, reasoning evaluation for GPS has gained 580

attention. However, existing methods lack unified 581

standards, and more precise criteria are needed to 582

better identify and address model deficiencies (Park 583

et al., 2024). Additionally, current benchmarks 584

may lack robustness, as model performance of- 585

ten varies under slight perturbations (Wang et al., 586

2025d; Zhou et al., 2024d). Finally, some datasets 587

may appear in training data, compromising fair 588

evaluation (Park et al., 2024), underscoring the 589

need for more authoritative evaluation methods. 590
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Capability. Current deep learning systems still591

show notable deficiencies in solving geometry prob-592

lems. Given the multimodal nature of most prob-593

lems, the model’s geometric visual perception abil-594

ity is crucial. However, studies show that adding595

diagrams often lowers accuracy compared to us-596

ing text alone (Zhang et al., 2025e; Onuoha et al.,597

2025). In multimodal settings, spatial perception598

of diagrams remains a major bottleneck limiting599

overall performance (Sun et al., 2024; Xing et al.,600

2024; Kamoi et al., 2024; Zhang et al., 2024c).601

Studies show that deep learning models struggle to602

detect (Okada et al., 2023; Cho et al., 2025a) and603

perceive (Wang et al., 2025d; Weng et al., 2025)604

geometric angles, and often fail to accurately rec-605

ognize line lengths (Wei et al., 2024; Huang et al.,606

2025b). These weaknesses may stem from the one-607

dimensional nature of model architectures (Sun608

et al., 2025d), the limited resolution of visual en-609

coders (Zhang et al., 2024a; Zhu et al., 2025), and610

their training on natural images (Hsu et al., 2022;611

Sharma et al., 2025), all of which hinder perfor-612

mance on geometric figures. Additionally, many613

models continue to struggle with arithmetic ac-614

curacy. Some adopt symbolic or formal reason-615

ing (Ning et al., 2025; Chervonyi et al., 2025),616

while others use external computation modules to617

mitigate this limitation (Duan et al., 2024; Zhang618

et al., 2024f; Pan et al., 2024). LLMs may also619

develop a mindset, such as defaulting to coordinate620

system construction (Sun et al., 2025d), which can621

fail when such strategies are inapplicable.622

5.2 Future Directions623

Combining Perception and Reasoning. Studies624

show that visual perception and reasoning errors625

are the primary causes of model failures (Park et al.,626

2024; Wang et al., 2025b). While early efforts tar-627

geted reasoning improvements, recent research has628

shifted toward perception; however, effectively in-629

tegrating both remains a key challenge. These two630

aspects are not mutually exclusive but rather com-631

plementary. For example, better modality align-632

ment tasks can be designed for specialized visual633

encoders or modules to enhance reasoning; more634

efficient multimodal CoT methods can be explored635

to achieve deeper integration of perception and rea-636

soning; and more effective RL strategies, including637

training set design and reward mechanisms can be638

developed. Notably, training sets designed for SFT639

may not be suitable for RL (Chen et al., 2025b),640

which calls for careful consideration from the per-641

spectives of diversity and generalization. 642

Using Cognitive Pattern. Cognitive pattern is 643

a comprehensive approach that simulates human 644

cognitive processes in understanding and solving 645

complex problems (Kurbatov et al., 2021, 2022). 646

Originating from early problem-solving research, 647

many GPS strategies mimicking human problem- 648

solving have proven effective (Zhou and Yu, 2021; 649

Rao et al., 2022), such as highlighting key informa- 650

tion in diagrams and texts; referencing diagram an- 651

notations; adding auxiliary lines, coordinate axes, 652

and other diagram elements to clarify geometric 653

structures; applying relevant theorems and knowl- 654

edge; and using curriculum learning to progres- 655

sively enhance problem-solving ability. However, 656

these methods remain underutilized in current deep 657

learning systems and warrant further investigation. 658

Educational System. Before the rise of deep learn- 659

ing, many systems and tools had already been 660

developed for geometry education, such as au- 661

tomatic scoring (Mendis et al., 2017), theorem 662

discovery (Kovács and Yu, 2021), and problem- 663

solving systems (Kang et al., 2016; Kurbatov et al., 664

2020; Kurbatov, 2021; Kurbatov and Fominykh, 665

2022; Li et al., 2024c), aimed at supporting teach- 666

ing and learning. However, in the deep learning 667

era, intelligent systems for geometry education re- 668

main relatively scarce. Automated GPS is seen as a 669

key direction for future intelligent education (Yang 670

et al., 2023). While recent AI tools have shown 671

progress in solving geometry problems, they still 672

face challenges in becoming effective educational 673

tools—such as limited multi-language support and 674

insufficient visual interaction. Their real-world 675

capabilities remain constrained, and dedicated edu- 676

cational agents are still rare, highlighting the urgent 677

need for further research to tackle the complex de- 678

mands of this field. 679

6 Conclusion 680

In this paper, we present a comprehensive and sys- 681

tematic survey of GPS. We summarize the relevant 682

tasks, deep learning methods, and evaluation ap- 683

proaches, and provide an in-depth analysis of the 684

limitations of current data, evaluation, and model 685

capabilities. Finally, we look forward to possible 686

future research directions and highlight the broad 687

scope for exploration in this field. This article 688

aims to provide readers who are interested in this 689

field with a comprehensive and practical resource 690

to meet their research needs. 691
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Limitations692

Our survey focuses on the intersection of deep693

learning and GPS tasks in the past decade, and694

may not fully present the development process of695

the entire field. In addition, given the rapid develop-696

ment of this field, our survey may not timely reflect697

the latest developments and progress before and698

after the survey. Furthermore, our survey is mainly699

dedicated to summarizing existing research work,700

and there are limitations in experimental analysis.701

Despite these limitations, this survey still provides702

a valuable overview of the current status and main703

trends in the field of deep learning for GPS, which704

is expected to provide a useful reference for re-705

searchers and practitioners in this field.706
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Figure 5: Papers on deep learning for geometry problem
solving over the years (data for 2025 is up to April).

