
Text Embeddings Reveal (Almost) As Much As Text

Anonymous ACL submission

Abstract

How much private information do text em-001
beddings reveal about the original text? We002
investigate the problem of embedding inver-003
sion, reconstructing the full text represented004
in dense text embeddings. We frame the prob-005
lem as controlled generation: generating text006
that, when reembedded, is close to a fixed point007
in latent space. We find that although a naïve008
model conditioned on the embedding performs009
poorly, a multi-step method that iteratively cor-010
rects and re-embeds text is able to recover 92%011
of 32-token text inputs exactly. We train our012
model to decode text embeddings from two013
state-of-the-art embedding models, and also014
show that our model can recover important per-015
sonal information (full names) from a dataset016
of clinical notes.017

1 Introduction018

Systems that utilize large language models (LLMs)019

often store auxiliary data in a vector database of020

dense embeddings (Borgeaud et al., 2022; Yao021

et al., 2023). Users of these systems infuse knowl-022

edge into LLMs by inserting retrieved documents023

into the language model’s prompt. Practition-024

ers are turning to hosted vector database services025

to execute embedding search efficiently at scale026

(Pinecone; Qdrant; Vdaas; Weaviate; LangChain).027

In these databases, the data owner only sends em-028

beddings of text data (Le and Mikolov, 2014; Kiros029

et al., 2015) to the third party service, and never030

the text itself. The database server returns a search031

result as the index of the matching document on032

the client side.033

Vector databases are increasingly popular, but034

privacy threats within them have not been compre-035

hensively explored. Can the third party service036

to reproduce the initial text, given its embedding?037

Neural networks are in general non-trivial or even038

impossible to invert exactly. Furthermore, when039

querying a neural network through the internet, we040

may not have access to the model weights or gradi- 041

ents at all. 042

Still, given input-output pairs from a network, 043

it is often possible to approximate the network’s 044

inverse. Work on inversion in computer vision 045

(Mahendran and Vedaldi, 2014; Dosovitskiy and 046

Brox, 2016) has shown that it is possible to learn 047

to recover the input image (with some loss) given 048

the logits of the final layer. Preliminary work has 049

explored this question for text (Song and Raghu- 050

nathan, 2020), but only been able to recover an 051

approximate bag of words given embeddings from 052

shallow LSTMs. 053

In this work, we target full reconstruction of in- 054

put text from its embedding. If text is recoverable, 055

there is a threat to privacy: a malicious user with ac- 056

cess to a vector database, and text-embedding pairs 057

from the model used to produce the data, could 058

learn a function that reproduces text from embed- 059

dings. 060

We frame this problem of recovering textual em- 061

beddings as a controlled generation problem, where 062

we seek to generate text such that the generated text 063

is as close as possible to a given embedding. Our 064

method, Vec2Text, uses the difference between a hy- 065

pothesis embedding and a ground-truth embedding 066

to make discrete updates to the text hypothesis. 067

When we embed web documents using a state-of- 068

the-art black-box encoder, our method can recover 069

32-token inputs with a near-perfect BLEU score of 070

97.3, and can recover 92% of the examples exactly. 071

We then evaluate on embeddings generated from 072

a variety of common retrieval corpuses from the 073

BEIR benchmark. Even though these texts were 074

not seen during training, our method is able to per- 075

fectly recover the inputs for a number of datapoints 076

across a variety of domains. We evaluate on em- 077

beddings of clinical notes from MIMIC and are 078

able to recover 89% of full names from embedded 079

notes. These results imply that text embeddings 080

present the same threats to privacy as the text from 081

1

x0 Mage (foaled April 18, 2020) is an
American Thoroughbred racehorse who

won the 2023 Kentucky Derby.

Target embedding

Correction

Φ

Kentucky Derby which was won by
20 1 who an American

Thoroughbred and mare

, Mage
(April , 20 0), is

 horse .

Figure 1: Overview of our method, Vec2Text. Given access to a target embedding e (blue) and query access to an
embedding model ϕ (blue model), the system aims to iteratively generate (yellow model) hypotheses ê (pink) to
reach the target. Example input is a taken from a recent Wikipedia article (June 2023). Vec2Text perfectly recovers
this text from its embedding after 4 rounds of correction.

