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Abstract

In the field of natural language processing001
(NLP), prompt-based learning is widely used002
for efficient parameter learning. However, this003
method has the drawback of shortening the in-004
put length by the extent of the attached prompt,005
leading to an inefficiency in utilizing the input006
space. In this study, we propose P-Distill, a007
novel approach that mitigates this limitation by008
utilizing knowledge distillation from a teacher009
model with extensive prompts to a student010
model with shorter prompts. We introduce two011
novel methods for prompt compression, includ-012
ing prompt initialization, and prompt distilla-013
tion. Experiments across various NLP tasks014
demonstrate that P-Distill exhibits compara-015
ble or superior performance compared to other016
state-of-the-art prompt-based learning methods,017
even with significantly shorter prompts. We018
achieve a peak improvement of 1.90% even019
with the prompt lengths compressed to one-020
eighth. An additional study further provides021
insights into the distinct impact of each method022
on the overall performance of P-Distill. These023
results highlight the potential of P-Distill in fa-024
cilitating efficient and effective training for a025
wide range of NLP models.026

1 Introduction027

Pre-trained language models (PLMs) have been028

effective in improving performances of various nat-029

ural language processing (NLP) tasks (Devlin et al.,030

2019; Brown et al., 2020; Touvron et al., 2023).031

These models are fine-tuned by optimizing all pa-032

rameters to enhance the performances of specific033

downstream tasks; however, fine-tuning requires034

significant computational resources while training.035

The need for significant computational resources036

for storage and training becomes a challenge, es-037

pecially when fine-tuning large language models038

such as Llama2 (Touvron et al., 2023), which may039

not be readily available to most users.040

To reduce computational costs, researchers have041

Figure 1: Performance variation in P-tuning across tasks
based on the length of continuous prompts.

explored various methods for efficiently fine-tuning 042

the parameters (Houlsby et al., 2019; Hu et al., 043

2021; Liu et al., 2022). In contrast to the tradi- 044

tional model fine-tuning that updates all parame- 045

ters for a downstream task, P-tuning (Liu et al., 046

2022) fixes the pre-trained parameters and only 047

trains the continuous prompts. These prompts are 048

trainable embeddings attached at the beginning or 049

throughout each layer of the model. P-tuning is 050

computationally efficient, particularly for PLMs 051

with a large number of parameters; however, it over- 052

looks the inefficiency in input space utilization aris- 053

ing from attaching continuous prompts (Hu et al., 054

2021). Similar to the findings in the work (Liu 055

et al., 2022), more challenging tasks require longer 056

prompt lengths to achieve the optimal performance, 057

as shown in Figure 1. For instance, in datasets such 058

as CoNLL04, CoNLL05 WSJ, SQuAD 2.0, and 059

OntoNotes 5.0, a prompt length of 128 is required 060

to achieve the optimal performance. 061

In this paper, we propose P-Distill, which is a 062

novel prompt compression method to address the 063

limitations of long prompts. Our method involves 064

a two-step process where we first train a teacher 065

model using P-tuning to achieve optimal perfor- 066

mance with long prompts. We then transfer this 067
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knowledge to a student model with significantly068

