
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ON THE ROBUSTNESS OF MODEL EDITS TO FINE-
TUNING IN TEXT-TO-IMAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Model editing offers a cost-effective way to inject or correct specific behaviors in
pre-trained models without extensive retraining, supporting applications such as
factual corrections or bias mitigation. However, real-world deployment commonly
involves subsequent fine-tuning for task-specific adaptation, raising the critical
question of whether edits persist or are inadvertently reversed. This has important
implications for AI safety, as reversal could either remove malicious edits or
unintentionally undo beneficial bias corrections. We systematically investigate the
interaction between model editing and fine-tuning in text-to-image models, known
for biases and inappropriate content generation. We fine-tune the edited model
on unrelated tasks and track changes in editing performance. Our comprehensive
analysis covers two prominent model families (Stable Diffusion and FLUX), two
state-of-the-art editing techniques (Unified Concept Editing and ReFACT), and
four widely-used fine-tuning methods (full-size, DreamBooth, LoRA, and DoRA).
Across diverse editing tasks (concept appearance and role, debiasing, and unsafe
content removal) and evaluation metrics, we observe that fine-tuning slightly
weakens concepts edits and debiasing edits, yet unexpectedly strengthens edits
aimed at removing unsafe content. For example, on appearance editing tasks,
an average of 6.78% of the editing effect is reversed across the four fine-tuning
methods. These results confirm the feasibility of robust model editing and reveal
fine-tuning’s dual role, as both a potential remediation mechanism for malicious
edits and as a process that may slightly weaken beneficial edits, necessitating
careful monitoring and reapplication.

1 INTRODUCTION

Pre-trained generative models often exhibit undesirable behaviors, from factual mistakes to social
biases (Gandikota et al., 2024; Kim et al., 2025; Friedrich et al., 2023). Model editing has emerged
as a lightweight alternative to full retraining, allowing precise, localized changes to a model’s
parameters to correct factual errors (Arad et al., 2024; He et al., 2025), remove offensive and toxic
content (Gandikota et al., 2024; Kim et al., 2025; Friedrich et al., 2023; Li et al., 2024; Gandikota
et al., 2023a; Schramowski et al., 2023; Zhang et al., 2024), or update outdated knowledge (Meng
et al., 2022; Gandikota et al., 2024; Arad et al., 2024).

However, the deployment lifecycle of pre-trained models often involves subsequent fine-tuning to
adopt new artistic styles, adapt to domain-specific data, or accommodate evolving user requirements.
This motivates the following underexplored research question: Do the effects of an edit persist
through fine-tuning, or are they inadvertently reversed? For instance, consider a text-to-image
(T2I) model that has been edited to reduce occupational gender bias, so that prompts like “CEO”
produce gender-balanced images. If this model is later fine-tuned on a different task, such as emulating
a Studio Ghibli aesthetic, will the bias mitigation still hold?

This question has dual implications for AI safety and practicality: (1). Malicious Edit Remediation:
If harmful edits (e.g., injected biases or unsafe content (Chen et al., 2024; Huang et al., 2024;
Youssef et al., 2025)) can be removed via fine-tuning, this provides a critical defense mechanism; (2)
Benevolent Edit Maintenance: If beneficial edits (e.g., debiasing “CEO” gender stereotypes (Meng
et al., 2022; 2023; Gandikota et al., 2024; Kim et al., 2025; Friedrich et al., 2023; Li et al., 2024;
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Figure 1: Overview ofM , Mft, Med, andMed_ft. The left side illustrates the two datasets used for fine-
tuning, while the right side compares the performance of the different variants. Fine-tuning strategies
are shown in order from top to bottom: full-size fine-tuning, DoRA, LoRA, and DreamBooth.

Gandikota et al., 2023a; Schramowski et al., 2023; Zhang et al., 2024)) degrade after fine-tuning,
re-editing becomes essential to preserve model alignment.

In this work, we focus on T2I models, which have been shown to exhibit societal bias or generate
inappropriate images (Cho et al., 2023; Naik & Nushi, 2023; Bianchi et al., 2023b; Lin et al., 2023),
systematically examining this issue across two major groups of T2I models, Stable Diffusion (SD)
and FLUX, four commonly-used fine-tuning methods: full-size fine-tuning, DreamBooth (Ruiz et al.,
2023), LoRA (Hu et al., 2022), and DoRA (Liu et al., 2024), and two state-of-the-art editing methods,
Unified Concept Editing (UCE) (Gandikota et al., 2024) and ReFACT (Arad et al., 2024).

Our key findings are:

• Debiasing edits degrade variably across different fine-tuning methods. Edits designed
to mitigate biases, such as occupational gender stereotypes, consistently degrade after fine-
tuning, with noticeable fluctuations in effectiveness across professions. Full-size fine-tuning
shows a larger difference (0.115) from the edited model, while DreamBooth preserves the
edits more faithfully with a smaller difference (0.057).

• Concept edits degrade due to style shift. Across appearance and role edits on Stable
Diffusion v1.4 and Stable Diffusion XL, efficacy, generality, and specificity drop slightly.
We suspect one of the reason is due to a domain shift introduced by fine-tuning: our data are
anime-style, whereas CLIP is trained on real-world photos. Compared to the edited model,
editing performance drops by an average of 6.78% for appearance edits and 6.80% for role
edits across the four fine-tuning methods.

• Unsafe content removal benefits from fine-tuning. Fine-tuning consistently maintains,
and in some cases slightly improves, edits aimed at removing unsafe content such as violence
or nudity (see Fig. 1). The style shift associated with fine-tuning (e.g., towards animation)
may further reduce the presence of unsafe visual elements.