which they are computed, and embeddings should082

be treated with the same precautions as raw data.083

2 Overview: Embedding Inversion084

Text embedding models learn to map text se-085

quences to embedding vectors. Embedding vec-086

tors are useful because they encode some notion087

of semantic similarity: inputs that are similar in088

meaning should have embeddings that are close in089

vector space (Mikolov et al., 2013). Embeddings090

are commonly used for many tasks such as search,091

clustering, and classification (Aggarwal and Zhai,092

2012; Neelakantan et al., 2022; Muennighoff et al.,093

2023).094

Given a text sequence of tokens x ∈ Vn, a text095

encoder ϕ : Vn → Rd maps x to a fixed-length096

embedding vector e ∈ Rd.097

Now consider the problem of inverting textual098

embeddings: given some unknown encoder ϕ, we099

seek to recover the text x given its embedding100

e = ϕ(x). Text embedding models are typically101

trained to encourage similarity between related in-102

puts (Karpukhin et al., 2020). Thus, we can write103

the problem as recovering text that has a maxi-104

mally similar embedding to the ground-truth. We105

can formalize the search for text x̂ with embedding106

e under encoder ϕ as optimization:107

x̂ = argmax
x

cos(ϕ(x), e) (1)108

Assumptions of our threat model. In a practical109

sense, we consider the scenario where an attacker110

wants to invert a single embedding produced from111

a black-box embedder ϕ. We assume that the at- 112

tacker has access to ϕ: given hypothesis text x̂, the 113

attacker can query the model for ϕ(x̂) and compute 114

cos(ϕ(x̂), e). When this term is 1 exactly, the at- 115

tacker can be sure that x̂ was the original text, i.e. 116

collisions are rare and can be ignored. 117

3 Method: Vec2Text 118

3.1 Base Model: Learning to Invert ϕ 119

Enumerating all possible sequences to compute 120

Equation (1) is computationally infeasible. One 121

way to avoid this computational constraint is by 122

learning a distribution of texts given embeddings. 123

Given a dataset of texts D = {x1, . . .}, we learn to 124

invert encoder ϕ by learning a distribution of texts 125

given embeddings, p(x | e; θ), by learning θ via 126

maximum likelihood: 127

θ = arg max
θ̂

Ex∼D[p(x | ϕ(x); θ̂)] 128

We drop the θ hereon for simplicity of notation. 129

In practice, this process involves training a condi- 130

tional language model to reconstruct unknown text 131

x given its embedding e = ϕ(x). We can view this 132

learning problem as amortizing the combinatorial 133

optimization (Equation (1)) into the weights of a 134

neural network. Directly learning to generate sat- 135

isfactory text in this manner is well-known in the 136

literature to be a difficult problem. 137

3.2 Controlling Generation for Inversion 138

To improve upon this model, we propose Vec2Text 139

shown in Figure 1. This approach takes inspira- 140

tion from methods for Controlled Generation, the 141

2

task of generating text that satisfies a known con-142

dition (Hu et al., 2018; John et al., 2018; Yang143

and Klein, 2021). This task is similar to inversion144

in that there is a observable function ϕ that deter-145

mines the level of control. However, it differs in146

that approaches to controlled generation (Dathathri147

et al., 2020; Li et al., 2022) generally require differ-148

entiating through ϕ to improve the score of some149

intermediate representation. Textual inversion dif-150

fers in that we can only make queries to ϕ, and151

cannot compute its gradients.152

Model. The method guesses an initial hypoth-153

esis and iteratively refines this hypothesis by re-154

embedding and correcting the hypothesis to bring155

its embedding closer to e. Note that this model re-156

quires computing a new embedding ê(t) = ϕ(x(t))157

in order to generate each new correction x(t+1).158

We define our model recursively by marginalizing159

over intermediate hypotheses:160

p(x(t+1) | e) =
∑
x(t)

p(x(t) | e)p(x(t+1) | e, x(t), ê(t))161

ê(t) = ϕ(x(t))162

with a base case of the simple learned inversion:163

p(x(0) | e) = p(x(0) | e,∅, ϕ(∅))164

Here, x(0) represents the initial hypothesis gener-165

ation, x(1) the correction of x(0), and so on. We166

train this model by first generating hypotheses x(0)167

from the model in Section 3.1, computing ê(0), and168

then training a model on this generated data.169

This method relates to other recent work gener-170

ating text through iterative editing (Lee et al., 2018;171

Ghazvininejad et al., 2019). Especially relevant172

is Welleck et al. (2022), which proposes to train173

a text-to-text ‘self-correction’ module to improve174

language model generations with feedback.175

Parameterization. The backbone of our model,176

p(x(t+1) | e, x(t), ê(t)), is parameterized as a stan-177

dard encoder-decoder transformer (Vaswani et al.,178

2017; Raffel et al., 2020) conditioned on the previ-179

ous output.180

One challenge is the need to input conditioning181

embeddings e and ê(t) into a transformer encoder,182

which requires a sequence of embeddings as input183

with some dimension denc not necessarily equal184

to the dimension d of ϕ’s embeddings. Similar to185

Mokady et al. (2021), we use small MLP to project186

a single embedding vector to a larger size, and 187

reshape to give it a sequence length as input to the 188

encoder. For embedding e ∈ Rd: 189

EmbToSeq(e) = W2 σ(W1 e) 190

where W1 ∈ Rd×d and W2 ∈ R(sdenc)×d for some 191

nonlinear activation function σ and predetermined 192

encoder “length” s. We use a separate MLP to 193

project three vectors: the ground-truth embedding 194

e, the hypothesis embedding ê(t), and the differ- 195

ence between these vectors e− ê. Given the word 196

embeddings of the hypothesis x(t) are {w1...wn}, 197

the input (length 3s + n) to the encoder is as fol- 198

lows: 199

concat(EmbToSeq(e), 200

EmbToSeq(ê(t)), 201

EmbToSeq(e− ê(t)), (w1...wn)) 202

We feed the concatenated input to the encoder and 203

train the full encoder-decoder model using standard 204

language modeling loss. 205

Inference. In practice we cannot tractably sum 206

out intermediate generations x(t), so we approxi- 207

mate this summation via beam search. We perform 208

inference from our model greedily at the token level 209

but implement beam search at the sequence-level 210

x(t). At each step of correction, we consider some 211

number b of possible corrections as the next step. 212

For each possible correction, we decode the top 213

b possible continuations, and then take the top b 214

unique continuations out of b · b potential contin- 215

uations by measuring their distance in embedding 216

space to the ground-truth embedding e. 217

4 Experimental Setup 218

Embeddings. Vec2Text is trained to invert two 219

state-of-the-art embedding models: GTR-base (Ni 220

et al., 2021), a T5-based pre-trained transformer 221

for text retrieval, and text-embeddings-ada-002 222

available via the OpenAI API. Both model fami- 223

lies are among the highest-performing embedders 224

on the MTEB text embeddings benchmark (Muen- 225

nighoff et al., 2023). 226

Datasets. We train our GTR model on 5M pas- 227

sages from Wikipedia articles selected from the 228

Natural Questions corpus (Kwiatkowski et al., 229

2019) truncated to 32 tokens. We train our two 230

OpenAI models (Bajaj et al., 2018), both on ver- 231

sions of the MSMARCO corpus with maximum 32 232

3

method tokens pred tokens bleu tf1 exact cos

G
T

R
N

at
ur

al
Q

ue
st

io
ns

Bag-of-words 32 32 0.3 51 0.0 0.70
Base [0 steps] 32 32 31.9 67 0.0 0.91

(+ beam search) 32 32 34.5 67 1.0 0.92
(+ nucleus) 32 32 25.3 60 0.0 0.88

Vec2Text [1 step] 32 32 50.7 80 0.0 0.96
[20 steps] 32 32 83.9 96 40.2 0.99
[50 steps] 32 32 85.4 97 40.6 0.99
[50 steps + sbeam] 32 32 97.3 99 92.0 0.99

O
pe

nA
I

M
SM

A
R

C
O Base [0 steps] 31.8 31.8 26.2 61 0.0 0.94

Vec2Text [1 step] 31.8 31.9 44.1 77 5.2 0.96
[20 steps] 31.8 31.9 61.9 87 15.0 0.98
[50 steps] 31.8 31.9 62.3 87 14.8 0.98
[50 steps + sbeam] 31.8 31.8 83.4 96 60.9 0.99

O
pe

nA
I

M
SM

A
R

C
O Base [0 steps] 80.9 84.2 17.0 54 0.6 0.95

Vec2Text [1 step] 80.9 81.6 20.5 59 0.6 0.96
[20 steps] 80.9 79.7 26.5 66 0.6 0.97
[50 steps] 80.9 80.5 25.9 64 0.8 0.97
[50 steps + sbeam] 80.9 80.6 33.9 72 5.0 0.98

