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Abstract001

Pruning is a critical strategy for compressing002
trained large language models (LLMs), aiming003
at substantial memory conservation and com-004
putational acceleration without compromising005
performance. However, existing pruning meth-006
ods typically necessitate inefficient retraining007
for billion-scale LLMs or rely on heuristically008
designed metrics to determine pruning masks,009
leading to performance degradation. This pa-010
per presents, for the first time, a LASSO-like011
convex optimization model crafted to induce012
sparsity in LLMs. By leveraging the FISTA,013
we introduce FISTAPruner, a novel method that014
includes a cumulative error elimination mech-015
anism within decoder layers and supports par-016
allel pruning for unstructured pruning. Addi-017
tionally, we extend this method to 2:4 semi-018
structured pruning. We comprehensively eval-019
uate FISTAPruner on models such as OPT,020
LLaMA, and Qwen variants with 125M to 70B021
parameters under unstructured and 2:4 semi-022
structured sparsity, showcasing superior perfor-023
mance over existing methods across various024
language benchmarks. Notably, it can remove025
50% of the model parameters for LLaMA-3-026
70B while retaining 98.6% and 95.6% of the027
zero-shot task performance under these two028
sparsity patterns, respectively.029

1 Introduction030

In recent years, large language models (LLMs)031

have revolutionized natural language processing032

fields, achieving impressive results in tasks such as033

machine translation, sentiment analysis, question034

answering, and text generation (Lyu et al., 2023;035

Yao et al., 2023; Zhang et al., 2023a,b; Wang et al.,036

2023; Arefeen et al., 2024; Li et al., 2024). Ad-037

vanced LLMs such as OpenAI’s GPT-4 (OpenAI,038

2023), Meta’s LLaMA-3 (Meta AI, 2023), and039

Google’s Gemini (Gemini Team et al., 2023) excel040

in generating coherent text with extensive parame-041

ters. However, the growth in model sizes outpaces042

hardware improvements, posing significant deploy- 043

ment and inference challenges (Steiner et al., 2023). 044

For example, operating OPT-175B (Zhang et al., 045

2022) requires over 320GB of memory and at least 046

five 80GB A100 GPUs for loading its parameters in 047

FP16 precision. This challenge becomes more pro- 048

nounced in environments with limited resources, 049

such as mobile devices, edge computing systems, 050

and real-time applications. Consequently, there has 051

been considerable interest in compressing LLMs 052

to enhance their efficiency and practicality for de- 053

ployment across various applications. 054

Pruning is a key method for compressing LLMs, 055

aiming to eliminate redundant weights to reduce 056

model size and computational demands while striv- 057

ing to maintain performance. Methods such as 058

those in (Huang et al., 2020; Ma et al., 2023; 059

Zhang et al., 2023c) require a retraining phase 060

post-pruning, which is inefficient for billion-scale 061

LLMs. PERP (Zimmer et al., 2023) introduces an 062

efficient retraining approach after pruning to re- 063

cover the performance of pruned model. Recent 064

developments, including SparseGPT (Frantar and 065

Alistarh, 2023) and Wanda (Sun et al., 2023), em- 066

ploy post-training pruning techniques for LLMs 067

without retraining. These methods, however, rely 068

on the heuristic-based optimal brain surgeon (OBS) 069

framework (Hassibi and Stork, 1992) or utilize 070

heuristic-based pruning metrics to determine prun- 071

ing masks, potentially compromising performance. 072

DSnoT (Zhang et al., 2023d) introduces a training- 073

free fine-tuning approach that updates the results 074

of other pruning methods, such as SparseGPT and 075

Wanda, which also depend on heuristic-based ad- 076

justment metrics. 077

In this work, we first introduce a LASSO-like 078

convex optimization model for layer-wise post- 079

training unstructured pruning of LLMs (the nov- 080

elty compared to traiditional LASSO-based prun- 081

ing methods is detailed in Appendix C). Figure 1 082

provides an overview of our method, which is ap- 083
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Figure 1: Overview of the proposed FISTAPruner. Given a weight matrix W and its corresponding input feature
activation X , we employ the proposed convex optimization model, utilizing FISTA, to derive the pruned weights.