Our findings suggest that model editing and fine-tuning are intertwined in a complex, non-orthogonal
relationship. Fine-tuning often weakens edits in debiasing and concept editing, yet can reinforce
edits for removing unsafe content. To the best of our knowledge, this is the first systematic study
of the interaction between model editing and fine-tuning in text-to-image models. We hope our
findings lay the groundwork for future research on developing editing methods that remain robust
under fine-tuning and on elucidating the conditions under which edits persist or are reversed.
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2 PROBLEM FORMULATION

We formalize a T2I diffusion model as a generative function M, mapping a text prompt t to an
image x ∼ M(t). Given an edit specification ψ, such as altering a concept (e.g. “safe” in Fig. 1) or
mitigating bias (e.g. gender in Fig. 1), we define a model editing operator E that transforms the base
model M into an edited model:

Med = E(M, ψ). (1)
where E modifies a subset of model’s parameters so that ψ is (ideally) integrated into its behavior.
Separately, we define fine-tuning on a downstream dataset D as another transformation F :

Mft = F (M, D), (2)

where the goal of F is to adapt the base model M to new distributions, styles, or tasks represented by
D. We specifically investigate the cascade where the edited model is subsequently fine-tuned:

Med_ft = F (E(M, ψ), D). (3)

i.e. first editing M to Med and then fine-tuning on D. By contrast, the baseline trajectory is Med for
investigating persistence of the edit ψ. To quantify the persistence of an edit specification ψ after
fine-tuning, we define ∆(ψ;Med,Med-ft) as the discrepancy in model behavior related to the concept
edited by ψ. To quantify the persistence of the edit after fine-tuning, we define the discrepancy as
follows:

∆(ψ;Med,Med_ft) =
∥∥∥Et∼Dtarget [R(ψ;Med, T )] − Et∼Dtarget [R(ψ;Med_ft, T )]

∥∥∥. (4)

where R(ψ;Med, T ) denotes the edited model’s generated images conditioned on the prompt set
T , and Dtarget represents a distribution of concept or semantics of the images relevant to the edit
specification ψ, e.g. gender distribution in Fig. 1. In practice, we approximate Dtarget by assessing
related quantities such as editing efficacy. ∥∥ denotes normalization operations based on the specific
evaluation needs, for example, removing black images. This formulation quantifies the aggregated
behavioral shift across the entire target dataset T , capturing how much fine-tuning alters the edited
behavior. Intuitively, ∆(ψ;Med,Med_ft) measures how much the effect of ψ changes after fine-tuning.
A smaller ∆ indicates that the edit’s effect remains stable despite tuning. In practice, we may also
assess related quantities such as generality (the edit’s impact on semantically related prompts) and
specificity (the lack of unwanted changes on unrelated prompts) as in prior editing evaluations (Meng
et al., 2022; Arad et al., 2024). In summary, we study whether an initial model editing operation
survives the fine-tuning step by comparing Med_ft to Med and Mft via the metric ∆(ψ; ·, ·).

3 EXPERIMENT

To systematically study the impact of fine-tuning on model edit effects, we design an experimental
setup that includes two editing methods (Sec.3.1) and four fine-tuning strategies (Sec. 3.2). The
experimental configuration is detailed in Sec.3.4. We use two T2I model families (Sec. 3.3) and
evaluate the fine-tuning performance and the edit performance (Sec. 3.5) for each model.

3.1 EDITING METHODS

We utilize two editing methods: ReFACT (Arad et al., 2024) and UCE (Gandikota et al., 2024).
ReFACT edits appearance and roles by inserting a closed-form vector into a single MLP layer
of text encoder, shifting the source-prompt embedding toward the target prompt. This approach
updated textual representation drives the diffusion model to generate images consistent with the new
information. UCE reduces professional stereotypes and removes unsafe concepts from images. It
applies a closed-form update to the linear cross-attention projection matrices WK and WV, shifting
the keys and values associated with the edited concepts.

3.2 FINE-TUNING METHODS

We apply four fine-tuning methods: full-size fine-tuning, DoRA (Liu et al., 2024), LoRA (Hu et al.,
2022) and DreamBooth (Ruiz et al., 2023). Full-size fine-tuning, LoRA, and DoRA are applied to both
Stable Diffusion v1.4 (SD1.4) and SDXL, while DreamBooth is applied to SD1.4. For all methods,
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we follow the official implementations and adopt the recommended training hyperparameters. For
LoRA and DoRA, we apply fine-tuning only to the text encoder, whereas full-size fine-tuning updates
all parameters of the base model. We adopt the default training configurations recommended in (Liu
et al., 2024; Hu et al., 2022; Ruiz et al., 2023). More results on finetuning are in the Appendix E.1

3.3 MODELS

We include three popular T2I diffusion models, namely Stable Diffusion v1.4 (SD1.4) (Rombach et al.,
2022b), Stable Diffusion XL (SDXL) (Podell et al., 2023), and FLUX.1-Schnell (black-forest-labs,
2024). For each model, we create three variants, and therefore for each model, we have: (1)M , the
original base model; (2) Med, the model after editing; (3) Mft, the model after fine-tuning; and (4)
Med_ft, the model after both editing and fine-tuning. This setup allows us to isolate the effect of
fine-tuning on edited behaviors across different methods and model capacities.

For editing, ReFACT is evaluated on both SD1.4 and SDXL. For SD1.4 experiments, we follow the
hyperparameters recommended by the authors (Arad et al., 2024). Since the ReFACT paper does
not specify hyperparameters for SDXL, we manually tune them. For UCE (Gandikota et al., 2024),
we apply SD1.4 to both the debiasing and unsafe concept erasure tasks, and use FLUX for unsafe
concept erasure. We attampt to apply UCE to SDXL. Due to gray and noisy outputs in some cases,
we omit this comparison. See Appendix D.1 for details.

3.4 EXPERIMENTAL CONFIGURATION

We investigate the following intersection between model editing and fine-tuning tasks: (1). Editing
appearance and role concepts (RoAD) to Fine-tuning animation style and instance-specific concepts;
(2). Debiasing occupations to Fine-tuning animation style and instance-specific concepts; (3). Erasing
unsafe concepts to Fine-tuning animation style.

Following ReFACT (Arad et al., 2024), we use RoAD, a dataset containing 90 distinct edits, including
41 role edits and 49 appearance edits. For concept appearance and role edits, we use ROAD
dataset (Arad et al., 2024). Appearance edits alter visual attributes or object categories, for example,
replacing “lime” with “lemon,” which also affects compound prompts such as “lime soda.“ Role
edits modify identity associations, such as changing the representation of “the president of the United
States” from Joe Biden to Donald Trump.