A Geometry Problem Solving Datasets2456

In this section, we further analyze various datasets2457

for GPS. Table 1 and Table 2 provide a compre-2458

hensive summary of these datasets related to GPS2459

tasks from multiple perspectives, including dataset2460

name, task type, geometry type, grade level, prob-2461

lem source, presence of images, language, question2462

format, rationale availability, sizes of training, vali-2463

dation, and test sets, as well as open-source status;2464

a check mark indicates open-source datasets with2465

links to the corresponding resources.2466

The current data for geometry theorem proving2467

remains insufficient. Existing academic research2468

predominantly centers on geometric numerical cal-2469

culations, whereas studies on geometry theorem2470

proving are relatively limited, and relevant data2471

resources are still lacking. Despite sharing many2472

similarities in problem formulation and underlying2473

mathematical concepts (Chen et al., 2022), proof2474

problems and calculation problems have distinct2475

characteristics and challenges. Therefore, both2476

types of geometry problems deserve equal atten-2477

tion.2478

The current data for solid geometry and analytic2479

geometry remains insufficient. Most datasets2480

used in GPS tasks are concentrated in plane ge-2481

ometry, while data for other geometry types—such2482

as solid geometry (Yu et al., 2021b) and analytic2483

geometry (Wu et al., 2023)—remain limited. One2484

study notes that existing solid geometry problems2485

are often overly simple and regular (Xu et al.,2486

2025b), with diagrams containing only basic visual2487

elements and rarely involving complex geometric2488

combinations, thereby restricting progress in this2489

area. Even within plane geometry, high-quality2490

evaluation datasets are still scarce.2491

The current data sources remain limited. While2492

existing datasets are generally authentic and reli-2493

able, they are often small in scale. Recently, due to2494

the shortage of real-world data and concerns over2495

copyright, many large-scale datasets have been con- 2496

structed via data augmentation or programmatic 2497

synthesis (Gao et al., 2025b; Pan et al., 2025). How- 2498

ever, the synthetic data often falls short in terms of 2499

realism, diversity, and quality, making it difficult to 2500

serve as a full substitute for real data. 2501

The current data coverage of language and ques- 2502

tion types remains limited. In terms of language, 2503

existing datasets primarily cover English and Chi- 2504

nese, while authentic data involving other native 2505

languages (Zhang et al., 2023b; Song et al., 2024) 2506

remains notably limited. This limits evaluation 2507

in the context of various national exams and re- 2508

duces fairness. In terms of question types, most 2509

are multiple-choice, which allows models to guess 2510

answers and impairs accurate assessment of model 2511

reasoning ability. 2512

The current datasets remain lacking in rationale 2513

annotations. Most datasets do not provide detailed 2514

annotations of intermediate reasoning steps (Shi 2515

et al., 2024). Even when rationales are included, 2516

they often lack standardized formatting and suf- 2517

ficient granularity, falling short of the needs for 2518

evaluating step-by-step reasoning. Moreover, the 2519

rationale annotations are typically presented in nat- 2520

ural language, which may not meet the needs of 2521

deep learning systems that operate in formal lan- 2522

guages. 2523

B Other Geometry Tasks 2524

In addition to GPS, some other geometry-related 2525

tasks, which have similar fundamental tasks, have 2526

not been systematically summarized. More details 2527

of the corresponding datasets can be found in Ta- 2528

ble 3. 2529

B.1 Geometric Diagram Generation 2530

This task is dedicated to generating high-quality 2531

geometric diagrams. It aims to facilitate a deeper 2532

understanding of geometry problems and related 2533

applications such as image editing, thereby provid- 2534

ing strong support for the field of education. 2535

Geometric Diagram Reconstruction. This task 2536

is one of the earlier works in the field of geometry. 2537

It aims to use existing simple sketches or prelim- 2538

inarily drawn images to reconstruct a clearer and 2539

more standardized complete image, thereby help- 2540

ing users to understand and visualize the image 2541

content more intuitively (Yu et al., 2015). One of 2542

the key challenges is to reconstruct 3D geometry 2543

25



Datasets Task Type Grade Source Image Language Question Rationale Trainval Size Test Size Opensource