shorter prompts through a distillation process. To069

ensure stability in training, we first perform prompt070

initialization based on the teacher model prompts.071

Then, we focus on distilling knowledge between072

the teacher and student models, specifically target-073

ing the outputs of their intermediate and prediction074

layers. This is due to the impact of soft prompts075

on the hidden states within these layers, which076

subsequently influences the model’s predictions.077

This method enables the compression of prompts078

to shorter lengths without a significant degradation079

in performance, thereby addressing the inefficien-080

cies inherent in longer prompts.081

To validate its effectiveness and efficiency, we082

evaluate P-Distill using various NLP benchmarks,083

including SuperGLUE (Wang et al., 2020), SQuAD084

(Rajpurkar et al., 2016, 2018), ReCoRD (Zhang085

et al., 2018), OntoNotes (Weischedel et al., 2013),086

and CoNLL (Tjong Kim Sang and De Meulder,087

2003; Carreras and Màrquez, 2004, 2005; Pradhan088

et al., 2012a). Our results demonstrate that P-Distill089

exhibits comparable or superior performance than090

those of the existing state-of-the-art prompt-based091

models. To the best of our knowledge, this study is092

the first to train teacher prompts and transfer their093

knowledge to student prompts for the purpose of094

compressing prompts. The main contributions of095

this study are summarized as follows:096

• We propose a method called P-Distill to com-097

press the soft prompts, effectively mitigating098

the limitation of reducing the model’s usable099

sequence length in prompt-based learning.100

• We introduce a prompt distillation method uti-101

lizing teacher model’s hidden state and pre-102

diction outputs, influenced by soft prompts,103

and propose a prompt initialization for stable104

prompt distillation.105

• We validate P-Distill across multiple NLP106

benchmarks, demonstrating its ability to main-107

tain or enhance accuracy while reducing108

prompt lengths by up to eight times.109

The remainder of this paper is structured as fol-110

lows: Section 2 provides the preliminaries; Section111

3 describes a detailed description of the proposed112

method; Section 4 presents the experimental results113

and analysis, and Section 5 concludes the study.114

2 Preliminaries 115

2.1 Pre-trained Language Models Based on 116

the Transformer 117

The transformer model (Vaswani et al., 2023), com- 118

prising an encoder and decoder, is the fundamental 119

architecture of the majority of recent PLMs, includ- 120

ing BERT (Devlin et al., 2019), RoBERTa (Liu 121

et al., 2019), and GPT-3 (Brown et al., 2020). Each 122

encoder and decoder consists of multiple trans- 123

former layers and incorporates key components, 124

such as multi-head attention modules (MHA), feed- 125

forward networks, layer normalization, and resid- 126

ual connections. A key component of this architec- 127

ture is the multi-head attention mechanism, which 128

computes attention weights using query (Q), key 129

(K), and value (V ) matrices. Mathematically, the 130

attention function in multi-head attention can be 131

represented as follows: 132

Att(x) = softmax(
QKT

√
dk

)V, (1) 133

where
√
dk is the scaling factor for gradient stabi- 134

lization during training. This attention mechanism 135

is crucial in understanding language and generat- 136

ing tasks by modulating the focus of the model on 137

different parts of the input data. 138

2.2 Prompt-based Learning Methods 139

Prompt-based learning methods have emerged as 140

an efficient alternative to full model fine-tuning, 141

especially for PLMs (Liu et al., 2022, 2023). These 142

methods use prompts to guide the model pre- 143

dictions for specific tasks. Several approaches 144

(Jiang et al., 2020; Shin et al., 2020) employ dis- 145

crete prompts, which are fixed templates added 146

to the input. For example, in sentiment analy- 147

sis, a template might be "This text [Input Text] 148

expresses a [MASK] sentiment.". However, dis- 149

crete prompts are limited in that their performances 150

significantly depend on template selection. Ad- 151

vanced approaches, such as Prefix-Tuning (Li and 152

Liang, 2021) and P-tuning (Liu et al., 2022), use 153

continuous prompts that are trainable embeddings 154

independent of the model vocabulary. Particularly, 155

P-tuning attaches continuous prompts to each layer 156

of the model, thereby influencing its behavior and 157

enhancing its performance in downstream tasks. 158

This approach is mathematically represented as: 159

T = {h0:i, e(x), hi+1:m, e(y)}, (2) 160
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Figure 2: Overview of the proposed method, denoted as P-Distill. This method trains a teacher model to generate
concise and effective prompts, followed by distilling the knowledge into a student model.

