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Abstract

Graphs with heterophily have been regarded as
challenging scenarios for Graph Neural Networks
(GNNs), where nodes are connected with dis-
similar neighbors through various patterns. In
this paper, we present theoretical understandings
of heterophily for GNNs by incorporating the
graph convolution (GC) operations into fully con-
nected networks via the proposed Heterophilous
Stochastic Block Models (HSBM), a general ran-
dom graph model that can accommodate diverse
heterophily patterns. Our theoretical investiga-
tion comprehensively analyze the impact of het-
erophily from three critical aspects. Firstly, for
the impact of different heterophily patterns, we
show that the separability gains are determined
by two factors, i.e., the Euclidean distance of the
neighborhood distributions and

√
E [deg], where

E [deg] is the averaged node degree. Secondly,
we show that the neighborhood inconsistency has
a detrimental impact on separability, which is
similar to degrading E [deg] by a specific fac-
tor. Finally, for the impact of stacking multiple
layers, we show that the separability gains are
determined by the normalized distance of the l-
powered neighborhood distributions, indicating
that nodes still possess separability in various
regimes, even when over-smoothing occurs. Ex-
tensive experiments on both synthetic and real-
world data verify the effectiveness of our theory.
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1. Introduction
Graph Neural Networks (GNNs) have demonstrated remark-
able superiority in processing the graph-structured data
(Kipf & Welling, 2017; Hamilton et al., 2017; Gilmer et al.,
2017; Velickovic et al., 2018; Xu et al., 2019; Wang et al.,
2021). Unfortunately, the majority of GNNs are developed
based on the homophily assumption, i.e., the connected
nodes typically share similar features or labels. However,
this assumption is not satisfied in the graphs characterized
by heterophily, where nodes are more likely to connect with
other dissimilar nodes. Under such scenarios, typical GNNs
may fail to handle the graphs and even perform worse than
fully connected networks (Pei et al., 2020). To tackle this
heterophily problem, several heterophily-specific GNNs are
proposed (Zhu et al., 2020; Bo et al., 2021; Yang et al.,
2021a; Chien et al., 2021; Yang et al., 2021b; Jin et al.,
2021; Li et al., 2022; Ma et al., 2022a; Wang et al., 2023;
Song et al., 2023; Zheng et al., 2023).

Recently, researchers (Ma et al., 2022b; Luan et al., 2022)
have revisited the impacts of heterophily on typical GNNs.
They have revealed that heterophily is not always harm-
ful to the classification results. Both the ‘good’ and ‘bad’
heterophily patterns exist. Typically, heterophily ratio is
introduced to measure the extent of heterophily, which rep-
resents the proportion of edges connecting nodes from dif-
ferent classes (Pei et al., 2020). Then, both theoretical and
empirical studies in binary node classification tasks (Chien
et al., 2021; Ma et al., 2022b) have suggested that the re-
lationship between this heterophily ratio and classification
performance exhibits a V-shaped trend. This indicates that
heterophily patterns with either low or high ratios tend to
enhance performance, whereas those exhibiting moderate
ratios usually lead to poor results.

However, in the multi-class scenarios, the situation becomes
more complex. The heterophily ratio alone is insufficient
to fully estimate the impact of heterophily, because distinct
heterophily patterns with identical ratios may have different
effects. By utilizing the neighborhood (label) distribution
of each node, Ma et al. (2022b) empirically observes that
GCN (Kipf & Welling, 2017) can effectively handle the
graphs, whose nodes from different classes possess distin-
guishable neighborhood distributions. Besides, inspired by
the gradient computed via SGC (Wu et al., 2019), Luan et al.
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(2022) exploits the similarity of neighborhood distributions
to assess the impact of heterophily. Unfortunately, a com-
prehensive quantitative analysis of the impact of heterophily
is still desired. To fill this gap, it is vital to theoretically
investigate: how do different heterophily patterns contribute
to the multi-class node classifications?

In addition to the impact of different heterophily patterns,
recent studies (Mao et al., 2023; Luan et al., 2023) have
observed that the inconsistency among the neighborhood
distributions of nodes within the same class, i.e. the neigh-
borhood inconsistency, usually exists. In real-world graphs,
despite their homophily/heterophily ratios, both the ho-
mophilous and heterophilous nodes exist (Mao et al., 2023).
Besides, the nodes from the same class may possess dif-
ferent neighborhood distributions (Luan et al., 2023). This
observation raises another important, yet unexplored ques-
tion: how do different extents of neighborhood inconsistency
impact the multi-class node classifications?

Another significant challenge for GNNs is over-smoothing
(Li et al., 2018; Oono & Suzuki, 2020), a phenomenon
that stacking an infinite number of GNN layers leads to
indistinguishable node representations. In the context of
heterophily, Yan et al. (2022) have observed that nodes,
with high heterophily ratio and high degrees relative to their
neighbors, are prone to over-smoothing under certain con-
ditions. However, a critical question remains unaddressed:
how does stacking multiple GNN layers affect multi-class
node classifications for graphs with different heterophily
patterns?

In this paper, we theoretically investigate these three im-
portant questions on the random graph models, which are
widely utilized to analyze the behavior of GNNs for various
vital problems (Baranwal et al., 2021; Keriven et al., 2021;
Wei et al., 2022; Baranwal et al., 2023; Wu et al., 2023).
Since the conventional models (Erdős et al., 1960; Holland
et al., 1983) sample edges uniformly or only differentiate
the edges connecting inter-/intra-class nodes, they lack the
capacity to effectively model various heterophily patterns.
To address this limitation, we propose a more general model,
named Heterophilous Stochastic Block Models (HSBM). In
HSBM, edges are sampled based on the blocks/classes of
the connected nodes. Thus, nodes within the same class ex-
hibit class-specific neighborhood distributions. This feature
allows HSBM to accommodate diverse heterophily patterns.

Based on our HSBM, we construct an analytical framework
to explore the impacts of GNNs on graphs with diverse
heterophily patterns. We analyze the variations of the sepa-
rability between each pair of classes, by applying the graph
aggregator operations. Specifically, we utilize GCN (Kipf
& Welling, 2017), one of the most popular GNNs, in our
illustrations. Our theoretical results can be summarized as:

1. For the impact of different heterophily patterns, we
demonstrate that the separability gain of each pair of
classes is determined by two factors, i.e., the Euclidean
distance of their respective neighborhood distributions
and the square root of the averaged degree

√
E [deg].

This result indicates that the effect of the heterophily
pattern on classification requires to be evaluated based
on
√
E [deg], e.g., very similar neighborhood distribu-

tions may boost the classification if the average node
degree is large. Based on this analysis, we can form
the categories of good/mixed/bad heterophily patterns.

2. For the impact of the neighborhood inconsistency, we
reveal that this impact is detrimental. When a Gaus-
sian perturbation is employed, this impact is equiv-
alent to reducing the averaged degree by a factor of
1/(1 + rδ2), where r > 0 is a constant and δ2 is the
variance of the topological noise. This result indicates
that for a specific heterophily pattern, enhancing the
node-wise neighborhood distribution perturbations will
result in a decrement in separability, similar to reducing
the node degrees.

3. For the impact of stacking multiple layers, we demon-
strate that the separability gains are determined by the
normalized distance of the l-powered neighborhood
distributions under a stronger density assumption. Our
result suggests that the nodes still possess separability
in various regimes, even when over-smoothing occurs.
However, as l approaches infinity, though the relative
differences between the nodes are still maintained, their
absolute values become exponentially smaller. There-
fore, the classification accuracy eventually decreases,
due to the precision limitations of the floating-point
data formats.

Our theoretical results are verified via extensive experiments
on both the synthetic and real-world data. These results may
serve for practical utilizations and guide the development of
innovative methods, as detailed in Appendix F.

2. Preliminaries
Notations. Let G = (A,X) be an attributed graph, where
A = [aij ] ∈ {0, 1}n×n denotes the adjacency matrix and
X ∈ Rn×d represents the node features. n and d represent
the numbers of nodes and node features, respectively. aij
is 1 iff there is an incoming edge from node j to node i,
or 0 otherwise. D represents the diagonal degree matrix
corresponding to the adjacency matrix A, where Dii =∑

j aij . Let [n] = {0, · · · , n− 1} be the set of nodes. For
each node i ∈ [n], Γi = {j|aij = 1} represents the set of
its neighbors. For node classification, Y = [yi] ∈ [c]n

represents the labels of nodes and c is the number of classes.
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Graphs with Heterophily. The metrics of the ho-
mophily/heterophily measure the fraction of intra-class
edges (Pei et al., 2020; Zhu et al., 2020; Lim et al., 2021).
Typically, the homophily ratio can be defined from the

node-level, i.e., H(G) = 1
n

∑
i∈[n]

∑
j∈Γi

(yi=yj)

Dii
, where

H(G) ∈ [0, 1] (Pei et al., 2020). A high homophily ratio
indicates that the graph is with strong homophily, while a
graph with strong heterophily has a small homophily ra-
tio. However, the homophily ratio of a certain heterophily
pattern does not align with its impacts on multi-class node
classifications. Therefore, it is vital to delve deeper into the
underlying mechanisms of heterophily.

Graph Convolutional Network. Graph Convolutional Net-
work (GCN) (Kipf & Welling, 2017), known as one of the
most popular GNN, is employed to analyze the impact of
different heterophily patterns in our work. In a graph convo-
lutional layer, nodes update their representations via

X(l+1) = σ
(
ÃX(l)W (l)

)
, (1)

where W (l) ∈ Rd
(l)
in×d

(l)
out is the parameter matrix of layer

l, Ã = D−1A, A is the adjacency matrix containing self-
loops, and X(0) = X . For simplicity, the non-linear func-
tion σ(·) is neglected in our analysis, as is widely adopted
(Baranwal et al., 2021; Wu et al., 2023).

Contextual Stochastic Block Models. Contextual Stochas-
tic Block Models (CSBM) (Deshpande et al., 2018) are
typical random graph models, where nodes are randomly
sampled by class-specific Gaussian distribution and edges
are sampled by Bernoulli distribution, with a parameter of p
if the two connected nodes belongs to the same class, or q
otherwise. It is extensively employed to analyze the theoreti-
cal performance of Graph Neural Networks (Baranwal et al.,
2021; Keriven et al., 2021; Wei et al., 2022; Baranwal et al.,
2023; Wu et al., 2023). Specifically, for the heterophily is-
sue, Ma et al. (2022b) presents a preliminary result of GCN,
regarding the impact of different p and q on the two-block
CSBMs, while Luan et al. (2023) analyzes the performance
of GNNs with low-pass/high-pass filters. Mao et al. (2023)
analyzes the graphs containing nodes with homophily and
heterophily patterns simultaneously. However, these efforts
only focus on the simple binary node classifications, which
are not general enough to analyze diverse heterophily pat-
terns. The impact of complicated heterophily patterns in the
multi-class classifications has not been analyzed yet.

3. Heterophilous Stochastic Block Models
In this section, we propose a more general model, named
Heterophilous Stochastic Block Models (HSBM), to accom-
modate diverse heterophily patterns.

In HSBM, each node i ∈ [n] is independently sampled from

c blocks/classes, with probability of η = (η0, · · · , ηc−1),
where ηk > 0 and

∑
k ηk = 1. The class of node i is de-

noted as εi. Each edge, which connects the nodes i and j,
is sampled from a Bernoulli distribution with a parameter
mεiεj . The collected M = [mij ] is the probability matrix
which represents the edge generation probabilities between
different classes. For each class k ∈ [c], p̄k =

∑
t∈[c] ηtmkt

represents its averaged edge generation probability. Then,
D̄k = np̄k is the averaged node degree within class k. By
denoting m̂kt = ηtmkt/p̄k, m̂k =

(
m̂k0, · · · , m̂k(c−1)

)
is the neighborhood distribution of nodes within class k,
where m̂kt represents the proportion of nodes within class
t in the neighborhood of a node belonging to class k. The
collected matrix M̂ = [m̂ij ] stands for the neighborhood
distribution matrix. Then, by selecting different edge gen-
eration probability matrix M, we can generate graphs with
different heterophily patterns, i.e., M̂ = [m̂ij ].

Topological Noise. In real-world networks, the neighbor-
hood distributions of nodes from the same class are centered
around a specific distribution with certain randomness. In-
spired by this observation, a random node-wise topological
noise is introduced in our HSBM. Specifically, for each
node i, its incoming edges are generated according to the
distribution m̂(i) = m̂εi+∆i, where ∆i is a random noise.
Note that in practice, the generated distribution should be
legal, i.e., [m̂(i)]j > 0 and

∑
j [m̂(i)]j = 1.

Gaussian Node Features. Since our intention is to study
the effects of topology with different heterophily patterns,
by following CSBM, the Gaussian node features are em-
ployed. Specifically, in each block/class k ∈ [c], the fea-
tures of each node are generated by sampling the Gaus-
sian distributions, i.e., N

(
x;µk, σ

2I
)
. For simplicity,

µk is orthometric to each other and has the same length,
i.e., for any k, t ∈ [c] and k ̸= t, we have µT

kµt = 0
and ||µk||2 = ||µt||2. γ = ||µk − µt||2 stands for the
distance between two Gaussian means. At last, we de-
note (X,A) = HSBM(n, c, σ, {µk} ,η,M, {∆i}) as the
graph data generated by our HSBM.