Fundamental Tasks

GeoC50 (2017) RE P - exist (dataset) ✓ zh FR - - 50 ✗

2Dgeometricshapes (2020) ER P - program ✓ - CQ - 36000 54000 ✓

GeoRE (2021a) RE P 6-12 Internet ✗ zh FR - 10000 2901 ✓

PGDP5K (2022; 2022b; 2022a) DP P 6-12 exist, textbook ✓ en FR - 4000 1000 ✓

Geoclidean (2022) SR P - program ✓ en YN - 185 555 ✓

BBH-geometricshapes (2023) ER P - program ✗ en MC - - 250 ✓

Tangram (2024a) ER P, S 1-12 exam, textbook ✓ en NR - - 4320 ✓

GeoCQT (2024a) ER P - exist, textbook ✓ - CQ - ∼11200 ∼2800 ✗

SP-1 (2024) DP P - program ✓ en FR - 200000 480 ✓

ElementaryGeometryQA (2024) DP, SP P 1-5 textbook ✓ en FR - - ∼500 ✗

Geoperception (2024c) SR P 6-12 exist ✓ en SA - - 11657 ✓

GePBench (2024) ER, SR P - program ✓ en MC - ∼300000 285000 ✗

CurveML (2024) ER P - program ✓ - CQ - 468000 52000 ✓

AVSBench∗ (2024) ER, SR P - program ✓ en MC, FR - - 5073 ✓

VisOnlyQA∗ (2024) ER, SR P - exist, program ✓ en MC, YN - 70000 1600 ✓

AutoGeo-100k (2025f) DC P - program ✓ en FR - 100000 - ✓

Geo170K-alignment (2025b) DC P 6-12 exist ✓ en FR - 60252 - ✓

GeomRel (2025d) SR P - program ✗ en MC - - 2629 ✓

ElementaryCQT (2025) ER P - program ✓ - CQ - 342000 38000 ✓

SynthGeo228K (2025e) DP, DC P - program ✓ en FR - 205491 22833 ✓

formalgeo-structure774k (2025e) DP, DC P 6-12 exist ✓ en FR - ∼774000 - ✗

VGPR (2025a) ER, SR P - program ✓ en MC - 300000 50000 ✗

GeoX-alignment (2025) DC P - Internet ✓ en FR - 6232 - ✓

VisNumBench∗ (2025) ER, SR P - exist, prog, web ✓ en MC - - 1913 ✓

GeoPeP∗ (2025c) ER, SR P, S - program ✓ en FR nl 200000 - ✓

MathGlance∗ (2025c) ER, SR P, S - exist, program ✓ en MC, YN, FR - - 1609 ✓

CogAlign-Probing∗ (2025b) SR P - program ✓ en YN - 44000 4000 ✓

CogAlign-train∗ (2025b) SR P, S - program ✓ en FR - 64000 - ✓

Core Tasks

GEOS (2015) NC P 6-10 exam ✓ en MC - 67 119 ✓

GeoShader (2017) NC P 6-10 textbook, exam ✓ en NR - - 102 ✗

GEOS++ (2017; 2019) NC P 6-10 textbook ✓ en MC - 500 906 ✗

GEOS-OS (2017) NC P 6-10 textbook ✓ en MC demonstration 2235 - ✗

Geometry3K (2021) NC P 6-12 online library ✓ en MC - 2401 601 ✓

GeoQA (2021) NC P 6-12 exam ✓ zh MC program 4244 754 ✓

Geometry3Dcalculation (2021b) NC S - website ✗ en, zh NR - - 140 ✗

Proving2H (2021) TP P 6-9 textbook, Internet ✗ zh FR - - 110 ✗

GeometryQA (2021) NC P 1-6 exist ✗ zh NR equations 1118 280 ✓

GeoQA+ (2022) NC P 6-12 website ✓ zh MC program 12054 - ✓

UniGeo (2022) TP, NC P 9-12 website, exist ✓ en MC, FR program 12340 2201 ✓

BIG-bench-IG (2022) NC P - program ✗ en NR - - 250000 ✓

PGPS9K (2023a) NC P 6-12 exist, textbook ✓ en NR program 8022 1000 ✓

formalgeo7k (2024i) NC P 6-12 exist ✓ en, zh NR formal ∼5934 ∼1047 ✓

formalgeo-imo (2023c) TP P - online ✓ en, zh FR formal - 18 ✓

Conic10K (2023) NC A 10-12 website ✗ zh FR nl 8793 2068 ✓

GeomVerse (2024a) NC P - program ✓ en NR nl 11190 29000 ✓

IMO-AG-30 (2024) TP P - exam ✗ en FR - - 30 ✓

aug-Geo3K (2024a) NC P 6-12 exist ✓ en MC nl 13783 3824 ✗

GeoEval (2024e) NC P, S, A 1-12 exist, online ✓ en MC - - 5050 ✓

GeoGPT4V-GPS (2024b) TP, NC P 6-12 exist ✓ en, zh MC, FR nl 16557 - ✓

GeoVQA (2024a) TP, NC P, S 6-12 textbook ✓ en NR, FR nl 4440 150 ✗

GeoMath (2024b) TP, NC S 10-12 website ✓ en NR, FB, FR nl 9155 906 ✗

GeoMM (2024) NC P - program ✓ en NR nl 87000 - ✓