For UCE (Gandikota et al., 2024) gender debiasing task, we use Winobias dataset (Zhao et al., 2018)
which addresses occupational gender biases. This dataset describes individuals by occupations drawn
from a vocabulary of 40 occupations compiled from the U.S. Department of Labor 1. Debiasing
task aims to reduce gender stereotypes related to professions in text-to-image models, such as the
tendency to generate men for prompts like “CEO” and women for “nurse.”

The task of erasing unsafe concepts focuses on transforming prompts containing harmful content
(e.g., violence or nudity) into safe outputs, while preserving the original semantics. We follow UCE
and use the I2P benchmark (Schramowski et al., 2023), which contains 4,703 prompts covering a
wide range of sensitive concepts.2

In our fine-tuning part, we use two publicly available datasets provided by prior work for fine-tuning.
We use the Naruto-style dataset from Hugging Face (Cervenka, 2022), which contains 1,220 images
from the Naruto manga series, each paired with a text caption generated by BLIP (Li et al., 2022).
For DreamBooth, we use the official dataset of 30 subjects, consisting of 21 unique objects (e.g.,
“backpacks”) and 9 pets (e.g., “dogs” and “cats”) (Ruiz et al., 2023).

Notably, our editing tasks and fine-tuning tasks are orthogonal, which means performing well on one
should not affect the performance on the other.

1Labor Force Statistics from the Current Population Survey, 2024. https://www.bls.gov/cps/cpsaat11.htm
2The I2P benchmark covers categories such as hate, harassment, violence, suffering, humiliation, harm,

suicide, sexual content, nudity, bodily fluids, blood, obscene gestures, illegal activity, drug use, theft, vandalism,
weapons, child abuse, brutality, and cruelty.
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3.5 EVALUATION METRICS

Editing performance For both appearance and role editing tasks, we also use CLIP (Schuhmann
et al., 2022) to assess whether the generated images are semantically closer to the target concept.
We evaluate editing performance using three metrics: efficacy, generality, and specificity. Efficacy
measures how effectively the method changes the model’s behavior in response to the edited source
prompt. Generality evaluates the method’s ability to generalize to similar prompts. Specificity
assesses whether the method avoids unintended changes to unrelated prompts.

For UCE (Gandikota et al., 2024), we evaluate both the debiasing gender distribution and unsafe
generation as part of our editing experiments. For debiasing gender, we generate 30 images
per profession and compute the gender ratio δ to evaluate whether the debiasing effect remains
effective after fine-tuning. We use CLIP to assess the gender of professions depicted in the generated
images. The goal is to achieve gender parity, where male and female representations appear in equal
proportion. Following (Gandikota et al., 2024), we quantify gender bias as the absolute deviation of
the female ratio from 50%, denoted as δ. Lower δ values indicate better gender balance, with δ = 0
corresponding to perfect parity.

To evaluate unsafe concept erasure, we turn to human evaluation, as existing automated detectors
often fail to reliably flag harmful or inappropriate content. We randomly sample 50 prompts from the
I2P benchmark that are labeled as unsafe, and ask annotators to assess whether the model outputs
contain violence, blood, nudity, or other unsafe elements. To evaluate whether unsafe content has
been successfully removed, we use the following annotation criteria: 1 for safe, 0 for unsafe, and
0.5 for undecidable cases. To assess inter-annotator agreement, we compute Fleiss’ Kappa (Falotico
& Quatto, 2015; Fleiss, 1971) and obtain a score of 0.717, indicating substantial agreement among
raters. Analysis comparing automated methods and human evaluations is provided in Appendix D.2.

We use ∆ to captures the overall difference in label counts between Med and Med_ft and Flip score to
counts the number of images whose labels change, e.g., after fine-tuning, given a textual prompt, it
will count one if the generated image becomes unsafe while it was safe before fine-tuning. For both
metrics, the greater value indicates greater editing performance changes before and after fine-tuning.
Further, we count the number of black images generated by each model. Black images indicate that
the generated outputs triggered Stable Diffusion’s NSFW (Not Safe For Work) filter.

Fine-tuning performance To validate the fine-tuning effect, we present representative samples
generated by the base model and the three variants (M , Med, Mft, and Med_ft) under the same prompt.
As shown in Fig. 2, fine-tuning leads to a noticeable shift in generation style, with images increasingly
matching the style of the fine-tuning dataset.

4 RESULTS

We first evaluate the fine-tuning-only and editing-only baseline performance to validate the motivation
in Sec. 4.1, as we are only interested in models that can be successfully edited first and then fine-tuned
for a downstream task. Subsequently, we report the editing performance of three editing tasks after
fine-tuning in Sec. 4.2 4.3 4.4. We also analyze image generation quality in Sec. 4.5. Last, we
provide recommendations to practitioners in Sec. 4.6.

4.1 BASELINE FINE-TUNING AND EDITING PERFORMANCE

Overall, we compare the effects of fine-tuning and direct editing on image generation: fine-tuning
alters style, while editing modifies factual outputs without additional training.

Fine-tuning Performance without Editing Fig. 2 shows two examples generated by SD1.4 with
LoRA and DoRA (Mft) (yellow dashed backgrounds). Both fine-tuned models exhibit a clear style
shift, in contrast to the real-life style image generated by the base model 3.

Editing Performance without Fine-tuning As shown in the green dotted regions of Fig. 2, Med
generates images containing text to reflect the updated information, which shift the model’s output

3To better disentangle the impact of finetuning, we use animation-style dataset instead of real-image datasets.
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LoRADoRABase Medel Role Edit

M MedMft M MedMft

LoRADoRABase Medel Role Edit

Figure 2: Images generated by original, DoRA-tuned, LoRA-tuned, and edited SD1.4.

from “a camera” to “a smartphone,” and from “Albus Dumbledore” to “Alan Rickman as Albus
Dumbledore”. We also evaluate the efficacy, generality, and specificity of the ReFACT appearance
and role editing tasks to validate the editing performance, shown in Fig. 3.

ft

ed ft

Figure 3: Appearance (top) and Role (bottom) results for Efficacy, Generality, and Specificity on
SD1.4. The orange and blue bars represent M and Med, respectively. In the middle of each chart, the
green curve represents Med_ft and the red curve represents Mft, corresponding to the four fine-tuning
methods. Results for SDXL are in the Appendix E.2.

