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Abstract

We consider the problem of active seriation, where the goal is to recover an un-
known ordering of n items based on noisy observations of pairwise similarities.
The similarities are assumed to correlate with the underlying ordering: pairs of
items that are close in the ordering tend to have higher similarity scores, and vice
versa. In the active setting, the learner sequentially selects which item pairs to
query and receives noisy similarity measurements. We propose a novel active
seriation algorithm that provably recovers the correct ordering with high proba-
bility. Furthermore, we provide optimal performance guarantees in terms of both
the probability of error and the number of observations required for successful
recovery.

1 Introduction

The seriation problem involves ordering n items based on noisy measurements of pairwise similarities.
This reordering problem originates in archaeology, where it was used for the chronological dating
of graves [Robinson, 1951]]. More recently, it has found applications in data science across various
domains, including envelope reduction for sparse matrices [Barnard et al., 1995]], read alignment in
de novo sequencing [Garriga et al., 2011} [Recanati et al., 2017]], time synchronization in distributed
networks [Elson et al., 2004} (Giridhar and Kumar, 2006, and interval graph identification [Fulkerson
and Gross, 1965]. In many of these settings, pairwise measurements can be made in an active
or adaptive manner, leveraging information from previously chosen pairs. Motivated by these
applications, we study the problem of recovering an accurate item ordering from a sequence of
actively selected pairwise measurements.

In the seriation paradigm, we assume the existence of an unknown symmetric matrix M representing
pairwise similarities between a collection of n items. This similarity matrix is structured so that the
similarities are correlated with an unknown underlying ordering of the items. This ordering can be
encoded by a permutation 7 = (71, ..., 7,) of [n], where the similarity M;; between items ¢ and j
tends to be large when their positions 7; and 7; are close, and small when they are far apart.

To model this structure formally, the literature often assumes that M is a permuted Robinson matrix
(also known as an R-matrix) [Fogel et al., 2013} |Recanati et al., 2018} Janssen and Smith, 2020} Giraud
et al., 2021]]. A matrix is called Robinson if its rows and columns are unimodal and attain their
maxima along the main diagonal. Under this assumption, the similarity M is modeled as a Robinson
matrix whose rows and columns have been permuted according to 7.

In the active seriation problem, observations are collected sequentially. At each step, a pair of items
(4,7) is selected, and a noisy observation of the corresponding similarity M;; is obtained. This
observation is modeled as a realization of a o-sub-Gaussian random variable with mean M;;. A total
of T pairs are selected, where T is fixed in advance, and the choice of each pair may depend on
the outcomes of previous selections. It is standard to assume that the " observations are mutually
independent.
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The goal is to recover the hidden ordering 7 of the n items from these noisy, actively chosen
observations. To evaluate the performance of an estimator 7, we consider the probability of error
P {7 # 7}, which measures the likelihood of failing to recover the true ordering.

Our first contribution is a characterization of the optimal rates for the active seriation problem on
the class of similarity matrices whose pairwise similarities are separated by a minimal gap A. The
statistical difficulty of ordering recovery is captured by the quantity

A2T

SNR := —— | (1)
a“n

which can be interpreted as the number of observations per item, 7'/n , multiplied by the signal-
to-noise ratio (SNR) per observation, A%/c2. Our theorems identify two regimes depending on
the value of this SNR. For conciseness, we focus on the challenging regime where the SNR per

. . 2 . .
observation satisfies 27 < 1, and use the notation < and > to ignore absolute constant factors.

o2
* The Impossible Regime: SNR < Inn. In this regime, we prove that no algorithm can
recover the ordering with a vanishing probability of error.

* The Recovery Regime: SNR = In n. We show that the optimal recovery rate is achievable
in polynomial time, with high probability. Specifically, we show that the probability of error
decreases exponentially fast with the SNR, and no algorithm can achieve a faster decay,
establishing optimality.