Table 1: Reconstruction score on in-domain datasets. Top section of results come from models trained to reconstruct
32 tokens of text from Wikpedia, embedded using GTR-base. Remaining results come from models trained to
reconstruct up to 32 or 128 tokens from MSMARCO, embedded using OpenAI text-embeddings-ada-002.

or 128 tokens per example 1. For evaluation, we233

consider the evaluation datasets from Natural Ques-234

tions and MSMarco, as well as two out-of-domain235

settings: the MIMIC-III database of clinical notes236

(Johnson et al., 2016) in addition to the variety237

of datasets available from the BEIR benchmark238

(Thakur et al., 2021).239

Baseline. As a baseline, we train the base model240

p(x(0) | e) to recover text with no correction steps.241

We also evaluate the bag of words model from242

Song and Raghunathan (2020). To balance for the243

increased number of queries allotted to the cor-244

rection models, we also consider taking the top-N245

predictions made from the unconditional model via246

beam search and nucleus sampling (p = 0.9) and247

reranking via cosine similarity.248

Metrics. We use two types of metrics to measure249

the progress and the accuracy of reconstructed text.250

First we consider our main goal of text reconstruc-251

tion. To measure this we use word-match metrics252

including: BLEU score (Papineni et al., 2002), a253

measure of n-gram similarities between the true254

and reconstructed text; Token F1, the multi-class255

1By 2023 pricing of $0.0001 per 1000 tokens, embedding
5 million documents of 70 tokens each costs $35.

F1 score between the set of predicted tokens and 256

the set of true tokens; Exact-match, the percent- 257

age of reconstructed outputs that perfectly match 258

the ground-truth. We also report the similarity on 259

the internal inversion metric in terms of recovering 260

the vector embedding in latent space. We use co- 261

sine similarity between the true embedding and the 262

embedding of reconstructed text according to ϕ. 263

Models and Inference. We initialize our models 264

from the T5-base checkpoint (Raffel et al., 2020). 265

Including the projection head, each model has ap- 266

proximately 235M parameters. We set the projec- 267

tion sequence length s = 16 for all experiments, 268

as preliminary experiments show diminishing re- 269

turns by increasing this number further. We per- 270

form inference on all models using greedy token- 271

level decoding. When running multiple steps of 272

sequence-level beam search, we only take a new 273

generation if it is closer than the previous step in 274

cosine similarity to the ground-truth embedding. 275

We use unconditional models to seed the initial 276

hypothesis for our iterative models. We examine 277

the effect of using a different initial hypothesis in 278

Section 7. 279

We use the Adam optimizer and learning rate of 280

4

dataset tokens ptokens tf1 cos

quora 15.5 18.6 93.5 0.99
signal1m 24.5 27.2 73.3 0.97
msmarco 72.1 73.8 71.5 0.98
fever 73.4 71.8 70.8 0.98
dbpedia-entity 93.1 92.6 65.0 0.98
hotpotqa 94.3 94.2 64.3 0.98
nq 95.5 93.9 60.6 0.97
webis-touche2020 105.2 105.0 56.2 0.95
cqadupstack 106.3 106.1 51.6 0.94
scidocs 124.5 122.8 46.1 0.96
trec-covid 125.2 123.5 47.0 0.96
scifact 127.2 125.7 44.4 0.96
nfcorpus 127.3 125.8 50.6 0.97
bioasq 127.4 125.4 45.3 0.96
trec-news 128.0 124.8 41.2 0.95

Table 2: Out-of-domain reconstruction performance
measured on datasets from the BEIR benchmark. We
sort datasets in order of average length in order to em-
phasize the effect of sequence length on task difficulty.