Assumptions. Our analysis is conducted based on two mild
assumptions as follows.

Assumption 1. p̄k ≍ p̄t, ∀k, t ∈ [c].

Assumption 2. p̄k = ω
(
log2 n/n

)
, ∀k ∈ [c].

Assumption 1 claims that nodes within different classes pos-
sess similar averaged degrees. This assumption allows us
to approximate D̄ ≈ D̄k, to make our results more clear
and easy to understand. Here, D̄ denotes the averaged node
degree of the graph. Note that many literatures also implic-
itly or explicitly assume that D̄ = D̄k. For example, the
averaged degrees of different classes are the same when uti-
lizing CSBM to generate graphs, where each class possesses
identical number of nodes (Baranwal et al., 2023; Wu et al.,
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2023). Our assumption allows the averaged degree of differ-
ent classes to possess the same order of magnitude, which
covers a broader regime. Also, we observe that this assump-
tion is frequently satisfied in real-world, as confirmed in
Appendix C.1. Assumption 2 states that the graph is not too
sparse. It establishes some numerical properties of graphs,
e.g., the node degree and number of nodes within each class
both concentrate to their corresponding expectations. Note
that this assumption is similar to those in the literatures, e.g.,
(Baranwal et al., 2021; Wu et al., 2023).

4. Theoretical Results
Our analysis is established on the multi-class node clas-
sifications. Its primary objective is to accurately catego-
rize samples into their respective classes, i.e., distinguish-
ing them from samples belonging to other classes. Then,
the classifier is required to establish a total number of

(
c
2

)
classification boundaries to separate samples from differ-
ent categories. By minimizing the error rate, the optimal
classification boundaries are established based on posterior
probabilities. Specifically, ∀k, t ∈ [c], k < t, the condition
P[y = k | x] = P[y = t | x] is established as the optimal
classification boundary, which is constructed by the Bayes
classifier.

In this section, we introduce our analytical framework and
present the theoretical results. We firstly define the two-
class separability for each ideal boundary. Then, we analyze
the variations of separability, when applying GC operations
on graphs with different heterophily patterns. Note that
though our analysis is based on the ideal Bayes classifier,
the analyzed results can be achieved via MLPs, as detailed
in Appendix D. All the proofs can be found in Appendix A.

4.1. Setting up the Baseline

For each node i ∈ [n], ζi(k) represents the event P[y =
εi | Xi] ≥ P[y = k | Xi], which indicates whether node i
is more likely to be classified into its ground truth class εi
rather than class k. Then, the two-class separability between
the classes t and k is defined.
Definition 1. ∀t, k ∈ [c] and t ̸= k, the separability be-
tween class t and class k is defined as

S(t, k) =
ηt

ηt + ηk
Ei∈CtP [ζi(k)]+

ηk
ηt + ηk

Ei∈Ck
P [ζi(t)] ,

(2)
where Ei∈Ct

P [ζi(k)] represents the fraction of nodes within
class t that can be correctly classified, regarding to class k.

The two-class separability S(t, k) can be regarded as the
expected accuracy, when only the classifications for nodes
within these two classes are considered. It assesses the ef-
fectiveness of the boundary P[y = k | x] = P[y = t | x] for

the corresponding two-class subtask. Apparently, S(t, k) =
S(k, t) holds for Eq. (2). Note that, in addition to its impact
on the two-class subtask, it also holds significance for the
overall classification by setting bounds for the minimum
error rate, as illustrated in Appendix E. Then, we proceed
to establish the separability of node features X .

Theorem 1. Given (X,A) = HSBM(n, c, σ, {µk} ,η,
M, {∆i}), two properties over data X can be obtained.

1. ∀t, k ∈ [c] and t ̸= k,

Ei∈Ct
P [ζi(k)] = Φ

(
γ

2σ
+

σ

γ
ln

(
ηt
ηk

))
, (3)

where Φ(·) is the cumulative distribution function of
the standard Gaussian distribution.

2. Without loss of generality, let ηt ≥ ηk. Then, S(t, k)
is a monotonically increasing function with respect to
both γ

σ and ηt

ηk
.

When ηt = ηk, i.e., the number of nodes within these two
classes are identical, Ei∈CtP [ζi(k)] = Ei∈Ck

P [ζi(t)] =
Φ
(

γ
2σ

)
. Notably, both Ei∈Ct

P [ζi(k)] and Ei∈Ck
P [ζi(t)]

are positively correlated with γ
σ . However, in more gen-

eral cases, where the number of nodes within two classes
are imbalanced, i.e., ηt ̸= ηk, the situations become more
complex. W.l.o.g, let ηt ≥ ηk. According to Eq. (3), as γ

σ
increases, Ei∈CtP [ζi(k)] exhibits a larger increment com-
pared to Ei∈Ck

P [ζi(t)]. When γ
σ increases from a small

value, the latter may even decrease. This observation re-
veals that as γ

σ increases, classes with a larger number of
samples experience more significant benefits, while classes
with fewer samples benefit less and may even encounter
a decrease in the classification accuracy. Besides, the sec-
ond part of Theorem 1 claims that the separability S(t, k),
which represents the overall impact of Ei∈Ct

P [ζi(k)] and
Ei∈Ck

P [ζi(t)], consistently increases as γ
σ increases. There-

fore, we can assess the impact of GC operations by examin-
ing the variation of γ

σ .

4.2. Impact of Heterophily for Graph Convolution

Then, we incorporate a Graph Convolution (GC) operation
and analyze the separability of aggregated features, thereby
assessing the impact of different heterophily patterns.

Theorem 2. Given (X,A) = HSBM(n, c, σ, {µk} ,η,
M, {0}), for categories t, k ∈ [c] and t ̸= k, with probabil-
ity at least 1− 1/Ploy (n), we have

Ei∈Ct
P [ζi(k)] = Φ

(
γ

2σ

Ftk

ςn
+

σ

γ

ςn
Ftk

ln

(
ηt
ηk

))
, (4)

over the aggregated features X̃ = D−1AX , where Ftk =
1√
2
||
√

D̄km̂k −
√

D̄tm̂t||, ςn = 1 ± on(1), and on(1) is
the error term.
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Theorem 2 illustrates the impact of GC operation on two-
class separability. Compared to Ei∈CtP [ζi(k)] in Theo-
rem 1, with high probability, this impact is equivalent to
scaling γ

σ by a factor of Ftk

ςn
. Therefore, according to the

monotonicity of S(t, k), when Ftk > ςn, the GC operation
enhances the separability S(t, k). Otherwise, it degrades
the separability. Here, on(1) is an error term introduced
by sampling, which can be neglected as n increase to a
sufficiently large number. Therefore, Ftk are the separa-
bility gains of the GC operation. They are determined by
the Euclidean distance between class-wise neighborhood
distributions, which are weighted by the square root of their
averaged degree. Specifically, according to Assumption 1,
we can assume that nodes within different classes have ap-
proximately identical degree, denoted as D̄ ≈ D̄k. Then,
Ftk becomes

√
D̄/2||m̂k − m̂t||, which indicates that the

average node degree and the distance between neighbor-
hood distributions possess complementary effects on the
separability gains. For example, even though nodes within
classes t and k possess similar (not the same) neighborhood
distributions, this heterophily pattern may also benefit the
classification when the averaged degree is large. Besides,
for specific averaged degree, our results firstly reveals that
the Euclidean distance of neighborhood distributions can
measure the impact of heterophily, while current understand-
ing (Ma et al., 2022b; Luan et al., 2022) lacks the rigorous
analysis based quantitative metric.
Definition 2. Given (X,A) = HSBM(n, c, σ, {µk} ,η,
M, {0}), a good heterophily pattern satisfies

min
k ̸=t

1√
2
||
√
D̄km̂k −

√
D̄tm̂t|| > ςn, (5)

and a bad heterophily pattern satisfies

max
k ̸=t

1√
2
||
√
D̄km̂k −

√
D̄tm̂t|| < ςn, (6)

where ςn = 1± on(1) and on(1) is the error term. Other-
wise, we get a mixed heterophily pattern.

Based on this analysis, we characterize the categories of
good/mixed/bad heterophily patterns in Definition 2. When
applying a GC operation, good heterophily patterns im-
prove the separability of every pair of classes, consequently
boosting the overall performance. On the contrary, bad het-
erophily patterns decrease the separability of all pairs of
classes, resulting in lower performances. Besides, mixed
heterophily patterns possess varying impacts on the separa-
bility of class pairs, enhancing performance for some pairs
while reducing it for others, leading to a mixed impact on
the separability.

4.3. Impact of Neighborhood Inconsistency

In real-world graphs, nodes which belong to the same class,
typically exhibit similar yet different neighborhood distribu-

tions. Intuitively, the greater the magnitude of these differ-
ences is, the more challenging to process the graph becomes.
To assess the impact of this neighborhood inconsistency, we
introduce the topological noise ∆i for each node i ∈ [n]
within our HSBM.

Theorem 3. Given (X,A) = HSBM(n, c, σ, {µk} ,η,
M, {∆i}), with each topological noise ∆i sampled in-
dependently from N (0, δI), by assuming that d = c and
∀k ∈ [c], D̄ = D̄k, with probability at least 1− 1/Ploy (n),
we have

Ei∈CtP [ζi(k)] = Φ

(
γ

2σ

F ′
tk

ςn
+

σ

γ

ςn
F ′
tk

ln

(
ηt
ηk

))
(7)

over data X̃ = D−1AX , where F ′
tk = 1√

2
|| 1
ρk
m̂k −

1
ρt
m̂t||, ρt =

√
γ2δ2

2σ2 + 1
D̄t

, and ςn = 1± on(1).

Here, the standard variance δ of topological noise can be uti-
lized to measure the extents of neighborhood inconsistency.
Theorem 3 reveals that such inconsistency has a detrimental
impact on separability, which is equivalent to degrading the
averaged degree by a factor of 1

1+rδ2 , where r = γ2D̄k

2σ2 > 0.
It indicates that for the specific heterophily patterns, a larger
δ results in a more significant reduction in separability. Note
that we can directly generalize Definition 2 by utilizing F ′

tk

when considering the topological noise.

4.4. Impact of Stacking Multiple Graph Convolutions

As the number of GC operations increases, the over-
smoothing dilemma (Li et al., 2018; Oono & Suzuki, 2020)
occurs. It indicates that the features of different nodes tend
to converge to the same values, thereby losing their separa-
bility. In this subsection, we present the separability gains of
stacking multiple GC operations and introduce a novel and
different insight: nodes can still maintain their separability,
even in the presence of over-smoothing.

Theorem 4. Given (X,A) = HSBM(n, c, σ, {µk} ,η,
M, {0}), assume that ∀k, t ∈ [c], D̄ = D̄t, ηt = ηk,∑

t mtk ≍
∑

t mkt, and
∑

t mεitmtεj = ω(log n2/n).
When each class possesses exactly n

c nodes, with probability
of at least 1− 1/Ploy (n), we have

Ei∈Ct
P [ζi(k)] = Φ

(
γ

2σ

F
(l)
tk

ς
(l)
n

+
σ

γ

ς
(l)
n

F
(l)
tk

ln

(
ηt
ηk

))
, (8)

over data X(l) =
(
D−1A

)l
X , where

F
(l)
tk =

√√√√ c||m̂(l)
k − m̂

(l)
t ||22∑

k1,k2∈[c] ||m̂
(l)
k1

− m̂
(l)
k2
||22

D̄

log n
(9)

for l > 1, ς(l)n = 1± lon(1) and m̂
(l)
k represents the l-hop

neighborhood distribution of nodes within class k.
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(a) Example of good heterophily pattern with a = 0.25. The accuracy of GCN is 89.20.
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(b) Example of mixed heterophily pattern with a = 0.2. The accuracy of GCN is 71.84.
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(c) Example of bad heterophily pattern with a = 0.18. The accuracy of GCN is 59.88.

Figure 1. Examples of different heterophily patterns. The accuracy of MLP is 71.12.

Different from the previous analysis (Wu et al., 2023),
Theorem 4, which is more precise, is obtained by fully
considering the correlations of the aggregated node fea-
tures. This theorem requires a stronger density assumption,
i.e., p̄k = ω (log n/

√
n), which is obtained according to∑

t mεitmtεj = ω(log n2/n). Note that a more general
version of Theorem 4 with less assumptions is provided in
Theorem A1.

Theorem 4 reveals that when applying l GC operations,
the separability gains F (l)

tk is determined by the normalized
distance of the l-powered neighborhood distributions. Al-
though the distance ||m̂(l)

k − m̂
(l)
t || tends to converge to 0

as l goes to infinity, its normalized version can still maintain
a large value through the normalization.

Proposition 1. When M̂ is non-singular, the approxima-
tion of F

(l)
tk in Eq. (112) is always larger than 0, and∑

t,k F
(l)
tk >

√
cD̄/ log n.