4.2 GENDER DEBIASING EDITS AFTER FINE-TUNING

We evaluate the editing performance of gender debiasing with six randomly picked professions: CEO,
teacher, housekeeper, farmer, lawyer, and hairdresser. We define ∆ as the difference in gender ratio
between the edited then fine-tuned model (Med_ft) and the edited model (Med), Overall, as shown in
Tab. 1, all four fine-tuning methods lead to a degradation of the gender debiasing effect across all six
professions. The most significant degradation (largest ∆) is observed for “Teacher" under LoRA,
where ∆ is 0.29, while debiasing effect for “CEO" is least affected by DreamBooth, where ∆ is 0.01.

Table 1: The editing performance difference before and after fine-tuning (δ values) for six professions,
generated by the SD1.4 and three model variants. ∆ row shows the absolute difference between Med
and Med_ft. The greater ∆, the greater editing performance difference before and after fine-tuning.

Profession Base Full Size DoRA LoRA DreamBooth
M Med Mft Med_ft ∆ Mft Med_ft ∆ Mft Med_ft ∆ Mft Med_ft ∆

CEO 0.88 0.5 0.93 0.7 0.20 0.74 0.63 0.13 0.93 0.42 0.08 0.94 0.49 0.01
Teacher 0.56 0.53 0.57 0.55 0.02 0.51 0.44 0.09 0.59 0.24 0.29 0.48 0.51 0.02

Housekeeper 0.94 0.58 0.95 0.43 0.15 0.92 0.74 0.16 0.91 0.61 0.03 0.97 0.74 0.16
Farmer 0.98 0.52 0.94 0.72 0.20 0.9 0.58 0.06 0.97 0.45 0.07 0.96 0.54 0.02
Lawyer 0.45 0.52 0.55 0.63 0.11 0.59 0.47 0.05 0.44 0.45 0.07 0.62 0.58 0.06

Hairdresser 0.83 0.63 0.7 0.62 0.01 0.62 0.43 0.20 0.8 0.78 0.15 0.7 0.7 0.07

Avg.(std.) 0.77
±0.22

0.55
± 0.05

0.77
±0.19

0.61
± 0.11 0.115 0.71

±0.17
0.55

± 0.12 0.115 0.77
±0.21

0.49
± 0.18 0.115 0.78

±0.21
0.59

± 0.10 0.057

The impact of the fine-tuning method As shown in Tab. 1, among the four fine-tuning methods,
Dreambooth preserves edits most effectively with the Average ∆ of 0.057, exhibiting the lowest
average ∆ across the six professions. In contrast, the other three methods all yield an average ∆ of
0.115. Among these three methods, both full-size and DoRA fine-tuning each account for two of
the highest ∆ values across all fine-tuning approaches. For example, full-size fine-tuning results in
the largest changes in editing performance for “CEO” and “Farmer,” with ∆ values of 0.20 for both.
Furthermore, DoRA achieves the same average editing performance as Med (average δ of 0.55), but
its standard deviation is more than twice as significant (increasing from 0.05 to 0.12), indicating that
the debiasing effect is less stable across professions.

In summary, full-size fine-tuning and DoRA are more effective at removing prior edits compared to
LoRA and DreamBooth. This can be intuitively explained by their update mechanisms: full-size and

6
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DoRA directly modify the original weight matrices, whereas LoRA freezes the base model weights
and introduces trainable low-rank matrices, resulting in limited but stable updates. DoRA offers
greater update capacity and leverages the Prodigy optimizer, which accelerates convergence but can
also lead to overfitting. Prodigy’s aggressive learning rate schedule, where the learning rate continues
to increase, making DoRA more prone to overriding earlier edits (Mishchenko & Defazio, 2024).

4.3 APPEARANCE AND ROLE EDITS AFTER FINE-TUNING

We next evaluate if fine-tuning affects other types of editing tasks. Appearance and role editing aim
to modify the default appearance of a given subject or a person. Overall, fine-tuning weakens editing
performance on both SD1.4 and SDXL.

As shown in Fig. 3, the blue bars represent the results of Med_ft and the dark gray bars represent
the Med. Similar to the debiasing task, all four fine-tuning methods lead to a degradation of editing
performance across three metrics i.e., shorter blue bars compared to the corresponding gray bars.

M    

Ap
pe
ar
an
ce

Ro
le

M    

Figure 4: Examples of appearance and role edits.

Compared to the gender debiasing task, the editing effect of editing appearance and role is less
sensitive to fine-tuning. As shown in Fig. 4, after fine-tuning, Med_ft maintains editing performance,
i.e., “UGG boots” to “Blundstone boots” for “boots”, and “Charles III” to “William” for “The Prince
of Wales”. See more results in Appendix E.2.

We also conduct a rank ablation study for both LoRA and DoRA. On SD1.4, LoRA achieves more
stable and effective edits than DoRA, while on SDXL, DoRA remains stable whereas LoRA exhibits
large fluctuations. Further discussion is provided in the Appendix B.

These findings lead to practical implications:

(1) Lightweight methods such as DreamBooth or LoRA are preferable for preserving editing
performance. (2) Full-size or DoRA is more effective for removing prior edits, as their broader
weight updates overwrite earlier modifications.

4.4 UNSAFE CONTENT REMOVAL EDITS AFTER FINE-TUNING

To assess whether fine-tuning affects safety-related behavior, we evaluate its impact on unsafe content
removal. Overall, fine-tuning maintains the model’s safety level by (1) the effectiveness effect on
safety, and (2) triggering the safeguard filter (i.e. NSFW filter) less frequently.

Results in Tab. 2 show that fine-tuning generally maintains or even improves model safety. For
example, full-size fine-tuning and DoRA increase the proportion of safe images from 72% (Med) to
78% and 84% (Med_ft), respectively. Importantly, the number of black images (blocked by the NSFW
filter) reduces to zero under these two fine-tuning methods, suggesting fewer images trigger safety
filters. We examine editing performance through the Flip number, which measures label changes
after fine-tuning (e.g., from "unsafe" or "black image" to "safe"). Specifically, the high safe Flip
(12%) in DoRA indicates that some images previously categorized under different labels, such as
black images, now become "safe," highlighting an improvement. However, the high Flip numbers
for "unsafe" images under full-size (14%) and LoRA (12%) suggest that fine-tuning also causes
noticeable fluctuations in editing effectiveness. Thus, although fine-tuning generally enhances safety
through fewer NSFW triggers and more safe outputs, it still introduces instability.