2 ∗ 10−4 with warmup and linear decay. We train281

models for 100 epochs. We use batch size of 128282

and train all models on 4 NVIDIA A6000 GPUs.283

Under these conditions, training our slowest model284

takes about two days.285

5 Results286

5.1 Reconstruction: In-Domain287

Table 1 contains in-domain results. Our method288

outperforms the baselines on all metrics. More289

rounds is monotonically helpful, although we see290

diminishing returns – we are able to recover 77%291

of BLEU score in just 5 rounds of correction, al-292

though running for 50 rounds indeed achieves a293

higher reconstruction performance. We find that294

running sequence-level beam search (sbeam) over295

the iterative reconstruction is particularly helpful296

for finding exact matches of reconstructions, in-297

creasing the exact match score by 2 to 6 times298

across the three settings. In a relative sense, the299

model has more trouble exactly recovering longer300

texts, but still is able to get many of the words.301

5.2 Reconstruction: Out-of-Domain302

We evaluate our model on 15 datasets from the303

BEIR benchmark and display results in Table 2.304

Quora, the shortest dataset in BEIR, is the easiest305

to reconstruct, and our model is able to exactly re-306

cover 66% of examples. Our model adapts well307

to different-length inputs, generally producing re-308

constructions with average length error of fewer 309

than 3 tokens. In general, reconstruction accuracy 310

inversely correlates with example length (discussed 311

more in Section 7). On all datasets, we are able to 312

recover sequences with Token F1 of at least 41 and 313

cosine similarity to the true embedding of at least 314

0.95. 315

5.3 Case study: MIMIC 316

As a specific threat domain, we consider MIMIC- 317

III clinical notes (Johnson et al., 2016). Because 318

the original release of MIMIC is completely deiden- 319

tified, we instead use the “pseudo re-identified” ver- 320

sion from Lehman et al. (2021) where fake names 321

have been inserted in the place of the deidentified 322

ones. 323

Each note is truncated to 32 tokens and the notes 324

are filtered so that they each contain at least one 325

name. We measure the typical statistics of our 326

method as well as three new ones: the percentage 327

of first names, last names, and complete names 328

that are recovered. Results are shown in Table 3. 329

Vec2Text is able to recover 94% of first names, 330

95% of last names, and 89% of full names (first, 331

last format) while recovering 26% of the docu- 332

ments exactly. 333

For the recovered clinical notes from Section 5.3, 334

we extract entities from each true and recovered 335

note using a clinical entity extractor (Raza et al., 336

2022). We plot the recovery percentage in 3 (bot- 337

tom) with the average entity recovery shown as 338

a dashed line. Our model is most accurate at re- 339

constructing entities of the type “Clinical Event”, 340

which include generic medical words like ‘arrived’, 341

‘progress’, and ‘transferred’. Our model is least 342

accurate in the “Detailed Description” category, 343

which includes specific medical terminology like 344

‘posterior’ and ‘hypoxic’, as well as multi-word 345

events like ‘invasive ventilation - stop 4:00 pm’. 346

Although we are able to recover 26% of 32- 347

token notes exactly, the notes that were not exactly 348

recovered are semantically close to the original. 349

Our model generally matches the syntax of notes, 350

even when some entities are slightly garbled; for 351

example, given the following sentence from a doc- 352

tor’s note “Rhona Arntson npn/- # resp: infant re- 353

mains orally intubated on imv / r fi” our model 354

predicts “Rhona Arpson nrft:# infant remains intu- 355

bated orally on resp. imv. m/n fi”. 356

5

method first last full bleu tf1 exact cos

Base 40.0 27.8 10.8 4.9 33.1 0. 0.78
Vec2Text 94.2 95.3 89.2 55.6 80.8 26.0 0.98

0.0 0.2 0.4 0.6 0.8 1.0
Detailed description

Diagnostic procedure
Medication

Disease disorder
Sign symptom

Biological structure
Lab value

Therapeutic procedure
Nonbiological location

Clinical event
MIMIC-III Entity reconstruction rate

Table 3: Performance of our method on reconstructing
GTR-embedded clinical notes from MIMIC III (Johnson
et al., 2016).

6 Defending against inversion attacks357

Is it easy for users of text embedding models pro-358

tect their embeddings from inversion attacks? We359

consider a basic defense scenario as a sanity check.360

To implement our defense, the user addes a level of361

Gaussian noise directly to each embedding with362

the goal of effectively defending against inver-363

sion attacks while preserving utility in the nearest-364

neightbor retrieval setting. We analyze the trade-off365

between retrieval performance and reconstruction366

accuracy under varying levels of noise.367

Formally, we define a new embedding model as:368

ϕnoisy(x) = ϕ(x) + λ · ϵ, ϵ ∼ N(0, 1)369

where λ is a hyperparameter controlling the amount370

of noise injected.371

We simulate this scenario with ϕ as GTR-base372

using our self-corrective model with 10 steps of373

correction, given the noisy embedder ϕnoisy. To374

measure retrieval performance, we take the mean375

NDCG@10 (a metric of retrieval performance;376

higher is better) across 15 different retrieval tasks377

from the BEIR benchmark, evaluated across vary-378

ing levels of noise.379

We graph the average retrieval performance in380

Figure 2 (see A.2 for complete tables of results).381

At a noise level of λ = 10−1, we see retrieval per-382

formance is preserved, while BLEU score drops383

by 10%. At a noise level of 0.01, retrieval perfor-384

mance is barely degraded (2%) while reconstruc-385

tion performance plummets to 13% of the original386

BLEU. Adding any additional noise severely im-387

pacts both retrieval performance and reconstruction388

10 3 10 2 10 1 100

Noise Level ()

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Re
tri

ev
al

 (M
ea

n
ND

CG
@

10
)

0

20

40

60

80

Re
co

ns
tru

ct
io

n
(B

LE
U)

Retrieval
Reconstruction

Figure 2: Retrieval performance and reconstruction ac-
curacy across varying levels of noise injection.

accuracy. These results indicate that adding a small 389

amount of Gaussian noise may be a straightforward 390

way to defend against naive inversion attacks, al- 391

though it is possible that training with noise could 392

in theory help Vec2Text recover more accurately 393

from ϕnoisy. Note that low reconstruction BLEU 394

score is not necessarily indicative that coarser infer- 395

ences, such as clinical area or treatment regimen, 396

cannot be made from embeddings. 397

7 Analysis 398

How much does the model rely on feedback from 399

ϕ? Figure 3 shows an ablation study of the im- 400

portance of feedback, i.e. performing corrections 401

with and without embedding the most recent hy- 402

pothesis. The model trained with feedback (i.e. ad- 403

ditional conditioning on ϕ(x(t)) is able to make a 404

more accurate first correction and gets better BLEU 405

score with more rounds. The model trained with 406

no feedback can still edit the text but does not 407

receive more information about the geometry of 408

the embedding space, and quickly plateaus. The 409

most startling comparison is in terms of the number 410

of exact matches: after 50 rounds of greedy self- 411

correction, our model with feedback gets 52.0% 412

of examples correct (after only 1.5% initially); 413

the model trained without feedback only perfectly 414

matches 4.2% of examples after 50 rounds. 415

During training, the model only learns to cor- 416

rect a single hypothesis to the ground-truth sample. 417

Given new text at test time, our model is able to 418

correct the same text multiple times, “pushing” the 419

text from 0.9 embedding similarity to 1.0. We plot 420

the closeness of the first hypothesis to the ground- 421

truth in the training data for the length-32 model 422

in Figure 4. We see that during training the model 423

learns to correct hypotheses across a wide range 424

of closenesses, implying that corrections should 425

not go ‘out-of-distribution’ as they approach the 426

6

0 20 40
Iteration (t)

0

20

40

60

80
BL

EU

Feedback
No feedback

Figure 3: Recovery performance across multiple rounds
of self-correction comparing models with access to ϕ vs
text-only (32 tokens per sequence).

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Cosine distance from hypothesis to true embedding

0

5000

10000

15000

20000

25000

30000

Co
un

t

Figure 4: Distribution of cos(e, ϕ(x(0))) over training
data. The mean training output from the GTR base
model has a cosine similarity of 0.924 with the true
embedding.

ground-truth.427

How informative are embeddings for textual re-428

covery? We graph BLEU score vs. cosine simi-429

larity from a selection of of reconstructed text in-430

puts in Figure 5. We observe a strong correlation431

between the two metrics. Notably, there are very432

few generated samples with high cosine similarity433

but low BLEU score. This implies that better fol-434

lowing embedding geometry will further improves435

systems.436

Theoretically some embeddings might be impos-437

sible to recover. Prior work (Song et al., 2020; Mor-438

ris, 2020) has shown that two different sequences439

can ‘collide’ in text embedding space, having sim-440

ilar embeddings even without any word overlap.441

However, our experiments found no evidence that442

collisions are a problem; they either do not exist443

or our model learns during training to avoid out-444

putting them. Improved systems should be able to445

recover longer text.446

0.85 0.90 0.95 1.00
Cosine similarity

20

40

60

80

100

BL
EU

Figure 5: Cosine similarity vs BLEU score on 1000
reconstructed embeddings from Natural Questions text.