where hi denotes the trainable embedding vector of161

the continuous prompts. These continuous prompts162

are integrated into the attention mechanism of the163

transformer model as follows:164

headl(x) = Att(xW (l), [P
(l)
k : K(l)], [P (l)

v : V (l)]),
(3)165

where headl(x) is the attention computation for166

each attention head l. The query vector Q(l) is167

generated using the input x and the weight matrix168

W (l). K(l) and V (l) are the key and value vectors169

for the l-th attention head, and P
(l)
k and P

(l)
v are170

the continuous prompts added to the key and value171

vectors of the l-th attention head, respectively. This172

integration enables the model to influence layers173

closer to the output, significantly affecting the final174

predictions.175

2.3 Knowledge Distillation176

In artificial intelligence, knowledge distillation177

(KD) is a technique for reducing the size of large178

models while preserving their performances (Jiao179

et al., 2020; Sun et al., 2020; Sanh et al., 2020;180

Hinton et al., 2015). During KD, a smaller stu-181

dent model is trained to internalize and emulate182

the complex decision-making patterns and behav-183

iors of a larger teacher model. This process in-184

volves the behavior functions of the models, fT185

and fS , transforming inputs into informative rep-186

resentations, typically defined as the output of any187

layer within the model. These representations con-188

tain abundant information for model predictions.189

KD is quantified using loss functions, such as the190

Kullback-Leibler divergence (Kullback and Leibler,191

1951) or Mean Squared Error (MSE) (Hinton et al., 192

2015), as follows: 193

LKD =
∑
x∈X

L(fS(x), fT (x)), (4) 194

where x is the input, and X and L denote the 195

dataset and the loss function, respectively. This 196

approach enables the student model to gain a com- 197

prehensive understanding of various classes, en- 198

hancing its application in fields such as NLP. 199

3 Methodology 200

Many existing prompt tuning methods, including P- 201

tuning, have the drawback of occupying an unnec- 202

essarily large portion of the input token space ow- 203

ing to their long prompts. Inspired by knowledge 204

distillation methods, we propose a novel prompt 205

compression methodology called P-Distill. This ap- 206

proach aims to compress the prompts while main- 207

taining the performance, thereby increasing the 208

available space for input tokens and enhancing 209

the overall model efficiency. To this end, the pro- 210

posed P-Distill comprises the following two meth- 211

ods: prompt initialization and prompt distillation. 212

Figure 2 shows the learning and compression pro- 213

cesses of P-Distill. Our approach involves two 214

main steps where the first step is training a teacher 215

model using P-tuning, and the second step focuses 216

on distilling knowledge to a student model with 217

shorter prompts, effectively reducing the length of 218

the prompts. 219
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3.1 Prompt-Based Teacher Learning220

