
CRAYM: Neural Field Optimization
via Camera RAY Matching

Liqiang Lin
Shenzhen University

Shenzhen, China
linliqiang2020@gmail.com

Wenpeng Wu
Shenzhen University

Shenzhen, China
wenpengggg@gmail.com

Chi-Wing Fu
The Chinese University of Hong Kong

Hong Kong SAR, China
cwfu@cse.cuhk.edu.hk

Hao Zhang
Simon Fraser University

Burnaby, Canada
haoz@sfu.ca

Hui Huang∗
Shenzhen University

Shenzhen, China
hhzhiyan@gmail.com

Abstract

We introduce camera ray matching (CRAYM) into the joint optimization of camera
poses and neural fields from multi-view images. The optimized field, referred to
as a feature volume, can be “probed” by the camera rays for novel view synthesis
(NVS) and 3D geometry reconstruction. One key reason for matching camera
rays, instead of pixels as in prior works, is that the camera rays can be parameter-
ized by the feature volume to carry both geometric and photometric information.
Multi-view consistencies involving the camera rays and scene rendering can be
naturally integrated into the joint optimization and network training, to impose
physically meaningful constraints to improve the final quality of both the geometric
reconstruction and photorealistic rendering. We formulate our per-ray optimization
and matched ray coherence by focusing on camera rays passing through keypoints
in the input images to elevate both the efficiency and accuracy of scene correspon-
dences. Accumulated ray features along the feature volume provide a means to
discount the coherence constraint amid erroneous ray matching. We demonstrate
the effectiveness of CRAYM for both NVS and geometry reconstruction, over
dense- or sparse-view settings, with qualitative and quantitative comparisons to
state-of-the-art alternatives.

1 Introduction

Recent advances on multi-view 3D reconstruction have been propelled by the emergence of neural
fields [39], including implicit functions [42, 36, 24, 33] and radiance fields (NeRF) [26, 44, 13, 1, 10,
27, 19, 7]. A critical component to all image-to-3D reconstruction methods, including traditional
approaches such as multi-view stereo (MVS) [11], is to obtain camera poses for the input images. In
practice, the camera information may be available from the acquisition devices, e.g., through the GPS
or inertial measurement unit (IMU), while in other cases, it is estimated, e.g., using structure-from-
motion (SfM) [8, 29]. In both cases, these camera poses can be noisy, thus hindering the performance
of the multi-view 3D reconstruction.

In light of the importance of having accurate camera poses, various methods have been proposed
to improve their estimations. One line of approaches, which can be referred to as bundle-adjusting
neural fields, jointly optimize [38, 20, 12, 2, 5] camera poses along with results from rendering and
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Figure 1: Our method, neural field optimization with camera ray matching (CRAYM), incorporates
contextual information for per-ray processing and enforces color + geometric consistence between
matched rays. Compared to SPARF [32] which utilizes dense pixel correspondences and the state-
of-the-art, bundle-adjusting L2G-NeRF [5], both aimed at handling noisy camera poses, CRAYM
produces superior results especially over fine details; see the zoom-ins on the right. Results are shown
the Drums model from NeRF-Synthetic [26] on dense views.

geometry (e.g., depth) estimation, where the camera rays are considered independently for their roles
in color and geometry prediction. By now, more works [3, 4, 32, 18, 16, 30, 6] realize the importance
of exploiting correlations between input images, i.e., multi-view consistency, to impose additional
constraints on the joint optimization. Along these lines, much effort has been invested into matching
and optimization with respect to image features, whether convolutional or transformer-based.

Motivated by multi-view spatial analysis, several works have proposed geometric constraints involv-
ing camera rays and projections [16, 32, 18]. Most recently, SPARF [32] defines a re-projection loss
as a spatial distance between image pixels to enforce that matched pixels between NeRF training
images be back-projected onto the same 3D point. However, the effectiveness of this loss depends
critically on how reliable the pixel correspondences are. In their work, these correspondences and
their confidence estimates were both obtained by a pre-trained network [31], which is independent of
the joint camera-scene optimization.

In this paper, we introduce camera ray matching into the joint optimization of camera poses and
a neural field, referred to as a feature volume, which can be “probed” by the camera rays for both
rendering, e.g., novel view synthesis as in NeRF [26], and 3D reconstruction, as in NeuS [34].

The key reasons for matching camera rays, instead of pixels [32, 18, 6], are two-fold. First, these
rays carry 3D spatial information than just 2D pixel values to facilitate formulating explicit geometric
losses when optimizing camera poses [16], as dictated by multi-view analysis. Second and more
importantly, the camera rays can be parameterized by the feature volume — they carry both geometric
and photometric information. Any constraint arising from camera ray matching can be passed onto
the feature volume. Hence, both the matching itself and the associated matching confidence can
be incorporated into the joint optimization and network training, to impose physically meaningful
constraints to improve the final quality of both geometry reconstruction and rendering.

Our network, coined CRAYM (for Camera RAY Matching), takes as input an uncalibrated set of
images capturing a 3D object, and is trained to predict the feature volume along with all the camera
rays subjected to a combination of photometric rendering losses and geometric losses dedicated to
ensuring multi-view consistency between camera rays. We consider two types of rays. The first
are called key rays, which pass through keypoints detected in the input images, typically spanning
regions with sharp features and rich textures over the 3D object. The other rays are called auxiliary
rays, which pass through points around keypoints to offer contextual and local structural information
as we reason about the key rays in our optimization framework.

As our main constraint for matched ray coherence, we enforce color consistency between renderings
along two key rays whose corresponding keypoints from two different views are matched [9].
However, we must account for potential erroneous matches due to occlusion or unreliable local
image features used by the matching network. To this end, we aggregate features along each key
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ray through the feature volume. The matchability between two rays is defined by a cosine similarity
between the accumulated ray features and applied as a weight to either accentuate or discount the
color consistency constraint, allowing our optimization model to naturally degenerate itself to handle
unrelated rays separately. Also, to improve the robustness of feature learning, we enhance the feature
along each key ray by integrating features from surrounding auxiliary rays.