plied to each linear operator. We employ the Frobe-084

nius norm of the difference between the outputs ob-085

tained from the dense and pruned weights to quan-086

tify the output error. Additionally, we integrate087

an ℓ1-norm regularization term, the optimal con-088

vex approximation of the ℓ0-norm (Candès et al.,089

2006), into each row of weights to promote spar-090

sity. The solutions of the proposed optimization091

model demonstrate a balanced trade-off between092

output error and sparsity, governed by our proposed093

adaptive tuning method that meticulously adjusts094

the hyperparameter λ. To solve this optimization095

problem efficiently, we utilize the Fast Iterative096

Shrinkage-Thresholding Algorithm (FISTA) (Beck097

and Teboulle, 2009), which ensures a convergence098

rate of O(1/k2). Following this, we name our pro-099

posed method FISTAPruner. We further extend it100

to accommodate 2:4 semi-structured pruning by101

incorporating a hard thresholding step following102

FISTA’s convergence, thus achieving the desired103

sparsity structures.104

In addition, our approach effectively mitigates105

the cumulative error within decoder layers resulting106

from pruning by incorporating an intra-layer error107

correction mechanism. Due to discrepancies be-108

tween the outputs of dense and pruned weights, er-109

rors can accumulate, as the output from one pruned110

weight becomes the input for the next operator.111

FISTAPruner addresses this by sequentially prun-112

ing the weights of each linear operator within a113

decoder layer, using the output from the pruned114

weights of one operator as the input for the next,115

thus minimizing output discrepancies. Addition-116

ally, FISTAPruner treats each decoder layer as an117

independent unit for pruning, allowing for the si-118

multaneous pruning of multiple decoder layers and119

significantly increasing efficiency.120

We empirically evaluate FISTAPruner on the121

widely adopted OPT (Zhang et al., 2022),122

LLaMA (Touvron et al., 2023a), LLaMA-2 (Tou-123

vron et al., 2023b), LLaMA-3 (Touvron et al., 124

2023a), and Qwen2.5 (Qwen et al., 2025) model 125

families. FISTAPruner’s layer-by-layer pruning 126

implementation allows for the pruning of these 127

LLMs ranging from 125M to 70B parameters on 128

a single NVIDIA A100 GPU with 40GB of mem- 129

ory. Our results confirm that FISTAPruner can 130

efficiently create sparse networks from pretrained 131

LLMs without retraining. Moreover, our approach 132

exceeds the performance of baseline methods such 133

as SparseGPT, Wanda, DSnoT, and PERP across 134

various language benchmarks. We also perform a 135

series of ablation studies to validate our methods. 136

We believe our work sets a new direction and base- 137

line for future research in this area and encourages 138

further exploration into understanding sparsity in 139

LLMs with the tools of convex optimization. 140

2 Background and Related Work 141

Pruning of LLMs. Pruning is a widely used strat- 142

egy to compress LLMs by generating sparse weight 143

matrices under unstructured, semi-structured, and 144

structured sparsity based on calibration data. Un- 145

structured sparsity of rate s%, eliminates s% of 146

the entries in a weight matrix. Semi-structured 147

sparsity with proportion n : m maintains a fixed 148

overall sparsity level n/m, and allows at most n 149

non-zero entries in every group of m consecutive 150

entries. Pruning weights into semi-structured spar- 151

sity, especially with proportion 2:4, could yield up 152

to 2× inference speedup using NVIDIA GPUs with 153

the Ampere architecture (Mishra et al., 2021) and 154

hence is of particular interest. Structured sparsity, 155

which zeroes entire rows or columns, offers signif- 156

icant computational and memory benefits but can 157

lead to greater performance losses. 158

Pruning with Retraining. Traditional pruning 159

pipelines often include a retraining step to offset 160

performance losses (Huang et al., 2020; Ma et al., 161

2023; Zhang et al., 2023c). However, the sheer 162
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scale of LLMs makes this additional retraining163