Our second contribution is algorithmic. We introduce Active Seriation by Iterative Insertion (ASID),
an active procedure for estimating the ordering 7. Unlike most existing seriation methods, which are
non-active, ASII is remarkably simple, runs in polynomial time, yet achieves optimality guarantees
both in terms of the probability of error and the number of observations required for recovery.

Our third contribution extends our results to general Robinson matrices, without any A-separation
assumption. We introduce a robust variant of our procedure that adaptively focuses on well-separated
items, and show that it can still recover a consistent partial ordering with high confidence.

Finally, we illustrate the performance of ASII through numerical experiments and a real-data appli-
cation. On synthetic data, ASII remains competitive with specialized batch algorithms on Toeplitz
matrices and clearly outperforms them on more general non-Toeplitz structures. On single-cell RNA
sequencing data, ASII produces biologically coherent reorderings, highlighting the robustness and
practical relevance of the proposed approach beyond idealized settings.

1.1 Related work

Classical seriation. The classical (non-active) seriation problem was first addressed by [Atkins et al.]
1998]] in the noiseless setting, using a spectral algorithm. Later works analyzed this algorithm under
noise [Fogel et al., 2013| |Giraud et al., 2021, [Natik and Smith, 2021]], showing good performance
under strong structural assumptions [Giraud et al., 2021]]. More recent contributions proposed
polynomial-time algorithms with statistical guarantees under various assumptions, such as Lipschitz
structure [Giraud et al., 2021]], relaxed average Lipschitz conditions [Issartel et al., 2024]], Toeplitz
structure [[Ca1 and Ma, 2022, Berenfeld et al., 2024]], and others [Janssen and Smith, 2020]. In
contrast, our analysis does not rely on additional structural assumptions such as Lipschitz or Toeplitz
conditions.

Statistical-computational gaps. Prior studies have suggested statistical-computational gaps in
the non-active seriation problem [Giraud et al., 2021}, |Cai and Ma, 2022} Berenfeld et al., 2024],
where known polynomial-time algorithms fall short of achieving statistically optimal rates under
specific noise conditions or structural assumptions. While some of these gaps have recently been
closed [Issartel et al., 2024]], the resulting algorithms tend to be complex and may not scale well in
practice. In the active setting, however, we show that a simple and computationally efficient algorithm
achieves statistically optimal performance.

Active and adaptive observation models. While classical seriation assumes access to all pairwise
similarities, our work considers an active setting where similarities are observed sequentially, based
on past observations. Related problems include adaptive ranking and sorting under noisy comparisons,
such as active preference learning [[Jamieson and Nowak, 2011]], adaptive sorting [Braverman and



Mossel, 2009, and ranking from pairwise comparisons [Heckel et al., 2019]]. However, these
problems rely on pairwise comparisons (e.g., is item ¢ preferred to item 5?) to infer a total order of
items. In contrast, seriation builds on pairwise similarity scores that encode proximity in an unknown
underlying ordering. This distinction leads to different statistical and algorithmic challenges.

Connections to bandit models. In classical multi-armed bandits (MAB) [Bubeck and Cesa-Bianchi/
[2012], each arm yields independent rewards, and the goal is to maximize cumulative reward or identify
the best arm. In contrast, in active seriation, each query (¢, j) measures the similarity between two
interdependent items, and all measurements must be consistent with a single latent ordering. This
interdependence prevents a direct application of standard MAB algorithms such as UCB or Thompson
Sampling, which treat arms as independent and do not exploit structural relationships between them.

Algorithmically, our approach is related to noisy binary search and thresholding bandits [[Feige
et al., 1994, [Karp and Kleinberg, 2007, Ben-Or and Hassidim, 2008, Nowak, 2009, [Emamjomeh
Zadeh et al., 2016} |Cheshire et al., 2020} |(Cheshire et al., 2021, which rely on adaptive querying
under uncertainty. However, these methods operate on low-dimensional parametric models, whereas
seriation involves a combinatorial ordering that must remain globally consistent across item pairs.