GPSM4K (2024b; 2024) TP, NC P 7-12 textbook ✓ en NR, FR nl 4272 1068 ✗

NBLP (2024) NC P 7-9 textbook, exam ✓ en NR, YN - - 100 ✗

G-MATH (2024) NC P, S 9-12 exist ✓ en FR - - 187 ✗

MathCheck-GEO (2024d) MR P 6-12 exist ✓ en NR, YN, FR nl - 1440 ✓

MO-TG-225 (2024b) TP P - exam ✗ en FR - - 225 ✗

Geo170K-qa (2025b) NC P 6-12 exist ✓ en MC nl 117205 - ✓

FormalGeo7K-v2 (2025) NC P 6-12 exist ✓ en, zh NR formal 5950 1050 ✓

VerMulti-Geo (2025) NC P 6-12 exist ✓ en MC - 15000 - ✗

GeoMath-8K (2025) NC P 6-12 exist ✓ en MC - 4500 820 ✗

GNS-260K (2025) KP, NC P 6-12 exist ✓ en MC, NR, SA program, nl 260017 - ✗

GeoExpand (2025) TP, NC P 6-12 exist ✓ en MC, FR nl 45526 - ✓

GeoSynth (2025) TP, NC P - program ✓ en MC, FR nl 62868 - ✓

IMO-AG-50 (2025) TP P - exam ✗ en FR - - 50 ✗

GeoTrust (2025) NC P - program ✓ en NR nl ∼200000 240 ✗

GeoSense (2025b) KP, NC P, S 6-12 exist, website ✓ en, zh MC, FR - - 1789 ✗

formalgeo-reasoning238k (2025e) NC P 6-12 exist ✓ en NR nl ∼238000 - ✗

Table 1: A summarization of geometry problem solving datasets for fundamental tasks and core tasks. Task: ER:
geometric element recognition, SR: geometric structure recognition, DP: geometric diagram parsing, DC: geometric
diagram captioning, SP: semantic parsing for geometry problem texts, RE: geometric relation extraction, KP:
geometric knowledge prediction, TP: geometry theorem proving, NC: geometric numerical calculation. Type: P:
plane geometry, S: solid geometry, A: analytic geometry. Question: MC: multiple-choice, NR: numerical response,
FR: free-response, FB: fill-in-the-blank, YN: yes-or-no, SA: short-answer, CQ: classification question. Rationale:
nl: natural language. ∗ indicates that the dataset contains more than just geometry-related content.
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Datasets Task Type Grade Source Image Language Question Rationale Trainval Size Test Size Opensource

Composite Tasks

MATH (2021) MR P, S 9-12 exam ✗ en NR nl 7500 5000 ✓

AMPS (2021) MR P, S 1-12 website, program ✗ en NR, FR nl ∼5100k - ✓

NumGLUE (2022b) MR P 6-10 exist ✗ en CQ - 81466 10583 ✓

Lila (2022a) MR P, S - exist ✗ en MC, FB, FR program 107052 26763 ✓

DMath (2023) MR P 1-6 handcraft ✗ en, kr NR program 7943 2079 ✓

TheoremQA (2023b) MR P - Internet, expert ✓ en MC, YN, FR - - ∼350 ✓

M3Exam (2023b) MR P, S 1-12 exam ✓ 9 lang. MC - - 12317 ✓

OlympiadBench (2024a) MR P, S - exam ✗ en, zh NR, FR nl - 8476 ✓

MathVista (2024) MR P 6-12 exist ✓ en, zh MC, FR - - 6141 ✓

MathVerse (2024g) MR P, S - exist, website ✓ en MC, FR nl - 15672 ✓

Math-Vision (2024a) MR P, S, A 1-12 exam ✓ en MC, FR - - 3040 ✓

MM-Math (2024) MR P 7-9 website ✓ en FR nl - 5929 ✓

We-Math (2024) MR P, S 3-6 website ✓ en MC - - 6524 ✓

VisAidMath (2024b) MR P, S, A 7-12 exam ✓ en MC, FR, YN - - 1200 ✗

CMM-Math (2024c) MR P, S, A 1-12 exam ✓ zh MC, FB, YN, FR nl 22248 5821 ✓

MathScape (2024b) MR P, S 1-12 homework, exam ✓ en NR, FB, FR nl - 1325 ✓

VisScience (2024) MR P, S 1-12 - ✓ en, zh MC, FR - - 3000 ✗

ArXivQA (2024b) MR P - paper ✓ en MC nl 100000 - ✓

ReMI (2024b) MR P - - ✓ en MC, NR, FR - - 2600 ✓

MathV360K (2024) MR P 9-16 exist ✓ en MC, NR, FR - 360000 - ✓

MultiMath-300K (2024) MR P, S 1-12 textbook, exam ✓ en, zh FB, NR, FR nl 290227 8443 ✓