When solving downstream tasks using P-tuning,221

the performance is only influenced by the contin-222

uous prompts, because the pre-trained weights of223

the language model remain fixed. Furthermore, the224

optimal prompt length varies with task complexity.225

For simple sentence classification tasks, the opti-226

mal length is approximately 20, whereas for more227

difficult sequence-labeling tasks, it can extend up228

to 100 (Liu et al., 2022). Understanding the varia-229

tion in prompt length is crucial, as longer prompts230

inherently limit the maximum sequence length that231

the model can handle.232

We train a teacher model on various tasks us-233

ing the P-tuning methodology, which fixes the234

pre-trained weights of the PLM. This model to-235

kenizes input data x and embeds it into text em-236

beddings x. Subsequently, the continuous prompts237

P T
k , P T

v ∈ Rnt×d of the teacher model are ran-238

domly initialized and concatenated with the key239

vectors K ∈ Rnx×d and value vectors V ∈ Rnx×d240

of each layer. Here, d is the dimensionality of the241

hidden representations, nt is the prompt length of242

the teacher model, and nx is the length of token243

embeddings. The teacher model, which utilizes244

attention heads incorporating continuous prompts,245

is trained to take the text embedding x as input246

and generate the final logits yT . The parameter247

optimization of the teacher model is guided by the248

cross-entropy loss, which is formalized as follows:249

LT
CE = − 1

|B|

|B|∑
i=1

log(softmax(yTi )[ci]), (5)250

where |B| is the number of data points in the251

current batch, yTi is the logits output by the252

teacher model for the i-th data point in the batch,253

softmax(yTi ) is the softmax-transformed proba-254

bility distribution over the classes, and ci is the true255

class index for the i-th data point.256

3.2 Prompt-enhanced Distillation (P-Distill)257

We initiate the training of a student model which258

employs shorter continuous prompts, rather than259

the teacher model, using the same prompt attach-260

ment methodology. During the initial training261

phase, we initialize the continuous prompts of the262

student model PS
k and PS

v ∈ Rns×d based on263

the teacher model’s prompts P T
k and P T

v . Sub-264

sequently, student prompts are also attached to the265

key and value vectors across all layers to compute266

the attention heads. The length of the student model267

Figure 3: Illustration of various prompt initialization
methods.

prompts, represented by ns, is shorter than that of 268

the teacher model prompts nt. The student model, 269

denoted by fS , takes the text embedding x as input 270

and generates the output logits yS . The teacher and 271

student models share the same underlying language 272

model architecture, differing only in the length and 273

content of their respective prompts. In this context, 274

we focus on distilling the knowledge from the more 275

extensive teacher model prompts into the shorter 276

student model prompts. To enhance the effective- 277

ness of knowledge transfer, we propose two novel 278

methods for knowledge distillation. 279

3.2.1 Prompt Initialization 280

For solving downstream tasks, the model utilizes 281

the attached prompts to generate answers. Starting 282

with the randomly initialized prompts for the model 283

can result in an unstable training process (Lester 284

et al., 2021). To mitigate this challenge, the study 285

(Vu et al., 2022) employed a method for transfer- 286

ring the prompts learned in one task to another task. 287

We aim to stabilize the training by initializing the 288

student model prompts PS
k and PS

v based on the 289

teacher model prompts P T
k , P T

v . We experiment 290

with various prompt initialization methods, includ- 291

ing reparameterization, average pooling, and max 292

pooling, as illustrated in Figure 3. In reparameter- 293

ization, we employ a reparameterization encoder 294

to adjust the length of the teacher model prompts 295

to that of the student model prompts. For average 296

pooling, we divide the teacher model’s prompts 297
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into smaller segments and compute their averages298