Specifically, Proposition 1 further demonstrates that there
exists various regimes where the separability gains never
become 0, i.e., when M̂ is non-singular, F (l)

tk > 0 holds
for every l. It reveals that the separability of each pair of
classes is larger than 1

2 , i.e., the nodes exhibit a certain
degree of separability. Besides,

∑
t,k F

(l)
tk >

√
cD̄/ log n

further depicts the separability of at least one pair of classes
never becomes to 1

2 , which indicates that nodes still possess
certain separability as l goes to infinity.

However, although the relative differences between the
nodes persist, as l increases, their absolute values become
exponentially smaller (Oono & Suzuki, 2020). Therefore,
due to the precision limitations of the floating-point data for-
mats, these differences eventually cannot be captured by the
classifier, which leads to the decrement in the classification
accuracy.
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(a) Results with different heterophily patterns.
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(b) Results with different node degrees.
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(c) Results with different topological noises.
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(d) Results with multiple GC operations.

Figure 2. Results on synthetic data. (a)-(c) present the results of MLP incorporating one GC operation, while (d) displays the results with
multiple GC operations. In each subfigure, the gray region, which is enclosed by the minimum gain and maximum gain curves, represents
the area of separability gains. The Pearson Correlation represents the Pearson correlation coefficient between the separability gains and
the differences in the confusion matrix with and without the GC operations.

5. Experiments
5.1. Synthetic Data

Here, we verify our theory on the synthetic data generated
from our HSBM model. We set the number of nodes as n =
1000, the number of classes as c = 5, and the dimension of
node features as d = 5. For each class k ∈ [c], its nodes
are sampled by a Gaussian distribution with a mean of ek,
which is a standard basis vector [0, ..., 1, ..., 0] with a 1 at
position k, and a standard variance of 0.6. The averaged
node degree for each class is 25. We employ a family of
heterophily patterns, where m̂ij is a when i = j, 2a when
j = i + 1 and 1

3 − a otherwise. Besides, results on more
heterophily patterns and large-scale graphs can be found
in Appendix B.2 and Appendix B.3, respectively. A one-
layered MLP is employed as the baseline. One or multiple
GC operations are incorporated into MLP to obtain the
corresponding GCN.

Impact of Different Heterophily Patterns. Fig. 2(a)
shows the results with different heterophily patterns as
a ∈ [0, 0.33]. As can be observed, the overall change in ac-
curacy aligns with the variation in the region of separability
gains, which demonstrates the effectiveness of Theorem 2.

Besides, the Pearson correlation between the separability
gains and the differences in the confusion matrix with and
without the GC operations are highly negative. It indicates
that different heterophily patterns function by altering the
pair-wise classification boundaries. These impacts can be
captured by the proposed separability gains. Specifically,
Fig. 1 illustrates three typical examples of different het-
erophily patterns with a = 0.25, 0.20, 0.18, respectively. In
the good heterophily pattern where a = 0.25, the separa-
bility gains are relatively high for all cases; hence, GCN
performs better than MLP in all the two-class subtasks, i.e.,
all non-diagonal elements of the confusion matrix (GCN-
MLP) are negative. On the contrary, in the bad heterophily
pattern shown in Fig. 1(c), the separability gains are all
smaller than ςn, leading to the increment of the number
of misclassified nodes. Besides, Fig. 1(b) shows a exam-
ple of mixed heterophily pattern, wherein the separability
between two classes improves for some pairs while deterio-
rates for others. In summary, although these three examples
exhibit similar heterophily patterns, their differences in the
distances between the neighborhood distributions lead to
distinct impacts on the separability of nodes.

Impact of Node Degrees. Fig. 2(b) shows the results with
different averaged node degrees when a = 0.20. The aver-

7



Understanding Heterophily for Graph Neural Networks

Table 1. Results on the real-world datasets.
Cora Chameleon Workers Actor Amazon-ratings Squirrel Arxiv-year Snap-patents

Acc(MLP) 77.68 54.29 76.81 35.00 50.58 36.63 36.40 31.50
Acc(GCN) 90.04 70.33 78.66 30.33 48.01 60.67 42.44 34.42

Max Gain 1.7823 1.4220 1.1508 0.0364 0.4504 0.4101 1.6912 1.4820
Min Gain 1.4216 0.2242 1.1508 0.0093 0.0838 0.0846 0.4255 0.2198

Type of Het. Good Good Good Bad Mixed Mixed Mixed Mixed

aged degree is varied within the range of [5, 350] to assess
its impact. It is evident that as the averaged degree in-
creases, the separability gains also increase, resulting in an
overall improvement of accuracy. During this process, the
heterophily pattern with a = 0.2 transforms from being a
bad pattern to becoming a good one, which verifies that the
averaged degree possess a complementary effects alongside
heterophily patterns, as claimed Theorem 2.

Impact of Neighborhood Inconsistency. Fig. 2(c) shows
the results with different extents of neighborhood incon-
sistency when a = 0.20, where the standard variance δ
ranges from 0 to 0.01. Note that in practice, the empirical
neighborhood distributions may be influenced by sampling,
especially when δ is large. Thus, we utilize the empirical
M̂ to calculate the separability gains. As can be observed,
as the variance of topological noises increases, the separa-
bility gains decrease, leading to a reduction of the overall
accuracy, which verifies the results of Theorem 3.

Impact of stacking Multiple GC Operations. Fig. 2(d)
shows the results with stacking multiple GC operations.
Here, the precise separability gains in Theorem A1 are uti-
lized. As can be observed, as l increases, the variations in
separability gains closely mirror the fluctuation in accuracy,
which verifies the effectiveness of our analysis. Both of
them increase during the initial several GC operations, and
then consistently maintain at high values. However, when l
approaches 50, both the separability gains and accuracy ex-
perience a sudden decrease. As in a further investigation in
Appendix B.4, the aggregated node features encounter a pre-
cision limitation issue, i.e., the employed float64 data format
cannot accurately represent the node features. Specifically,
when the relative difference among different node features
are smaller than the precision of Float64, the difference
cannot be precisely obtained. By increasing the precision of
the data format, the point of descent can be postponed. This
observation verifies the findings in Theorem 4.

5.2. Real World Data

Here, we verify our theory on eight real-world node clas-
sification datasets, i.e., Cora, Chameleon, Workers, Ac-
tor, Amazon-ratings, Squirrel, as well as two large-scale
datasets, i.e., Arxiv-year and Snap-patents. Their statistics
are provided in Appendix C.1. On each dataset, a two-

layered MLP is employed as the baseline. We incorporate
one GC operation in the second layer of MLP to construct
the corresponding GCN. Both MLP and GCN run with the
same settings, as provided in Appendix C.2. Note that in the
real-world datasets, both the node features and topology are
highly correlated. Intuitively, this correlation can degrade
the variance of the features among the aggregated nodes,
like in Appendix A.4.2. Thus, a lower ςn is required to
understand real-world data results, e.g., ςn = 0.2.

As shown in Tab. 1, Cora, Chameleon, and Workers ex-
hibit significant separability gains, indicating a good het-
erophily pattern that enhances the separability among nodes
within each class pair. On the contrary, Actor shows min-
imal separability gains, resulting in reduced distinguisha-
bility among nodes, which can be characterized as bad het-
erophily. Besides, Amazon-ratings, Squirrel, Arxiv-year,
and Snap-patents display both substantial and minimal gains,
contributing to improved separability in some class pairs
while reducing it in others, illustrating mixed heterophily
patterns. Therefore, the overall performance of GCN on
these two datasets may either surpass or fall behind that of
MLP. A more comprehensive discussion can be found in
Appendix C.3. These results on real-world datasets further
validate the effectiveness of our theory.

6. Conclusion and Future Work
This paper presents theoretical understandings of the im-
pacts of heterophily for GNNs by incorporating the graph
convolution (GC) operations into fully connected networks
via the proposed Heterophilous Stochastic Block Models
(HSBM). We present three novel insights. Firstly, we show
that by applying a GC operation, the separability gains are
determined by the Euclidean distance of the neighborhood
distributions and the averaged node degree. Secondly, we
show that the neighborhood inconsistency has a detrimental
impact on separability. Finally, when applying multiple GC
operations, we show that the separability gains are positively
correlated to the normalized distance of the l-powered neigh-
borhood distributions, which indicates that the nodes still
possess separability as l goes to infinity in various regimes.

However, there are still some limitations that need to be
improved in future work. First, our theory is constructed
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based on Gaussian node features. It may be beneficial to
extend the analysis to features with more general distribu-
tions. Second, our analysis relies on the assumption of the
independence among node features and among edges. Ex-
ploring the distribution of nodes and edges with complex
dependency relationships could potentially provide more
valuable insights. These limitations are beyond the scope of
our HSBM and are left as the future work.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Theoretical Proofs
A.1. Proof of Theorem 1

A.1.1. BAYESIAN CLASSIFIER

Lemma A1 (Bayesian Classifier). Given (X,A) = HSBM(n, c, σ, {µk} ,η,M, {∆i}), the Bayesian optimal classifier
over data X is

h∗(x) = argmax
k∈[c]

(
⟨x,µk⟩+ σ2 ln ηk

)
. (10)

Proof. The Bayesian optimal classifier, which is based on the criterion of maximum a posteriori probability, is defined as

h∗(x) = argmax
k∈[c]

(P[y = k | x = x]) . (11)

Then, according to the Bayes’ theorem, the posteriori probability is

P[y = k | x = x] =
P[y = k]P[x | y = k]∑
t∈[c] P[y = t]P[x | y = t]

=
1

1 +
∑

t ̸=k
ηt·P[x|y=t]
ηk·P[x|y=k]

.
(12)

Denoting φt = ηt · P[x | y = t],

φt

φk
=

ηt · 1√
2πσ

exp
(
− (x−µt)

T (x−µt)
2σ2

)
ηk · 1√

2πσ
exp

(
− (x−µk)

T (x−µk)
2σ2

)
=

ηt
ηk

exp

(
⟨x,µt⟩ − ⟨x,µk⟩

σ2

)
.

(13)

For any k1, k2 ∈ [c] and k1 ̸= k2, denote ϕ =
∑

t̸=k1,k2
φt. Then,

P[y = k1 | x = x] ≥ P[y = k2 | x = x]

⇐⇒
∑
t ̸=k2

φt

φk2

≥
∑
t ̸=k1

φt

φk1

⇐⇒ ϕ+ φk1

φk2

≥ ϕ+ φk2

φk1

⇐⇒ φ2
k1

+ ϕφk1
≥ φ2

k2
+ ϕφk2

⇐⇒ φk1
≥ φk2

⇐⇒ ηk1

ηk2

exp

( ⟨x,µk1
⟩ − ⟨x,µk2

⟩
σ2

)
≥ 1

⇐⇒ ⟨x,µk1
⟩+ σ2 ln ηk1

≥ ⟨x,µk2
⟩+ σ2 ln ηk2

.

(14)

A.1.2. PROOF OF THE PART ONE OF THEOREM 1

Proof. For any i ∈ [n], its features are generated from Gaussian distributions and can be represented as

Xi = µεi + σgi, (15)
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where gi ∼ N (0, I) is the random Gaussian noise. Then,

P [ζi(k)] = P [P[y = εi | x = Xi] ≥ P[y = k | x = Xi]]

= P
[〈
Xi,µεi

〉
+ σ2 ln ηεi ≥ ⟨Xi,µk⟩+ σ2 ln ηk

]
= P

[
γ′2 + γ′σµ̂T

εigi + σ2 ln ηεi ≥ γ′σµ̂T
k gi + σ2 ln ηk

]
= P

[
µ̂T

k gi − µ̂T
εigi ≤

γ′2 + σ2 ln ηεi − σ2 ln ηk
γ′σ

]
,

(16)

where µ̂k = µk/||µk||. Denote Zεi = µ̂T
εigi and Zk = µ̂T

k gi. Then, Zεi , Zk ∼ N (0, 1) and E [ZεiZk] = 0. Therefore,

P [ζi(k)] = Φ

(
γ′2 + σ2 ln ηεi − σ2 ln ηk√

2γ′σ

)
= Φ

(
γ

2σ
+

σ ln ηεi − σ ln ηk
γ

)
= Φ

(
γ

2σ
+

σ

γ
ln

ηεi
ηk

)
.

(17)

Thus, for each t, k ∈ [c],

Ei∈Ct
P [ζi(k)] = Φ

(
γ

2σ
+

σ

γ
ln

(
ηt
ηk

))
. (18)

A.1.3. PROOF OF THE PART TWO OF THEOREM 1

Proof. Denote η̂t =
ηt

ηt+ηk
and η̂k = ηk

ηt+ηk
. Then, we have 0 < η̂k < η̂t < 1 and η̂k + η̂t = 1. S(t, k) can be rewrited as

S(t, k) = η̂tEi∈Ct
P [ζi(k)] + η̂kEi∈Ck

P [ζi(t)]

= η̂tΦ

(
γ

2σ
+

σ

γ
ln

η̂t
η̂k

)
+ η̂kΦ

(
γ

2σ
− σ

γ
ln

η̂t
η̂k

)
.