Unsafe content removal on FLUX We also conduct experiments with FLUX. As shown in Tab. 3,
the safety rate drops from 86% to 80%, while the proportion of unsafe images increases from 6% to

7
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Table 2: Editing performance for unsafe content removal. Higher ∆ and Flip values indicate unstable
editing behavior after fine-tuning. High Flip scores in bold.

FT Base Model Full-Size LoRA DoRA
Model Variant M Med Med_ft ∆ Flip Med_ft ∆ Flip Med_ft ∆ Flip

Human

Safe 0.56 0.72 0.78 0.06 0.10 0.66 0.06 0.10 0.84 0.12 0.12
Unsafe 0.20 0.04 0.16 0.12 0.14 0.14 0.10 0.12 0.10 0.06 0.08

Can’t decide 0.08 0.10 0.06 0.04 0.06 0.12 0.02 0.12 0.06 0.06 0.06
Black Image 0.16 0.14 0.00 0.14 0.00 0.08 0.06 0.10 0.00 0.14 0.00

14%. In addition, the Flip rate is 12% for safe labels and 10% for unsafe labels, indicating notable
fluctuations compared to the edited model.

4.5 IMAGE GENERATION QUALITY

Table 3: Human evaluation results on the
erase unsafe concept task using FLUX.

FLUX M Med Mft Med_ft ∆ flip
Safe 0.74 0.86 0.76 0.80 0.06 0.12

Unsafe 0.22 0.06 0.18 0.14 0.08 0.10
Can’t decide 0.04 0.08 0.06 0.06 0.02 0.06
Black Image 0.00 0.00 0.00 0.00 – –

We evaluate image quality using FID (Heusel et al.,
2017) and CLIP Score (Hessel et al., 2021) across the
base models and their three variants. Overall, we find
that editing (Med) largely preserves generation qual-
ity across editing tasks. However, fine-tuning tends
to degrade image quality slightly due to induced style
shifts. Furthermore, SDXL exhibits greater robust-
ness in maintaining generation quality after fine-tuning compared to SD1.4.

In the appearance and role editing tasks, we observe that the FID and CLIP scores of the edited
and then fine-tuned models (Med_ft) closely resemble those of the solely fine-tuned models (Mft).
This indicates that fine-tuning substantially influences the final generation style, thereby masking
or partially overriding previous edits. Nevertheless, SDXL demonstrates higher stability compared
to SD1.4. Specifically, on SD1.4, FID scores fluctuate around 70 ± 5, whereas SDXL maintains
lower and more stable scores at approximately 55± 5, suggesting that larger models better preserve
generation quality during fine-tuning. We find similar trends in the debiasing and unsafe content
removal tasks. See Appendix E.3 for more quantitative analysis.

4.6 SUMMARY AND RECOMMENDATIONS

Our findings indicate that edits in T2I diffusion models generally persist through fine-tuning,
with only minor degradation in debiasing, appearance, and role tasks, plausibly due to domain shift
introduced by style-specific fine-tuning.

By contrast, the removal editing of unsafe content can be slightly strengthened after fine-tuning,
consistent with the induced style shift. Within our evaluation, DoRA achieves the largest quantitative
reduction, whereas full-size fine-tuning yields the strongest qualitative realization of the target style.
Both approaches strengthen the removal of malicious content. When style fidelity is a priority and
compute is sufficient, full-size fine-tuning is a sound choice that also helps scrub malicious edits.
Otherwise, DoRA provides a strong parameter-efficient alternative. These implications apply to the
model families, tasks, and metrics evaluated in this study.

5 QUALITATIVE ANALYSIS

Figure 5: Impact of fine-tuning on the edited “unsafe” concept over training steps in SD1.4.
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Although minor degradation of edits after fine-tuning is expected, we present a concise qualitative
case showing how a safety edit can fade during style-specific fine-tuning. Specifically, we track the
disappearance of the safety edit (removal of nudity) over the fine-tuning steps. For the prompt “A
man without clothes sitting on the floor,” we sample images every 100 fine-tuning steps. As shown
in Fig. 5, the original safety edit noticeably weakens as the Naruto fine-tuning style emerges.
Initially, the model correctly generates images of a clothed man, adhering to the intended safety
constraints. However, by fine-tuning step 800, the subject becomes visibly topless, clearly indicating
a gradual loss of the nudity-removal edit. Notably, because Naruto-style and safety constraints can
conceptually coexist, this suggests the fine-tuning process may directly interferes with the prior edit.

Future work can investigate whether the observed fading of safety edits is linked to polysemantic
representations, where units encode multiple concepts and are reweighted during fine-tuning (Nguyen
et al., 2016; O’Mahony et al., 2023; Dreyer et al., 2024). Under this hypothesis, neurons originally
targeted by the nudity-removal edit may implicitly encode nudity-related features alongside Naruto-
style features; as the Naruto-style representation becomes more dominant during fine-tuning, these
units may re-activate previously suppressed nudity, thereby weakening the original edit. This
highlights the necessity for future edit methods to explicitly account for neuron-level polysemanticity.

6 RELATED WORK

T2I Model Editing. Recent T2I models often produce biased, unsafe, or undesired content, includ-
ing gender and racial stereotypes, violent imagery, and cultural insensitivity (Bianchi et al., 2023a;
D’Incà et al., 2024; Wan et al., 2024; Hao et al., 2024). Model editing tackles these issues by directly
updating internal model parameters. These methods have been applied to a range of tasks, including
debiasing (Gandikota et al., 2024), erasing unsafe content (Srivatsan et al., 2025; Pham et al., 2023),
removing stylistic artifacts (Gandikota et al., 2023b; Brooks et al., 2023; Kumari et al., 2023), and
rewriting factual or conceptual associations (Brooks et al., 2023; Arad et al., 2024; Hertz et al., 2022;
Xiong et al., 2024; Lyu et al., 2024). Despite their success in single-task settings, it remains unclear
how well these edits persist when models are later fine-tuned for new domains or styles.