costly in both time and computational resources.164

(Dinh et al., 2020; Holmes et al., 2021; Xie et al.,165

2023) integrate retraining directly into the prun-166

ing process by targeting the minimization of the167

highly non-convex loss function related to the cal-168

ibration dataset, using the alternating direction169

method of multipliers (ADMM) to derive pruned170

weights. Nonetheless, this approach imposes sig-171

nificant computational demands and the use of172

ADMM in non-convex optimization often results173

in unstable performance (He and Yuan, 2012).174

Pruning without Retraining. Pruning without175

retraining offers a straightforward alternative, elim-176

inating the need for post-pruning retraining. These177

methods prune LLMs in a single step, simplifying178

implementation and reducing both time and compu-179

tational demands. Consequently, various methods180

have been developed under different sparsity frame-181

works. For structured pruning, SliceGPT (Ashk-182

boos et al., 2024) utilize principal component analy-183

sis to prune rows and columns of weights to reduce184

model dimensions. ZipLM (Kurtić et al., 2024)185

adopts an OBS-based approach for structured prun-186

ing and updates remaining weights to maintain187

performance. Our proposed FISTAPruner focuses188

on unstructured and semi-structured pruning, and189

thus is orthogonal to these structured pruning meth-190

ods, enabling further model compression. For un-191

structured and semi-structured pruning, SparseGPT192

(Frantar and Alistarh, 2023) and ISC (Shao et al.,193

2024) leverage the OBS framework to calculate194

saliency for each entry using the inverse Hessian195

of the loss metric, based on which pruning masks196

are generated and weights are updated. Wanda197

(Sun et al., 2023) implements a heuristic approach,198

removing weights based on the product of their199

magnitudes and activations without compensation.200

DSnoT (Zhang et al., 2023d) updates the results201

of other pruning methods, such as SparseGPT and202

Wanda, which also relies on heuristic-based adjust-203

ment metrics. (Boža, 2024) employs ADMM to204

optimize weight updates under iteratively refined205

pruning masks chosen through heuristic methods206

based on Wanda. These methods adopt a layer-wise207

pruning strategy, where errors between the pruned208

output and the original output of each operator ac-209

cumulates. Moreover, due to their heuristic nature,210

the performances of the pruned models are unstable211

and compromised.212

Error Corrections. Error correction techniques213

are increasingly used to mitigate error accumula-214

tions from layer-wise pruning by minimizing re- 215

construction errors between the pruned network 216

and the original one (Park et al., 2024; El Halabi 217

et al., 2022). However, their implementations and 218

applications to pruning LLMs vary widely. Promi- 219

nent methods like SparseGPT (Frantar and Alistarh, 220

2023) focus on pruning without explicit error cor- 221

rection, while approaches like K-prune (Park et al., 222

2024) minimize global reconstruction error, facing 223

scalability challenges as globally correcting prun- 224

ing errors will require global sequential pruning. 225

Our work introduces intra-layer error corrections 226

for better accuracy and computational efficiency. 227

By focusing on intra-layer adjustments, our method 228

provides a scalable and effective solution for prun- 229

ing LLMs. 230

3 Methodology 231

In this section, we introduce our post-training prun- 232

ing method, FISTAPruner, which comprises three 233

main components. First, we address the error accu- 234

mulation issue in layer-wise pruning with an intra- 235

layer error correction mechanism and develop a 236

novel convex optimization model tailored for this 237

purpose. We then detail the process for unstruc- 238

tured pruning using FISTA and adapt the frame- 239

work for n : m semi-structured pruning. Finally, 240

we present an adaptive method that finely tunes 241

the hyperparameter λ in our model to minimize 242

the output discrepancies between dense and pruned 243

operators while achieving the desired sparsity level. 244

3.1 Post-Training Pruning Model 245

Post-training compression is typically achieved by 246

decomposing the full-model compression problem 247

into layer-wise subproblems (Frantar and Alistarh, 248

2023). For instance, a typical Transformer decoder 249

layer (Vaswani et al., 2017) comprises six crucial 250

linear operators: WQ, WK , WV , WO, Wfc1 , and 251

Wfc2 . We leverage an intra-layer error correction 252

mechanism that sequentially prunes the weights 253

while explicitly accounting for the cumulative error 254

introduced at each step. Consider a dense weight 255

matrix W ∈ Rm×n and the corresponding input 256

activation X ∈ Rn×p. The output is Z = WX . 257

Our goal is to find the pruned weights W ∗ that 258

minimize the discrepancy between the outputs of 259

the dense and pruned models: 260

min
W ∗
∥W ∗X∗ −WX∥2F s.t. W ∗ ∈ S, (1) 261

where ∥ · ∥F denotes the Frobenius norm, and S 262
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defines the permissible sparsity patterns. The input263