(19)

Denote α = γ
σ > 0. Then, the question is converted to prove the function

f (α, η̂t) = η̂tΦ

(
α

2
+

1

α
ln

η̂t
η̂k

)
+ η̂kΦ

(
α

2
− 1

α
ln

η̂t
η̂k

)
(20)

is an increasing function with respect to both α and η̂t. W.o.l.g, let η̂t ≥ η̂k.

1. Firstly, we prove that f (α, η̂t) is an increasing function of α, i.e., if α1 > α2 > 0, we have f (α1, η̂t) > f (α2, η̂t) for
any 1

2 < η̂t < 1.

When α1 > α2, we have

Φ

(
α1

2
+

1

α1
ln

η̂t
η̂k

)
> Φ

(
α2

2
+

1

α1
ln

η̂t
η̂k

)
(21)

and

Φ

(
α1

2
− 1

α1
ln

η̂t
η̂k

)
> Φ

(
α2

2
− 1

α1
ln

η̂t
η̂k

)
. (22)

Thus,

f (α1, η̂t) > η̂tΦ

(
α2

2
+

1

α1
ln

η̂t
η̂k

)
+ η̂kΦ

(
α2

2
− 1

α1
ln

η̂t
η̂k

)
. (23)

Then, we need to prove that

η̂tΦ

(
α2

2
+

1

α1
ln

η̂t
η̂k

)
+ η̂kΦ

(
α2

2
− 1

α1
ln

η̂t
η̂k

)
> f (α2, η̂t) , (24)

12
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which is equivalent to prove that

η̂k

∫ α2
2 − 1

α1
ln

η̂t
η̂k

α2
2 − 1

α2
ln

η̂t
η̂k

ϕ (y) dy − η̂t

∫ α2
2 + 1

α2
ln

η̂t
η̂k

α2
2 + 1

α1
ln

η̂t
η̂k

ϕ (y) dy > 0, (25)

where ϕ (y) = 1√
2π

exp
(
−y2

2

)
. Denote z = y + 1

α2
ln η̂t

η̂k
+ 1

α1
ln η̂t

η̂k
. Then, Eq. (25) is equivalent to

η̂k

∫ α2
2 + 1

α2
ln

η̂t
η̂k

α2
2 + 1

α1
ln

η̂t
η̂k

ϕ

(
z − 1

α2
ln

η̂t
η̂k

− 1

α1
ln

η̂t
η̂k

)
dz − η̂t

∫ α2
2 + 1

α2
ln

η̂t
η̂k

α2
2 + 1

α1
ln

η̂t
η̂k

ϕ (y) dy > 0

⇐⇒
∫ α2

2 + 1
α2

ln
η̂t
η̂k

α2
2 + 1

α1
ln

η̂t
η̂k

[
η̂kϕ

(
y − 1

α2
ln

η̂t
η̂k

− 1

α1
ln

η̂t
η̂k

)
− η̂tϕ (y)

]
dy > 0.

(26)

Denote

g1 (y) = η̂kϕ

(
y − 1

α2
ln

η̂t
η̂k

− 1

α1
ln

η̂t
η̂k

)
− η̂tϕ (y) . (27)

Then, we will prove that g1 (y) > 0 for all y ∈
[
α2

2 + 1
α2

ln η̂t

η̂k
, α2

2 + 1
α1

ln η̂t

η̂k

]
.

g1 (y) > 0

⇐⇒ η̂kϕ

(
y − 1

α2
ln

η̂t
η̂k

− 1

α1
ln

η̂t
η̂k

)
> η̂tϕ (y)

⇐⇒ ln η̂k − y2

2
− 1

2

(
1

α1
ln

η̂t
η̂k

+
1

α2
ln

η̂t
η̂k

)2

+

(
1

α1
ln

η̂t
η̂k

+
1

α2
ln

η̂t
η̂k

)
y > ln η̂t −

y2

2

⇐⇒
(

1

α1
ln

η̂t
η̂k

+
1

α2
ln

η̂t
η̂k

)
y − 1

2

(
1

α1
ln

η̂t
η̂k

+
1

α2
ln

η̂t
η̂k

)2

− ln
η̂t
η̂k

> 0

(28)

Since y ∈
[
α2

2 + 1
α2

ln η̂t

η̂k
, α2

2 + 1
α1

ln η̂t

η̂k

]
, we have

(
1

α1
ln

η̂t
η̂k

+
1

α2
ln

η̂t
η̂k

)
y − 1

2

(
1

α1
ln

η̂t
η̂k

+
1

α2
ln

η̂t
η̂k

)2

− ln
η̂t
η̂k

≥
(

α2

2α1
− 1

2

)
ln

η̂t
η̂k

+

(
1

2α2
1

− 1

2α2
2

)(
ln

η̂t
η̂k

)2

>0.

(29)

Thus, we have g1 (y) > 0 and

f (α1, η̂t) > η̂tΦ

(
α2

2
+

1

α1
ln

η̂t
η̂k

)
+ η̂kΦ

(
α2

2
− 1

α1
ln

η̂t
η̂k

)
> f (α2, η̂t) , (30)

which means f (α, η̂t) is an increasing function with respect to α.

2. Secondly, we prove that f (α, η̂t) is also an increasing function with respect to η̂t. Denote

f1 (α, η̂t) = η̂t

∫ α
2 + 1

α ln
η̂t
η̂k

α
2

ϕ (y) dy − η̂k

∫ α
2

α
2 − 1

α ln
η̂t
η̂k

ϕ (y) dy (31)

Then,

f (α, η̂t) = η̂tΦ

(
α

2
+

1

α
ln

η̂t
η̂k

)
+ η̂kΦ

(
α

2
− 1

α
ln

η̂t
η̂k

)
= Φ

(α
2

)
+ f1 (α, η̂t) .

(32)

13



Understanding Heterophily for Graph Neural Networks

Thus, the question is converted to prove that f1 (α, η̂t) is an increasing function with respect to η̂t. Denoting z = α− y and
g2 (η̂t, y) = η̂tϕ (y)− η̂kϕ (α− y), we have

f1 (α, η̂t) = η̂t

∫ α
2 + 1

α ln
η̂t
η̂k

α
2

ϕ (y) dy − η̂k

∫ α
2 + 1

α ln
η̂t
η̂k

α
2

ϕ (α− z) dz

=

∫ α
2 + 1

α ln
η̂t
η̂k

α
2

g2 (η̂t, y) dy.

(33)

Firstly, we prove that g2 (η̂t, y) ≥ 0.
g2 (η̂t, y) ≥ 0

⇐⇒ η̂tϕ (y)− η̂kϕ (α− y) ≥ 0

⇐⇒ ln η̂t −
y2

2
≥ ln η̂k − (α− y)

2

2

⇐⇒ αy − α2

2
− ln

η̂t
η̂k

≤ 0

(34)

Since for y ∈
[
α
2 ,

α
2 + 1

α ln η̂t

η̂k

]
,

αy − α2

2
− ln

η̂t
η̂k

≤ α(
α

2
+

1

α
ln

η̂t
η̂k

)− α2

2
− ln

η̂t
η̂k

= 0, (35)

we have g2 (η̂t) ≥ 0.

Secondly, we prove that g2 (η̂′t) > g2 (η̂t), if η̂′t > η̂t.

g2 (η̂
′
t) > g2 (η̂t)

⇐⇒ η̂′tϕ (y)− η̂′kϕ (α− y) > η̂tϕ (y)− η̂kϕ (α− y)

⇐⇒ (η̂′t − η̂t)ϕ (y) > (η̂′k − η̂k)ϕ (α− y)

(36)

Since η̂′t > η̂t, we have η̂′t − η̂t > 0 and η̂′k − η̂k < 0. Thus, g2 (η̂′t) > g2 (η̂t) is obtained.

Finally, we go back to the monotonicity of f1 (η̂t).

f1 (η̂
′
t)− f1 (η̂t) =

∫ α
2 + 1

α ln
η̂′
t

η̂′
k

α
2

g2 (η̂
′
t)−

∫ α
2 + 1

α ln
η̂t
η̂k

α
2

g2 (η̂t) dy

≥
∫ α

2 + 1
α ln

η̂t
η̂k

α
2

g2 (η̂
′
t)−

∫ α
2 + 1

α ln
η̂t
η̂k

α
2

g2 (η̂t) dy

≥
∫ α

2 + 1
α ln

η̂t
η̂k

α
2

[g2 (η̂
′
t)− g2 (η̂t)] dy

> 0

(37)

Thus, f1 (η̂′t) is an increasing function with respect to η̂t.

A.2. Proof of Theorem 2

A.2.1. CONCENTRATION PROPERTIES

The following lemmas are derived by utilizing the Chernoff bound (Vershynin, 2018) similarly. These results indicate that,
as the number of nodes goes to infinity, the number of nodes within each class, node degrees, and neighbors in each class
tend to concentrate around their respective means.
Lemma A2 (Concentration of the Number of Nodes within Each Class). For each class k ∈ [c], with probability at least
1− 1/Ploy(n), we have

|Ck| = ηkn±O(
√
n log n). (38)
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Proof. In HSBM, ε1, . . . , εn are random variables independently sampled from the set [c], with probability of η. Thus,
1εi=k are Bernoulli random variables with parameters ηk. Then, |Ck| =

∑n
i=1 1εi=k is the sum of independent Bernoulli

random variables with the mean of E [|Ck|] = ηkn. By applying the Chernoff bound (Vershynin, 2018),

P {|Ck − ηkn| ≥ δηkn} ≤ 2 exp
(
−C1ηknδ

2
)
, (39)

for some C1 > 0. Let δ =
√

C2 logn
n , where C2 > 0 is a large constant. Then, we have with a probability at least 1−2n−C′

1 ,

|Ck| = ηkn± C ′
2

√
n log n, (40)

where C ′
1 > 0 and C ′

2 > 0.

Lemma A3 (Concentration of the Node Degrees). For each node i ∈ [n], its averaged degree is defined as

D̄t ≜ E [Dii|εi = t] = np̄t, (41)

where p̄εi =
∑

k mεikηk represents the averaged edge connection probability. Then, with probability at least 1−1/Ploy(n),
we have

Dii = np̄εi

(
1±O

(
1√
log n

))
= D̄εi

(
1±O

(
1√
log n

))
(42)

and
1

Dii
=

1

np̄εi

(
1±O

(
1√
log n

))
=

1

D̄εi

(
1±O

(
1√
log n

))
. (43)

Proof. For each node i ∈ [n], its degree Dii =
∑

j∈[n] aij is a sum of n independent Bernoulli random variables, with the
mean of E [Dii] = np̄εi . Then, by applying the Chernoff bound (Vershynin, 2018), for δ ∈ (0, 1] we have

P {|Dii − np̄εi | ≥ δnp̄εi} ≤ 2 exp
(
−C1np̄εiδ

2
)
, (44)

For some C1 > 0. Note that according to Assumption 1, dεi = ω
(
log2 n/n

)
. Then, denoting δ = O

(
1√
logn

)
, with a

probability at least 1− 2n−C′
1 , we have

Dii = np̄εi

(
1±O

(
1√
log n

))
(45)

and
1

Dii
=

1

np̄εi

(
1±O

(
1√
log n

))
, (46)

where C1 > 0.

Lemma A4 (Concentration of the Number of Neighbors in Each Class). For each node i ∈ [n] and each class k ∈ [c], with
probability at least 1− 1/Ploy(n), we have

|Ck ∩ Γi| = Dii · m̂εik

(
1±O

(
1√
log n

))
. (47)

Proof. For each k ∈ [c] and i ∈ [n], |Ck ∩ Γi| =
∑

j∈[n] 1εj=kaij is a sum of n independent Bernoulli random variables,
with the mean of nηk ·mεik. By applying the Chernoff bound, we have

P
{
|Ck ∩ Γi| = ηknmεik

(
1± 10√

log n

)}
≥ 1− exp

(
−1

3
· n
C

·mεik · 100

log n

)
(48)

Based on the fact that n > log2 n, we have

1− exp

(
−1

3
· n
C

·mεik · 100

log n

)
≥ 1− n−

100mεik

3C (49)
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Then, with a probability at least 1− 1/Ploy(n), we have

|Ck ∩ Γi| = ηknmεik

(
1± 10√

log n

)
(50)

and

|Ck ∩ Γi| = Diim̂εik

(
1±O

(
1√
log n

))
. (51)

A.2.2. FEATURE DISTRIBUTIONS AFTER A GC LAYER

Lemma A5. For any i ∈ [n], by applying a GC operation, its aggregated features are X̃i =
(
D−1AX

)
i
. Then, with

probability at least 1− 1/Ploy(n) over A and {εi}i∈[n],

X̃i ∼ N
(
µ̃εi(i), σ̃εi(i)

2
)
, (52)

where
µ̃εi(i) = µ̃εi(1± o(1)), µ̃εi =

∑
k∈[c]

m̂εikµk, (53)

σ̃εi(i) = σ̃εi(1± o(1)), σ̃εi =
σ√
D̄εi

, (54)

and o (1) = O
(

1√
logn

)
.