InfiMM-WebMath-40B (2024) MR - - website ✓ en, zh - - ∼24000k - ✓

MathVL (2024b) MR P, S, A 1-12 exist, private ✓ en MC, FB, FR nl 484914 2000 ✗

ArMATH (2024) MR P 1-6 school ✗ ar FR - - 200 ✗

M3CoT (2024c) MR P - exist ✓ en MC nl 9100 2359 ✓

MathOdyssey (2024) MR P, S 10-16 expert ✗ en MC, YN, FR nl - 387 ✓

PutnamBench (2024) MR - - exam ✗ en FR formal - 1692 ✓

ConcepetMath (2024b) MR P, S 1-9 website, textbook ✗ en, zh NR - - 4011 ✓

MATH() (2024) MR P, S 9-12 exist ✗ en NR - - 2060 ✗

MathBench (2024b) MR P, S 1-16 exist, exam ✗ en, zh MC, FR - - 3709 ✓

HARP (2024a) MR P - website ✗ en MC, SA, FR nl - 5409 ✓

M3GIA (2024) MR P 6-12 exam ✓ 6 lang. MC - - 1800 ✓

DART-Math (2024) MR P, S 9-12 exist ✗ en NR nl ∼1180k - ✓

MathScaleQA (2024b) MR P, S 1-16 exist, exam ✗ en FR nl 2000000 - ✓

UTMath (2024a) MR P, S - OEIS ✗ en NR - - 1053 ✓

MultiLingPoT (2024d) MR P, S 9-12 exist ✗ program NR program 41134 - ✓

EITMath (2024a) MR P, S 9-12 exist ✗ en NR nl 15000 - ✗

AIME2024 (2024) MR P, S - exam ✗ en NR nl - 30 ✓

AMATH-SFT (2024; 2025) MR P - exist ✓ en MC, FR nl ∼124000 - ✓

MMathCoT-1M (2025) MR P - exist ✓ en MC, NR, FR nl ∼1020k - ✓

DynaMath (2025) MR P, S, A 1-16 exist, website ✓ en MC, FR nl - 5010 ✓

CoMT (2025b) MR P - exist ✓ en MC nl - 3853 ✓

Diagramma (2025) MR P - program ✓ en MC - - 1058 ✗

MV-MATH (2025b) MR P, S, A 1-12 textbook, exam ✓ en MC, FR nl - 2009 ✓

CMMaTH (2025) MR P, S, A 1-12 website ✓ zh MC, FR nl - 23856 ✗

Math-PUMA-1M (2025) MR P, S - exist, online, prog ✓ en FR nl 996000 - ✓

VisualWebInstruct (2025) MR P 1-16 exist, Internet ✓ en - nl 906160 - ✓

MAVIS-Instruct (2025c) MR P, S, A - exist, program ✓ en MC, FR nl 834000 - ✓

FlowVerse (2025a) MR P, S 9-12 website ✓ en, zh MC, FR nl - 2000 ✓

Omni-Math (2025a) MR P, S, D - exam ✗ en NR, FR nl - 4428 ✓

MathConstruct (2025) MR p 10-16 exam ✗ en FR - - 126 ✓

VCBench (2025j) MR P, S 1-6 textbook ✓ en MC - - 1720 ✓

OlymMATH (2025a) MR P, S, A - textbook, exam ✗ en, zh NR - - 200 ✓

RoR-Bench (2025) MR P, S 1-6 Internet ✓ zh FR nl - 215 ✓

PolyMath (2025g) MR P, S, A 1-16 exist, Internet ✗ 18 lang. NR - - 9000 ✓

MaTT (2025) MR P, S, A - reference book ✗ en MC - - 1958 ✓

CapaBench (2025) MR P, S 9-12 exist ✗ en NR nl - 1545 ✓

MATH-Perturb (2025a) MR P 9-12 exist ✗ en NR - - 558 ✓

M500 (2025) MR P - exam, exist ✗ en NR, FR nl 500 - ✓

KPMATH-M (2025e) MR P, S 9-12 exist ✗ en NR nl 252000 - ✗

Table 2: A summarization of geometry problem solving datasets for composite tasks. Task: MR: mathematical
reasoning. Type: P: plane geometry, S: solid geometry, A: analytic geometry, D: differential geometry. Question:
MC: multiple-choice, NR: numerical response, FR: free-response, FB: fill-in-the-blank, YN: yes-or-no, SA: short-
answer, CQ: classification question. Rationale: nl: natural language.
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Datasets Task Type Grade Source Image Language Question Rationale Trainval Size Test Size Opensource

Other Geometry Tasks

GMBL (2021) TD P - exam ✗ en GD - - 39 ✓

LeanEuclid (2024) AF P - exist, textbook ✓ en FR - 140 33 ✓

Euclidea (2024) CP P - website ✗ en FR nl - 98 ✗

PyEuclidea (2024) CP P - website ✗ program FR - - 98 ✓

MagicGeoBench (2025a) TD P 6-12 exam ✗ en GD - - 220 ✗

GeoX-pretrain (2025) DG P - web, textbook ✓ - GD - 127912 - ✓

Table 3: A summarization of datasets for other geometry tasks. Task: TD: geometric text-to-diagram; CP: geometric
construction problem; DG: geometric diagram generation; AF: geometric autoformalization. Type: P: plane
geometry. Question: FR: free-response, GD: geometric diagram. Rationale: nl: natural language.