to initialize the student prompts. In max pooling,299

we focus on the most prominent features by obtain-300

ing the maximum value from each segment of the301

teacher model’s prompts. Based on the experimen-302

tal results, we apply the reparameterization encoder303

to the teacher model’s prompts to construct the stu-304

dent model’s prompts as follows:305

PS
k = (P T

k ·W T
k ) + bTk , (6)306

307
PS
v = (P T

v ·W T
v ) + bTv , (7)308

where W T
k and W T

v are the learnable weight matri-309

ces used to construct the student’s prompts, and bTk310

and bTv are the corresponding bias terms used. The311

results of various prompt initialization experiments312

are shown in Section 4.5.313

3.2.2 Prompt Distillation314

In this section, we focus on prompt distillation, a315

key aspect of the proposed approach. Recognizing316

the influence of soft prompts on both the hidden317

states and the prediction layer outputs within the318

model, we employ the following two distillation319

techniques: prediction layer and hidden state distil-320

lations. These techniques focus on different aspects321

of the teacher model’s output to ensure comprehen-322

sive knowledge transfer.323

Prediction layer distillation In this method, a324

student model learns to emulate the preidctions of325

a teacher model. This process involves the student326

model utilizing soft labels from the teacher model’s327

output, which encapsulate the teacher model’s un-328

derstanding of the data. Particularly, a loss function329

is used to minimize the difference between the log-330

its yS and yT produced by the student and teacher331

models, respectively. The distillation loss Lpred is332

formulated as follows:333

Lpred = KL(softmax(ySi /θ), softmax(yTi /θ)),
(8)334

where ySi and yTi are the logits vectors predicted335

by the student and teacher, respectively, and KL336

denotes the Kullback-Leibler divergence, which337

measures the difference between the probability338

distributions of the two models. θ is a tempera-339

ture hyperparameter that adjusts the smoothness340

of these distributions, enabling a more nuanced341

transfer of knowledge from the teacher to student342

model. The distillation loss Lpred is then used in343

the optimization process to update the parameters344

of the student model, thereby aligning its predic- 345

tive behavior more closely with that of the teacher 346

model. 347

Hidden state distillation Additionally, we also 348

distill knowledge from the intermediate representa- 349

tions of the teacher model. The concept of distilling 350

knowledge through intermediate representations 351

was initially introduced by Fitnets (Romero et al., 352

2015), with the aim of enhancing the training pro- 353

cess of the student model. Based on the provided 354

prompts and inputs, we extract knowledge from the 355

transformer layers of the teacher model and distill 356

into the student model. This process is formalized 357

using the loss function Lhidden, which is calculated 358

as the MSE between the hidden states HS and HT 359

of the student and teacher models, respectively, as 360

follows: 361

Lhidden = MSE(HS , HT ), (9) 362

where the matrices HS , HT ∈ Rn×d represent the 363

hidden states, n is the sequence length, and d is the 364

hidden state dimensionality of the two models. 365

3.3 Distillation-based Student Learning 366

While training the student model, the cross-entropy 367

loss is computed similar as that of the teacher 368

model. This loss serves as a measure of the student 369

model’s accuracy in predicting the true class labels 370

as follows: 371

LS
CE = − 1

|B|

|B|∑
i=1

log(softmax(ySi )[ci]). (10) 372

Subsequently, the overall loss function Ltotal for 373

the student model is then a weighted combination 374

of the cross-entropy loss and the distillation losses 375

as follows: 376

Ltotal = λ1 ·LS
CE+λ2 ·Lpred+λ3 ·Lhidden, (11) 377

where λ1, λ2, and λ3 are the learnable weighted 378

coefficients with the constraint that their combined 379

sum equals 1. During the training, the teacher 380

model parameters are fixed to serve as the sources 381

of prior knowledge. 382

4 Experiments 383

This section presents the datasets employed in our 384

experiments, baseline models for comparison, re- 385

sults of these datasets, and analyses from our addi- 386

tional studies. 387
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Table 1: Experimental results for each model on the SuperGLUE validation dataset. For P-Distill, training was
performed using a teacher model with the prompt length exhibiting the best performance for P-tuning. The numbers
in parentheses indicate the lengths of the prompt attached to the model. (Acc.: Accuracy; bold: the best; underline:
the second best)

BoolQ
Acc.

CB
Acc.

COPA
Acc.

MultiRC
F1a

ReCoRD
F1

RTE
Acc.

WiC
Acc.

WSC
Acc.

Fine-tuning 0.777 0.946 0.710 0.705 0.706 0.762 0.746 0.683

P-tuning
0.764(8) 0.946(32) 0.810(4) 0.711(16) 0.728(16) 0.794(4) 0.756(4) 0.731(16)
0.738(1) 0.929(4) 0.790(1) 0.707(2) 0.721(2) 0.783(1) 0.745(1) 0.692(2)

P-Distill 0.776(1) 0.964(4) 0.810(1) 0.718(2) 0.726(2) 0.798(1) 0.759(1) 0.721(2)