Does having a strong base model matter? We 447

ablate the impact of initialization by evaluating our 448

32-token Wikipedia model at different initializa- 449

tions of x(0), as shown in Section 7. After running 450

for 20 steps of correction, our model is able to re- 451

cover from an unhelpful initialization, even when 452

the initialization is a random sequence of tokens. 453

This suggests that the model is able to ignore bad 454

hypotheses and focus on the true embedding when 455

the hypothesis is not helpful. 456

8 Related work 457

Inverting deep embeddings. The task of invert- 458

ing textual embeddings is closely related to re- 459

search on inverting deep visual representations in 460

computer vision (Mahendran and Vedaldi, 2014; 461

Dosovitskiy and Brox, 2016; Teterwak et al., 2021; 462

Bordes et al., 2021), which show that a high amount 463

of visual detail remains in the logit vector of an im- 464

age classifier, and attempt to reconstruct input im- 465

ages from this vector. There is also a line of work 466

reverse-engineering the content of certain text em- 467

beddings: Ram et al. (2023) analyze the contents 468

of text embeddings by projecting embeddings into 469

the model’s vocabulary space to produce a distri- 470

bution of relevant tokens. Adolphs et al. (2022) 471

train a single-step query decoder to predict the text 472

of queries from their embeddings and use the de- 473

coder to produce more data to train a new retrieval 474

model. We focus directly on text reconstruction 475

and its implications for privacy, and propose an 476

iterative method that works for paragraph-length 477

documents, not just sentence-length queries. 478

Privacy leakage from embeddings. Research 479

has raised the question of information leakage from 480

dense embeddings. Lehman et al. (2021) attempt to 481

7

Input Nabo Gass (25 August, 1954 in Ebingen, Germany) is a German painter and glass artist.

Round 1 (0.85): Nabo Gass (11 August 1974 in Erlangen, Germany) is an artist. ✗

Round 2 (0.99): Nabo Gass (b. 18 August 1954 in Egeland, Germany) is a German painter and glass artist. ✗

Round 3 (0.99): Nabo Gass (25 August 1954 in Ebingen, Germany) is a German painter and glass artist. ✗

Round 4 (1.00): Nabo Gass (25 August, 1954 in Ebingen, Germany) is a German painter and glass artist. ✓

Table 4: Example of our corrective model working in multiple rounds. Left column shows the correction number,
from Round 1 (initial hypothesis) to Round 4 (correct guess). The number in parenthesis is the cosine similarity
between the guess’s embedding and the embedding of the ground-truth sequence (first row).

Initialization token f1 cos exact

Random tokens 0.95 0.99 50.0
"the " * 32 0.95 0.99 49.8
"there’s no reverse on a motorcycle,
as my friend found out quite
dramatically the other day" 0.96 0.99 52.0

Base model p(x(0) | e) 0.96 0.99 51.6

Table 5: Ablation: Reconstruction score on Wikipedia
data (32 tokens) given various initializations. Our self-
correction model is able to faithfully recover the original
text with greater than 80 BLEU score, even with a poor
initialization. Models run for 20 steps of correction.

recover sensitive information such as names from482

a model pre-trained on clinical notes, but fail to483

recover exact text. Kim et al. (2022) propose a484

privacy-preserving similarity mechanism for text485

embeddings and consider a shallow bag-of-words486

inversion model. Abdalla et al. (2020) analyze the487

privacy leaks in training word embeddings on med-488

ical data and are able to recover full names in the489

training data from learned word embeddings. Song490

and Raghunathan (2020) considered the problem491

of recovering text sequences from embeddings, but492

only attempted to recover bags of words from the493

embeddings of a shallow encoder model. Com-494

pared to these works, we consider the significantly495

more involved problem of recovering the full or-496

dered text sequence from more realistic state-of-497

the-art text retrieval models.498

Gradient leakage. There are parallels between499

the use of vector databases to store embeddings500

and the practice of federated learning, where users501

share gradients with one another in order to jointly502

train a model. Our work on analyzing the pri-503

vacy leakage of text embeddings is analogous to504

research on gradient leakage, which has shown that505

certain input data can be reverse-engineered from506

the model’s gradients during training (Melis et al.,507

2018; Zhu et al., 2019; Zhao et al., 2020; Geiping508

et al., 2020). Zhu et al. (2019) even shows that they 509

can recover text inputs of a masked language model 510

by backpropagating to the input layer to match the 511

gradient. However, such techniques do not apply 512

to textual inversion: the gradient of the model is 513

relatively high-resolution; we consider the more 514

difficult problem of recovering the full input text 515

given only a single dense embedding vector. 516

Text autoencoders. Past research has explored 517

natural language processing learning models that 518

map vectors to sentences (Bowman et al., 2016). 519

These include some retrieval models that are 520

trained with a shallow decoder to reconstruct the 521

text or bag-of-words from the encoder-outputted 522

embedding (Xiao et al., 2022; Shen et al., 2023; 523

Wang et al., 2023). Unlike these models, we learn 524

to invert embeddings from a frozen, pre-trained 525

encoder. 526

9 Conclusion 527

We propose Vec2Text, a multi-step method that 528

iteratively corrects and re-embeds text based on 529

a fixed point in latent space. Our approach can 530

recover 92% of 32-token text inputs from their em- 531

beddings exactly, demonstrating that text embed- 532

dings reveal much of the original text. The model 533

also demonstrates the ability to extract critical clini- 534

cal information from clinical notes, highlighting its 535

implications for data privacy in sensitive domains 536

like medicine. 537

Our findings indicate a sort of equivalence be- 538

tween embeddings and raw data, in that both leak 539

similar amounts of sensitive information. This 540

equivalence puts a heavy burden on anonymization 541

requirements for dense embeddings: embeddings 542

should be treated as highly sensitive private data 543

and protected, technically and perhaps legally, in 544

the same way as one would protect raw text. 545

8

10 Limitations546

Adaptive attacks and defenses. We consider the547

setting where an adversary applies noise to newly548

generated embeddings, but the reconstruction mod-549

ules were trained from un-noised embeddings. Fu-550

ture work might consider reconstruction attacks or551

defenses that are adaptive to the type of attack or552

defense being used.553

Search thoroughness. Our search is limited; in554

this work we do not test beyond searching for 50555

rounds or with a sequence beam width higher than556

8. However, Vec2Text gets monotonically better557

with more searching. Future work could find even558

more exact matches by searching for more rounds559

with a higher beam width, or by implementing560

more sophisticated search algorithms on top of our561

corrective module.562

Scalability to long text. Our method is shown to563

recover most sequences exactly up to 32 tokens and564

some information up to 128 tokens, but we have not565

investigated the limits of inversion beyond embed-566

dings of this length. Popular embedding models567

support embedding text content on the order of568

thousands of tokens, and embedding longer texts569

is common practice (Thakur et al., 2021). Future570

work might explore the potential and difficulties of571

inverting embeddings of these longer texts.572

Access to embedding model. Our threat model573

assumes that an adversary has black-box access574

to the model used to generate the embeddings in575

the compromised database. In the real world, this576

is realistic because practitioners so often rely on577

the same few large models. However, Vec2Text578

requires making a query to the black-box embed-579

ding model for each step of refinement. Future580

work might explore training an imitation embed-581

ding model which could be queried at inference582

time to save queries to the true embedder.583

References584

Mohamed Abdalla, Moustafa Abdalla, Graeme Hirst,585
and Frank Rudzicz. 2020. Exploring the privacy-586
preserving properties of word embeddings: Al-587
gorithmic validation study. J Med Internet Res,588
22(7):e18055.589