from 2D single line drawing images (Xue et al.,2544

2010, 2012; Yang et al., 2013), even if the input2545

image is incomplete or inaccurate (Zheng et al.,2546

2015, 2016b,a; Zou et al., 2016).2547

Geometric Text-to-Diagram. This task requires2548

the system to be able to generate corresponding2549

geometric diagrams from the natural language de-2550

scription of the geometry problem. This ability2551

will significantly enhance the solution system’s un-2552

derstanding, enabling it to more accurately inter-2553

pret geometric propositions presented in flexible2554

and diverse forms (Liu et al., 2012). In addition2555

to traditional rule-based methods (Janičić and Nar-2556

boux, 2021; Krueger et al., 2021; Trinh et al., 2024),2557

some recent studies have begun to use deep learn-2558

ing technology to build related systems (Zhengyu2559

and Xiuqin, 2023; Wang et al., 2025a; Cheng et al.,2560

2025a). MagicGeoBench (Wang et al., 2025a) pro-2561

vides a dataset of 220 plane geometry problems2562

from middle school mathematics exams, designed2563

to evaluate the performance of text-to-diagram ge-2564

ometry generation models.2565

In addition to the above approaches, various2566

other techniques have been developed for gener-2567

ating geometric diagrams. Some tools, such as Ge-2568

oGebra1 and Geometer’s Sketchpad (Scher, 1999),2569

support interactive constructions using virtual ruler2570

and compass operations to generate geometric dia-2571

grams. Additionally, non-interactive methods have2572

also been proposed to automatically derive such2573

constructions (Bertot et al., 2004; Itzhaky et al.,2574

2013). To support more forms of geometric di-2575

agram generation, some studies have explored a2576

wider range of methods to construct geometric di-2577

agrams. These methods include techniques like2578

algebraic numerical optimization (Gao and Lin,2579

2004) and constrained numerical optimization (Ye2580

et al., 2020).2581

This task is also related to GPS. GeoX (Xia et al.,2582

1https://www.geogebra.org

2025) builds a pre-trained dataset containing more 2583

than 120,000 plane geometry images and tunes the 2584

visual encoder-decoder architecture using the mask 2585

auto-encoding scheme to obtain a visual encoder 2586

that fully understands geometric diagrams. Addi- 2587

tionally, some GPS work uses related methods to 2588

perform data enhancement on unimodal geometry 2589

problems and generate corresponding diagrams to 2590

obtain multimodal data (Cai et al., 2024b; Zhao 2591

et al., 2024; Xiao et al., 2024b). 2592

B.2 Geometric Construction Problem 2593

Geometric construction problems, similar to prob- 2594

lems in GPS, are also part of educational exams. 2595

Such tasks aim to use traditional ruler and compass 2596

construction methods to find an effective way to 2597

construct the desired figure. 2598

In recent years, some studies have tried to use 2599

deep learning systems to solve geometric construc- 2600

tion problems. In the online geometric construc- 2601

tion game Euclidea2, Macke et al. (2021); Wong 2602

et al. (2023) uses Mask R-CNN (He et al., 2017) 2603

to solve difficult geometric construction problems 2604

using a purely image-based method. Addition- 2605

ally, Mouselinos et al. (2024) converts the Euclidea 2606

problem into a Python format and solves it using a 2607

multi-agent framework based on LLMs. This pro- 2608

vides us with new ideas and inspires us to further 2609

explore the application potential of deep learning 2610

systems in cognitive fields such as planning and 2611

auxiliary line addition. 2612

B.3 Geometric Figure Retrieval 2613

Before the widespread application of deep learning 2614

methods, the search problem for plane geometry 2615

figures had always been an important topic in the 2616

field of scientific research (Liu et al., 2014a,b; Gan 2617

et al., 2016; Chen et al., 2016; Qu et al., 2016; Liu 2618

et al., 2016). With the advancement of computer 2619

2https://www.euclidea.xyz
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technology, plane geometry retrieval may no longer2620