activation X∗ are defined based on the position264

of the operator within the layer. Specifically, if265

the operator is at the top of the layer, then X∗ =266

X . Conversely, if the operator follows previously267

pruned operators, X∗ is set to Z∗
prev, where Z∗

prev268

is the pruned output from the preceding operator.269

As illustrated in Figure 2, consider two sequen-270

tial operators with weights W1 and W2. When271

pruning W1 to obtain its pruned counterpart W ∗
1 ,272

Equation 1 quantifies the output error between273

W1X and W ∗
1X , where the input X∗ remains274

the same as X since this operator is at the top of275

the layer. However, for the second operator W ∗
2 ,276

the corresponding input becomes W ∗
1X instead of277

W1X due to the pruning applied to W1. Conse-278

quently, the deviation between the outputs of W2279

and W ∗
2 is computed by comparing W2(W1X)280

and W ∗
2 (W

∗
1X). This approach ensures that cu-281

mulative error is appropriately considered, as each282

pruning step accounts for both the changes in the283

weights and the modified input activations resulting284

from previous pruning. Note that we use intra-layer285

error corrections within each decoder layer, en-286

abling parallel pruning and improved performance287

(see Section F.1 for details).288

Unstructured pruning essentially transforms289

dense weight matrices into sparse structures. The290

ℓ0-norm, which directly counts the number of non-291

zero entries in a vector, is the most straightfor-292

ward measure of unstructured sparsity. Despite293

the intuitive appeal of the ℓ0-norm, it induces non-294

convex and NP-hard optimization challenges. As295

a result, we adopt the ℓ1-norm, its optimal convex296

approximation (Candès et al., 2006), to achieve297

similar sparsity with tractable computational de-298

mands. Specifically, we apply the ℓ1-norm to each299

row of W ∗, thereby promoting sparsity throughout300

the matrix (see Appendix A for detailed explana-301

tions):302 ∥∥W ∗
i,:

∥∥
1
, i = 1, 2, . . . ,m, (2)303

where W ∗
i,: represents the i-th row of W ∗. Then,304

we construct our optimization model by integrating305

Equation 1 and Equation 2:306

min
W ∗∈Rm×n

1

2
∥W ∗X∗−WX∥2F +λ

m∑
i=1

∥W ∗
i,:∥1.

(3)307

This model aims to simultaneously minimize both308

the output error and the sum of the ℓ1-norm values309

while the hyperparameter λ > 0 balances these 310

two terms. 311

Remark 1. The proposed optimization model in 312

Equation 3 is convex. This is due to the fact that the 313

square of the Frobenius norm is a convex function, 314

as is the ℓ1-norm. Thus, the objective function, 315

being a sum of these two convex functions, is also 316

convex. Since the problem is an unconstrained 317

optimization with a convex objective function, the 318

overall optimization model is convex. 319

3.2 Optimization based on FISTA 320

To deal with the non-smooth regularization term 321

in Equation 3, a straightforward approach is us- 322

ing sub-gradient descent methods (Beck, 2017). 323

However, its slow convergence rate of O(1/
√
k) is 324

not desirable. We thus turn to FISTA (Beck and 325

Teboulle, 2009) with convergence rate O(1/k2) to 326

solve the proposed model Equation 3 efficiently. 327

Specifically, starting with t0 = 1 and an initial W ∗
0 , 328

the k-th iteration of FISTA reads: 329



W
∗
k+1

3
= W

∗
k −

1

L

(
W

∗
k X(X

∗
)
⊤ − WX(X

∗
)
⊤
)
,

W
∗
k+2

3
= SoftShrinkage λ

L

(
W

∗
k+1

3

)
,

tk+1 =
1

2

(
1 +

√
1 + 4t2k

)
,

W
∗
k+1 = W

∗
k+2

3
+

tk − 1

tk+1

(
W

∗
k+2

3
− W

∗
k

)
,

(4a)

(4b)

(4c)

(4d)

330

where L = ∥X∗(X∗)⊤∥2 is the maximum eigen-
value of X∗(X∗)⊤ and the SoftShrinkageρ(·) op-
erator with parameter ρ ≥ 0 on a matrix X =
(xij) ∈ Rm×n performs elementwise transforma-
tions defined by

SoftShrinkageρ(X) = X ′,

where

x′ij =


xij − ρ, if xij > ρ,

xij + ρ, if xij < −ρ,
xij = 0, otherwise.