Leonard Adolphs, Michelle Chen Huebscher, Christian590
Buck, Sertan Girgin, Olivier Bachem, Massimiliano591
Ciaramita, and Thomas Hofmann. 2022. Decoding a592
neural retriever’s latent space for query suggestion.593

Charu C. Aggarwal and ChengXiang Zhai. 2012. A 594
Survey of Text Clustering Algorithms, pages 77–128. 595
Springer US, Boston, MA. 596

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, 597
Jianfeng Gao, Xiaodong Liu, Rangan Majumder, An- 598
drew McNamara, Bhaskar Mitra, Tri Nguyen, Mir 599
Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, 600
and Tong Wang. 2018. Ms marco: A human gener- 601
ated machine reading comprehension dataset. 602

Florian Bordes, Randall Balestriero, and Pascal Vincent. 603
2021. High fidelity visualization of what your self- 604
supervised representation knows about. Trans. Mach. 605
Learn. Res., 2022. 606

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, 607
Trevor Cai, Eliza Rutherford, Katie Millican, George 608
van den Driessche, Jean-Baptiste Lespiau, Bogdan 609
Damoc, Aidan Clark, Diego de Las Casas, Aurelia 610
Guy, Jacob Menick, Roman Ring, Tom Hennigan, 611
Saffron Huang, Loren Maggiore, Chris Jones, Albin 612
Cassirer, Andy Brock, Michela Paganini, Geoffrey 613
Irving, Oriol Vinyals, Simon Osindero, Karen Si- 614
monyan, Jack W. Rae, Erich Elsen, and Laurent Sifre. 615
2022. Improving language models by retrieving from 616
trillions of tokens. 617

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, An- 618
drew M. Dai, Rafal Jozefowicz, and Samy Bengio. 619
2016. Generating sentences from a continuous space. 620

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane 621
Hung, Eric Frank, Piero Molino, Jason Yosinski, and 622
Rosanne Liu. 2020. Plug and play language models: 623
A simple approach to controlled text generation. In 624
International Conference on Learning Representa- 625
tions. 626

Alexey Dosovitskiy and Thomas Brox. 2016. Inverting 627
visual representations with convolutional networks. 628

Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, 629
and Michael Moeller. 2020. Inverting gradients – 630
how easy is it to break privacy in federated learning? 631

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and 632
Luke Zettlemoyer. 2019. Mask-predict: Parallel de- 633
coding of conditional masked language models. 634

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan 635
Salakhutdinov, and Eric P. Xing. 2018. Toward con- 636
trolled generation of text. 637

Vineet John, Lili Mou, Hareesh Bahuleyan, and Olga 638
Vechtomova. 2018. Disentangled representation 639
learning for non-parallel text style transfer. 640

Alistair E.W. Johnson, Tom J. Pollard, Lu Shen, Li- 641
wei H. Lehman, Mengling Feng, Mohammad Ghas- 642
semi, Benjamin Moody, Peter Szolovits, Leo An- 643
thony Celi, and Roger G. Mark. 2016. Mimic-iii, 644
a freely accessible critical care database. Scientific 645
Data, 3(1):160035. 646

9

https://doi.org/10.2196/18055
https://doi.org/10.2196/18055
https://doi.org/10.2196/18055
https://doi.org/10.2196/18055
https://doi.org/10.2196/18055
http://arxiv.org/abs/2210.12084
http://arxiv.org/abs/2210.12084
http://arxiv.org/abs/2210.12084
https://doi.org/10.1007/978-1-4614-3223-4_4
https://doi.org/10.1007/978-1-4614-3223-4_4
https://doi.org/10.1007/978-1-4614-3223-4_4
http://arxiv.org/abs/1611.09268
http://arxiv.org/abs/1611.09268
http://arxiv.org/abs/1611.09268
http://arxiv.org/abs/2112.04426
http://arxiv.org/abs/2112.04426
http://arxiv.org/abs/2112.04426
http://arxiv.org/abs/1511.06349
https://openreview.net/forum?id=H1edEyBKDS
https://openreview.net/forum?id=H1edEyBKDS
https://openreview.net/forum?id=H1edEyBKDS
http://arxiv.org/abs/1506.02753
http://arxiv.org/abs/1506.02753
http://arxiv.org/abs/1506.02753
http://arxiv.org/abs/2003.14053
http://arxiv.org/abs/2003.14053
http://arxiv.org/abs/2003.14053
http://arxiv.org/abs/1904.09324
http://arxiv.org/abs/1904.09324
http://arxiv.org/abs/1904.09324
http://arxiv.org/abs/1703.00955
http://arxiv.org/abs/1703.00955
http://arxiv.org/abs/1703.00955
http://arxiv.org/abs/1808.04339
http://arxiv.org/abs/1808.04339
http://arxiv.org/abs/1808.04339
https://doi.org/10.1038/sdata.2016.35
https://doi.org/10.1038/sdata.2016.35
https://doi.org/10.1038/sdata.2016.35

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick647
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and648
Wen tau Yih. 2020. Dense passage retrieval for open-649
domain question answering.650

Donggyu Kim, Garam Lee, and Sungwoo Oh. 2022.651
Toward privacy-preserving text embedding similarity652
with homomorphic encryption. In Proceedings of the653
Fourth Workshop on Financial Technology and Nat-654
ural Language Processing (FinNLP), pages 25–36,655
Abu Dhabi, United Arab Emirates (Hybrid). Associa-656
tion for Computational Linguistics.657

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov,658
Richard S. Zemel, Antonio Torralba, Raquel Urta-659
sun, and Sanja Fidler. 2015. Skip-thought vectors.660

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-661
field, Michael Collins, Ankur Parikh, Chris Alberti,662
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-663
ton Lee, Kristina Toutanova, Llion Jones, Matthew664
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob665
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-666
ral questions: A benchmark for question answering667
research. Transactions of the Association for Compu-668
tational Linguistics, 7:452–466.669

LangChain. 2023. Hwchase17/langchain: building ap-670
plications with llms through composability.671