4.1 Datasets388

Our evaluation of the proposed P-Distill method389

encompasses a comprehensive range of natural lan-390

guage understanding tasks, utilizing datasets that391

are well-established benchmarks within the field.392

For named entity recognition, we use the393

CoNLL-2003 (Tjong Kim Sang and De Meul-394

der, 2003), CoNLL-2004 (Carreras and Màrquez,395

2004), CoNLL-2005 (Carreras and Màrquez,396

2005), CoNLL-2012 (Pradhan et al., 2012b), and397

OntoNotes 5.0 datasets (Weischedel et al., 2013),398

each providing richly annotated text for entity399

classification. The SQuAD dataset, in its ver-400

sions 1.1 (Rajpurkar et al., 2016) and 2.0 (Ra-401

jpurkar et al., 2018), facilitate testing reading402

comprehension, requiring the model to parse pas-403

sages and answer questions with a high degree404

of understanding. Furthermore, we include var-405

ious tasks from SuperGLUE benchmark (Wang406

et al., 2019), which assesses a model’s understand-407

ing and reasoning abilities across different con-408

texts, including BoolQ (Clark et al., 2019), CB409

(De Marneffe et al., 2019), COPA (Roemmele410

et al., 2011), MultiRC (Khashabi et al., 2018),411

ReCoRD (Zhang et al., 2018), RTE (Dagan et al.,412

2006; Bar Haim et al., 2006), WiC (Pilehvar and413

Camacho-Collados, 2019) and WSC (Levesque414

et al., 2011). All these datasets are English, open-415

source, and utilized solely for academic research416

purposes. For accurate comparisons, we follow the417

train, validation, and test set splits as specified in418

the referenced work (Liu et al., 2022).419

4.2 Baselines420

We compare P-Distill against the following meth-421

ods to validate its competitive performance, with422

all methods utilizing BERTlarge with 335M param-423

eters as the backbone architecture.424

Fine-tuning All parameters of a PLM are up- 425

dated to the downstream task, thereby adapting 426

the weights of the entire model to the task-specific 427

data. 428

P-tuning (Liu et al., 2022) It appends trainable 429

continuous prompts to the key and value matrices 430

of a model, enabling task-specific learning while 431

keeping the model’s pre-trained weights fixed. 432

P-Distill Our proposed method, P-Distill, em- 433

ploys a P-tuning approach to train continuous 434

prompts for each task. Subsequently, the optimally 435

trained continuous prompts are distilled into a stu- 436

dent model with shorter prompts using two distinct 437

knowledge distillation techniques. 438

4.3 Experimental Details 439

In our training process, we exclusively focus on 440

continuous prompts while keeping the backbone 441

parameters of the model fixed. The model is trained 442

with a batch size of 16, and the learning rate is in- 443

dividually optimized for each task. Furthermore, 444

we employ the AdamW optimizer for training. For 445

the temperature hyperparameter θ used in the dis- 446

tillation process, we experimentally determine the 447

optimal setting by sweeping across [1, 5, 10]. For 448

the learnable parameter λ2, we explore the initial 449

values of [0.1, 0.5, 0.9]. Considering the significant 450

impact of the hidden state loss, we experiment with 451

the initial values of [1e-3, 1e-4, 1e-5] for λ3. All 452

experiments were performed using PyTorch 1 and 453

HuggingFace Transformers (Wolf et al., 2020) on 454

three NVIDIA A100 GPUs, and to ensure consis- 455

tency in our results, each task was conducted using 456

the same random seed. 457

4.4 Results 458

Tables 1 and 2 present the experimental results of 459

Fine-tuning, P-tuning, and P-Distill. In P-Distill, 460

1https://pytorch.org/
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Table 2: Experimental results for each method on named entity recognition, question answering, and semantic role
labeling. For P-Distill, training was performed using a teacher model with the prompt length exhibiting the best
performance for P-tuning. The numbers in parentheses indicate the lengths of the prompts attached to the model.
All metrics are reported as micro-f1 scores. (bold: the best; underline: the second best)