We evaluate our method on both the synthetic objects from NeRF-Synthetic [26] and the real scenes
from UrbanScene3D [22], for novel view synthesis and 3D geometry reconstruction, over dense- and
sparse-view settings. Compared to state-of-the-art alternatives, CRAYM produces superior results
especially over fine details.

2 Related Works

Neural Fields. As a pioneer work, NeRF [26] synthesizes novel views of static objects/scenes
from a set of posed images by optimizing a coordinate-based neural network, which predicts the
volume density and color for a sampled point in the 3D space. Since then, numerous methods have
emerged to improve the rendering quality [44, 13, 1] and rendering efficiency [10, 27, 19, 7]. To
extract high-quality surfaces from the learned implicit representation, NeuS [42] and VolSDF [42]
propose to learn an implicit signed distance field (SDF) representation for the scenes. These methods
can achieve impressive results on both novel view synthesis and 3D reconstruction, however, the
requirement of precise camera pose limits their applicability in practice.

Bundle-Adjusting Neural Fields. With the realization that positional encoding is susceptible to
suboptimal registration, BARF [20] applies a smooth mask on the encoding at different frequency
bands for a coarse-to-fine training, while [12] presents an adaptive positional encoding. L2G-NeRF [5]
first learns the pixel-wise transformations for every pixel in a frame and then aligns the frame-wise
transformation with the pixel-wise transformations. Common to all the above methods is that their
joint optimization of pose and scene representation processes each image and each ray separately,
without considering their multi-view correlations. As a result, the pose optimization may not be
stable, thereby leading to floaters and blurriness in both novel view renderings and 3D reconstruction.
Note that our method also involves per-ray processing, by combining information from auxiliary rays
with that of a key ray. This is similar to the patch-level feature processing in CR-NeRF [41], which
considers multiple rays indiscriminately across the image, without the notion of key rays.

Neural Fields with Image Matching. Image matching can help establish geometric priors to
improve the generalizability of NeRF, to either novel scenes or the sparse-view setting. MVSNeRF [3]
constructs a cost volume by warping the image features extracted with a 3D CNN onto a plane sweep,
from which a generalizable radiance field is learned. SparseNeuS [24] constructs a 3D volume with
the variance of all the projected features from multi-view images. DBARF [4] optimizes camera
poses and depth with a cost map constructed by the differences of image features. CorresNeRF [18]
proposes to regularize the NeRF training with a pixel re-projection loss for the associated pixels
and a depth loss for the predicted depth. GPNR [30] aggregates features of the image patches along
epipolar lines with several stacked transformers. MatchNeRF [6] learns a generalizable NeRF with
the cosine similarity of image features for each image pair as the shape prior. All these methods
integrate image features and utilize the matching within or between different views. With more
emphasis placed on multi-view geometry reasoning, SCNeRF [16] learns a pinhole model for each
camera under the supervision of a re-projected ray distance loss, while SPARF [32] optimizes its
network with a re-projection loss, measuring spatial distances between pixels in the same view. In
contrast, the matched ray coherence formulation in our optimization accounts for both photometric
and geometry information as obtained from the feature volume; the coherence constraint is also
explicitly integrated into the network instead of only serving to define a loss.

3 Method

We are interested in neural networks that can reconstruct a 3D model, e.g., a radiance field [26] or
an implicit field [34], from a set of M images {Ii}Mi=1 capturing a 3D object from multiple views.
Typically, each image is associated with a known or estimated camera pose Ti = [Ri|ti], where
Ri ∈ SO(3) and ti ∈ R3. The network is trained by minimizing a photometric error Lp between the
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Figure 2: Overview of our CRAYM pipeline. After extracting keypoints (red dots) from input images
and matching them using a pre-trained network, we train our CRAYM network to optimize a 3D
feature volume V which encodes both geometric and photometric information about the target 3D
object and can be queried by camera rays for both novel view synthesis (via the Texture Network) and
3D reconstruction (via the Geometry Network). The volume optimization is subject to photometric
losses through rendering along camera rays passing through the keypoints (i.e., the key rays), which
is enhanced (in the KRE) by integrating features from auxiliary rays, i.e., rays passing through
nearby auxiliary points (yellow dots) in the images. Matched ray coherence (MRC) is imposed on
matched key rays, in terms of color consistency, while potentially mismatched rays can be identified
by comparing accumulated features along the key rays through V . On top of the standard photometric
loss, we introduce two geometric losses, the epipolar loss and point-alignment loss, to explicitly
optimize ray-to-ray coherency to maximize the reconstruction quality of the feature volume.

input images and the multi-view renderings, {Îi}Mi=1, of the target 3D object from the camera views:
min

∑
i

∑
x ||Ii(x)− Îi(x)||22, where Ii(x) is the color of image Ii at pixel x.

Each pixel is associated with a specific ray in 3D from the object/scene, through the pixel center,
towards the camera: {r(t) = ro+ trd|t ≥ 0}, where ro is the camera center and rd is the normalized
view direction of ray r. The rendered color of ray r, i.e., the pixel color Ii(x), can be produced using
volume rendering by accumulating the color and opacity σ along the ray r.

Considering that the camera poses can be noisy, the reconstructed radiance field or implicit field may
not produce clean and sharp renderings with details. At a high noise level, some methods may even
fail to produce results; see examples shown in Sections 4.2 and 4.4. Beyond existing approaches
that map r(t) to opaque density (or opacity) and color implicitly with a ray-wise network, we
propose CRAYM to learn the implicit field by matching rays across different images and formulating
geometric priors.