Step Equation 4a executes a gradient descent 331

update on the parameter W ∗
k , aiming to minimize 332

the function 1/2∥W ∗
kX

∗ −WX∥2F with a step 333

size of 1/L. Step Equation 4b does a proximal 334

update, defined as: 335

W
∗
k+2

3
= argmin

W∗

{
L

2

∥∥∥∥W ∗ − W
∗
k+1

3

∥∥∥∥2

F

+ λ

m∑
i=1

∥∥∥W ∗
i,:

∥∥∥
1

}
.

(5) 336
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Figure 2: Illustration of the proposed intra-layer error correction mechanism. W1 and W2 represent the weights of
two sequential layers within the network architecture.

Steps Equation 4c and Equation 4d calculate337

a linear combination of the previous two points,338 {
W ∗

k+2/3,W
∗
k

}
, to facilitate accelerated conver-339

gence. Detailed derivations of these steps are pro-340

vided in Appendix B. The FISTA iteration termi-341

nates either when the maximum number of itera-342

tions, K, is reached or when the following stopping343

criterion is satisfied:344 ∥∥W ∗
k −W ∗

k−1

∥∥
F
< 1× 10−6. (6)345

3.3 Extension to 2:4 Semi-structured Pruning346

While our convex optimization framework effec-347

tively addresses unstructured pruning, practical348

deployment often necessitates structured or semi-349

structured sparsity patterns to fully leverage hard-350

ware acceleration capabilities. One notable pattern351

is the 2:4 semi-structured sparsity, which is sup-352

ported by NVIDIA’s Ampere architecture (Mishra353

et al., 2021), enabling significant speedups in infer-354

ence.355

The inclusion of the n : m sparsity constraint356

render the optimization problem non-convex due357

to the combinatorial nature of selecting which el-358

ements to prune within each group. To tackle this359

challenge, we adopt FISTA updates, incorporating360

a hard thresholding step as follows:361

W ∗
K+1 = H (W ∗

K , n : m) , (7)362

where W ∗
K denote result from the K-th iteration of363

FISTA satisfying the stopping criterion, and H(·)364

is the hard thresholding, which, for each group of365

four consecutive elements in every row, sets the366

two elements with the smallest absolute values to367

zero and retains the other two.368

We acknowledge that the non-convex nature of369

this extension introduces complexities in theoret-370

ical analysis. However, the empirical success ob-371

served in our experiments provides confidence in372

the practical applicability of our approach.373

3.4 Adaptive Hyperparameter Tuning 374

In Equation 3, the regularization parameter λ plays 375

a pivotal role in balancing the trade-off between the 376

output error and the sparsity of the pruned weights 377

W ∗. A larger λ emphasizes sparsity, potentially 378

increasing the output error, while a smaller λ fo- 379

cuses on minimizing the output error, resulting in 380

less sparsity. To attain a specific desired sparsity 381

level, it is essential to select an appropriate value 382

of λ that guides the optimization toward the target 383

sparsity. 384

To automate the selection of λ, we propose em- 385

ploying an adaptive hyperparameter tuning mecha- 386

nism based on the bisection method. This method 387

iteratively adjusts λ within a predefined interval 388

[0,M ], where M is a sufficiently large upper 389

bound, to find the optimal value that yields the tar- 390

get sparsity upon solving the optimization problem 391

using FISTA. We establish theoretical guarantees 392

for the convergence of this method in the context 393

of unstructured pruning, as stated in the following 394

theorem: 395

Theorem 1. Let s(λ) denote the sparsity level 396

(the ratio of zero elements) obtained from ℓ1- 397

regularized optimization. Given a target sparsity 398

s ∈ (0, 1), tolerance ϵ > 0, and initial bounds 399

λlow < λhigh satisfying s(λlow) ≤ s ≤ s(λhigh), 400

the bisection method terminates after finitely many 401

iterations and returns λ∗ such that |s(λ∗)− s| ≤ ϵ. 402

The proof is detailed in Appendix D. Although 403

the adaptive hyperparameter tuning effectively 404

identifies a regularization parameter λ∗ that yields 405

a sparsity level close to the desired one, it may not 406

always achieve the exact target due to the inherent 407

continuous nature of the optimization process and 408

limitations in numerical precision. To precisely 409

attain the desired unstructured sparsity, we also im- 410

plement a final hard thresholding step similar to 411

Equation 7: after obtaining the optimized weights, 412

the smallest-magnitude weights to zero until the 413

exact sparsity level is achieved. To adjust λ con- 414
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Algorithm 1 FISTAPruner
Inputs: original output WX , input activation X∗, W ∗

0 ,
λ, K, T , ϵ, s% or n : m
t← 0; W ∗

best ←W ∗
0 ; Ebest ← ∥W ∗

0 X
∗ −WX∥F

repeat
W ∗

K ← FISTA (WX,X∗, λ,W ∗
best,K)