Proof. For each node i ∈ [n], the aggregated node features are

X̃i =
1

Dii

∑
j∈Γi

Xj =
1

Dii

∑
j∈Γi

µεj +
σ

Dii

∑
j∈Γi

gj , (55)

where gj ∼ N (0, I) are random noises. Then, the first item in Eq. (55) can be derived as

1

Dii

∑
j∈Γi

µεj =
1

Dii

∑
k∈[c]

∑
j∈Ck∩Γi

µk


=

1

Dii

∑
k∈[c]

|Ck ∩ Γi|µk

=
1

dεi

∑
k∈[c]

mεikηkµk

(
1±O

(
1√
log n

))

=
∑
k∈[c]

m̂εikµk

(
1±O

(
1√
log n

))
.

(56)

For the second item in Eq. (55), let g′
i =

1√
Dii

∑
j∈Γi

gj . Since gj are sampled independently for all j ∈ [n], g′
i ∼ N (0, I).

Thus,
σ

Dii

∑
j∈Ni

gj =
σ√
Dii

g′
i ∼ N

(
0, σ̃2

εi

(
1±O

(
1√
log n

))
I

)
, (57)

where σ̃εi =
σ√
D̄εi

. Therefore, the aggregated features can be represented as

X̃i = µ̃εi

(
1±O

(
1√
log n

))
+ σ̃εi

(
1±O

(
1√
log n

))
gi, (58)
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where
µ̃εi =

∑
k∈[c]

m̂εikµk (59)

and
σ̃εi =

σ√
D̄εi

. (60)

Recall that the features of each node are sampled from Gaussian distributions in HSBM as stated in Sec. 3. Lemma A5
indicates that aggregating the Gaussian features according to A and {εi}i∈[n] is equivalent to sampling the aggregated
features from a new Gaussian distribution. Meanwhile, these new aggregated Gaussian distributions are concentrated within
each class. Note that for simplicity, the correlations among X̃j are neglected due to their sightly impacts. A comprehensive
analysis that takes full consideration of the correlations can be found in Appendix A.4.2.

Lemma A6. For each node i ∈ [n], the Bayesian optimal classifier over the aggregated node features X̃i is

h̃∗(x̃) = argmax
k∈[c]

(φ̃k) , (61)

as n → ∞, where

φ̃k = ηk
1√
2πσ̃k

exp

(
− (x̃− µ̃k)

T
(x̃− µ̃k)

2σ̃2
k

)
. (62)

Proof. The posteriori probability is

P[y = k | x̃] = P[y = k]P[x̃ | y = k]∑
t ̸=k P[y = t]P[x̃ | y = t]

=
1

1 +
∑

t ̸=k
ηtP[x̃|y=t]
ηkP[x̃|y=k]

.
(63)

Denote φ̃k = ηkP[x̃ | y = k]. For any k1, k2 ∈ [c] and k1 ̸= k2, we have

P[y = k1 | x̃] ≥ P[y = k2 | x̃] ⇐⇒ φ̃k1
≥ φ̃k2

. (64)

A.2.3. PROOF OF THEOREM 2

Proof. According to Lemma A5, the aggregated node features follow the distribution

X̃i ∼ N
(
µ̃εi(i), σ̃εi(i)

2
)
, ∀i ∈ [n]. (65)

Denote k, t ∈ [c]. Then, we have

µ̃T
k µ̃t =

∑
o∈[c]

m̂koµo

T ∑
o∈[c]

m̂toµo


=
∑
o∈[c]

m̂kom̂toµ
T
o µo

= γ′2 < m̂k, m̂t > .

(66)

For each node i ∈ [n], the probability of the node being misclassified regarding class k is

P [ζi(k)] = P [φ̃εi > φ̃k] . (67)
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Denote B =
√

D̄k

D̄εi

. Since dk ≍ dt, B = 1± o(1). Then, we have

φ̃εi > φ̃k

⇐⇒ ηεi

√
D̄εi exp

(
−
||x̃− µ̃εi ||

2

2σ̃2
εi

)
> ηk

√
D̄k exp

(
−||x̃− µ̃k||2

2σ̃2
k

)
⇐⇒ ln

(
ηεi

√
D̄εi

)
−

||x̃− µ̃εi ||
2

2σ̃2
εi

> ln
(
ηk
√
D̄k

)
− ||x̃− µ̃k||2

2σ̃2
k

⇐⇒ ln

(
ηεi

√
D̄εi

)
−

D̄εi ||x̃− µ̃εi ||
2

2σ2
> ln

(
ηk

√
D̄εiB

)
− D̄εiB

2||x̃− µ̃k||2

2σ2

⇐⇒ 2σ2

D̄εi

ln

(
ηεi
ηkB

)
− ||x̃||2

(
1−B2

)
+ 2x̃T µ̃εi − 2x̃T µ̃kB

2 − ||µ̃εi ||
2 + ||µ̃k||2B2 > 0

⇐⇒ 2σ̃2
εi ln

(
ηεi
ηk

)
± o(1) + ||µ̃εi ||

2ςn + 2σ̃εiµ̃
T
εigiςn − 2µ̃T

εiµ̃kB
2ςn − 2σ̃εiµ̃

T
k giςn + ||µ̃k||2B2 > 0

⇐⇒ 2σ̃2
εi ln

(
ηεi
ηk

)
ςn + γ′2||Bm̂k − m̂εi ||2ςn > 2σ̃εiγ

′
∑
o∈[c]

(Bm̂ko − m̂εio)
µT

o

||µo||
gi

⇐⇒ σ̃εi

γ′||Bm̂k − m̂εi ||
ln

(
ηεi
ηk

)
ςn +

γ′

2σ̃εi

||Bm̂k − m̂εi ||ςn >
∑
o∈[c]

Bm̂ko − m̂εio

||Bm̂k − m̂εi ||
µT

o

||µo||
gi,

(68)

where ςn = 1± on(1) and on(1) is an error term. In the second line, we take the logarithm of both sides of the inequality.
In the third line, we replace D̄k as BD̄εi . In the fifth line, we utilize the fact that (1−B) = ±o(1) and ln(B) = ±o(1).

Then, for each o ∈ [c], denoting Zo =
µT

o

||µo||
gi, Zo ∼ N (0, 1). For all o1 ̸= o2, E [Zo1Zo2 ] = 0. Thus, we have

∑
o∈[c]

Bm̂ko − m̂εio

||Bm̂k − m̂εi ||
µT

o

||µo||
gi ∼ N (0, 1) . (69)

Then, the probability

P [ζi(k)] = Φ

(
γ′

2σ̃εi

||Bm̂k − m̂εi ||
ςn

+
σ̃εiςn

γ′||Bm̂k − m̂εi ||
ln

(
ηεi
ηk

))
= Φ

(
γ

2σ

Fεik

ςn
+

σςn
γFεik

ln

(
ηεi
ηk

))
,

(70)

where Fεik = 1√
2
||
√
D̄km̂k −

√
D̄εim̂εi || and ςn = (1± o (1)). Thus,

Ei∈Ct
P [ζi(k)] = Φ

(
γ

2σ

Ftk

ςn
+

σ

γ

ςn
Ftk

ln

(
ηt
ηk

))
. (71)

A.3. Proof of Theorem 3

Proof. For each node i ∈ [n], the aggregated node features are

X̃i =
1

Dii

∑
j∈Γi

Xj =
1

Dii

∑
j∈Γi

µεj +
σ

Dii

∑
j∈Γi

gj , (72)
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where gj ∼ N (0, I) are random noises. Then, the first term in Eq. (72) can be derived as

1

Dii

∑
j∈Γi

µεj =
1

Dii

∑
k∈[c]

∑
j∈Ck∩Γi

µk


=

1

Dii

∑
k∈[c]

|Ck ∩ Γi|µk

=
∑
k∈[c]

(m̂εik +∆ik)µkςn

= µ̃εiςn +
∑
k∈[c]

∆ikµkςn

= µ̃εiςn + γ′∆iQςn,

(73)

where

µ̃εi =
∑
k∈[c]

m̂εikµk, ςn =

(
1±O

(
1√
log n

))
, Q =


µ̂0

µ̂1
...

µ̂c−1

 . (74)

Since ∆i ∼ N
(
0, δ2I

)
and Q is an orthogonal matrix, we have

γ′∆iQ ∼ N
(
0,

γ2δ2

2
I

)
. (75)

For the second term in Eq. (72), let g′
i =

1√
Dii

∑
j∈Γi

gj . Since gj are sampled independently for all j ∈ [n], g′
i ∼ N (0, I).

Thus,
σ

Dii

∑
j∈Ni

gj =
σ√
Dii

g′
i = σ̃εiςng

′
i (76)

where σ̃εi =
σ√
D̄εi

. Therefore, the aggregated features can be represented as

X̃i =

(
µ̃εi +

γδ√
2
g′′
i +

σ√
D̄εi

g′
i

)
ςn

=

(
µ̃εi +

√
γ2δ2

2σ2
+

1

D̄εi

σg′′′
i

)
ςn,

(77)

where g′′
i ,g

′′′
i ∼ N (0, I). Denote σ̃′

εi = ρεiσ, ρεi =
√

γ2δ2

2 + 1
D̄εi

, and ϱ =
ρεi

ρk
. Then,

φ̃εi > φ̃k

⇐⇒ ηεi
σ̃′
εi

exp

(
−
||x̃− µ̃εi ||

2

2σ̃′2
εi

)
>

ηk
σ̃′
k

exp

(
−||x̃− µ̃k||2

2σ̃′2
k

)
⇐⇒ ln

(
ηεi
ρεi

)
−

||x̃− µ̃εi ||
2

2ρ2εiσ
2

> ln

(
ηk
ρk

)
− ||x̃− µ̃k||2

2ρ2kσ
2

⇐⇒ 2σ̃′2
εi ln

(
ηεi
ηk

)
± o(1) + ||µ̃εi ||

2ςn + 2σ̃′
εiµ̃

T
εigiςn − 2µ̃T

εiµ̃kϱςn − 2σ̃′
εiµ̃

T
k giςn + ||µ̃k||2ϱ > 0

⇐⇒ 2σ̃′2
εi ln

(
ηεi
ηk

)
ςn + γ′2||ϱm̂k − m̂εi ||2ςn > 2σ̃′

εiγ
′
∑
o∈[c]

(ϱm̂ko − m̂εio)
µT

o

||µo||
gi

⇐⇒
σ̃′
εi

γ′||ϱm̂k − m̂εi ||
ln

(
ηεi
ηk

)
ςn +

γ′

2σ̃′
εi

||ϱm̂k − m̂εi ||ςn >
∑
o∈[c]

ϱm̂ko − m̂εio

||ϱm̂k − m̂εi ||
µT

o

||µo||
gi.

(78)
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Similar to Eq. (69), we have ∑
o∈[c]

ϱm̂ko − m̂εio

||ϱm̂k − m̂εi ||
µT

o

||µo||
gi ∼ N (0, 1) . (79)

Then, the probability

P [ζi(k)] = Φ

(
γ′

2σ̃′
εi

||ϱm̂k − m̂εi ||
ςn

+
σ̃′
εi

γ′
ςn

||ϱm̂k − m̂εi ||
ln

(
ηεi
ηk

))
= Φ

(
γ

2σ

F ′
εik

ςn
+

σ

γ

ςn
F ′
εik

ln

(
ηεi
ηk

))
,

(80)

where F ′
εik

= 1√
2
|| 1
ρk
m̂k − 1

ρεi
m̂εi || and ςn = (1± o (1)). Thus,

Ei∈Ct
P [ζi(k)] = Φ

(
γ

2σ

F ′
tk

ςn
+

σ

γ

ςn
F ′
tk

ln

(
ηεi
ηk

))
. (81)

A.4. Proof of Theorem 4

A.4.1. SINGLE NODE FEATURE DISTRIBUTIONS AFTER STACKING l GC LAYERS

Lemma A7. For any node i ∈ [n], by applying l GC operations, its aggregated features are obtained as X
(l)
i =((

D−1A
)l
X
)
i
. Then, with probability at least 1− 1/Ploy(n) over A and {εi}i∈[n],

X
(l)
i = µ(l)

εi (i) + σ
(l)
i g(l), (82)

where

µ(l)
εi (i) = µ(l)

εi (1± lon(1)), µ(l)
εi =

∑
k∈[c]

m̂
(l)
εik

µk, (83)

1√
n
σ ≤ σ(l)

εi ≤ σ, (84)

on (1) = O
(

1√
logn

)
, and g(l) ∼ N (0, I).

Proof. By applying l GC operations, the aggregated features of node i are

X
(l)
i =

(
D−1A

)l
i
X =

∑
j∈[n]

(
D−1A

)l
ij
µεj +

(
D−1A

)l
ij
gj , (85)

where gj ∼ N (0, I) are random noises. Then, we now prove that the first term in Eq. (85) can be derived as

∑
j∈[n]

(
D−1A

)l
ij
µεj = µ(l)

εi (1± lon(1)), where µ(l)
εi =

∑
k∈[c]

m̂
(l)
εik

µk. (86)

When l = 1, Eq. (86) holds, as is claimed in Lemma A5.
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When l > 1, assuming that Eq. (86) holds for l − 1, we have∑
j∈[n]

(
D−1A

)l
ij
µεj =

∑
j,k∈[n]

(
D−1A

)
ik

(
D−1A

)l−1

kj
µεj

=
∑
k∈[n]

(
D−1A

)
ik

∑
t∈[c]

m̂
(l−1)
εkt

µt(1± (l − 1)on(1))

=
∑
k∈[c]

D−1
ii |Ck ∩ Γi|

∑
t∈[c]

m̂
(l−1)
kt µt(1± (l − 1)on(1))

=
∑
k∈[c]

m̂εik(1± on(1))
∑
t∈[c]

m̂
(l−1)
kt µt(1± (l − 1)on(1))

=
∑
t∈[c]

m̂
(l)
εitµt(1± lon(1)).