3.1 The CRAYM Pipeline

Figure 2 overview our CRAYM pipeline. From the input images, our goal in the 3D neural field
optimization is to construct a 3D feature volume V to faithfully represent the target object. In detail,
we represent feature volume V using multi-resolution hash encoding [27] and end-to-end optimize it
for the target object. The feature f(p) of point p in the 3D feature volume can be extracted by

f(p) = M(V(p)), (1)
where M is the progressive feature mask [19] for filtering out fine-level features during early iterations
of the coarse-to-fine training. Very importantly, to account for the noise in the camera poses, we
parameterize the transformation matrices of the cameras as variables in the joint optimization of the
pose and implicit field with the feature volume V .
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As mentioned in the introduction, we consider two types of rays to probe the feature volume, i.e.,
key rays and auxiliary rays. Both rays are issued from the cameras through the pixel centers. To
obtain key rays {rk}, which typically associate to surface points with rich textures and sharp features,
we detect keypoints on each input image using SuperPoint [9] and perform point-to-point matching
between image pairs using SuperGlue [28]. Then, we can obtain a set of sparse ray-to-ray matchings
between image pairs. Note that these results may not be accurate for various reasons such as occlusion
and unreliable matching, but they provide useful information for our pipeline to start with. As for the
auxiliary rays {ra}, they are sampled around the keypoints to provide contextual or local structural
information when we reason about the key rays; see Section 3.2 for details.

Once optimized, the feature volume can be used for novel view synthesis or for multi-view 3D
reconstruction. The color prediction for novel view synthesis is accomplished by a texture network
Φt, as in a typical NeRF [26] setting, and the latter is accomplished by a geometry network Φg , as in
a typical NeuS [34] setting. Specifically, the geometry network takes a 3D point p sampled along
r and the feature at p as input to produce an SDF value and then an opaque density σ to render the
3D object and extract the 3D reconstructions. Here, we propose the Key Rays Enrichment (KRE)
module (Section 3.2) to improve the robustness in the process by enhancing the features along the
key ray using the features sampled by the auxiliary rays.

Subsequently, the texture network takes the output features from geometry network, ray directions,
and normal at p as inputs to predict color c(p) at point p. Further, we design the Matched Rays
Coherency (MRC) module (Section 3.3) to enhance the volume rendering quality by considering
matchability between rays and learning to maintain coherency between ray matchings. Particularly,
the MRC module can effectively reduce the influence of mismatched rays by disambiguating the
camera ray matchings.

A pair of the matched key rays, rk and rk
′, are sampled with the corresponding auxiliary rays during

each iteration. The geometry network, texture network, and feature volume optimization are jointly
trained end-to-end. Besides the photometric loss, we formulate the epipolar loss and point-alignment
loss (Section 3.4) to explicitly promote coherency among the ray matchings and boost performance.

3.2 Key Rays Enrichment Module

As the input images are captured through a perspective projection, all rays in 3D through the same
image should converge at a common camera point. In previous works, for each iteration, rays
are optimized separately, so the pose optimization may not be stable. As different rays may back
propagate gradients in different directions, the optimized poses may oscillate during the training.
Hence, we introduce the KRE module to stabilize the optimization by learning structural information
around each key ray. This is done by sampling auxiliary rays around the key ray to enrich the feature
of the key ray with more contextual information:

f ′(pk) =
∑
j

g(f(pk), f(qj)), (2)

where pk is a point along key ray rk; {qj} are points around pk sampled along the j-th auxiliary ray
around rk; and function g fuses features f(pk) and f(qi). Then, we employ the geometry network
Φg to predict the SDF value at pk and feature vector f ′′(pk), from which we can further obtain the
color of point pk with the texture network. Please refer to the supplemental materials for the details.

3.3 Matched Rays Coherency Module

Next, we propose to learn the coherency of features accumulated in the 3D feature volume between
the matched key rays. The purpose is to enhance the camera ray matching and account for imprecise
ray matchings, since keypoints matching is performed only on local image features.

Similar to color accumulation in volume rendering, we calculate the aggregated feature along a key
ray rk as the feature of rk:

f(rk) =

∫ ∞

0

T (pk)σ(pk)f
′′(pk)dt. (3)

The function T (rk(t)) = exp(−
∫ t

0
σ(s)ds) denotes the accumulated transmittance along key ray

rk.
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(a) Epipolar Loss (b) Point-alignment Loss

Figure 3: Illustrating of our geometric losses. The red lines in the left subfigure are epipolar lines.
The epipolar loss constrains the relative transformations between cameras, so that the projection of a
keypoint pk onto the image plane of the other camera should lie on the epipolar line e′x′

k. With the
camera poses constrained by the epipolar loss, the point-alignment loss further constrains the depth
of xk and x′

k, aiming to align pk and p′k with P .

Essentially, the accumulated ray feature f(rk) is an integration of density-weighted features along
a ray. When the network converges, the actual surface point at which ray rk intersects with the
paired matched key ray should have the highest density. Hence, we consider coherency between
the matched rays to optimize the learning of the opacity density and point color, such that we can
enhance the coherency of features accumulated along the matched key rays. In return, this will
help to optimize the parameters and the 3D feature volume, when training the pipeline. Therefore,
we fuse the rendered color c(rk) of the matched rays based on the cosine similarity between their
accumulated features:

c(rk) = wc(r′k) + (1− w)c(rk), (4)

where w is the matchability calculated as the cosine distance between the accumulated features of
the matched rays. When two key rays are mismatched, e.g., due to occlusion or ambiguities of weak
texture areas and similar structures, our formulation can learn to degenerate itself to a form that
separately optimizes individual rays.

3.4 Loss Function

Further, we introduce the following two geometric losses to more explicitly promote the coherency
of the ray matchings:

Epipolar loss. Given a pair of matched keypoints xk and x′
k on two different input images, which

associate with camera centers O and O′, respectively, (see the illustration in Figure 3), we can estimate
the depths at xk and x′

k by using a depth accumulation formulation similar to Equation 3, and then
project points xk and x′

k into the 3D object space to obtain 3D locations pk and p′k, respectively.

If the camera poses, the matchings, and the depths are precise, the two rays through xk and x′
k should

precisely intersect at a common point, say P , on the target object surface, such that pk and p′k align
with P . Also, we denote e and e′ as the epipolar points on the two images; these points are the
image-space locations at which the line OO′ intersects the two image planes; see Figure 3(a).