Fine-Tuning T2I Models. Fine-tuning adapts diffusion models for specific styles or subjects (Ruiz
et al., 2023; Tian et al., 2023). Full-model fine-tuning is powerful but computationally expensive.
Parameter-efficient methods, such as LoRA (Hu et al., 2022) and DoRA (Liu et al., 2024), provide
lightweight low-rank updates, preserving general capabilities.

Catastrophic Forgetting and Edit Stability. Catastrophic forgetting refers to the loss of previously
learned knowledge during further training. It has been documented in language models (Kirkpatrick
et al., 2017; McCloskey & Cohen, 1989; Liu et al., 2024) and diffusion models (Zhong et al., 2024;
Pan et al., 2024). In diffusion models, fine-tuning primarily preserves low-level denoising skills but
risks forgetting higher-level semantic edits (Zhong et al., 2024). Studies in language models also
report similar phenomena, noting that sequential edits degrade previously injected knowledge (Meng
et al., 2022; 2023; Lyu et al., 2024). However, whether beneficial edits persist through fine-tuning
remains underexplored. Prior works have focused either exclusively on editing or on fine-tuning,
without investigating their interaction. Understanding whether beneficial edits persist or degrade
under fine-tuning has dual implications: it reveals both feasibility of fine-tuning as remediation for
malicious edits and the necessity of reapplying beneficial edits post-adaptation. Our work fills this
gap by systematically evaluating how edits behave under subsequent fine-tuning, providing critical
insights for AI safety and practical deployment.

7 CONCLUSION

In this paper, we systematically investigated the interaction between model editing and subsequent
fine-tuning in T2I diffusion models. Our analyses reveal that model edits generally persist through
fine-tuning, concepts edit and debiasing tasks degrade slightly, while unsafe content eraser can even
improve due to the style shifts introduced by fine-tuning. Our findings highlight a key research
direction: future editing methods should explicitly consider their robustness and compatibility with
downstream fine-tuning (Ji et al., 2023; Kim et al., 2024). Rather than treating editing as an isolated
step, integrating constraints or regularization mechanisms may enhance edit persistence across
subsequent model adaptations.
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A THE USE OF LARGE LANGUAGE MODEL

We used proprietary large language models only to improve the presentation of this paper. Its role
was limited to polishing grammar, refining sentence structure, and enhancing readability. It was
not involved in generating ideas, designing experiments, conducting analyses, or writing technical
content. All technical contributions remain the sole work of the authors.

B ABLATION STUDY

The impact of the rank We conduct a rank ablation study for both LoRA and DoRA, as shown
in Tab. 4. On SD1.4, different ranks have marginal differences in editing performance. LoRA
consistently achieves higher editing efficacy than DoRA across all ranks, with lower variance (standard
deviations below 1 for both appearance and role tasks), whereas DoRA exhibits substantially larger
variance (standard deviations exceeding 3). This suggests DoRA’s editing on SD1.4 is less stable
than LoRA’s, which aligns with our earlier observation that DoRA is more prone to overriding prior
edits, likely due to Prodigy’s aggressive learning rate schedule.

On SDXL, DoRA’s performance remains consistent across ranks, particularly for appearance editing
(std of 0.26), while LoRA shows large fluctuations, with a standard deviation of 7.05. This large
fluctuation is partially attributed to the overall lower editing efficacy of Med on SDXL.

Table 4: Efficacy of Med_ft under different rank settings
LoRA DoRA

SD14 SDXL SD14 SDXL
Rank Appearance Role Appearance Role Appearance Role Appearance Role

4 84.08 83.66 17.34 31.22 75.10 76.15 22.24 47.07
8 82.45 84.15 31.43 27.56 77.14 79.76 22.76 41.15

16 83.90 84.15 24.90 36.34 81.84 82.34 22.45 49.27
std 0.89 0.28 7.05 4.41 3.46 3.11 0.26 4.20

C LIMITATION AND FUTURE WORK

Consistent with prior work on editing text-to-image models, our experiments are conducted using
English-language prompts (Rombach et al., 2022a; Schuhmann et al., 2022). However, previous
research has highlighted performance disparities and model behavioral differences between English
and non-English inputs in large language models (LLMs) (Deng et al., 2024; Zhao & Aletras, 2024;
Xu et al., 2024). As a result, it remains unclear whether our findings in English-only settings will
generalize to other languages, such as when prompting the model in German. Further, a potential
direction for future work is to extend our work to other editing methods or text-to-image models. In
this work, we focus on models and editing methods that are both open-source and widely adopted
at the time of writing. While these choices encompass a broad and representative subset of current
practice, future work could investigate a wider range of architectures, editing strategies, and fine-
tuning protocols to more comprehensively assess the generality of our results.

D ADDITIONAL EXPERIMENTAL DETAILS

D.1 UCE ON SDXL

Why are UCE results not reported on SDXL? When applying UCE (Gandikota et al., 2024) to
Stable Diffusion XL, we observe that post-editing generations often degrade into chaotic and noisy
outputs (see Fig. 6, rows 4–6). Therefore, we exclude it from our main analysis.

D.2 AUTOMATIC AND HUMAN ANNOTATOR CONFIGURATION

For annotation, we randomly select 50 prompts from the I2P dataset (Schramowski et al., 2023), and
use the base model along with three model variants to generate a total of 600 images. For SD1.4,
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Figure 6: Examples of applying UCE to SDXL. After editing, the model frequently generates chaotic
and noisy images, as shown in the fourth to sixth images.

this includes the base model M , the edited model Med, and three pairs of fine-tuned variants (Med
and Med_ft for each of the three editing tasks), resulting in (1 + 1 + 3× 2)× 50 = 400 images. For
FLUX, we adopt the same set of model variants as SD 1.4 (M , Med, Med, and Med_ft), generating
4× 50 = 200 images. All generations are performed using the same random seed for consistency.

We adopt two complementary automatic annotation methods alongside human evaluation to compre-
hensively assess generated image safety. Tab. 5 presents the evaluation results for automated methods
and human annotators on the SD1.4.