(87)

For the second term, since gj are sampled independently for all j ∈ [n],

(
D−1A

)l
ij
gj ∼ N

(
0,
(
σ
′(l)
i

)2
I

)
, (88)

where
(
σ
′(l)
i

)2
=
∑

j

((
D−1A

)l
ij

)2
. Therefore, similar to the lemma 3 in Wu et al. (2023),

1

n
≤
(
σ
′(l)
i

)2
≤ 1 (89)

Denote σ
(l)
i = σ

′(l)
i σ. Then, the second term can be represented as(

D−1A
)l
ij
gj = σ

(l)
i g

(l)
i , (90)

where g
(l)
i ∼ N (0, I), which completes the proof.

Lemma A7 presents the feature distributions of a single node. However, it is not feasible to independently sample nodes
from their feature distributions due to the high correlation among the g

(l)
i values for all nodes i ∈ [n]. In the following

subsection, we will explore the analysis of this correlation and transform the correlated distribution into an independent one.

A.4.2. CORRELATION OF THE NODE FEATURES

For convenience, we introduce the matrix G defined as

G =


g0

g1

...
gc−1

 , (91)

which represents the aggregated matrix containing Gaussian noise from all nodes.

Lemma A8. For any i ∈ [n], by applying GC operation l times, its aggregated noisy features are obtained as G
(l)
i =((

D−1A
)l
G
)
i
. With probability at least 1− 1/Ploy(n) over A and {εi}i∈[n], we have

E
[
Var

(
G

(l)
0 ,G

(l)
1 , ...,G

(l)
n−1

)]
=

1

2n2
||Q(l)||2F , (92)

where Q(l) ∈ Rn×n is the distance matrix of
(
D−1A

)l
and Q

(l)
ij = ||

(
D−1A

)l
i
−
(
D−1A

)l
j
||2.
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Proof. Denoting S =
(
D−1A

)l
, the covariance of random variable G

(l)
i and G

(l)
j is

Cov
(
G

(l)
i ,G

(l)
j

)
=Cov

∑
k∈[n]

SikGk,
∑
t∈[n]

SjtGt


=
∑
k∈[n]

∑
t∈[n]

SikSjt Cov (Gk,Gt)

=
∑
k∈[n]

SikSjk Cov (Gk,Gk)

=ST
i Sj .

(93)

Then, the expectation of the variance of these node features is

E
[
Var

(
G

(l)
0 ,G

(l)
1 , ...,G

(l)
n−1

)]
=

1

n2

∑
i<j

E
[
G

(l)T
i G

(l)
i

]
− 2E

[
G

(l)T
i G

(l)
j

]
+ E

[
G

(l)T
j G

(l)
j

]
.

(94)

Since E
[
G

(l)
i

]
= 0, the above equation becomes

1

n2

∑
i<j

Cov
(
G

(l)
i ,G

(l)
i

)
− 2Cov

(
G

(l)
i ,G

(l)
j

)
+Cov

(
G

(l)
j ,G

(l)
j

)
=

1

n2

∑
i<j

||Si − Sj ||22 =
1

2n2

∑
i,j

||Si − Sj ||22 =
1

2n2
||Q||2F ,

(95)

where each Qij = ||Si − Sj ||2.

Lemma A8 shows the expected variance of features among different nodes. By denoting ḡ(l) =

E
[
Mean

(
G

(l)
0 ,G

(l)
1 , ...,G

(l)
n−1

)]
, we can dismantle G

(l)
i as

G
(l)
i = ḡ(l) +

||Q(l)||F√
2n

g
(l)
i , (96)

where g
(l)
i ∼ N (0, I) and ∀i ̸= j,E

[
g
(l)T
i g

(l)
j

]
= 0. Therefore, for each node i ∈ [n], it aggregated features can be

approximately represented as

X
(l)
i = µ(l)

εi (i) + σ

(
ḡ(l) +

||Q(l)||F√
2n

g
(l)
i

)
. (97)

Subsequently, by employing a stronger density assumption, i.e.,
∑

t mεitmtεj = ω(log n2/n), we obtain the approximate
formula to ||Q(l)||22.

Lemma A9. Denote Q(l) ∈ Rn×n is the distance matrix of
(
D−1A

)l
and Q

(l)
ij = ||

(
D−1A

)l
i
−
(
D−1A

)l
j
||2. Assume

that each class possesses exactly n
c nodes and

∑
t mεitmtεj = ω(log n2/n). Then, with probability at least 1− 1/Ploy(n),

we have
||Q(l)||2F =

n

c

∑
k1,k2∈[c]

||m̂(l)
k1

− m̂
(l)
k2
||22 (1± lon (1)) , (98)

for l > 1.

Proof. In HSBM, edges are constructed from the probability matrix M ∈ Rc×c. Each edge, connecting nodes i and j, is
sampled from a Bernoulli distribution, with a parameter mεiεj . We generalize M to the edge-wise edge generation matrix,
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i.e., M ∈ Rn×n, where Mij = mεiεj . Similarly, we also generalize the neighborhood distribution matrix M̂ ∈ Rc×c to a
edge-wise matrix, i.e., M̂ ∈ Rn×n, where M̂ij = m̂εiεj . Then, the expectations of adjacency matrix and the normalized
adjacency matrix are

E [A] = M, E
[
D−1A

]
=

c

n
M̂, (99)

respectively. Consider the adjacency matrix A drawn from HSBM, where exactly n/c nodes are in each class. Denote
A = E

[
D−1A

]
. Then,

A =
c

n

 m̂00E n
c

· · · m̂0(c−1)E n
c

...
. . .

...
m̂(c−1)0E n

c
· · · m̂(c−1)(c−1)E n

c

 , (100)

where E n
c

is the all-ones matrix. Following l iterations of multiplication, it yields

Al =
c

n


m̂

(l)
00E n

c
· · · m̂

(l)
0(c−1)E n

c

...
. . .

...
m̂

(l)
(c−1)0E n

c
· · · m̂

(l)
(c−1)(c−1)E n

c

 . (101)

We now prove the concentration of the element of l-powered normalized adjacency matrix when l > 1, i.e., with a probability
at least 1− 1/Ploy(n), (

D−1A
)l
ij
= Al

ij (1± lon (1)) . (102)

When l = 2, by utilizing the average node degree D̄ to approximate the degree of each nodes, i.e., D̄ii ≈ D̄, the two-powered
normalized adjacency matrix satisfies (

D−1A
)2
ij
=

1

D̄2

∑
k∈[n]

aikakj . (103)

Here,
∑

k∈[n] aikakj is the sum of independent Bernoulli random variables with a mean of vij = E
[∑

k∈[n] aikakj

]
. Then,

vij =
n
c

∑
t∈[c] mεitmtεj . By applying the Chernoff bound (Vershynin, 2018), we have

P


∣∣∣∣∣∣
∑
k∈[n]

aikakj − vij

∣∣∣∣∣∣ ≥ δvij

 ≤ 2 exp
(
−C1vijδ

2
)
, (104)

where C1 > 0 is an absolute constant. We choose δ =
√

C2 logn
vij

, for a large constant C2 > 0. Note that since∑
t mεitmtεj = ω(log n2/n), we have vij = ω(log n2) and δ = O

(
1√
logn

)
= on(1). Then, with probability at least

1− 1/Ploy(n), we have ∑
k∈[n]

aikakj =
n

c

∑
t∈[c]

mεitmtεj (1± on(1)) . (105)

Therefore, (
D−1A

)2
ij
=

c

n

∑
t∈[c]

m̂εitm̂tεj (1± on (1))

=
c

n
m̂(2)

εiεj (1± on (1))

= A2
ij (1± on (1)) .

(106)

When l > 2, if (
D−1A

)l−1

ij
= Al−1

ij (1± (l − 1)o (1)) (107)
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exists, with a probability at least 1− 1/Ploy(n), we have(
D−1A

)l
ij
=
∑
k∈[n]

(
D−1A

)
ik
Al−1

kj (1± (l − 1)on (1))

=
∑
t∈[c]

D̄−1|Ct ∩ Γi|
c

n
m̂

(l−1)
tεj (1± (l − 1)on (1))

=
c

n

∑
t∈[c]

m̂εitm̂
(l−1)
tεj (1± lo (1))

=
c

n
m̂(l)

εiεj (1± lon (1))

= Al
ij (1± lon (1)) .

(108)

Note that, here, the error term l ·on(1) increases linearly as l increases. By a assumption that for each nodes, its neighborhood
distribution is exactly the sampled one, i.e., ∀i ∈ [n], t ∈ [c], D̄−1|Ct ∩ Γi| = m̂εit, this error term decreases to on(1),
which is not correlated the l.

Then,
||Q||2F =

∑
i,j∈[n]

||
(
D−1A

)l
i
−
(
D−1A

)l
j
||22

=
∑

i,j∈[n]

c

n
||m̂(l)

εi − m̂(l)
εj ||

2
2 (1± lon (1))

=
n

c

∑
k,t∈[c]

||m̂(l)
k − m̂

(l)
t ||22 (1± lon (1)) .

(109)

A.4.3. PROOF OF THEOREM 4

Theorem A1 (A general version of Theorem 4). Given (X,A) = HSBM(n, c, σ, {µk} ,η,M, {0}), by assuming that
∀k, t ∈ [c], D̄k = D̄t, with probability of at least 1− 1/Ploy (n), we have

Ei∈Ct
P [ζi(k)] = Φ

(
γ

2σ

F
(l)
tk

ς
(l)
n

+
σ

γ

ς
(l)
n

F
(l)
tk

ln

(
ηt
ηk

))
, (110)

over data X(l) =
(
D−1A

)l
X ,where

F
(l)
tk =

n

||Q(l)||F
||m̂(l)

k − m̂
(l)
t ||2, (111)

Q(l) ∈ Rn×n is the distance matrix of
(
D−1A

)l
, Q(l)

ij = ||
(
D−1A

)l
i
−
(
D−1A

)l
j
||2, and ς

(l)
n = (1± lon (1)).

Then, by assuming that each class possesses exactly n
c nodes, ∀k, t ∈ [c], ηt = ηk,

∑
t mtk ≍

∑
t mkt, and

∑
t mεitmtεj =

ω(log n2/n), for l > 1, Eq. (111) can be further represented as

F
(l)
tk =

√√√√ c||m̂(l)
k − m̂

(l)
t ||22∑

k1,k2∈[c] ||m̂
(l)
k1

− m̂
(l)
k2
||22

D̄

log n
. (112)

Proof. According to Appendix A.4.2, the aggregated features can be reformulated as

X
(l)
i = µ(l)

εi (i) + σḡ(l) + σ̄g
(l)
i , (113)
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where σ̄ = ||Q(l)||F√
2n

σ, g(l)
i ∼ N (0, I), and ∀i ̸= j,E

[
g
(l)T
i g

(l)
j

]
= 0. For each node i ∈ [n], the probability of node is

misclassified into category k is
P [ζi(k)] = P

[
φ(l)
εi > φ

(l)
k

]
, (114)

where φ
(l)
k = ηt · P[X(l)

i | y = k]. Then,

φ(l)
εi > φ

(l)
k

⇐⇒ ηεi exp

(
−||X(l)

i − σḡ(l) − µ
(l)
εi ||2

2σ̄2

)
> ηk exp

(
−
||X(l)

i − σḡ(l) − µ
(l)
k ||2

2σ̄2

)

⇐⇒ ln ηεi −
||X(l)

i − σḡ(l) − µ
(l)
εi ||2

2σ̄2
> ln ηk −

||X(l) − σḡ(l) − µ
(l)
k ||2

2σ̄2

⇐⇒ 2σ̄2 ln

(
ηεi
ηk

)
+ ||µ(l)

εi ||
2ς(l)n + 2σ̄µ(l)T

εi ḡ
(l)
i ς(l)n − 2µ(l)T

εi µ
(l)
k ς(l)n − 2σ̄2µ

(l)T
k ḡ

(l)
i ς(l)n + ||µ(l)

k ||2 > 0

⇐⇒ 2σ̄2 ln

(
ηεi
ηk

)
ς(l)n + γ′2||m̂(l)

k − m̂(l)
εi ||
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Similar to Eq. (69), we have ∑
o∈[c]
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Then, the probability
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where
F

(l)
tk =

n

||Q(l)||F
||m̂(l)

k − m̂
(l)
t ||2 (118)

and ς
(l)
n = (1± lon (1)).