Quoc V. Le and Tomas Mikolov. 2014. Distributed672
representations of sentences and documents.673

Jason Lee, Elman Mansimov, and Kyunghyun Cho.674
2018. Deterministic non-autoregressive neural se-675
quence modeling by iterative refinement.676

Eric Lehman, Sarthak Jain, Karl Pichotta, Yoav Gold-677
berg, and Byron C. Wallace. 2021. Does bert pre-678
trained on clinical notes reveal sensitive data?679

Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy680
Liang, and Tatsunori B. Hashimoto. 2022. Diffusion-681
lm improves controllable text generation.682

Aravindh Mahendran and Andrea Vedaldi. 2014. Un-683
derstanding deep image representations by inverting684
them. 2015 IEEE Conference on Computer Vision685
and Pattern Recognition (CVPR), pages 5188–5196.686

Luca Melis, Congzheng Song, Emiliano De Cristofaro,687
and Vitaly Shmatikov. 2018. Exploiting unintended688
feature leakage in collaborative learning.689

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey690
Dean. 2013. Efficient estimation of word representa-691
tions in vector space.692

Ron Mokady, Amir Hertz, and Amit H. Bermano. 2021.693
Clipcap: Clip prefix for image captioning.694

John X. Morris. 2020. Second-order nlp adversarial695
examples.696

Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and697
Nils Reimers. 2023. Mteb: Massive text embedding698
benchmark.699

Arvind Neelakantan, Tao Xu, Raul Puri, Alec Rad- 700
ford, Jesse Michael Han, Jerry Tworek, Qiming 701
Yuan, Nikolas Tezak, Jong Wook Kim, Chris Hallacy, 702
Johannes Heidecke, Pranav Shyam, Boris Power, 703
Tyna Eloundou Nekoul, Girish Sastry, Gretchen 704
Krueger, David Schnurr, Felipe Petroski Such, Kenny 705
Hsu, Madeleine Thompson, Tabarak Khan, Toki 706
Sherbakov, Joanne Jang, Peter Welinder, and Lilian 707
Weng. 2022. Text and code embeddings by con- 708
trastive pre-training. 709

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gus- 710
tavo Hernández Ábrego, Ji Ma, Vincent Y. Zhao, 711
Yi Luan, Keith B. Hall, Ming-Wei Chang, and Yinfei 712
Yang. 2021. Large dual encoders are generalizable 713
retrievers. 714

Kishore Papineni, Salim Roukos, Todd Ward, and Wei- 715
Jing Zhu. 2002. Bleu: a method for automatic evalu- 716
ation of machine translation. In Proceedings of the 717
40th Annual Meeting of the Association for Compu- 718
tational Linguistics, pages 311–318, Philadelphia, 719
Pennsylvania, USA. Association for Computational 720
Linguistics. 721

Pinecone. 2023. Pinecone. 722

Qdrant. 2023. Qdrant - vector database. 723

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 724
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 725
Wei Li, and Peter J. Liu. 2020. Exploring the limits 726
of transfer learning with a unified text-to-text trans- 727
former. 728

Ori Ram, Liat Bezalel, Adi Zicher, Yonatan Belinkov, 729
Jonathan Berant, and Amir Globerson. 2023. What 730
are you token about? dense retrieval as distributions 731
over the vocabulary. 732

Shaina Raza, Deepak John Reji, Femi Shajan, and 733
Syed Raza Bashir. 2022. Large-scale application 734
of named entity recognition to biomedicine and epi- 735
demiology. PLOS Digital Health, 1(12):e0000152. 736

Tao Shen, Xiubo Geng, Chongyang Tao, Can Xu, Xiao- 737
long Huang, Binxing Jiao, Linjun Yang, and Daxin 738
Jiang. 2023. Lexmae: Lexicon-bottlenecked pretrain- 739
ing for large-scale retrieval. 740

Congzheng Song and Ananth Raghunathan. 2020. Infor- 741
mation leakage in embedding models. Proceedings 742
of the 2020 ACM SIGSAC Conference on Computer 743
and Communications Security. 744

Congzheng Song, Alexander M. Rush, and Vitaly 745
Shmatikov. 2020. Adversarial semantic collisions. 746

Piotr Teterwak, Chiyuan Zhang, Dilip Krishnan, and 747
Michael C. Mozer. 2021. Understanding invariance 748
via feedforward inversion of discriminatively trained 749
classifiers. 750

Nandan Thakur, Nils Reimers, Andreas Rücklé, Ab- 751
hishek Srivastava, and Iryna Gurevych. 2021. Beir: 752
A heterogenous benchmark for zero-shot evaluation 753
of information retrieval models. 754

10

http://arxiv.org/abs/2004.04906
http://arxiv.org/abs/2004.04906
http://arxiv.org/abs/2004.04906
https://aclanthology.org/2022.finnlp-1.4
https://aclanthology.org/2022.finnlp-1.4
https://aclanthology.org/2022.finnlp-1.4
http://arxiv.org/abs/1506.06726
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://github.com/hwchase17/langchain
https://github.com/hwchase17/langchain
https://github.com/hwchase17/langchain
http://arxiv.org/abs/1405.4053
http://arxiv.org/abs/1405.4053
http://arxiv.org/abs/1405.4053
http://arxiv.org/abs/1802.06901
http://arxiv.org/abs/1802.06901
http://arxiv.org/abs/1802.06901
http://arxiv.org/abs/2104.07762
http://arxiv.org/abs/2104.07762
http://arxiv.org/abs/2104.07762
http://arxiv.org/abs/2205.14217
http://arxiv.org/abs/2205.14217
http://arxiv.org/abs/2205.14217
http://arxiv.org/abs/1805.04049
http://arxiv.org/abs/1805.04049
http://arxiv.org/abs/1805.04049
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/2111.09734
http://arxiv.org/abs/2010.01770
http://arxiv.org/abs/2010.01770
http://arxiv.org/abs/2010.01770
http://arxiv.org/abs/2210.07316
http://arxiv.org/abs/2210.07316
http://arxiv.org/abs/2210.07316
http://arxiv.org/abs/2201.10005
http://arxiv.org/abs/2201.10005
http://arxiv.org/abs/2201.10005
http://arxiv.org/abs/2112.07899
http://arxiv.org/abs/2112.07899
http://arxiv.org/abs/2112.07899
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://www.pinecone.io/
https://qdrant.tech/
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/2212.10380
http://arxiv.org/abs/2212.10380
http://arxiv.org/abs/2212.10380
http://arxiv.org/abs/2212.10380
http://arxiv.org/abs/2212.10380
http://arxiv.org/abs/2208.14754
http://arxiv.org/abs/2208.14754
http://arxiv.org/abs/2208.14754
http://arxiv.org/abs/2011.04743
http://arxiv.org/abs/2103.07470
http://arxiv.org/abs/2103.07470
http://arxiv.org/abs/2103.07470
http://arxiv.org/abs/2103.07470
http://arxiv.org/abs/2103.07470
http://arxiv.org/abs/2104.08663
http://arxiv.org/abs/2104.08663
http://arxiv.org/abs/2104.08663
http://arxiv.org/abs/2104.08663
http://arxiv.org/abs/2104.08663