CoNLL03 CoNLL04
CoNLL05

WSJ
CoNLL05

Brown
OntoNotes

5.0
SQuAD
1.1 dev

SQuAD
2.0 dev

Fine-tuning 0.928 0.882 0.885 0.827 0.890 0.911 0.819

P-tuning
0.919(64) 0.880(128) 0.890(128) 0.837(32) 0.885(128) 0.902(64) 0.782(128)
0.914(8) 0.866(16) 0.877(16) 0.807(4) 0.881(16) 0.891(8) 0.771(16)

P-Distill 0.919(8) 0.888(16) 0.885(16) 0.817(4) 0.886(16) 0.896(8) 0.775(16)

the prompt length is compressed to one-eighth461

of that of the teacher model prompts. For fewer462

than eight teacher model prompts, the length is463

compressed to 1. Experimentally, the proposed P-464

Distill method exhibits a comparable or superior465

performance than those of the other methods while466

using shorter prompts.467

Results on SuperGLUE Table 1 shows the per-468

formance of each approach on the SuperGLUE469

benchmark. Despite using shorter prompts, P-470

Distill matches and exceeds the performances of471

the baseline methods, particularly P-tuning.472

When applying the P-tuning, we observed com-473

parable or superior performance in all tasks, ex-474

cept for BoolQ, when compared to the Fine-tuning.475

However, a limitation of P-tuning is that the length476

of tokens that can be input into the model is reduced477

by the length of the prompt used. For instance, set-478

ting the prompt length to 32 in the CB task resulted479

in a performance comparable to that of Fine-tuning.480

However, this also resulted in a reduction of 32481

tokens in the input length. Applying the proposed482

P-Distill compresses the prompt length by eight-483

fold, resulting in a better performance even when484

the prompt length was reduced to 4. Particularly,485

P-Distill exhibited a 1.90% higher performance486

than that of the teacher model and 2.73% improve-487

ment over the same-length prompt trained using488

P-tuning. This indicates that knowledge learned489

from a teacher model with longer prompts can be490

effectively transferred to a student model with eight491

times shorter prompts.492

Results on Across Tasks Based on Table 2,493

achieving optimal performance via P-tuning re-494

quires training with longer prompts for question-495

answering, named entity recognition, and semantic496

role labeling tasks. Similar to the SuperGLUE497

benchmark and compared to the existing meth-498

ods, P-Distill achieved comparable or better per-499

formance using shorter prompts even for tasks re- 500

quiring longer prompts. This is evident in the 501

CoNLL04 task, where the optimal prompt length 502

for the model trained using P-tuning is 128. Despite 503

occupying a significant portion of the input token 504

space with a length of 128, the performance was 505

lower than that achieved with Fine-tuning. How- 506

ever, applying prompt compression using P-Distill 507

reduced the prompt length to 16 while outperform- 508

ing Fine-tuning. Notably, P-Distill achieves a per- 509

formance improvement of 2.54% over the same- 510

length prompt trained using P-tuning and a 0.90% 511

improvement over the teacher model. 512

4.5 Additional Study 513

To further verify the effectiveness of the proposed 514

method, we conduct experiments using the follow- 515

ing P-Distill variants: 516

P-Distill−init Instead of training without prompt 517

initialization, it focuses exclusively on leveraging 518

the two types of distillation losses designed to 519

transfer the knowledge from the teacher to student 520

model in different ways. 521

P-Distill−pred This approach does not implement 522

the prediction layer distillation loss. Following the 523

application of the prompt initialization method, it 524

trains the student model based on the hidden state 525

distillation loss. This method aligns the internal 526

representations of the student model with those of 527

the teacher model without focusing on the final 528

output predictions. 529

P-Distill−hidden This variant does not consider 530

the differences between the hidden state outputs of 531

the teacher and student models. Instead, it focuses 532

on training based on differences in the prediction 533

layer output. This approach aligns the final predic- 534

tions of the student model closely with those of the 535

teacher model without directly focusing on their 536

7



Figure 4: Comparison of ablation study results across various tasks, with different colors and bar styles representing
the distinct variants of P-Distill.