be challenging in the era of deep learning. How-2621

ever, retrieving more complex solid geometry and2622

irregular geometric figures may still be a direction2623

worth studying.2624

B.4 Geometric Autoformalization2625

Autoformalization is a subtask of theorem prov-2626

ing (Li et al., 2024f). Autoformalization is a sub-2627

task of theorem proving (Li et al., 2024f). A few2628

studies focus on automatically converting informal2629

geometry problems and proofs into formal theo-2630

rems and proofs verifiable by machines. LeanEu-2631

clid (Murphy et al., 2024) is a 173-problem geo-2632

metric autoformalization dataset designed to test2633

whether AI can understand mathematical problems2634

and solutions written by humans and convert them2635

into formal theorems and proofs.2636

C Encoder-Decoder Architecture for2637

Geometry Problem Solving2638

In this section, we further elaborate on the deep2639

learning components of the encoder-decoder archi-2640

tecture used for GPS. Table 4 provides a detailed2641

summary of these components.2642

C.1 Text Encoder2643

Besides rule-based methods (Lu et al., 2021), early2644

research works typically use Recurrent Neural Net-2645

works (RNNs) (Elman, 1990) to parse (Joshi et al.,2646

2018; Gonzalez et al., 2021) or encode (Tsai et al.,2647

2021; Chen et al., 2021) geometry problem texts.2648

Common models include LSTM, GRU, and their2649

bidirectional variants, BiLSTM and BiGRU. Some2650

works employ Transformer (Vaswani et al., 2017)2651

to encode text (Zhang et al., 2023a; Ma et al.,2652

2024a; Zhang et al., 2024f). Additionally, some2653

research works use pre-trained language models2654

for text encoding (Jian et al., 2023b; Huang et al.,2655

2022; Zhu et al., 2025), such as BERT (Devlin2656

et al., 2019) and T5 (Raffel et al., 2020). More-2657

over, the dual encoder structure of RoBERTa (Liu2658

et al., 2019) plus BiLSTM also shows good re-2659

sults (Cao and Xiao, 2022; Ning et al., 2023; Xiao2660

et al., 2024a; Zhang et al., 2024a).2661

C.2 Diagram Encoder2662

Early studies primarily used CNNs to encode ge-2663

ometric diagrams (Zhang et al., 2023a, 2024f;2664

Zhang and Moshfeghi, 2024), with network archi-2665

tectures including RetinaNet (Lin et al., 2017) and2666

its DenseNet (Huang et al., 2017) variants (Lu et al.,2667

2021; Guo and Jian, 2022; Jian et al., 2023a; Huang 2668

et al., 2022; Ma et al., 2024a), ResNet (He et al., 2669

2016) and its ConvNeXt (Liu et al., 2022) vari- 2670

ants (Chen et al., 2021; Cao and Xiao, 2022; Zhang 2671

et al., 2024a,d), and Fast R-CNN (Girshick, 2015; 2672

Jian et al., 2023b). Recently, studies have widely 2673

adopted pre-trained diagram encoders, such as 2674

ViT (Dosovitskiy et al.), ViTMAE (He et al., 2022), 2675

CLIP-ViT (Radford et al., 2021), SigLIP (Zhai 2676

et al., 2023), and Swin-Transformer (Liu et al., 2677

2021), primarily for building MLLMs. Further- 2678

more, Iordan (2022), Zhang et al. (2022b), and 2679

Zhu et al. (2025) use LSTM, GNN, and BLIP (Li 2680

et al., 2022) to parse geometric diagrams, respec- 2681

tively, while UniMath (Liang et al., 2023) encodes 2682

diagrams through VQVAE (Van Den Oord et al., 2683

2017). 2684

Some other studies use a CNN-Transformer hy- 2685

brid architecture to integrate the functions of a text 2686

encoder and a diagram encoder into a multimodal 2687

encoder (Li et al., 2024h; Lin et al., 2025). 2688

C.3 Multimodal Fusion Module 2689

Drawing inspiration from Yu et al. (2019), many 2690

studies introduce a co-attention module to compre- 2691

hensively fuse and align text and image representa- 2692

tions (Chen et al., 2021; Cao and Xiao, 2022; Ning 2693

et al., 2023; Pan et al., 2023; Ma et al., 2024a). 2694

Many MLLMs also incorporate multimodal fusion 2695

modules to enhance their multimodal understand- 2696

ing capabilities. For example, LLaVA-v1.5 (Liu 2697

et al., 2024a) and MAmmoTH-VL (Guo et al., 2698

2024a) both use a two-layer MLP visual-language 2699

connector (Shi et al., 2024; Li et al., 2024g; Xu 2700

et al., 2024b; Sharma et al., 2025; Ning et al., 2025; 2701

Jia et al., 2025); GLM-4V (GLM et al., 2024) and 2702

Qwen2.5-VL (Qwen et al., 2025) use MLP to map 2703

image representations to text space (Yang et al., 2704

2024b; Pan et al., 2025; Peng et al., 2025); and 2705

InternVL2 (Chen et al., 2024d) uses the QLLaMA 2706

architecture (Deng et al., 2024; Xu et al., 2025a). 2707

Additionally, some studies consider this module 2708

and the subsequent decoder as an overall encoder- 2709

decoder structure (Jian et al., 2023b; Zhang et al., 2710

2023a; Li et al., 2024h; Lin et al., 2025; Liang 2711

et al., 2023; Zhang and Moshfeghi, 2024), employ- 2712

ing self-attention units, BiGRU, and T5-Encoder. 2713

C.4 Decoder 2714

Many studies utilize LSTM (Chen et al., 2021; 2715

Cao and Xiao, 2022; Ning et al., 2023; Pan et al., 2716

2023; Xiao et al., 2024a; Zhang et al., 2024a; 2717
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Ma et al., 2024a) or GRU (Tsai et al., 2021; Jian2718

et al., 2023b; Zhang et al., 2023a; Li et al., 2024h;2719

Zhang et al., 2024d,f) as decoders in deep learn-2720

ing systems, which may also integrate attention2721

mechanisms. Other studies employ pre-trained lan-2722

guage models as decoders. For example, Liang2723

et al. (2023) and (Zhang and Moshfeghi, 2024) use2724

the T5-Decoder, (Pan et al., 2024) chooses BERT,2725

Peng et al. (2024) uses DeepSeekMath-RL (Shao2726

et al., 2024), and Zhuang et al. (2025); Shengyuan2727

and Xiuqin (2024); Zhang et al. (2024c) use the2728

Qwenseries model (Bai et al., 2023) as the de-2729

coder. In addition, Zhang et al. (2025c) uses MAm-2730

moTH2 (Yue et al., 2024b), Zhang et al. (2025e)2731

chooses Yi-1.5 (Young et al., 2024), and Cho et al.2732

(2025a) uses Llama 3 (Grattafiori et al., 2024).2733

C.5 Knowledge Module2734

Knowledge Extractor and Integrator. Some2735

studies construct geometric knowledge frameworks2736

using knowledge graphs. Fu et al. (2019) and Zhou2737

et al. (2022) use BiLSTM to extract geometric rela-2738

tionships, while Tsai et al. (2021) embeds knowl-2739

edge graphs into vector space using Graph Convo-2740

lutional Network (GCN) (Kipf and Welling, 2017).2741

Xu et al. (2024b) and Sharma et al. (2025) use2742

CLIP and VISTA (Zhou et al., 2024a) models to2743

encode geometric problems for retrieving similar2744

problems. Additionally, Xiao et al. (2024a) builds2745

a complete knowledge system through LSTM.2746

Theorem Predictor. The theorem predictor is used2747

to predict the geometric theorems needed for the2748

current solution step to derive a formal solution2749

path. Guo and Jian (2022); Jian et al. (2023a)2750

encodes the structural information of the formal2751

language through GCN and uses a BiLSTM-GRU2752

based Sequence-to-Sequence (Seq2Seq) architec-2753

ture (Sutskever et al., 2014) for theorem predic-2754

tion. In addition, many studies use a Transformer-2755

based Seq2Seq architecture for prediction (Lu et al.,2756

2021; Wu et al., 2024a; Zhang et al., 2024h), and2757

some introduce the T5 model (Yang et al., 2023;2758

He et al., 2024b; Shengyuan and Xiuqin, 2024).2759

Furthermore, Zou et al. (2024) leverages Distil-2760

BERT (Sanh, 2019) to guide the training of theo-2761

rem predictors.2762

Answer Verifier. Ensuring the correctness of2763

the solution logic is one of the key steps in solv-2764

ing geometry problems. In addition to the tradi-2765

tional rule-based verification method (Zhang et al.,2766

2024f), Pan et al. (2025) introduces a pre-trained2767

LLM (Qwen et al., 2025) to verify the solution2768

steps. 2769
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Paper Task Network Text Encoder Diagram Encoder Fusion Module Decoder Knowledge Module