Relation to active ranking problems. A related but distinct problem is active ranking
let al., 2019]l, where a learner infers a total order based on noisy pairwise comparisons or latent score
estimates. Extensions include Borda, expert, and bipartite ranking [Saad et al., 2023|, |Cheshire et al.]
[2023]]. These methods typically assume that each item is associated with an intrinsic scalar score,
and that pairwise feedback expresses a directional preference between items. In contrast, seriation
relies on symmetric pairwise similarity information, which encodes proximity rather than preference.
Recovering the latent ordering therefore requires global consistency among all pairwise similarities,
making the problem more constrained and structurally different from standard ranking tasks.

2 Problem formulation

In this section, we formally state the seriation problem considered in this paper.

2.1 Pairwise similarities, Robinson structure, and orderings

Given a collection of items [n] := {1,...,n}, let M = [M,;]i<i j<n denote their (unknown)
symmetric similarity matrix, where the coefficient M;; € R measures the similarity between items ¢
and j. Our structural assumption on M is related to the class of Robinson matrices, introduced below.
The entries of a Robinson matrix decrease as one moves away from the (main) diagonal; see Figure 1.

Definition 2.1. A matrix R € R™*"™ is called a Robinson matrix (or R-matrix) if it is symmetric and
satisfies the inequalities
Rip1j> Ry and  Rij > Riji

forall 1 < i < j < non the upper triangle.

Thus, each row and column of an R-matrix is unimodal and attains its maximum on the diagonal.
Following [[Atkins et al., 1998]], a matrix is said
to be pre-R if it can be transformed into an R-
matrix by simultaneously permuting its rows
and columns (see Figure 1). In this paper, we
assume the similarity matrix M is pre-R, i.e.,

M = R7r = [Rm,ﬂ'j]lgi,jgn (2)

for some R-matrix R and some permutation m =
(m1,...,7p) of [n]. We call 7 an ordering of the
n items with similarity matrix M if it satisfies
@) for some R-matrlx' 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

In (IZ[), the similarities M;; reflect the ordering 7
in that M;; tends to be larger when the positions
m; and 7; are close together, and smaller when
they are far apart.

Figure 1: R-matrix & a permuted version.



Remark 1. The items have two orderings: if © is an ordering, then the reverse permutation 7,
defined by 7;®" = n + 1 — m; for all i, is also an ordering. Indeed, one can verify that M = R;%ev
where R™" is the R-matrix defined by R};" := Rypy1—int1—j.
A key quantity in our analysis is the separation between consecutive entries in the underlying R-matrix.
Specifically, for any pre-R matrix M as in (2), we define the minimal gap as

Ay = _min {(Rit1; — Rij) N (Rij — Rij+1)} €)
where we write a A b := min(a, b). This quantity measures the smallest difference between neigh-
boring entries in the R-matrix associated with M. (Note that A, is well-defined, even though M
admits two associated R-matrices: R and its reverse R'°V.)

For future reference, define
Mp = {M € R™™ "™ : Mispre-R,and Ay; > A} @)
as the set of pre-R matrices with minimal gap at least A.

To simplify the presentation of our findings, we focus on the challenging regime where

A
2o )
o
i.e., the signal-to-noise ratio per observation is at most 1. This excludes mildly stochastic regimes
where the problem has essentially the same difficulty as in the noiseless case.

2.2 The active seriation problem

In the active seriation problem, the algorithm sequentially queries T pairs of items and receives
noisy observations of their pairwise similarities. The unknown similarity matrix M € Ma (see {@))
encodes these similarities, and the goal is to recover an ordering associated with M as in (2)).

Ateachround ¢t = 1,...,T, the algorithm selects a pair (i, j;) with i; # j;, possibly depending on
the outcomes of previous queries. It then receives a noisy observation of the similarity M;, ;,, modeled
as a realization of a o-sub-Gaussian random Variabl with mean M;, ;,. This sub-Gaussian framework
covers several standard observation models, including Gaussian noise, Bernoulli observations, and
bounded variables.