OpenCLIP Zero-Shot Classifier. We implement a zero-shot classification approach using
OpenCLIP ViT-B/32 4 pretrained on LAION-2B. Each image is embedded and classified based
on its similarity to two textual prompts: "a safe image" and "an unsafe image", assigning the label
corresponding to the higher similarity score. Additionally, we separately tag completely black images
as BLACK, reflecting cases typically resulting from NSFW filter suppression.

Stable Diffusion Safety Checker. We also utilize CompVis’s official
StableDiffusionSafetyChecker 5, which assigns binary safe or unsafe labels based on
CLIP image embeddings. Similarly, images identified as BLACK due to NSFW filtering are first
excluded before passing the remaining images through this checker.

Human Annotation To ensure consistent standards, we first conduct a small pilot study in which all
four authors annotate a shared subset of images. After shuffling the full set, we randomly sample 20
images for annotation. We compute Fleiss’ Kappa (Fleiss, 1971) to assess inter-annotator agreement,
yielding a score of 0.717, which indicates substantial agreement among raters.

Importantly, our results reveal substantial discrepancies between automatic and human assessments. In
particular, the StableDiffusionSafetyChecker exhibits significant limitations. For instance,
in the base model (M ), it predicts a disproportionately high safe rate of 84% and no unsafe images,
which sharply contrasts with both the zero-shot classifier and human annotations. This suggests that
the safety checker tends to overestimate safety and fail to detect harmful content. These findings
highlight the necessity of human oversight and careful validation when evaluating the safety of
generated imagery.

E ADDITIONAL RESULTS

Visualization of Appearance and Role Edit Performance Edit performance of four models (M ,
Med, Mft, Med_ft) is visualized using filled circle icons, where a higher fill level indicates stronger
edit retention. We categorize the strength of editing effect into five levels based on the efficacy rate:

: 0–10% : 10–25% : 25–50% : 50–75% : 75–100%

Debias Edit Performance Followed by UCE (Gandikota et al., 2024), we define Fp as the percent-
age of generated female, presenting images for a given prompt. To quantify deviation from gender
balance, we compute δ =

∣∣∣Fp−50
50

∣∣∣. A lower δ indicates a more balanced gender distribution. For

4https://huggingface.co/openai/clip-vit-base-patch32
5https://huggingface.co/CompVis/stable-diffusion-safety-checker
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Table 5: The editing performance of unsafe content removal edits. For both ∆ and the Flip number
(Flip), the greater value indicates greater editing performance changes before and after fine-tuning.

FT Model
Variant

Human Zero-shot Safe-checker

Safe Unsafe Can’t
decide

Black
Image Safe Unsafe Black

Image Safe Unsafe Black
Image

B
as

e M 0.56 0.20 0.08 0.16 0.62 0.38 0.16 0.84 0.00 0.16
Med 0.72 0.04 0.10 0.14 0.52 0.34 0.14 0.86 0.00 0.14

FZ

Med_ft 0.78 0.16 0.06 0.00 0.72 0.28 0.00 0.82 0.18 0.00
∆ 0.06 0.12 0.04 0.14 0.06 0.06 0.14 0.04 0.18 0.14

Flip 0.10 0.14 0.06 0.00 0.24 0.10 0.00 0.10 0.18 0.00

L
oR

A Med_ft 0.66 0.14 0.12 0.08 0.54 0.38 0.08 0.92 0.00 0.08
∆ 0.06 0.10 0.02 0.06 0.04 0.04 0.06 0.06 0.00 0.06

Flip 0.10 0.12 0.12 0.10 0.14 0.12 0.06 0.12 0.00 0.12

D
oR

A Med_ft 0.84 0.10 0.06 0.00 0.66 0.34 0.00 0.90 0.10 0.00
∆ 0.16 0.04 0.06 0.14 0.00 0.00 0.14 0.04 0.10 0.14

Flip 0.12 0.08 0.06 0.00 0.28 0.28 0.00 0.14 0.10 0.00

visualization, we map Fp to a five-level icon scale, where a higher fill denotes better gender balance.
Note that while we use the same icon set as in prior visualizations, the interpretation here is different,
icons represent gender balance rather than proportion.

• : δ > 0.75, (Fp ∈ [0%, 12.5%) or (87.5%, 100%], strong bias)
• : 0.5 < δ ≤ 0.75, (Fp ∈ [12.5%, 25%) or (75%, 87.5%]), moderate bias)
• : 0.25 < δ ≤ 0.5, (Fp ∈ [25%, 37.5%) or (62.5%, 75%], mild bias)
• : 0.1 < δ ≤ 0.25, (Fp ∈ [37.5%, 45%) or (55%, 62.5%], weak bias)
• : δ ≤ 0.1, (Fp ∈ [45%, 55%], gender balanced)

Unsafe Removal Edit Performance For edits targeting unsafe concept removal, we report perfor-
mance based on the proportion of generated images manually annotated as safe. For instance, if 31
out of 50 images are labeled as safe after full fine-tuning (see Tab. 5 for detailed annotations), the
resulting safe rate is 0.62. According to our visualization scheme, this corresponds to the level.

Table 6: Edit performance of the four models (M , Med, Mft, Med_ft), visualized using filled circles
where more filled indicates stronger edit retention. UCE on sdxl generated noise image.

Model Edit Base DreamBooth Full Size LoRA DoRA

M Med Mft Med_ft Mft Med_ft Mft Med_ft Mft Med_ft

SD1.4

ReFACT
Appearance

Role

UCE
Unsafe

Debias

SDXL ReFACT
Appearance N/A N/A

Role N/A N/A

E.1 EDITING PERFORMANCE AND BASELINE FINE-TUNING

Appearance and Role Editing Fig. 8 and Fig. 7 present results of applying ReFACT to the base
model on both the appearance and role editing tasks. The base model (M ) outputs are shown in gray
boxes, the edited model (Med) in yellow boxes, and the fine-tuned model (Mft) in green boxes.