During the training, the depth estimation of xk can vary, so pk may vary along ray rk. If the camera
poses are precise, the projection of pk onto the image plane of the other camera should lie on the
epipolar line e′O′. In case of noisy camera poses, the projection of pk may not lie exactly on e′O′, so
we explicitly enforce the epipolarity during the training by minimizing the distance between pk’s
projection and the epipolar line e′x′

k using

Le =
1

Nk

Nk∑
i=1

Dist(Proj(pk), e
′x′

k). (5)

Since the epipolar loss is not affected by depth, we decouple the unreliable depth estimation from the
epipolar loss with ray marching to constrain the camera poses.

Point-alignment loss. The epipolar loss focuses on enhancing the projection consistency for producing
more precise camera poses. To complement it, we introduce the point-alignment loss to facilitate
depth convergence for improving the reconstruction of fine details. In detail, we consider the triangle
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Figure 4: Visualization of the initial and optimized camera poses for the LEGO scene in the NeRF-
Synthetic dataset [26]. (Purple: ground-truth poses; blue: initial or optimized poses; red lines:
translation errors.)

formed by intersection point P , line segment pkO, and line segment p′kO
′ (Figure 3(b)), and aim to

minimize the distance between points pk and p′k and align them:

La =
1

Nk

Nk∑
i=1

Dist(pk, p
′
k). (6)

Note that depth estimation may be unreliable and likely unstable early in the training, so we use the
point-alignment loss only after a certain number of training iterations.

Overall loss. After constructing the epipolar loss Le and the point-alignment loss La, we put them
together with the photometric loss Lp and SSIM loss Ls to form the overall loss function

L = λ1 ∗ Lp + λ2 ∗ Ls + λ3 ∗ Le + λ4 ∗ La, (7)

where Lp is calculated between the input images and the rendered images and is modeled as an MSE
loss.

4 Results

We evaluate our method on the NeRF-Synthetic dataset [26] with eight synthetic objects (Section 4.2),
the LLFF dataset [25], and the real scenes from the UrbanScene3D dataset [22] (Section 4.3). We
compare our method on both novel view synthesis and 3D reconstruction with NeRF [26], NeuS [34],
BARF [21], L2G-NeRF [5], PET-NeuS [37], SPARF [32], and BAA-NGP [23]. Since NeRF [26],
NeuS [34], and PET-NeuS [37] are designed for neural implicit field with fixed and precise poses, we
set the camera transformations as variables to be optimized jointly with the neural field, as in our
method.

While other methods optimize the radiance field, in which the target values, radiances, of points are
more independent of each other, the optimization of SDFs in NeuS and PET-NeuS poses a challenge
to the requirements of non-local geometric constraints to correctly form the shape, making them more
vulnerable to unstable pose optimization. As the camera rays are parameterized by our feature volume
to carry both geometric and photometric information, our geometric constraints on the camera ray
matching can effectively lead to better optimization of the geometry. The joint optimization of camera
pose and implicit SDF may also fail to produce results for NeuS and PET-NeuS, when the camera
poses are at a high noise level. With the assistance of camera ray matching, CRAYM outperforms
other methods on both novel view synthesis and 3D reconstruction at varying noise levels. We report
the PSNR, SSIM, and LPIPS [43] for quantitative comparisons on novel view synthesis and Chamfer
distance (CD) for the 3D reconstruction. A test-time photometric pose optimization is performed to
evaluate these metrics, following prior works [21, 32, 5]. The quantitative evaluations on the other
metrics are provided in the supplementary materials.

4.1 Pose Alignment

To evaluate the registration quality of the optimized training poses, we use Procrustes analysis [14]
to find the 3D similarity transformation that aligns the optimized training poses with the calibrated
camera poses, following BARF [21]. As Figure 4 shows, the optimized poses produced by CRAYM
align well with the ground-truth poses with lower translation errors.
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Figure 5: Qualitative comparison results of novel view synthesis and surfaces reconstruction on the
synthetic objects.

Table 1: Poses registration errors evaluated on the
LEGO scene in the NeRF-Synthetic dataset [26].

Method Rotation (◦) ↓ Translation ↓
BARF [21] ICCV′21 9.02 0.81
SPARF [32] CVPR23′21 10.64 0.53

L2G-NeRF [5] CVPR23′21 2.90 0.10
CRAYM (ours) 1.21 0.19

The average translation errors and rotation er-
rors are reported in Table 1. With the contextual
information and feature coherency of camera
ray matching, the camera poses produced by
CRAYM are better optimized for the construc-
tion of the implicit filed, so that CRAYM is able
to produce high-quality rendered views, as well
as more precise 3D reconstructions.