After T queries, the algorithm outputs a permutation 7 of [n] as its estimate of the true ordering. The
algorithm is considered successful if 7 recovers either 7 or its reverse 7"°, as both induce valid
Robinson structures on the similarity matrix (see Remark [I)). The probability of error is thus defined
as:

p]u_’T = PJVI,T {ﬁ' 7é 7 and fl’ 7£ ﬂ,rev} ; (6)
where the probability is over the randomness in the 7" observations collected on M.

3 Seriation procedure

ASII (Active Seriation by Iterative Insertion) reconstructs the underlying ordering by iteratively
inserting each new item into an already ordered list. At iteration k, given a current ordering 7(*~1)
of k — 1 items, the algorithm inserts item k at its correct position to form an updated ordering 7(¥).
This process is repeated until the full ordering of all n items is obtained.

To perform this insertion efficiently, two key subroutines are used:
(i) Local comparison rule. To decide where to insert &, the algorithm must compare its position

relative to items already in the list. This is achieved through the subroutine TEST, which
determines whether £ lies to the left, in the middle, or to the right of two reference items.

'We recall that a real-valued random variable X is said to be o-sub-Gaussian if Efexp(uX)] < exp (“22"2 )
forall u € R.



(ii) Efficient insertion strategy. To minimize the number of comparisons, the algorithm performs
a binary search over the current ordering, where each comparison is made via TEST. Because
these tests are noisy, the procedure is further stabilized through a backtracking mechanism,
which allows the algorithm to detect and correct occasional local errors without increasing the
overall sample complexity.

The next paragraphs describe these two subroutines in more detail.

Local comparison rule. Given three items (k, [, r) such that w; < ., the goal is to determine
whether 7, lies to the left, in the middle, or to the right of (7, 7,-) in the unknown ordering:

T < T vs T € (my, ) vs TR > Ty . @)

The intuition follows from a basic property of Robinson matrices: when & lies between [ and r, its
similarity to both [ and r tends to be higher than the 51m11ar1ty between [ and r themselves. Hence,

by comparing the three empirical similarities M, Ll M, Lr, and er, we identify the smallest one as
correspondmg to the pair of items that are farthest apart. Formally, if er is the smallest, k lies in the

middle; if M, & 18 the smallest, k lies to the left of (I, r); and if Mkl is the smallest, & lies to the right.
The subroutine TEST returns b € {—1,0, 1} accordingly.

In practice, TEST uses a small fixed number of samples 7 to make each test sampling-efficient, except
in a few critical steps of ASII (e.g., initialization of a binary search) where higher reliability is required.
This sampling-efficient design trades individual test accuracy for global robustness: occasional
misclassifications are later corrected by the backtracking mechanism. The formal pseudocode of
TEST is provided in Appendix B}

Efficient insertion strategy. The idea of incorporating backtracking into a noisy binary search
has appeared in several algorithmic studies, e.g., [Feige et al., 1994, |Ben-Or and Hassidim, 2008
Emamjomeh-Zadeh et al., 2016|], and was further explored in [[Cheshire et al., 2021]]. Here, we
adopt this general principle to design a robust insertion mechanism that remains reliable under noisy
relational feedback.

To efficiently insert a new element into an already ordered list, we use the subroutine BINARY &
BACKTRACKING SEARCH (BBS)), which determines the relative position of item & within the current
ordering (my,...,mk—1). The search proceeds by repeatedly testing whether k lies in the left or
right half of a candidate interval, thereby narrowing down the possible insertion range. Because
test outcomes are noisy, even a single incorrect decision can misguide the search and lead to an
erroneous final placement. A naive fix would be to allocate many samples per test to ensure highly
reliable outcomes, but this would increase the sample complexity and undermine the benefit of active
sampling. Instead, uses a small, constant number of samples per test—enough to ensure a
constant success probability (e.g., around 3/4). This design trades individual test accuracy for global
sample efficiency, with backtracking acting as a corrective mechanism that restores robustness.