W ∗
K+1 ← H (W ∗

K , s% or n : m)
Etotal ← ∥W ∗

K+1X
∗ −WX∥

F
Eround ← Etotal − ∥W ∗

KX∗ −WX∥F
if Etotal < Ebest then

W ∗
best ←W ∗

K+1

Estop = (Ebest − Etotal)/Ebest
Ebest ← Etotal

else
t← t+ 1

end if
update λ based on Eround/Etotal as in Section 3.4

until t ≥ T or Estop < ϵ
return W ∗

best

sidering this hard thresholding step, we define the415

total error Etotal and the rounding error Eround as416

Etotal :=
∥∥W ∗

K+1X
∗ −WX

∥∥
F
,417

Eround := Etotal − ∥W ∗
KX∗ −WX∥F .418

A high Eround/Etotal suggests that the majority of419

the error originates from the hard thresholding420

step. This suggests that the sparsity level of WK421

achieved via FISTA falls short of the desired spar-422

sity, implying a need to increase the value of λ423

to enhance the emphasis on the ℓ1-norm in Equa-424

tion 3. Conversely, a low Eround/Etotal indicates that425

the sparsity in W ∗
K is adequate. This observation426

implies that a reduction in λ might be beneficial.427

Such an adjustment would shift the model’s em-428

phasis towards minimizing output errors, thereby429

potentially decreasing the total error. Incorporat-430

ing the above insights, we apply a threshold ξ for431

Eround/Etotal.432

3.5 FISTAPruner Pseudocode433

While the intra-layer error correction mechanism434

requires sequential pruning of the operators within435

a decoder layer, we could treat each decoder layer436

as an independent pruning unit, enabling parallel437

pruning across multiple decoder layers on differ-438

ent devices, which significantly enhances the effi-439

ciency. Within each decoder layer, the proposed440

FISTAPruner sequentially prune weights to elimi-441

nate error accumulations, as detailed in Section 3.1.442

Algorithm 1 presents FISTAPruner for the dense443

weight matrix W . It leverages FISTA to generate444

candidate sparse weights based on the model Equa-445

tion 3, as detailed in Section 3.2. It then applies446

a hard thresholding step to meet specified sparsity447

constraints. Additionally, the parameter λ is adap- 448

tively tuned, as detailed in Section 3.4, to optimize 449

the trade-off between output error and sparsity. The 450

algorithm iteratively updates the weights, preserv- 451

ing the best solution W ∗
best, based on the lowest 452

total error Etotal. It terminates when the number of 453

consecutive iterations without an improvement in 454

W ∗
best reaches T , or when the improvement ratio 455

(Ebest − Etotal)/Ebest falls below the threshold ϵ. 456

4 Experiments 457

In this section, we detail a comprehensive set of 458

experiments designed to validate the efficacy of 459

FISTAPruner. We begin with an in-depth review 460

of our experimental setup. Following this, we ex- 461

plore the perplexity and zero-shot capabilities of 462

the pruned LLMs through rigorous testing and a 463

series of ablation studies. Due to page length con- 464