Table 3: Comparison of additional experiment results
across various tasks based on prompt initialization meth-
ods. All metrics are reported as micro-f1 scores. (bold:
the best)

CoNLL03 CoNLL04 CoNLL05
WSJ

CoNLL05
Brown

P-Distill 0.919 0.888 0.885 0.817
P-Distillmean 0.915 0.875 0.878 0.809
P-Distillmax 0.912 0.872 0.872 0.803

internal representations.537

Figure 4 shows that all three variants of P-Distill538

cause performance degradation, which is evident in539

downstream tasks and overall averages. However,540

the extent of degradation varies among different541

variants. First, P-Distill−init exhibited the most542

significant performance degradation across various543

tasks. Even without prompt initialization, conduct-544

ing prediction layer distillation and hidden state dis-545

tillation led to performance improvements over P-546

tuning. However, we observed lower performance547

when prompts were randomly initialized compared548

to when prompt initialization is applied. This in-549

dicates that prompt initialization, based on the550

teacher model’s prompt, is crucial in prompt-based551

knowledge distillation. Second, P-Distill−hidden552

and P-Distill−pred exhibited decreased prediction553

performance. This demonstrates that integrating554

prompt initialization with the hidden state or pre-555

diction layer distillation techniques enhances the556

stability and effectiveness of knowledge distillation.557

Therefore, combining these methods is the most558

effective approach for prompt-based knowledge559

distillation, resulting in the best performance.560

To inspect the effectiveness of different prompt561

initialization methods within P-Distill, we con-562

duct experiments to compare the performance of563

P-Distill with two variants: P-Distillmean, which564

initializes the teacher model prompts using an av- 565

erage pooling layer, and P-Distillmax, which uses 566

a max pooling layer for the same purpose. The re- 567

sults, as detailed in Table 3, demonstrated that both 568

P-Distillmean and P-Distillmax underperformed in 569

comparison to the P-Distill. We assume that the 570

use of average pooling and max pooling leads to 571

an excessive simplification of the teacher model’s 572

prompts, resulting in the loss of crucial nuances 573

and complexities. Conversely, the reparameteriza- 574

tion encoder for prompt initialization effectively 575

captures and transfers the complex knowledge of 576

the teacher model prompts, thereby enhancing the 577

predictive performance. This suggests that the repa- 578

rameterization encoder is a more suitable method 579

for prompt initialization in P-Distill, contributing 580

significantly to the overall effectiveness of the 581

knowledge distillation process. 582

5 Conclusion 583

In this paper, we introduce P-Distill, a novel ap- 584

proach in NLP that utilizes two knowledge dis- 585

tillation techniques to enhance performance by 586

compressing unnecessary prompt length. This ap- 587

proach combines prompt initialization, two types 588

of prompt distillation to effectively transfer knowl- 589

edge from a teacher model with longer prompts to 590

a student model with prompts that are eight times 591

shorter. To evaluate the efficacy of our proposed 592

method, we conduct experiments across various 593

NLP tasks. Our results demonstrate that using 594

prompts of the same length, the proposed method 595

achieves an average improvement of 2.73% over 596

the existing prompt-tuning methods across the Su- 597

perGLUE benchmark. Furthermore, P-Distill ex- 598

hibits competitive performance even against mod- 599

els trained with prompts that are eight times longer. 600
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Limitations601

One limitation of this study is that we evaluated our602

method only on the BERT architecture. Conduct-603

ing additional experiments on other architectures604

could be beneficial to determine the generalizabil-605

ity of our findings. Additionally, while our model606

improves performance through the process of train-607

ing a teacher model and transferring its knowledge,608

it incurs more time and cost compared to previous609

methods. In future work, we plan to develop an610

approach that integrates the training of the teacher611

model and the knowledge distillation process in an612

end-to-end manner.613
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