The algorithm keeps track of previously explored intervals and performs sanity checks at each step
to detect inconsistencies in the search path. When an inconsistency is detected, it backtracks to an
earlier interval and resumes the search. This prevents local mistakes from propagating irreversibly.
Theoretical analysis shows that as long as the number of correct local decisions outweighs the number
of incorrect ones—an event that occurs with high probability— the final insertion position is accurate.
Hence, the backtracking mechanism enables the algorithm to combine low-sample local testing with
global reliability, providing both efficiency and robustness despite noisy observations. A pseudocode
of this procedure is provided in Appendix

4 Results for A-separated matrices

We analyze the fundamental limits of ordering recovery over the class M a, deriving both information-
theoretic lower bounds and algorithmic upper bounds on the error probability. These results are
expressed in terms of the signal-to-noise ratio (SNR), defined earlier in (), and identify two distinct
regimes separated by the threshold log n.



4.1 Impossibility regime

When the SNR satisfies ﬁzz < Inn, no algorithm can recover the ordering with vanishing error
probability. The following theorem formalizes this impossibility, establishing a constant lower bound
on the error probability (6) for any algorithm in this regime.

Theorem 4.1 (Impossibility regime). Letn > 9,0 >0, A > 0, and T > 1. If the SNR satisfies
AT

< ¢plnn,

for a sufficiently small absolute constant ¢y > 0, then for any algorithm, there exists a matrix
M € M such that

N)M—l

PM,T =

Intuitively, the impossibility regime is more pronounced when the minimal gap A is small or when
the sub-Gaussian parameter o is large. The proof is provided in Appendix [G]

4.2 Recovery regime
In the complementary regime, where the SNR satisfies ﬁjg 2 Inn, we establish performance
guarantees for Specifically, part (a) of the next theorem provides an upper bound on the
error probability (6] of which decreases exponentially fast with the SNR. Conversely, part (b)
provides a matching lower bound, showing that no algorithm can achieve a faster error decay than
exponential in the SNR.

Theorem 4.2 (Recovery regime). Letn >4, 0 >0, A > 0, and T > 1. If the SNR satisfies

A%T

o?n

> ¢y lnn,
for a sufficiently large absolute constant ¢ > 0, and condition () holds, then:

(a) For any M € M, the error probability of[ASTI| satisfies

AT
DM, < €xXp ( ﬁ 02n> . (8a)

(b) For any seriation algorithm, there exists M € M a such that

AT
DM, T = €Xp <— 8 o ) : (8b)

Theorem {.2] completes the characterization of the recovery regime, showing that the error probability

of I|decays exponentially once the SNR A L . Together,

Theorems [.1] and [.2] delineate the statistical landscape of active seriation, estabhshlng a sharp

phase transition between impossibility and recovery at the critical SNR level ﬁ 7TL

parts (a) and (b) are given in Appendices[E]and [G] respectively.

= Inn. Proofs of

Instance-dependent guarantee. For simplicity, Theorem (a) is stated for a fixed A, but the
same bound holds instance-wise in terms of the true minimal gap Ay of M. Specifically, for any

A?MT
80002n

PM,T < €Xp <—

Hence, the performance of the algorithm automatically scales with each instance, without requiring
any knowledge of Ay, o, or the SNR.



4.3 Optimal sample complexity for exact recovery

The following corollary summarizes Theorems[4.T|and[4.2)in terms of sample complexity. Combining
the impossibility result of Theorem [.T] with the recovery guarantee of Theorem [4.2] we obtain a
precise characterization (up to absolute constants) of the number of observations required for exact
recovery.

Corollary 4.3 (Optimal sample complexity). The minimax-optimal number of observations required
for exact recovery with probability at least 1 — 1/n? satisfies

T o’nlnn
TOAT

This result follows directly from Theorem [4.2] (a), which guarantees exponentially small error

probability whenever 7' 2, ‘722#, and from Theorem , which shows that recovery is impossible
below this threshold. Hence, attains the minimax-optimal sample complexity T*, which
depends transparently on the problem parameters (A, o, n). This expression formalizes the intuition
that recovery becomes easier as the signal gap A increases or the noise parameter o decreases.
Importantly, it also shows that exact recovery is achievable with a number of queries T < n?,
significantly improving over the classical batch setting where all pairwise similarities must be
observed.