4.2 Evaluation on Synthetic Objects
Table 2: Results on the NeRF-Synthetic dataset.

Metrics Method PSNR↑ SSIM↑ LPIPS↓ CD↓

Chair

NeRF [26] 16.69 0.77 0.39 2.23
BARF [21] 28.55 0.93 0.06 0.09
SPARF [32] 23.80 0.87 0.19 0.14

L2G-NeRF [5] 30.99 0.95 0.05 0.10
CRAYM (ours) 34.18 0.98 0.02 0.06

Hotdog

NeRF [26] 15.07 0.74 0.42 N/A
BARF [21] 30.12 0.95 0.04 0.38
SPARF [32] 29.10 0.93 0.13 0.07

L2G-NeRF [5] 34.56 0.97 0.03 0.38
CRAYM (ours) 36.42 0.98 0.02 0.05

LEGO

NeRF [26] 11.11 0.60 0.58 0.58
BARF [21] 22.54 0.79 0.12 0.04
SPARF [32] 22.47 0.80 0.25 0.09

L2G-NeRF [5] 27.71 0.91 0.06 0.12
CRAYM (ours) 31.60 0.96 0.03 0.04

Mic

NeRF [26] 13.08 0.73 0.53 0.48
BARF [21] 30.37 0.96 0.05 0.28
SPARF [32] 28.36 0.91 0.17 0.24

L2G-NeRF [5] 30.91 0.97 0.05 0.17
CRAYM (ours) 31.02 0.97 0.05 0.04

Mean

NeRF [26] 13.29 0.68 0.49 0.64
BARF [21] 23.09 0.84 0.18 0.24
SPARF [32] 23.90 0.84 0.23 0.18

L2G-NeRF [5] 28.62 0.93 0.07 0.17
CRAYM (ours) 30.34 0.95 0.05 0.06

For the evaluation on the NeRF-Synthetic
dataset, we follow the same setting of noisy
poses as L2G-NeRF [5], which perturbs the
ground-truth camera poses with additive noise
as the initial poses. As NeuS [34] and PET-
NeuS [37] fail to produce results at such a set-
ting, we present only the results of NeRF [26],
BARF [21], SPARF [32], and L2G-NeRF [5].
The mean results of the eight objects and four of
them are given in Table 2. NeRF fails to extract
meshes from the reconstructed radiance fields
on Hotdog and Ship. Figure 5 shows the results
of view synthesis and 3D reconstruction visually
for BARF, SPARF, L2G-NeRF, and our method.
SPARF produces over smoothing results with
dense input, as shown in Figure 5. As can be
seen in Figure 5, CRAYM is able to produce
clean and complete renderings and reconstruc-
tions with fewer floaters and less blurriness.

4.3 Evaluation on Real Scenes

We first evaluate our method on the LLFF
dataset [25] for high-fidelity view synthesis of the eight real scenes. Compared with BARF [21],
L2G-NeRF [5], and BAA-NGP [23], our method is able to produce high-quality results with fewer
artifacts and better scores in terms of PSNR, SSIM, and LPIPS, as shown in the Table 3.
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Table 3: Qualitative comparison on novel view synthesis on the LLFF dataset [25].

PSNR ↑ SSIM ↑ LPIPS ↓
BARF

[21]
L2G-NeRF

[5]
BAA-NGP

[23]
CRAYM

(ours)
BARF

[21]
L2G-NeRF

[5]
BAA-NGP

[23]
CRAYM

(ours)
BARF

[21]
L2G-NeRF

[5]
BAA-NGP

[23]
CRAYM

(ours)

Fern 23.88 24.57 19.37 24.83 0.71 0.75 0.50 0.79 0.31 0.26 0.38 0.25
Flower 24.29 24.90 25.16 25.04 0.71 0.74 0.81 0.76 0.20 0.17 0.10 0.13
Fortress 29.06 29.27 29.24 29.39 0.82 0.84 0.83 0.85 0.13 0.11 0.14 0.12
Horns 23.29 23.12 19.71 23.30 0.74 0.74 0.72 0.75 0.29 0.26 0.24 0.24
Leaves 18.91 19.02 19.96 19.57 0.55 0.56 0.68 0.60 0.35 0.33 0.23 0.29
Orchids 19.46 19.71 12.45 19.81 0.57 0.61 0.14 0.59 0.29 0.25 0.42 0.23
Room 32.05 32.25 29.72 32.44 0.94 0.95 0.90 0.91 0.10 0.08 0.12 0.09
T-rex 22.92 23.49 24.56 23.68 0.78 0.80 0.86 0.83 0.20 0.16 0.11 0.10
Mean 24.23 24.54 22.52 24.76 0.73 0.75 0.68 0.76 0.23 0.20 0.22 0.18

Figure 6: Qualitative results of novel view synthesis and surfaces reconstruction on real scenes
captured by high-resolution cameras.

Table 4: Results on the real scenes PolyTech and
ArtSci in the UrbanScene3D [22] dataset.

Scene Method PSNR↑ SSIM↑ LPIPS↓ CD↓

PolyTech
NeuS [34] 14.27 0.42 0.71 0.10

PET-NeuS [37] 13.64 0.40 0.75 0.07
CRAYM (ours) 22.51 0.63 0.43 0.01

ArtSci
NeuS [34] 13.49 0.33 0.89 0.10

PET-NeuS [37] 15.18 0.36 0.88 0.08
CRAYM (ours) 19.37 0.42 0.63 0.02

As the images in the LLFF dataset are captured
with a restricted range of angles, we further as-
sess our method on the real scenes PolyTech
and ArtSci from the UrbanScene3D [22] dataset
with two sets of drones captured images [45] as-
sociated with GPS information. The large-scale
scenes are captured with hundreds of images,
which share smaller overlaps than the images
from the NeRF-Synthetic dataset. Considering
the limitations of memory, we reduce the size of the original high-resolution images by using bicubic
interpolation. As the GPS information may not be reliable and the positions in GPS may shift in
meters, we preprocess the poses from GPS with COLMAP [29] and add a small noise to the calibrated
poses, following L2G-NeRF [5].

The UrbanScene3D dataset contains high-precision LiDAR scans for the target buildings, PolyTech
and ArtSCi. Therefore, we evaluate the reconstructions quality with the point cloud scans as the
ground truths. We crop the reconstructed meshes according to the LiDAR scans and align them using
ICP. NeRF, BARF, and L2G-NeRF produce blurry renderings and degenerated meshes for the real
scenes, while SPARF may fail to process such data with dense correspondences. Therefore, we only
provide the visual results of NeuS, PET-NeuS, and our method.

The quantitative results of NeuS, PET-NeuS, and our method are provided in Table 4. As Figure 6
shows, NeuS and PET-NeuS tend to produce over smoothing results, while our method is able to
extract meshes with fine details. A mesh reconstructed directly from the original high-resolution
images using ContextCapture2, a commercial MVS solution, is provided as a reference.

4.4 Ablation Study

Comparison on varying noise levels. To evaluate model robustness, we evaluate on the LEGO
data sample with poses at varying noise levels. The “high noise level” means we use the same noise
setting as L2G-NeRF [5]; the “low noise level” means we perturb the ground-truth poses with half
of the noise as L2G-NeRF; and “w/o noise” means the poses are initialized as ground-truth poses
without noise. The transformation matrices of the camera poses are all set as variables to be optimized.
Table 5 summarizes the results. We can see that NeuS [34] and PET-NeuS [37] are more sensitive to
noise and cannot effectively handle the high-noise setting, while the other methods can not produce

2https://www.bentley.com/en/products/brands/contextcapture
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accuracy reconstructions. With the contextual information learned in the camera ray matching and the
explicit utilization of matched rays, CRAYM is able to obtain better results for all the noise settings.