By assuming that each class possesses exactly n
c nodes and

∑
t mεitmtεj = ω(log n2/n), the above formula can be further

represented as

F
(l)
tk =

√√√√ nc||m̂(l)
k − m̂

(l)
t ||22∑

k1,k2∈[c] ||m̂
(l)
k1

− m̂
(l)
k2
||22

, (119)

for l > 1, according to Lemma A9. Since
∑

t mtk ≍
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n). Then, Eq. (119) can be

represented as
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Note that the On(1) error term can be combined with ςn. Then, we have

Ei∈CtP [ζi(k)] = Φ

(
γ

2σ

F
(l)
tk

ς
(l)
n

+
σ

γ

ς
(l)
n

F
(l)
tk

ln

(
ηt
ηk

))
. (121)

25



Understanding Heterophily for Graph Neural Networks

A.5. Proof of Proposition 1

Proof. When M̂ is non-singular, denote M̂M̂−1 = I . Then, according to the compatibility of matrix norms, we have

||M̂−1||F ≥ c/||M̂||F > 0 (122)

and
||m̂(l)

k − m̂
(l)
t ||2 ≥ ||m̂k − m̂t||2||M̂−1||1−l

F > 0. (123)

Thus, we obtain that each separability satisfies
0 < F

(l)
tk . (124)

Then, since
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= 1, (125)

we have ∑
t,k∈[c]

F
(l)
tk ≥

√
cD̄/ log n. (126)

B. Additional Results for Synthetic Data
B.1. More visualizations with different a
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Figure 3. Example of mixed heterophily with a = 0.04. The accuracy of GCN is 74.24.
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Figure 4. Example of mixed heterophily with a = 0.05. The accuracy of GCN is 70.32.

Here, we present additional results for different values of a. Recall that the family of heterophily patterns is constructed
based on the parameter a, where M̂ij is a when j = i, 2a when j = i+ i, and 1

3 − a otherwise. Thus, a is chosen from the
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range of [0, 1
3 ]. Specifically, we select six representative heterophily patterns to elaborate the effect of different heterophily

patterns, where a ∈ [0.04, 0.05, 0.1, 0.12, 0.26, 0.3]. Note that ςn ≈ 1.2 in these heterophily patterns.

Figs. 3 and 4 depict two instances of mixed heterophily with values of a equal to 0.04 and 0.05, respectively. It is evident
that these two patterns exhibit very similar neighborhood distributions, resulting in similar separability gains. When
a = 0.04, nodes within classes 1 and 2 possess a smaller gain, i.e., 1.18, while nodes within classes 1 and 3 possess a
larger gain, i.e., 1.66. By considering the ςn ≈ 1.2, this implies that nodes within class 1 and 2 are more indistinguishable,
while nodes within class 1 and 3 are more distinguishable. This presumption can be verified from the differences in the
confusion matrices of GCN and MLP. As can be observed, when a GC operation is applied, the number of nodes belonging
to class 1 but misclassified into class 2 increases by 27, while the number of nodes misclassified into class 3 decreases
by 49. When a = 0.05, the separability gains are slightly smaller than those when a = 0.04. This results in the overall
non-diagonal elements of the differences in the confusion matrices having relatively larger values compared to the situation
when a = 0.04.
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Figure 5. Example of bad heterophily with a = 0.1. The accuracy of GCN is 45.10.
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Figure 6. Example of bad heterophily with a = 0.12. The accuracy of GCN is 37.94.

Figs. 5 and 6 show two examples of bad heterophily with a = 0.1 and a = 0.12, where the neighborhood distributions are
similar across different classes. Their separability gains are all smaller than ςn. Therefore, after applying a GC operation,
the separability of each class pair degrades. The graph with a = 0.12 possesses smaller separability gains than the graph
with a = 0.1, leading to a larger damage to the separability. For example, when applying a GC operation, the number of
nodes belonging to class 0 that are misclassified to class 1 increases 79 and 87 when a = 0.1 and a = 0.12, respectively.

Figs. 7 and 8 present two examples of good heterophily with a = 0.26 and a = 0.3, where the neighborhood distributions
differ significantly across different classes. In both cases, their separability gains exceed ςn. Consequently, by applying a
GC operation, the separability between all pairs of classes increases, resulting in an overall accuracy improvement. The
graph generated with a = 0.3 exhibits an even more distinct neighborhood distribution. As a result, the gains from the GC
operation are more substantial, as evidenced by the differences in the confusion matrix.

In summary, the above observations further verify the effectiveness of Theorem 1 and shed light on the underlying mechanism
driving the influence of heterophily.
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Figure 7. Example of good heterophily with a = 0.26. The accuracy of GCN is 91.86.
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Figure 8. Example of good heterophily with a = 0.3. The accuracy of GCN is 97.80.

B.2. More Heterophily Patterns

The synthetic graphs in Sec. 5.1 are all generated from a family of heterophily patterns with parameter a. Here, we validate
our theory on two more families of heterophily patterns.

Homophilous Family is a family of homophily patterns, where the diagonal elements possess different values from the
other elements. It neighborhood distributions are

M̂ =


a1 b1 b1 b1 b1
b1 a1 b1 b1 b1
b1 b1 a1 b1 b1
b1 b1 b1 a1 b1
b1 b1 b1 b1 a1

 , (127)

where a1 ∈ [0, 1] and b1 = (1− a1) /4.

Group Family is a family of group heterophily patterns. There are two groups of classes, i.e., group (0, 1) and group
(2, 3, 4). The intra-group classes group possess similar neighborhood distribution, while inter-group classes possess different
neighborhood distribution. It neighborhood distributions are

M̂ =


a2 b2 c2 c2 c2
b2 a2 c2 c2 c2
d1 d1 a1 b1 b1
d1 d1 b1 a1 b1
d1 d1 b1 b1 a1

 , (128)

where a2 ∈ [0, 0.2], b = a+ 0.2, c = (0.8− 2 ∗ a)/3, and d = (0.6− 3 ∗ a)/2.

Fig. 9 show the results of the above two families of heterophily patterns, with different a1 and a2. In Fig. 9(a), curves of
maximum gain and minimum gain coincide, which indicates the separability gains are all the same. Therefore, the Pearson
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(a) Results with homophilous family.
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(b) Results with group family.

Figure 9. Results of additional heterophily patterns.

correlation between separability gains and confusion matrix gains is meaningless under such circumstance. Similarly, a same
situation occurs in Fig. 9(b), when a2 = 0.12. Overall, the separability gains are positively correlated with the accuracy.
The separability gains and confusion matrix gains are highly negative correlated when the separability gains are not with
one value.

B.3. Large-Scale Synthetic Graphs

Here, we verify our theory on the large-scale synthetic graphs generated from our HSBM model. Similarly, we adopt the
settings in Sec. 5.1 with the exception of assigning the number of nodes as n = 100, 000. Since the averaged node degree
for each class is still 25, the expected number of edges in these large-scale graphs is 2, 500, 000. As can be observed in
Fig. 10, the results of the large-scale synthetic graphs are similar to those in Fig. 2(a), where the number of nodes is only
1000. This observation further validates the effectiveness of our theory.
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Figure 10. Results on large-scale synthetic data with the number of nodes as n = 100, 000.

B.4. Precision Problem with Stacking Multiple GC Operations

To verify the precision limitation issue, we introduce two additional data formats: float32 and float128. Note that in our
development environment, float32, float64, and float128 can accurately represent the numbers up to 7, 16, and 19 digits,
respectively. 1

1This part of the code is implemented in NumPy (https://numpy.org/doc/stable/index.html), where np.float128 provides only as much
precision as np.longdouble, 64 bits in our development environment.
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(a) Results on the implementation of float32.
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(b) Results on the implementation of float128.

Figure 11. Results with stacking multiple GC operations, implemented on different data formats.

As can be observed in Figs. 2(d), 11(a) and 11(b), both of their accuracy curves and separability gain regions exhibit similar
behavior. They maintain the similar high values during an initial period and then suddenly drop at some point. However,
they experience this sudden drop at different numbers of GC operations: 22 for float32, 50 for float64, and 60 for float128.
This observation suggests that the suddenly decrement of accuracy is caused by the precision limitation of the corresponding
data format.
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(a) Precision problem of Float32 data format.
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(b) Precision problem of Float64 data format.
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(c) Precision problem of Float128 data format.

Figure 12. Precision bounds for different data formats.

For a deeper investigation, Fig. 12 visualizes the variations in three variables under the implementation of different data
formats. In Fig. 12, averaged STD represents the standard variance calculated among different dimension of features,
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i.e., σ̃(l); average Mean Distance represents the average of the distance of the feature within different classes γ̃(l) ≈
Mean

(
||µ̃(l)

i − µ̃
(l)
i ||
)

. Reminding that for Gaussian node features, γ̃(l)

2σ̃(l) can represents the separability when stacking l

GC operations as stated in Theorem 1).

Under the implementations of different data formats, the σ̃(l) and γ̃(l) are decreasing with approximate the same rate during
an initial period. Then, for the results of float64, both the standard variance does not decline when their value approach
approximately 10−15, i.e., when the number of GC operations grows to 50, both of them cannot be precisely represented.
Therefore, as is expected, the accuracy of GCN decreases suddenly. When we increase the precision of floating-point data
format to float128, the difference of the node features can be obtained until they degrade to 10−18. Then, the point of descent
can be postponed. On the contrary, when utilizing float32, the difference cannot be obtained when they degrade to 10−7.

Therefore, this observation demonstrates that as the number of GC operations increases, although the nodes remain
distinguishable, there will be a sudden decrease in accuracy, due to the precision problem associated with the data format.

C. Additional Results for Real-world Data
C.1. Dataset Statistics

We employ eight node classification datasets to verify the effectiveness of our theory, including two citation network (i.e.
Cora (Yang et al., 2016) and Arxiv-year (Lim et al., 2021)), two Wikipedia networks (i.e. Chameleon and Squirrel) (Pei et al.,
2020), a co-occurrence network (i.e. Actor (Pei et al., 2020)), a co-purchasing network (i.e., Amazon-ratings (Platonov et al.,
2023)), a crowdsourcing co-working network(i.e., Workers (Platonov et al., 2023)), and a patent network(i.e., Snap-patents)
(Platonov et al., 2023). Their statistics are provided in Tabs. 2 and 3. Their homophily ratios are calculated following (Pei
et al., 2020). For each dataset, we randomly selected 60%/20%/20% nodes to construct the training/validation/testing sets.

Table 2. Dataset Statistics (Part One).

Nodes Edges node features classes avg degree homophily ratio

Cora 2708 10556 1433 7 3.90 0.83
Chameleon 2277 62792 2325 5 27.55 0.25

Actor 7600 30019 932 5 3.93 0.16
Amazon-ratings 24492 93050 300 5 7.60 0.32

Squirrel 5201 396846 2089 5 76.27 0.22
Workers 11758 519000 10 2 44.14 0.59

Arxiv-year 169343 1166243 128 5 6.89 0.26
Snap-patents 2923922 13975791 269 5 4.78 0.22

Table 3. Dataset Statistics (Part Two).

avg degree (class) nodes (class)

Cora [4.35, 4.74, 4.36, 3.46, 3.73, 3.64, 3.66] [351, 217, 418, 818, 426, 298, 180]
Chameleon [21.94, 24.76, 27.32, 26.50, 39.17] [456, 460, 453, 521, 387]

Actor [4.13, 3.90, 3.95, 3.77, 4.01] [ 853, 1337, 1630, 1815, 1965]
Amazon-ratings [3.72, 3.97, 3.82, 3.56, 3.15] [6560, 9010, 5678, 2183, 1061]

Squirrel [46.38, 61.86, 73.97, 88.06, 111.13] [1042, 1040, 1039, 1040, 1040]
Workers [40.45, 74.27] [9192, 2566]

Arxiv-year [9.71, 18.95, 14.21, 7.64, 3.63] [31971, 21189, 37781, 29799, 48603]
Snap-patents [4.80, 7.15, 7.84, 6.48, 3.13] [559377, 609501, 551116, 579876, 624052]
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C.2. Detailed Settings

We employ a two-layered MLP for the baseline network and incorporate one GC operation to the last layer to construct the
corresponding GCN. The cross-entropy loss is utilized as the loss function, and Adam (Kingma & Ba, 2015) optimizer is
employed. We conduct the same grid search to find the best group of hyperparameters. The number of hidden neurons,
learning rate, weight decay rate, and dropout rate are obtained by the grid-search strategy. These hyperparameters are search
in:

• number of hidden neurons: hidden ∈ [16, 32, 64, 128, 256];

• learning rate: lr ∈ [0.001, 0.005, 0.01];

• weight decay rate: wd ∈ [0, 1e− 5, 5e− 4, 1e− 4];

• dropout rate: dropout ∈ [0, 0.2, 0.5].

C.3. Visualizations of the results on Real-World Data

Here, we present detailed visualizations of the neighborhood distribution, topological noise, separability gains, and the
learned confusion matrices on these employed real-world datasets for a comprehensive understanding.
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Figure 13. Results for Cora.