Fundamental Tasks

RSP (2018) SP BiLSTM BiLSTM - - - -
2StepMemory (2020) SP attention attention - - - -
GIRTOOLS (2020) ER VGG16 - - - - -
Arsenal (2021) SP Seq2Seq RNN - - -† -
PGDPNet (2022b) DP FPN+GNN† - FPN+GNN† - - -
UV-S2 (2022) RE - BERT RetinaNet - - -
BiLSTM-CRF (2022) RE BiLSTM - - - - -
Stacked LSTM (2022) DP LSTM - LSTM - - -
2DGeoShapeNet (2024b) ER CNN - - - - -
Euclid (2024c) SR MLLM - ConvNeXt MLP Qwen-2.5 -
FGeo-Parser (2025) DP, SP - T5 BLIP - - -

Core Tasks - Encoder-Decoder Architecture

Inter-GPS (2021) NC - - RetinaNet - - Transformer
NGS (2021) NC - LSTM ResNet101 co-attention LSTM† -
S2G (2021) NC - BiGRU - - GRU† GCN
GCN-FL (2022) NC - - DenseNet121+FPN - - GCN+BiLSTM-GRU
DPE-NGS (2022) NC - Bi-LSTM+RoBERTa ResNet101 co-attention LSTM† -
Geoformer (2022) TP, NC MLLM - VL-T5 -
MCL (2023b) NC - BERT Faster R-CNN attention attention+GRU -
PGPSNet (2023a) NC - Transformer CNN BiGRU GRU -
UniMath (2023) TP, NC MLLM - VQ-VAE T5 -
RetinaNet+GCN (2023a) NC - - DenseNet121+FPN - - GCN+BiLSTM-GRU
SCA-GPS (2023) NC - Bi-LSTM+RoBERTa ViT co-attention LSTM† -
TD-Parsing (2023) NC - - DenseNet121 co-attention LSTM† -
SUFFI-GPSC (2023) NC - - - - - T5
LANS (2024h) NC - ResNet10+Transformer BiGRU† GRU -
GAPS (2024d) TP, NC - - ResNet VL-T5 GRU -
E-GPS (2024a) NC - - PGDPNet - - Transformer
FGeo-TP (2024b) NC - - - - - Transformer
FGeo-DRL (2024) NC - - - - - DistilBERT
FGeo-HyperGNet (2024h) NC - - - - - Transformer
GOLD (2024) TP, NC MLLM - FPN+MobileNetV2+CNN T5 -
DualGeoSolver (2024a) NC - Bi-LSTM+RoBERTa ViTMAE co-attention LSTM† LSTM
Math-LLaVA (2024) NC MLLM - LLaVA-1.5 -
PGPSNet-v2 (2024f) NC - Transformer+BiGRU CNN - GRU -
EAGLE (2024g) NC MLLM - LLaVA-1.5 -
MultiMath (2024) NC MLLM - CLIP-ViT MLP DeepSeekMath-RL -
MathGLM-Vision (2024b) NC MLLM - GLM-4V -
ATB-NGS (2024a) NC RoBERTa+BiLSTM Real-ESRGAN+ResNet101 co-attention LSTM† -
Geo-Qwen (2024) NC MLLM - PGDPNet - Qwen2.5 T5
Geo-LLaVA (2024b) NC MLLM - LLaVA-1.5 CLIP
GNS-DTIF (2024a) NC - Transformer DenseNet121+GCN GRU+co-attention LSTM -
MATHS (2024) TP, NC - - Swin-Transformer - BERT -
R-CoT (2024) NC MLLM - InternVL2 -
SANS (2025) NC - CNN+Transformer† BiGRU† GRU -
G-LLaVA (2025b) NC MLLM - LLaVA-1.5 -
MAVIS (2025c) NC MLLM - CLIP-Math MLP MAmmoTH2 -
GeoX (2025) TP, NC MLLM - Geo-ViT GS-Former Geo-LLM -
DFE-GPS (2025e) NC MLLM - SigLIP MLP Yi-1.5 -
GeoDANO (2025a) NC MLLM - GeoCLIP MLP LLama-3 -
Math-PUMA (2025) NC MLLM - SigLIP MLP Qwen2 -
GeoCoder (2025) NC MLLM - LLaVA-1.5 VISTA
MAmmoTH-VL2 (2025) NC MLLM - MAmmoTH-VL -
GNS (2025) NC MLLM - LLaVA-1.5 -
GeoGen (2025) NC MLLM - Qwen2.5-VL Qwen2.5
RedStar-Geo (2025a) NC MLLM - InternVL2 -
SVE-Math (2025d) NC MLLM - GeoGLIP MLP Qwen2.5Math -
MGT-Geo (2025) NC MLLM - Qwen2.5-VL -

Core Tasks - Other Architecture

GAN+CfER (2023) NC cGAN - - - - -
GeoDRL (2023) NC GNN - - - - -
HGR (2024) NC GNN - - - - -

Table 4: A summarization of deep learning architectures for geometry problem solving system. Task: DP: geometric
diagram parsing, SP: semantic parsing for geometry problem texts, ER: geometric element recognition, DP:
geometric diagram parsing, SR: geometric structure recognition, RE: geometric relation extraction, TP: geometry
theorem proving, NC: geometric numerical calculation. † indicates the presence of the attention mechanism.
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