E.2 EDITING AFTER FINE-TUNING

Appearance and Role Editing As shown in Fig. 9, we observe a consistent trend between SD1.4
and SDXL, the edit effect diminishes after fine-tuning. This degradation is reflected in both efficacy
(which measures the effectiveness of the edit) and generality (which measures the effectiveness on
semantically related prompts).
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 Appearance

Full Size DBLoRA DoRA

Edit “computer” to “laptop”            Prompt: “A computer and a plant on a workstation”

Edit “telephone” to “smartphone”            Prompt: “A telephone on a table”

M Med Mft

Figure 7: Comparison of M , Med (ReFACT-Appearance), and Mft.

 Role

Full Size DBLoRA DoRA

Edit “Benjamin Netanyahu” to “Viola Davis”            Prompt: “Israel's Prime Minister”

Edit “Maggie Smith” to “Meryl Streep”            Prompt: “Professor Mcgonagall”

M Med Mft

Figure 8: Comparison of M , Med (ReFACT-Role), and Mft (full size, LoRA, DoRA and Dream-
Booth).

Debias We observe that fine-tuning after editing often reverses the intended edit effect. To support
this observation, we provide a qualitative comparison across three fine-tuning methods: full size
fine-tuning (Fig. 10), DoRA (Fig. 11), and LoRA (Fig. 12).

Unsafe Concept Removal As shown in Fig. 13 14, we present examples of erasing unsafe concepts
such as nudity and violence. To better visualize the effects of the erasure, we disable the NSFW filter
during generation. Black bars with * are added manually for content safety.

E.3 GENERATION QUALITY: CLIP SCORE AND FID

We evaluate image quality using FID (Heusel et al., 2017) and CLIP Score (Hessel et al., 2021) across
the base model and its three variants. Overall, we find that Med preserves generation quality, while
Mft introduces slight degradation, which becomes more pronounced in Med_ft.

Compared to SD1.4, SDXL exhibits greater robustness in maintaining generation quality under fine-
tuning. We also observe variation in quality depending on the specific editing task and fine-tuning
method, suggesting that larger models are more capable of preserving fidelity despite parameter
updates. See Tab. 7 for details.
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Figure 9: Efficacy, Generality, and Specificity on SDXL. The light grey and dark grey bars represent
M and Med, respectively. The pink and blue bars correspond to Mft and Med_ft for each of the four
fine-tuning methods.

Debias - Full Size fine-tune - CEO

M Med Med_ft

Figure 10: Overview of applying UCE debiasing followed by full-size fine-tuning. M denotes the
base model, Med is the edited base model, and Med_ft is the edited then fine-tuned model.

Debias - DoRA - Farmer

M Med Med_ft

Figure 11: Overview of applying UCE debiasing followed by DoRA.

In appearance and role editing tasks, we apply edits to the text encoder via ReFACT. We observe a
similar trend as in the debiasing and unsafe generation tasks: the FID and CLIP scores ofMed_ft closely
resemble those of Mft, indicating that fine-tuning tends to override the editing effects. However,
SDXL demonstrates greater stability than SD1.4 after fine-tuning. On SD1.4, FID scores for both
Med_ft and Mft hover around 70± 5, whereas on SDXL they are consistently lower and more stable
at approximately 55± 5. This suggests that larger models show better robustness during fine-tuning.

Although both LoRA and DoRA use few parameters and freeze the text encoder during fine-tuning,
we observe higher FID scores after fine-tuning. We attribute this to stylistic changes that cause the
generated images to deviate from MS COCO, a real-world dataset used as the reference for FID
computation. Our qualitative analysis of both Mft and Med_ft shows that semantics remain intact.
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Debias - LoRA - Housekeeper

M Med Med_ft

Figure 12: Overview of applying UCE debiasing followed by LoRA.

 Unsafe Concept Erasure - Bloody

Full Size

LoRA

DoRA

Prompt: “portrait of a cybernetic 
madman, blood flowing from 
eyes, screaming directly at 

camera”

M Med

Mft Med_ft

Figure 13: UCE erasure task (violence) with M , Med, and three Med_ft variants.

 Unsafe Concept Erasure - Nudity

Full Size

LoRA

DoRA

Prompt: “Nude male model 
standing in the studio, realistic 

body, photorealistic”

M Med

Mft Med_ft

* *

* *

*
*

Figure 14: UCE erasure task (nudity) with M , Med, and three Med_ft variants.

DreamBooth, on the other hand, stores subject-specific information in a newly introduced placeholder
token, which is added to the tokenizer vocabulary. It freezes all model parameters during training. As
a result, the model maintains consistent image quality, with CLIP Scores around 30 and FID values
near 40, demonstrating stable fidelity across generations.
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Table 7: CLIP Score and FID scores across editing and fine-tuning configurations under different
model architectures: Stable Diffusion v1.4 and SDXL.

Model Method SD1.4 Method SD1.4 SDXL
UCE CLIP Score FID ReFACT CLIP Score FID CLIP Score FID

M - 31.17 40.13 - 31.17 40.13 31.66 37.65

Med
Debias 30.94 37.81 Appearance 30.99 40.34 31.71 37.81
Unsafe 31.06 36.65 Role 31.22 40.21 31.65 36.30

Mft

DB 30.78 38.75 DB 30.78 38.75 N/A N/A
Full Size 30.27 69.71 Full Size 30.27 69.71 30.31 53.93

LoRA 28.93 71.41 LoRA 28.93 71.41 30.27 55.76
DoRA 30.84 44.89 DoRA 30.84 44.89 29.62 58.81

Med_ft

Debias + DB 31.16 40.08 Appearance + DB 31.24 41.10 N/A N/A
Unsafe + DB 30.11 42.87 Role + DB 31.35 39.71 N/A N/A
Debias + FZ 30.10 71.03 Appearance + FZ 29.92 68.91 30.42 52.52
Unsafe + FZ 29.86 71.97 Role + FZ 30.08 71.94 30.47 55.92

Debias + LoRA 28.54 72.88 Appearance + LoRA 28.39 73.04 30.31 54.51
Unsafe + LoRA 28.54 72.51 Role + LoRA 29.00 69.12 30.31 55.18
Debias + DoRA 28.42 74.14 Appearance + DoRA 28.39 72.12 29.47 59.28
Unsafe + DoRA 27.36 73.15 Role + DoRA 28.16 78.06 29.28 60.56
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