Discussion on Cora. Fig. 13 presents the visualization of results for Cora, a typical homophilous dataset. As can be
observed, its neighborhood distribution matrix is a diagonally dominant matrix, where the diagonal elements consistently
possess large values. Besides, Cora exhibits relatively low topological noise. Therefore, the separability gain for each class
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Figure 14. Results for Chameleon.

pair is significant. According to the difference in the confusion matrix of GCN and MLP, we can observe that it effectively
reduces the number of misclassified nodes across nearly all class pairs.

Discussion on Chameleon. Fig. 14 presents the results for Chameleon, a typical heterophilous dataset. Based on
its neighborhood distribution matrix, it exhibits similarities to the group heterophily patterns shown in Appendix B.2.
Chameleon is divided into two class groups, namely (0, 1) and (2, 3, 4), where intra-group classes share similar neighborhood
distributions, while inter-group classes have distinct ones. This characteristic is reflected in its separability gains matrix.

As claimed in Theorem 1, when nodes within different class possess varying proportions, the class with a larger number
of samples experience more significant benefits, while the class with fewer samples derive fewer benefits and may
even encounter a decrease in the classification accuracy. However, their collective impact consistently aligns with the
corresponding separability gain. Therefore, when examining the difference matrix as shown in Fig. 14(f), it is essential to
consider the symmetric elements (i, j) and (j, i) together to assess the separability gain effect between classes i and j.

As observed, the classification results for all class pairs possess positive gains. Even in the case of the pair (2, 3), which
has a separability gain of 0.22, there is a positive classification gain (2 more samples are successfully classified). Thus,
Chameleon can be regarded as exhibiting a favorable heterophily pattern with the ςn ≈ 0.2.
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Figure 15. Results for Workers.

Discussion on Workers. Fig. 15 illustrates the results for Workers, a heterophilous dataset with only two node categories.
As can be observed, in Workers, nodes within the two classes exhibit similar neighborhood distribution. However, due to the
large averaged degree (approximately 44.14), the separability gain for the two classes is still significant.

As shown in Fig. 15(f), the differences in the confusion matrix between GCN and MLP align with the corresponding
separability gains shown in Fig. 15(c). Note that, as shown in Tab. 3, the number of nodes within class 0 (9192) is larger
than the number of nodes within class 1 (2566). Therefore, both the MLP and GCN tend to classify nodes into class 0.
According to our Theorems 1 and 2, the class with a larger number of samples, i.e., class 0, experience more significant
benefits. Thus, the elements (1, 0) exhibits a larger decrease, while (0, 1) possesses a smaller one.
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Figure 16. Results for Actor.

Discussion on Actor. Fig. 16 illustrates the results for Actor, a heterophilous dataset. As can be observed, in Actor, different
classes possess similar neighborhood distributions, and its topological noise is significant. Therefore, its separability gains
are minimal, as shown in Fig. 16(c), leading to a deterioration in classification performance when utilizing GCN. Thus,
Actor exhibits a bad heterophily pattern.

Eq. (4) in Theorem 2 suggests that when the separability gains are less than ςn, classes with more nodes experience a more
significant decrease in separability. In contrast, classes with fewer nodes may experience a slight decline or even an increase
in separability. As observed in Fig. 16(f), although GCN exhibits worse overall results compared to MLP, it misclassifies
more nodes into classes 3 and 4, while misclassifying fewer nodes into the other three classes. This observation is consistent
with the results of Theorem 2.
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Figure 17. Results for Amazon-ratings.

Discussion on Amazon-ratings. Fig. 17 visualizes the results of Amazon-ratings, a heterophilous dataset. As can be
observed from Fig. 17(c), by assuming that ςn ≈ 0.25, the topological information should boost the classification between
class pairs (0, 3), (0, 4), (0, 2), (0, 1), (1, 4), and (1, 3), while damage the others. Therefore, Amazon-ratings possesses a
mixed heterophily pattern.

As shown in Fig. 17(f), the differences in the confusion matrix between GCN and MLP largely align with the corresponding
separability gains shown in Fig. 17(c). The only exception is the class pair (0, 1), whose separability should increase but
experiences a decrease. This discrepancy may be attributed to the distribution of node features. As evident in Fig. 17(d),
samples within classes 0 and 1 appear to possess similar node features. In general, the results of Amazon-ratings are
consistent with our theoretical findings in Theorem 2.
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Figure 18. Results for Squirrel.

Discussion on Squirrel. Fig. 18 illustrates the results of Squirrel, a heterophilous dataset. As can be observed from
Fig. 18(a), Squirrel possess very similar neighborhood distributions across different classes. However, as indicated in Tab. 3,
Squirrel has a notably high averaged degree of 76.27. Therefore, it achieves relatively significant separability gains. By
considering the ςn ≈ 0.12, Squirrel exhibits a mixed heterophily pattern.

Based on the differences in the confusion matrix between GCN and MLP, as presented in Fig. 18(f), when using GCN, it
enhances the classification between every pair of classes except for pair (0, 1). This is because pair (0, 1) has a very small
separability gain of 0.08, which is smaller than ςn. This observation aligns with our theoretical results in Theorem 2.
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Figure 19. Results for Arxiv-year.

Discussion on Arxiv-year. Fig. 19 visualizes the results of Arxiv-year, a large-scale heterophilous dataset, which possesses
169,343 nodes and 1,166,243 edges. As can be observed from Fig. 19(c), by assuming that ςn ≈ 0.5, the topological
information should damage the classification between class pair (3, 4), while boost the others. Therefore, Arxiv-year exhibits
a mixed heterophily pattern.

In Fig. 19(f), we jointly consider the symmetric elements (i, j) and (j, i) together to assess the separability gain effect
between classes i and j, according to Theorem 1. As can be observed, the differences in the confusion matrix between GCN
and MLP align with the corresponding separability gains shown in Fig. 19(c), i.e., only the class pair (3, 4) exhibits an
increment of the misclassified nodes. This observation in the large-scale real-world dataset validates the effectiveness of our
theory.
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Figure 20. Results for Snap-Patents.

Discussion on Snap-patents. Fig. 20 visualizes the results of Snap-patents, a large-scale heterophilous dataset with
2,923,922 nodes and 13,975,791 edges. As can be observed from Fig. 20(c), by assuming that ςn ≈ 0.9, the topological
information should damage the classification between class pairs (0, 1), (1, 2), (2, 3), and (3, 4), while boost the others.
Therefore, Snap-patents possesses a mixed heterophily pattern.

As shown in Fig. 20(f), the differences in the confusion matrix between GCN and MLP largely align with the corresponding
separability gains shown in Fig. 20(c). The only exception is the class pair (0, 1), whose separability should decrease but
experiences an increase. This discrepancy may be attributed to the distribution of node features. As evident in Fig. 20(d),
MLP tends to classify nodes into class 0, 1, and 3, which indicates that the distribution of nodes features (learned node
embeddings) are not similar to Gaussian features, leading to this sightly inconsistency. In general, the results of Snap-patents
are largely consistent with our theoretical findings in Theorem 2.

D. Neural Network Instance of Bayes Classifier
Here, we show that there exists a one-layered fully connected network, which can model the Bayes classifier for the raw
node features X or the aggregated node features X̃ . Therefore, our theoretical results can be achievable through MLPs.

Proposition A1 (Instance for the Raw Features). Given (X,A) = HSBM(n, c, σ, {µk} ,η,M, {∆i}), the Fully Con-
nected Network Y = softmax(XW 1 + b1) is an instance of the Bayes classifier over X , which stated in Lemma A1,
where the parameter matrix

W 1 = (µT
0 µT

1 · · · µT
c−1) (129)

and
b1 = σ2(ln η0, ln η1, · · · , ln ηc−1). (130)
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Proof. Given W 1 in Eq. (129), we have

XW 1 + b1 =


⟨X1,µ0⟩+ σ2 ln η0 ⟨X1,µ1⟩+ σ2 ln η1 · · ·

〈
X1,µc−1

〉
+ σ2 ln ηc−1

⟨X2,µ0⟩+ σ2 ln η0 ⟨X2,µ1⟩+ σ2 ln η1 · · ·
〈
X2,µc−1

〉
+ σ2 ln ηc−1

...
...

...
⟨Xn,µ0⟩+ σ2 ln η0 ⟨Xn,µ1⟩+ σ2 ln η1 · · ·

〈
Xn,µc−1

〉
+ σ2 ln ηc−1

 (131)

For each node i ∈ [n], for any k1, k2 ∈ [c] and k1 ̸= k2, if〈
Xi,µk1

〉
+ σ2 ln ηk1

≥
〈
Xi,µk2

〉
+ σ2 ln ηk2

, (132)

we have
Y ik1

≥ Y ik2
. (133)

Therefore, the prediction of this fully connected network is

pred (Xi) = argmax
k

(Y ik) = argmax
k

(
⟨Xi,µk⟩+ σ2 ln ηk

)
, (134)

which completed the proof.

Proposition A2 (Instance for the Aggregated Features). Given (X,A) = HSBM(n, c, σ, {µk} ,η,M, {0}), when ∀k, t ∈
[c], D̄k = D̄t, the Fully Connected Network Y = softmax(X̃W 2 + b2) is an instance of the Bayes classifier over
X̃ = D−1AX , which is stated in Lemma A6, where the parameter matrix

W2 = (µ̃T
0 · · · µ̃c−1) (135)

and
b1 = (σ̃2 ln η0 −

1

2
⟨µ̃0, µ̃0⟩, · · · , ln ηc−1 −

1

2
⟨µ̃c−1, µ̃c−1⟩). (136)

Proof. When D̄k = D̄t, we have σ̃ = σ̃k, for all k ∈ [c]. Then,

φ̃k1
≥ φ̃k2

⇐⇒ ⟨x, µ̃k1
⟩+ σ̃2 ln ηk1

− 1

2
⟨µ̃k1

, µ̃k1
⟩ ≥ ⟨x, µ̃k2

⟩+ σ̃2 ln ηk2
− 1

2
⟨µ̃k2

, µ̃k2
⟩. (137)

Similar to the proof of Proposition A1, we can complete the proof.

E. Significance of two-class Separabilities
Proposition A3 (Upper Bound of the Overall Error Rate). The overall error rate is bounded as

Ei∈[n]P [Xi is misclassified] ≤
∑
t∈[c]

∑
k∈[c],k<t

(ηt + ηk) (1− S (t, k)) , (138)

where 1− S(t, k) ∈ [0, 1] can be viewed as the error rate when only considering the classification of classes t and k.

Proof.
Ei∈[n]P [Xi is misclassified] =

∑
k∈[c]

ηkEi∈Ck
P [Xi is misclassified|εi = k]

=
∑
k∈[c]

ηkEi∈Ck
P [∪t̸=kζ

c
i (t)]

≤
∑
k∈[c]

ηk
∑
t ̸=k

Ei∈Ck
P [ζci (t)]

=
∑
t∈[c]

∑
k∈[c],k<t

(ηt + ηk) (1− S (t, k)) ,

(139)

where ζci (t) is the complement of ζi(t).
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Proposition A3 illustrates that the overall error rate of the node classification is bounded by the weighted sum of the
error rates of the two-class subtasks. Increasing the separability degrades the upper bound of the overall error rate, while
decreasing the separability increases its upper bound. Thus, we can get the following corollary for the good/bad heterophily
patterns.

Corollary A1. When applying a GC operation, good heterophily patterns degrade the upper bound of overall error rate,
while bad heterophily patterns increase it.

Proof. According to Proposition A3,

Ei∈[n]P [Xi is misclassified] =
∑
t∈[c]

∑
k∈[c],k<t

(ηt + ηk) (1− S (t, k)) . (140)

Good heterophily patterns increase each S(t, k), thereby reducing this upper bound; whereas bad heterophily patterns
decrease each S(t, k), thereby increasing this upper bound.

F. Utilizations and Suggestions on Graphs Learning
Our results may serve for two practical utilizations.

Firstly, when GNNs are integrated into specific applications, our theoretical insights can offer guidance to the construction
of their graphs and help to understand the performance with their specific heterophily patterns.

Secondly, our work introduces a fresh perspective on heterophily and over-smoothing, coupled with a novel GNN analytical
framework, which may further boost the development of innovative methods. For example, several possible insights are as
follows.

• According to Theorem 2, different GNN aggregators may successfully classify different subsets of nodes. Therefore,
when learning on graphs with heterophily, it may be beneficial to adaptively select specific aggregators for individual
nodes, e.g. Luan et al. (2022); Javaloy et al. (2023). Furthermore, this result can also explain why the combination of
ego- and neighbor-embeddings can establish a stable and competitive baseline across diverse heterophily patterns (Zhu
et al., 2020; Platonov et al., 2023).

• According to Theorem 3, the inconsistency in neighborhood distribution poses a potential challenge when handling
heterophilious graphs. Therefore, it may be beneficial to mitigate the influence of topological noise within each class,
probably through the design of an attention scheme.

• According to Theorem 4, GNN with varying numbers of layers may successfully classify different subsets of nodes.
Therefore, it may be beneficial to explore information from high-order neighborhoods, e.g., Zhu et al. (2020).

Besides, we believe that our theoretical results may provide additional inspiration to the community for designing heterophily-
specific GNNs, enabling them to successfully handle graphs with diverse heterophily patterns.
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