Table 5: Comparing different methods at varying
noise levels.

Method PSNR↑ SSIM↑ LPIPS↓ CD↓
w/o Noise

NeRF [26] 29.08 0.94 0.04 0.34
NeuS [34] 21.18 0.82 0.09 0.04
BARF [21] 28.33 0.93 0.05 0.36
SPARF [32] 22.73 0.80 0.25 0.09

PET-NeuS [37] 21.37 0.82 0.14 0.10
L2G-NeRF [5] 27.94 0.92 0.06 0.14
CRAYM (ours) 32.72 0.97 0.02 0.03

Low Noise Level

NeRF [26] 24.86 0.88 0.09 0.34
NeuS [34] 21.76 0.83 0.14 0.05
BARF [21] 28.32 0.93 0.05 0.36
SPARF [32] 22.55 0.80 0.25 0.09

PET-NeuS [37] 21.34 0.82 0.11 0.55
L2G-NeRF [5] 27.75 0.92 0.06 0.21
CRAYM (ours) 32.68 0.97 0.02 0.04

High Noise Level

NeRF [26] 11.36 0.81 0.56 0.57
NeuS [34] N/A N/A N/A N/A
BARF [21] 14.48 0.69 0.29 0.04
SPARF [32] 22.47 0.80 0.25 0.09

PET-NeuS [37] N/A N/A N/A N/A
L2G-NeRF [5] 27.71 0.91 0.06 0.12
CRAYM (ours) 31.60 0.96 0.03 0.03

Table 6: Ablation of major modules and losses.

Method PSNR↑ SSIM↑ LPIPS↓ CD↓
L2G-NeRF [5] 27.71 0.91 0.06 0.12

NeuS2 [35] 26.83 0.86 0.17 0.08

Baseline 27.30 0.91 0.10 0.06
+ KRE 28.64 0.93 0.07 0.05

+ KRE + MRC 30.41 0.95 0.04 0.04
+ Le 29.43 0.92 0.07 0.05

+ Le + La 29.95 0.94 0.06 0.04
Our full pipeline 31.60 0.96 0.03 0.04

Ablation of major modules and losses. To
demonstrate the efficiency of the proposed mod-
ules and geometric losses, we conduct an abla-
tion study on the LEGO data sample. The re-
sults are reported in Table 6. Similar with BARF,
which applies a smooth mask on the encoding
at different frequency bands for neural radiance
field, we apply a progressive feature mask on the
hash encoding with a coarse-to-fine training of
the neural implicit field as our baseline, which
combines BARF [21] and NeuS2[35]. The KRE
module improves the robustness to noisy poses
in the training, whereas the MRC module ef-
fectively enhances the quality of the volume
renderings with ray matching. In addition to
that, the proposed geometric losses further help
our framework to obtain better camera pose op-
timization.

5 Conclusion and discussion

Our method, CRAYM, addresses the issue of
noise camera poses for multi-view 3D recon-
struction and view synthesis. The key idea is
to jointly optimize a neural field and camera
poses by incorporating contextual information
(via KRE) and enforcing geometric and pho-
tometric consistency (via MRC and geometric
losses) through camera ray matching.

Experiments demonstrate that our method out-
performs state-of-the-art alternatives under vari-
ous settings: dense- vs. sparse-views, and differ-
ent noise levels. However, the implicit field and
optimizable pose transformations may not con-
verge when the poses are randomly initialized
or extremely noisy. A stronger pose regulariza-
tion prior to the field optimization may resolve
this problem. Furthermore, the meshes extracted
from the constructed SDFs may still contain messy inner structures over invisible areas.

A promising future work is to apply the ray matching to the 3D Gaussian splatting, which will greatly
improve the rendering efficiency of CRAYM. However, extracting reconstructions with fine geometric
structures from 3D Gaussians is still an open problem.

Finally, CRAYM has been designed to rely on sparse key rays for dense-view reconstruction, while
a dense counterpart may bring up extra overhead. In our Matched Ray Coherency formulation, we
explicitly account for potentially erroneous (i.e., low-quality) 2D matches by using the matchability
between two rays as a weight to either accentuate or discount the color consistency constraint. In
terms of sensitivity with respect to the density of the 2D matches, in our experiments, we have
observed that even with sparse input views and sparsely distributed matched rays, CRAYM can still
notably improve the optimization convergence. An effective approach to utilize ray matching for
both sparse and dense inputs may further boost the performance of CRAYM.
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A Appendix / supplemental material

A.1 Implementation

A.1.1 Camera Pose Parameterization.

The camera poses {Ti}, where Ti = [Ri|ti] ∈ SE(3), need to be parameterized and optimized in
the training process. As a high frequency operation, pose parameterization needs to be simple and
efficient, since the conversion between pose parameterization and transformation matrix is performed
in every training iteration.

The position component t of T is simply represented as a three-dimensional vector. Instead of
parameterizing the rotation R as an exponential map exp(r) from the Lie algebra so(3) to the Lie
group SO(3), we represent R as a six-dimensional vector composed by R = [va|vb], va ∈ R3,
vb ∈ R3. va, vb, and vc = va × vb span the three bases of the camera space. To obtain rotation
matrix R from R, we perform a Gram-Schmidt orthonormalization on va, vb, and vc, resulting in
three orthonormal bases of the camera space, v̄a, v̄b, and v̄c. Thus, the rotation matrix is

R = [v̄Ta |v̄Tb |v̄Tc ]. (8)

A.1.2 Key Rays Enrichment Module

Figure 7: Visualization of the matches between two images from the LEGO scene in the NeRF-
Synthetic dataset [26].

Figure 7 shows an example of matched pixels. Due to the noise in the camera poses, the surface
point captured by the associated keypoint on the input image may not intersect with the key ray rk
exactly, the integration of features from the neighboring points {qi} sampled by auxiliary rays {ro}
can greatly facilitate a more stable optimization associated with key ray rk; see Figure 8.