4.4 Intrinsic hardness and invariance to model assumptions

Both lower bounds (Theorems[4.1T]and [f.2] (b)) are established under a Gaussian noise model with
centered, homoscedastic entries of variance o2, whereas our upper bound is proved in the more
general sub-Gaussian setting allowing heterogeneous noise levels. Since these bounds match up to
constant factors, potential heterogeneity in the noise variances does not affect the minimax rates.

Moreover, the lower bounds are derived for the simple Toeplitz family R;; = A(n — |i — j]), yet
the attainable rates coincide with those obtained under the general assumption M € Ma. Hence,
allowing heterogeneous, non-Toeplitz matrices and sub-Gaussian noise comes at no statistical cost.

Finally, even in the extreme case where the Robinson matrix R is fully known —such as the one-
parameter family R;; = A(n — |i — j|)— the attainable rates remain unchanged. This shows that the
hardness of active seriation stems from the combinatorial nature of the latent ordering rather than
from uncertainty on the similarity model.

S Extension to general Robinson matrices

In many practical scenarios, some items may be nearly indistinguishable in terms of their pairwise
similarities. For instance, a few rows (or columns) of the similarity matrix may be almost identical.
In such cases, the minimal gap Aj; can become extremely small. When this occurs, some items
are effectively indistinguishable in the presence of noise, making their exact ordering statistically
impossible to recover. To handle this situation, we now consider arbitrary Robinson matrices
M € My, without any separation assumption. Our goal is then to recover the ordering of a subset of
items that are sufficiently well separated, while ignoring indistinguishable ones.

5.1 Algorithmic adaptation: simplified seriation procedure

The extended algorithm, denoted EXT-ASII(A), follows the same iterative insertion framework as
but employs a simplified binary search and a more conservative local testing rule to handle
potentially non—A-separated items. Backtracking is no longer required, as each local decision is
made with high confidence by allocating In n times as many samples per test as in

Modified test rule. Given a triplet of items (¢, 7, k) and a tolerance parameter A > 0, the subroutine
TESTa determines whether & lies to the left, in the middle, or to the right of (¢, ) based on their

empirical similarities. Let Z\/l\g,., M\gk, and M\rk denote the corresponding sample means, each
computed from Ty = |7/(3n (logy(n) + 1)) | observations per pair. Define the event

I[(a,b),2,A] := { Myp+ 4 < My A My }.



The output b € {—1,0, 1} of TESTA is assigned as follows:
0 ifI[(¢,r),kA] (middle),

b=1{ -1 ifI[(k,r),6,A] (eft), 9)

1 if I[(k,0),r,A] (right).

If none of the three cases above applies, the item k is considered A—close to at least one of £ or r and
is discarded from further insertion.

Binary search without backtracking. At iteration k, the algorithm considers item k and attempts
to insert it into the current estimated ordering (*~1) over the active subset S*~1) [k — 1] of items
successfully inserted so far. The insertion relies on a standard binary search guided by TESTA. If a
test fails to decide —that is, if & is A-close to a boundary element— the item is discarded and not
further inserted. Otherwise, the binary search proceeds within 7r(*~1) until the insertion position of k
is determined.

Output. After n iterations, the algorithm outputs a total ordering 7 over the subset S = S(™) of
successfully inserted items. Items rejected during the procedure are those empirically A-close to
others, thereby ensuring that .S forms a A-maximal subset as defined in Section[5.2]

This simplified variant preserves the structure of [ASTI| while adapting test confidence to weaker
separation, yielding the guarantees of Theorem[5.2}

5.2 Recovery guarantees

Here A > 0 denotes a user-chosen tolerance parameter, which sets the resolution at which the
algorithm attempts to distinguish items. The guarantees below hold without any prior knowledge of
the true matrix M or the noise level o.