straints, a portion of the results are presented in 465

Appendix E and F. 466

4.1 Settings 467

Models. We utilize models from the OPT (Zhang 468

et al., 2022), LLaMA (Touvron et al., 2023a), 469

LLaMA-2 (Touvron et al., 2023b), LLaMA- 470

3 (Meta AI, 2023), and Qwen2.5 (Qwen et al., 471

2025) families. 472

Benchmarks. Our primary assessment focuses 473

on evaluating the perplexity of pruned LLMs, a 474

metric renowned for its reliability in assessing 475

LLM performance. Following methodologies from 476

previous studies (Frantar and Alistarh, 2023; Sun 477

et al., 2023), we measure model perplexity using 478

the WikiText-2-raw (Merity et al., 2016) (here- 479

after shortened to WikiText), PTB (Marcus et al., 480

1994), and C4 (Raffel et al., 2020) datasets. Addi- 481

tionally, we perform a comprehensive evaluation 482

of the zero-shot capabilities of pruned LLaMA-3- 483

70B models using several standard common-sense 484

benchmark datasets. These include ARC Easy and 485

ARC Challenge (Clark et al., 2018), WinoGrande 486

(Sakaguchi et al., 2021), BoolQ (Clark et al., 2019), 487

RTE (Wang et al., 2018), QNLI (Wang et al., 2018), 488

and WNLI (Wang et al., 2018) tasks, facilitated by 489

the LM Harness library (Gao et al., 2021). 490

Baselines. We compare FISTAPruner against two 491

widely-used baseline methods: SparseGPT (Fran- 492

tar and Alistarh, 2023) and Wanda (Sun et al., 493

2023). Additionally, we evaluate against the lat- 494

est training-free approach, DSnoT (Zhang et al., 495

2023d), which updates the results of other pruning 496

6



Table 1: WikiText perplexity (↓) of pruned OPT models under 50% unstructured and 2:4 semi-structured sparsity.
FISTAPruner outperforms baseline methods.

OPT

Method Sparsity 125M 350M 1.3B 2.7B 6.7B 13B 30B
Dense 0% 27.66 22.00 14.63 12.47 10.86 10.13 9.56
SparseGPT 50% 37.01 31.53 17.55 13.46 11.60 11.15 9.77
Wanda 50% 38.96 36.22 18.41 14.22 11.98 11.93 10.03
FISTAPruner 50% 33.54 28.89 17.21 13.22 11.36 10.95 9.71
SparseGPT 2:4 60.02 50.15 23.83 17.20 14.13 12.94 10.92
Wanda 2:4 80.32 113.00 28.25 21.25 15.90 15.56 13.40
FISTAPruner 2:4 45.16 40.41 22.46 15.70 13.16 12.21 10.54

Table 2: WikiText perplexity (↓) of pruned LLaMA, LLaMA-2, LLaMA-3, and Qwen2.5 models under 50%
unstructured and 2:4 semi-structured sparsity. FISTAPruner outperforms baseline methods.

LLaMA LLaMA-2 LLaMA-3 Qwen2.5

Method Sparsity 7B 13B 30B 65B 7B 13B 70B 8B 70B 0.5B 1.5B
Dense 0% 5.68 5.09 4.10 3.53 5.12 4.57 3.12 5.54 2.59 13.07 9.27
SparseGPT 50% 7.24 6.22 5.33 4.60 6.54 5.63 3.99 8.64 5.30 20.36 13.08
Wanda 50% 7.26 6.15 5.25 4.60 6.46 5.58 3.97 9.06 5.33 25.83 14.11
FISTAPruner 50% 6.97 6.06 5.09 4.39 6.35 5.47 3.93 8.00 5.09 19.61 12.51
SparseGPT 2:4 11.32 9.11 7.21 6.24 10.37 8.29 5.38 14.65 8.63 37.42 21.81
Wanda 2:4 11.54 9.61 6.91 6.24 11.34 8.35 5.20 22.56 8.34 81.59 47.20
FISTAPruner 2:4 9.82 8.27 6.70 5.82 9.63 7.69 5.16 14.54 7.55 33.53 20.14