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob755
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz756
Kaiser, and Illia Polosukhin. 2017. Attention is all757
you need.758

Vdaas. 2023. Vdaas/vald: Vald. a highly scalable dis-759
tributed vector search engine.760

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao,761
Linjun Yang, Daxin Jiang, Rangan Majumder, and762
Furu Wei. 2023. Simlm: Pre-training with represen-763
tation bottleneck for dense passage retrieval.764

Weaviate. 2023. Weaviate - vector database.765

Sean Welleck, Ximing Lu, Peter West, Faeze Brah-766
man, Tianxiao Shen, Daniel Khashabi, and Yejin767
Choi. 2022. Generating sequences by learning to768
self-correct.769

Shitao Xiao, Zheng Liu, Yingxia Shao, and Zhao Cao.770
2022. Retromae: Pre-training retrieval-oriented lan-771
guage models via masked auto-encoder.772

Kevin Yang and Dan Klein. 2021. FUDGE: Controlled773
text generation with future discriminators. In Pro-774
ceedings of the 2021 Conference of the North Amer-775
ican Chapter of the Association for Computational776
Linguistics: Human Language Technologies. Associ-777
ation for Computational Linguistics.778

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak779
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.780
React: Synergizing reasoning and acting in language781
models.782

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. 2020.783
idlg: Improved deep leakage from gradients.784

Ligeng Zhu, Zhijian Liu, and Song Han. 2019. Deep785
leakage from gradients.786

A Appendix787

A.1 Additional analysis788

How does word frequency affect model correct-789

ness? fig. 6 shows the number of correct predic-790

tions (orange) and incorrect predictions (blue) for791

ground-truth words, plotted across word frequency792

in the training data. Our model generally predicts793

words better that are more frequent in the training794

data, although it is still able to predict correctly a795

number of words that were not seen during train-796

ing2. Peaks between 104 and 105 come from the797

characters (, −, and), which appear frequently in798

the training data, but are still often guessed incor-799

rectly in the reconstructions.800

2We hypothesize this is because all test tokens were present
in the training data, and the model is able to reconstruct unseen
words from seen tokens.

100 101 102 103 104 105 106 107

Frequency in training data

0

2000

4000

6000

8000

To
ta

l g
ue

ss
ed

 in
 e

va
l

Correctness vs word frequency in training on ArXiv
False negative
True positive

Figure 6: Correctness on evaluation samples from ArXiv
data.

102

Number of tokens

10

20

30

40

50

60

70

BL
EU

quora

signal1m
msmarco

fever dbpedia-entity

hotpotqa

nq

webis-touche2020cqadupstack
scidocstrec-covidscifact

nfcorpus
bioasq
trec-news

BEIR Reconstruction performance vs. token length

Figure 7: Reconstruction performance across the 19
datasets of BEIR.

How does sequence length affect recoverability? 801

Figure 7 plots the performance of our model at 802

reconstructing text from OpenAI embeddings on 803

datasets from the BEIR benchmark across the num- 804

ber of tokens in the dataset. We observe a negative 805

correlation: as the number of tokens represented by 806

the (fixed-size) embedding increases, the original 807

sequence is more difficult to reconstruct. Quora, 808

which is by far the shortest of the datasets, is the 809

easiest to reconstruct. 810

A.2 Full defense results 811

Results on each dataset from BEIR under vary- 812

ing levels of Gaussian noise are shown in Ap- 813

pendix A.2. The model is GTR-base. Note that 814

the inputs are limited to 32tokens, far shorter than 815

the average length for some corpuses, which is why 816

baseline (λ = 0) NDCG@10 numbers are lower 817

than typically reported. We included the full results 818

(visualized in Figure 2) as Appendix A.2. 819

11

http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://github.com/vdaas/vald
https://github.com/vdaas/vald
https://github.com/vdaas/vald
http://arxiv.org/abs/2207.02578
http://arxiv.org/abs/2207.02578
http://arxiv.org/abs/2207.02578
https://weaviate.io/
http://arxiv.org/abs/2211.00053
http://arxiv.org/abs/2211.00053
http://arxiv.org/abs/2211.00053
http://arxiv.org/abs/2205.12035
http://arxiv.org/abs/2205.12035
http://arxiv.org/abs/2205.12035
https://doi.org/10.18653/v1/2021.naacl-main.276
https://doi.org/10.18653/v1/2021.naacl-main.276
https://doi.org/10.18653/v1/2021.naacl-main.276
http://arxiv.org/abs/2210.03629
http://arxiv.org/abs/2210.03629
http://arxiv.org/abs/2210.03629
http://arxiv.org/abs/2001.02610
http://arxiv.org/abs/1906.08935
http://arxiv.org/abs/1906.08935
http://arxiv.org/abs/1906.08935

λ arguana bioasq climate-fever dbpedia-entity fiqa msmarco nfcorpus nq quora robust04 scidocs scifact signal1m trec-covid trec-news webis-touche2020

0 0.328 0.115 0.136 0.306 0.208 0.647 0.239 0.306 0.879 0.205 0.095 0.247 0.261 0.376 0.245 0.233
0.001 0.329 0.115 0.135 0.307 0.208 0.647 0.239 0.306 0.879 0.204 0.096 0.246 0.261 0.381 0.246 0.233
0.01 0.324 0.113 0.132 0.301 0.205 0.633 0.234 0.298 0.875 0.192 0.092 0.235 0.259 0.378 0.234 0.225
0.1 0.005 0.000 0.000 0.000 0.000 0.000 0.017 0.000 0.003 0.000 0.002 0.006 0.001 0.005 0.001 0.000
1.0 0.001 0.000 0.000 0.000 0.000 0.000 0.008 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000

Table 6: BEIR performance (NDCG@10) for GTR-base at varying levels of noise (32 tokens).

λ NDCG@10 BLEU

0.000 0.302 80.372
0.001 0.302 72.347
0.010 0.296 10.334
0.100 0.002 0.148
1.000 0.001 0.080

Table 7: Retrieval performance and reconstruction performance across varying noise levels λ.

12