Formally, given A > 0, we define the notion of a A-maximal subset. For a subset S C [n] and a
matrix M € R™*", we write Mg for the submatrix of M consisting of entries M;; such thati,j € S.
Definition 5.1 (A-maximal subset). A subset S C [n] is said to be A-maximal for a matrix M € M,
if it cannot be enlarged by adding any single item without violating the A-separation condition, that
is,

MSu{k} ¢ Ma forall ke [TL] \ S.
Intuitively, S cannot be enlarged without adding items too similar (within A) to those already in S.

Given such a subset S, we aim to recover the induced ordering s of the true permutation 7 restricted

rev

to S, orits reverse mg". Let pps, 7,5 denote the probability of misordering S after T active queries:

purs = Pyr{f #ngand T # 75"} . (10)
Theorem 5.2 (Extension to any Robinson matrix). Letn > 1,0 >0, A > 0,and T > 1. If
AT
3, > ¢ (lnn)?,

for a sufficiently large absolute constant c; > 0, there exists an absolute constant ca > 0 such that
the following holds.

For any M € M, the output 7 of the extended algorithm EXT-ASII(A) is a permutation over a
subset S C [n] satisfying:

* S is A-maximal in the sense of Definition[5.1}

* the error probability obeys the bound

A2T
pmM,T,Ss < exp( 02>~ (1D

o2nlnn

Compared to Theorem[4.2](a), the error exponent in includes an additional logarithmic factor.
This factor stems from using In n times as many samples per test for high-confidence decisions. A
refined analysis, possibly reusing the backtracking technique of Theorem[4.2](a), should remove this
factor and yield optimal rates; we leave this refinement for future work. Overall, Theorem@] shows
that reliable partial recovery remains achievable even without uniform A-separation.



6 Empirical illustration
We illustrate the behavior of ASII through numerical experiments and a real-data example.

Numerical simulations. We assess the empirical performance of ASII on synthetic data and
compare it to three benchmark methods: (i) the batch seriation algorithm ADAPTIVE SAMPLING [Cai
and Ma, 2022], (ii) the SPECTRAL SERIATION algorithm [Atkins et al., 1998, and (iii) a naive
insertion variant without backtracking. All methods are evaluated under identical sampling budgets on
four synthetic scenarios, including both Toeplitz and non-Toeplitz Robinson matrices (see Appendix|C]
for full experimental details and figures).

On Toeplitz matrices, ASII performs slightly below specialized batch methods such as ADAPTIVE
SAMPLING and SPECTRAL SERIATION, which are tailored to that structure, yet still achieves
high empirical accuracy. In contrast, on non-Toeplitz matrices, ASII consistently outperforms
both ADAPTIVE SAMPLING and SPECTRAL SERIATION, which may fail entirely in some settings.
These experiments confirm that ASII maintains reliable performance beyond classical structural
assumptions, demonstrating strong robustness across heterogeneous matrix geometries.

Application to real data. We further assess the robustness of ASII on real single-cell RNA
sequencing data (human primordial germ cells, from [Guo et al., 2015]], previously analyzed by [Cai
and Ma, 2022]). Although such biological data depart substantially from the idealized Robinson
models assumed in our theory, ASII still produces a meaningful reordering of the empirical similarity
matrix, revealing coherent developmental trajectories among cells. This illustrates the practical
relevance and robustness of the proposed approach beyond the assumptions made in our theoretical
model. Full experimental details are provided in Appendix [C]

7 Discussion

Scope and noise regimes. Our analysis focused on the stochastic regime where the per-observation
signal-to-noise ratio A /o is at most 1, which captures the most challenging setting for active seriation.
The results, however, extend naturally to less noisy regimes (A/o > 1): in that case, accurate
recovery requires only 7' > n log n queries, reflecting the intrinsic O(n logn) cost of performing n
adaptive binary insertions. Further details and discussion are provided in Appendix

Gain from active learning. Our active framework enables recovery of the underlying ordering
without observing the entire similarity matrix. Whereas batch approaches such as spectral methods
require O(n?) observations, our active algorithm succeeds with only 7' > (02/A%)nlogn
samples. This corresponds to a fraction (02 /A?)(logn/n) of the full matrix and yields a substantial
reduction in sample complexity, provided that the signal-to-noise ratio A?/c? remains bounded
away from zero. This gain arises from the ability of adaptive sampling to draw information from a
well-chosen, small subset of pairwise similarities, from which the entire matrix can be reordered,
achieving strong statistical efficiency under limited sampling budgets.