Procedure-wise, we propose to first fuse the feature of pk with the features of the surrounding {qi}
to produce the enriched feature f ′(pk), which can better describe the local radiance feature and
geometry feature of the captured object with structure information.

f ′(pk) =

No∑
i=1

Softmax(f(pk) ∗ f(qi)) ∗ f(qi). (9)

The features {f(qi)} of the auxiliary rays {ra} remain untouched: f ′(qi) = f(qi). Further, we adopt
the geometry network Φg to process the features f ′(p) of both key rays and auxiliary rays to extract
the SDF value at point p in the radiance field. From the extracted SDF values, we can then produce
the 3D reconstruction of the target object:

[SDF(p)|f ′′(p)] = Φg(f
′(p)), (10)

where f ′′(p) is the output feature of point p. f ′′(p) is one of the inputs to the texture network Φt.
The contextual information of ray matchings facilitates a more stable pose optimization and promotes
the details of the geometry, i.e., the accuracy of the SDF values.

The color of point p sampled on key rays or auxiliary rays can then be obtained with the texture
network Φt as

c(p) = Φt(f
′′(p), rd,Normal(p)), (11)

where rd is the normalized direction of ray r and Normal(p) is the normal of the implicit surface at
p computed as the gradient of SDF(p). We take the normal at p into account to boost the training of
Φt.
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Figure 8: Illustrating the Key Ray Enrichment Module. The yellow ray rk is the key ray and the
gray rays {ra} are the neighboring auxiliary rays. The surface point (the blue point) captured by
the associated keypoint (the red point) on the input image may not intersect with rk exactly due
to the unreliable pose, while we can learn the contextual information of the surface point with the
neighboring rays of point pk sampled on rk.

Figure 9: View synthesis and 3D reconstruction results on the real scenes CSSE produced by our
method.

The color c(r) of ray r is then rendered with the opaque densities and colors of all the points sampled
along r, where the opaque densities are obtained with the SDF values, normal vectors, and ray
directions [34].

Figure 10: Comparison of view synthesis results on the real scenes Bank.

A.2 Training Details

We use a 16-level hash grid [27] to encode the feature volume V . The feature length of each level
is two. Therefore, the base resolution of V is 32. We apply a progressive feature mask [19] on
the hash encoding, which starts at level 4 and is updated to the next level every 1,000 iterations.
The geometry network ϕg is implemented as a three-layer MLP with the ReLU activation for the
input and hidden layers. The texture network ϕt is implemented as a four-layer MLP with the ReLU
activation for the input and hidden layers. The ray directions are encoded using the spherical harmonic
representation [10] and fed into the texture network ϕt together with the output features of ϕg to
predict the color of the sampled points on the ray. The whole network is optimized with the AdamW
optimizer with a learning rate of 0.01, β = [0.9, 0.99], and ϵ = 1.0−15. The variance [34] of the
geometry network ϕg is initialized as 0.3 and is optimized with a learning rate of 0.001. We adopt a
warm-up training for the first 500 iterations with the LinearLR scheduler. All the experiments are
conducted with an Nvidia GV100.
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Table 7: Comparison of reconstruction quality on the NeRF-Synthetic [26] dataset.
Metrics Method Mean Chair Drums Ficus Hotdog LEGO Materials Mic Ship

HD↓

NeRF [26] ECCV’20 2.19 3.22 2.05 1.63 N/A 2.56 1.78 1.89 N/A
BARF [21] ICCV’21 1.52 0.38 1.42 0.28 1.13 0.44 1.90 1.26 5.34
SPARF [32] CVPR’23 1.11 0.80 1.42 1.09 0.54 0.92 1.35 1.64 1.10

L2G-NeRF [5] CVPR’23 1.57 0.43 1.57 0.48 1.14 0.99 2.15 1.09 4.69
CRAYM (ours) 0.98 0.38 0.73 0.23 0.59 0.37 0.35 0.57 4.62

Precision↑

NeRF [26] ECCV’20 1.17 N/A 1.99 0.71 N/A 3.72 2.12 0.81 N/A
BARF [21] ICCV’21 15.97 24.60 15.96 9.23 7.44 42.89 18.74 3.279 5.63
SPARF [32] CVPR’23 15.12 28.40 10.14 0.22 30.18 28.06 10.85 5.30 7.83

L2G-NeRF [5] CVPR’23 17.36 21.81 23.01 10.59 3.38 43.71 18.31 10.56 7.54
CRAYM (ours) 30.59 33.53 45.44 17.55 30.50 49.58 19.16 38.75 15.60

Recall↑

NeRF [26] ECCV’20 3.18 N/A 1.69 11.82 N/A 3.36 5.75 2.80 N/A
BARF [21] ICCV’21 20.43 24.25 3.33 17.47 24.33 61.29 18.75 12.24 1.81
SPARF [32] CVPR’23 19.38 16.17 6.09 17.54 37.34 13.68 12.60 5.40 19.38

L2G-NeRF [5] CVPR’23 26.98 19.97 48.06 21.10 10.99 68.00 19.51 19.34 8.84
CRAYM (ours) 42.29 43.65 50.11 45.95 31.17 81.63 21.67 40.29 29.77

F-score↑

NeRF [26] ECCV’20 1.38 N/A 1.83 1.34 N/A 3.53 3.10 1.25 N/A
BARF [21] ICCV’21 16.32 24.42 5.51 12.08 11.39 50.47 18.75 5.17 2.74
SPARF [32] CVPR’23 16.03 35.19 12.46 0.42 22.18 32.04 12.10 7.46 6.39

L2G-NeRF [5] CVPR’23 20.64 20.85 31.12 14.10 5.17 53.22 18.89 13.66 8.14
CRAYM (ours) 34.76 37.93 47.66 25.40 30.83 61.69 20.34 39.50 20.48

Figure 11: View Synthesis on the DTU [15] dataset.

Table 8: Comparison of reconstruction quality on the real scenes PolyTech and ArtSci of the
UrbanScene3D [22] dataset.