Potential applications. Beyond synthetic settings, seriation techniques are broadly relevant in
domains where pairwise similarity information reflects a latent one-dimensional structure. Examples
include genomic sequence alignment, where seriation helps reorder genetic fragments by similarity,
and recommendation systems, where item-item similarity matrices can reveal latent preference
orderings. We also illustrated, on real single-cell RNA sequencing data (human primordial germ cells
from [Guo et al., 2015]]), that ASII can recover biologically meaningful trajectories despite the data
departing strongly from our theoretical model. These settings often involve noisy or costly pairwise
measurements, making active seriation particularly appealing as a statistically efficient alternative to
batch reordering methods.

Comparison with batch methods. In certain scenarios —especially when differences between
candidate orderings are highly localized— our active formulation can succeed under weaker signal
conditions than batch methods. This contrast reflects a design difference: batch approaches often
rely on global matrix discrepancies, which can impose stronger separation requirements in such
localized settings, whereas our active algorithm concentrates sampling on locally ambiguous regions.
A detailed comparative example is provided in Appendix



Fixed-budget and fixed-confidence formulations. Throughout this work, we focused on the
fixed-budget setting, where the total number of samples 7 is fixed in advance and the objective is to
minimize the error probability within this budget. The algorithm does not require prior knowledge
of the noise variance o nor of the minimal signal gap A; it simply allocates the available budget T’
across tests. As a result, the performance depends on o and A only through the signal-to-noise ratio
SNR = A2T/(o%n), which determines the achievable accuracy.

A natural extension would be to study the complementary fixed-confidence setting, where the algo-
rithm must adaptively decide when to stop sampling in order to achieve a prescribed confidence level.
Such a formulation would typically require variance-aware sampling policies and data-driven stopping
rules, possibly involving online estimation of 0. Developing such an adaptive, fixed-confidence
version of remains an interesting direction for future work.

Conclusion. This work introduces the first active-learning formulation of the seriation problem,
together with sharp theoretical guarantees and a simple, polynomial-time algorithm. We characterize
a phase transition in sample complexity governed by the signal-to-noise ratio SNR. := A%T/(0%n):
recovery is impossible when SNR < log n, while [ASTIachieves near-minimax optimality once this
threshold is exceeded. Our analysis highlights how adaptive sampling and corrective backtracking
improve statistical efficiency.

Beyond A-separated instances, we further extended the analysis to arbitrary Robinson matrices,
introducing a user-chosen tolerance parameter A that sets the resolution at which recovery is at-
tempted. At this scale, reliably recovers the ordering of all items that are sufficiently well
separated, formalized through the notion of A-maximal subsets. Nevertheless, some matrices may
exhibit global ordering structure even in the absence of any locally separated subsets. Capturing such
globally structured signals —beyond the local, A-based framework— remains an open and important
direction for future work.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: All theoretical results referenced in abstract are clearly stated in main text.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes both theoretical and practical limitations are discussed
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

13



Justification: Assumptions are clearly stated in main text with corresponding proofs in
appendix

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: All code used to generate empirical results is provided.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: All code used to produce empirical results is provided
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: “Experimental section is clearly explained. All code used to produce empirical
results is provided

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Error bars are provided.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:
Justification: Experiments are purely illustrative as this is a theoretically focused work
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: No ethical concerns
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: Limited potential impact as the work is theoretically focused
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: No risk posed
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Competing algorithms clearly referenced
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new assets
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No crowdsourcing or research with human subjects
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: NA
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: No involvement of LLMs
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
L.LM) for what should or should not be described.
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