Scene Method HD↓ Precision↑ Recall↑ F-score↑

PolyTech
NeuS [34] 0.63 41.32 55.68 47.44

PET-NeuS [37] 0.46 43.29 46.83 44.99
CRAYM (ours) 0.04 81.59 91.21 88.13

ArtSci
NeuS [34] 0.67 33.73 31.89 30.24

PET-NeuS [37] 0.32 21.30 15.69 18.07
CRAYM (ours) 0.19 59.01 52.54 55.59

Table 9: Comparison of novel view synthesis on the real scene Bank from TwinTex [40].

Method PSNR↑ SSIM↑ LPIPS↓
NeuS [34] NIPS′21 11.69 0.25 0.91

PET-NeuS [37] CVPR′23 13.22 0.27 0.93
CRAYM (ours) 18.68 0.46 0.59
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Table 10: Comparison of novel view synthesis on the DTU [15] dataset.

Scene Method PSNR↑ SSIM↑ LPIPS↓

Scan24

NeuS [34] NIPS′21 20.55 0.64 0.41
PET-NeuS [37] CVPR′23 20.77 0.65 0.42

SPARF [32] CVPR′23 22.80 0.78 0.29
CRAYM (ours) 30.53 0.96 0.02

Scan37

NeuS [34] NIPS′21 19.27 0.72 0.30
PET-NeuS [37] CVPR′23 18.68 0.71 0.30

SPARF [32] CVPR′23 21.99 0.72 0.31
CRAYM (ours) 28.64 0.95 0.03

Scan40

NeuS [34] NIPS′21 23.88 0.64 0.52
PET-NeuS [37] CVPR′23 22.78 0.63 0.51

SPARF [32] CVPR′23 23.85 0.72 0.38
CRAYM (ours) 26.86 0.91 0.06

Scan55

NeuS [34] NIPS′21 16.83 0.66 0.39
PET-NeuS [37] CVPR′23 23.10 0.73 0.38

SPARF [32] CVPR′23 19.80 0.63 0.49
CRAYM (ours) 30.96 0.98 0.02

Scan63

NeuS [34] NIPS′21 28.45 0.92 0.10
PET-NeuS [37] CVPR′23 26.89 0.90 0.09

SPARF [32] CVPR′23 27.45 0.92 0.12
CRAYM (ours) 31.30 0.98 0.01

A.3 Reconstruction Quality

Next, we report the Hausdorff distance (HD), precision, recall, and F-score [17] for the reconstruction
quality evaluated on the NeRF-Synthetic [26] dataset and the UrbanScene3D [22] dataset. The
NeRF-Synthetic dataset contains eight synthetic objects, which are captured with 100 images. We
evaluate our method on the two real scenes, PolyTech and ArtSci, from the UrbanScene3D [22]
dataset, on which we measure the quality of the reconstructions with the high-resolution LiDAR
scans as the ground truths.

Tables 7 and 8 report the reconstruction quality, compared with NeRF [26], BARF [21], SPARF [32],
and L2G-NeRF [5] on the two datasets. A threshold of 0.01 is used to extract the inliers and outliers
for the calculation of the precision, recall, and F1 score. The precision measures the reconstruction
accuracy by calculating the distances from the reconstructed models to the ground truths. The
recall measures the reconstruction completeness by determining the extent of the ground-truth
points covered by the reconstructed models. A high F-score means both high accuracy and high
completeness of the reconstructed models. As we can see from Tables 7 and 8, our method is able
to produce high-quality reconstructions with both high accuracy and high completeness. It is worth
to note that compared with other methods, our method achieves the top performance on all metrics
consistently for both datasets.

A.4 Results on Real Scenes

Further, we evaluate our method on the real scene Bank from TwinTex [40], which is a set of
high-resolution drone-captured images. We preprocess the images with COLMAP [29] to obtain the
calibrated poses and perturb the poses with additive noise ξ, where ξ ∈ se(3) and ξ ∈ N (0, nI), as
the initial poses, following the procedure on real scenes PolyTech and ArtSci of UrbanScene3D [22].
For these real scenes, we set n as a small value 0.01.

Since TwinTex does not provide a LiDAR scan for the scene Bank, we only report the evaluation
results of novel view synthesis in Table 9. Figure 10 shows the comparison on the real scene Bank
visually with NeuS [34] and PET-NeuS [37]. While the other methods tend to generate renderings
with blurriness, our method is able to produce sharper results with more fine details. Figure 9 further
shows results of our method on another real scenes CSSE.
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Table 11: Results of sparse input (3 views) on the LEGO scene from the NeRF-Synthetic dataset [26].

Method PSNR↑ SSIM↑ LPIPS↓ CD↓
SPARF [32] CVPR′23 15.91 0.69 0.40 1.27

CRAYM (ours) 16.08 0.70 0.41 0.09

A.5 Results on the DTU Dataset

The DTU [15] dataset is aimed at multi-view stereo (MVS) evaluation, containing image sets captured
with structured light scanners mounted on an industrial robot arm. We evaluate our method on the first
five image sets used in the NeuS [34], comparing with NeuS [34], PET-NeuS [37], and SPARF [32].
Each image set contains 48 images. We use 90% of them as training set and the remaining 10%
images as testing data. The quantitative results of novel view synthesis on these data are shown in
the Table 10. Figure 11 shows some of the novel view synthesis results visually. As we can see in
Figure 11, our method produces renderings with much more details.

A.6 Sparse Views

Since SPARF is originally designed for sparse input with re-projection loss of dense pixel corre-
spondences, we further evaluate our method on the LEGO data with sparse input, which contains
only three views as the training images. The comparison of SPARF [32] and our method is shown in
Table 11. Though CRAYM aims for bundle-adjusting neural implicit field with dense views as input,
it still obtains a result comparable with SPARF, for sparse input views.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope. All the claims are demonstrated in the experiments.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the proposed method is discussed in the Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The details of the CRAYM are given in the Section 3, Appendix A.1.1, and
Appendix A.1.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]

Justification: All the experiments use open access dataset. The code is not released yet.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The data splits are set the same as previous paper. The training details are
given in the Appendix A.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Section 4 and Appendix A.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Appendix A.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conforms with the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The proposed method is not tied to particular applications.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the related papers are cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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