methods, and the recent efficient prune-retrain ap-497

proach, PERP (Zimmer et al., 2023). We evaluate498

two types of sparsity configurations: unstructured499

and 2:4 semi-structured sparsity.500

Setup. We implement FISTAPruner using PyTorch501

(Paszke et al., 2019) and leverage the Hugging-502

Face Transformers library (Wolf et al., 2019) for503

model and dataset management. All pruning ex-504

periments are conducted on NVIDIA A100 GPUs,505

each equipped with 80GB of memory. We observe506

that FISTAPruner efficiently prunes all LLMs using507

a single GPU and no more than 40GB of memory.508

For calibration data, we adhere to the approach out-509

lined in previous works (Frantar and Alistarh, 2023;510

Sun et al., 2023), utilizing 128 sequences. Each511

sequence is composed of tokens sampled from the512

first shard of the C4 dataset, with the number of513

tokens equal to the maximum embedding length of514

the LLMs. For parameters of FISTAPruner, we set515

the initial value of λ to 1× 10−5, K to 20, T to 3,516

M to 106, and ξ to 0.3. For the OPT model family,517

we use the result of SparseGPT as a warm start for518

the FISTA iteration and set ϵ to 1× 10−6. For the519

LLaMA model family, we use the result of Wanda520

as a warm start and set ϵ to 1× 10−3.521

4.2 Perplexity Experiment Results522

In Tables 1 and 2, we present the perplexity results523

for the pruned OPT, LLaMA, LLaMA-2, LLaMA-524

3, and Qwen2.5 models of various sizes on Wiki-525

Text. For results on PTB and C4, please refer to526

Table 3: WikiText perplexity (↓) of pruned LLaMA,
LLaMA-2 and LLaMA-3 models under 50% unstruc-
tured and 2:4 semi-structured sparsity. FISTAPruner
outperforms DSnoT.

Method Sparsity 7B 13B 30B 2-7B 2-13B 3-8B
Wanda + DSnoT 50% 7.12 6.16 5.20 6.49 5.57 9.07
FISTAPruner 50% 6.97 6.06 5.09 6.35 5.47 8.00
Wanda + DSnoT 2:4 11.54 9.49 7.09 11.53 8.52 20.56
FISTAPruner 2:4 9.82 8.27 6.70 9.63 7.69 14.54

Table 4: WikiText perplexity (↓) of pruned OPT models
under 50% sparsity. FISTAPruner outperforms prune-
retrain approach PERP.

Method Sparsity 2.7B 6.7B 13B 30B
SparseGPT + PERP 50% 13.40 11.47 10.85 9.76
Wanda + PERP 50% 13.88 11.83 11.06 10.04
FISTAPruner 50% 13.22 11.36 10.95 9.71

Appendix E.1 and E.2. We achieved a 50% unstruc- 527

tured or 2:4 semi-structured sparsity level by prun- 528

ing all linear operators, excluding embeddings and 529

the model head. The data in Tables 1 and 2 illus- 530

trate consistent improvements with FISTAPruner 531

over SparseGPT and Wanda. 532

In Tables 3, we detail the comparison between 533

FISTAPruner and DSnoT on LLaMA, LLaMA-2, 534

and LLaMA-3 models of various sizes on WikiText. 535

The data consistently indicate that FISTAPruner 536

achieves lower perplexity scores, thereby surpass- 537

ing DSnoT in performance. 538
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Table 5: Zero-shot results (accuracy, ↑) of the pruned LLaMA-3-70B model under 50% unstructured and 2:4
semi-structured sparsity. FISTAPruner outperforms baseline methods on most of the tasks and yields much higher
average accuracies especially under 2:4 semi-structured sparsity.

Method Sparsity ARC-c ARC-e WinoGrande RTE BoolQ QNLI WNLI Mean
Dense 0% 0.6024 0.8685 0.8035 0.6859 0.8560 0.5190 0.7183 0.7219
SparseGPT 50% 0.5401 0.8340 0.7979 0.7040 0.8480 0.5035 0.7042 0.7045
Wanda 50% 0.5427 0.8320 0.7814 0.7076 0.8480 0.5045 0.6338 0.6928
FISTAPruner 50% 0.5614 0.8410 0.8035 0.6895 0.8645 0.5055 0.7183 0.7120
SparseGPT 2:4 0.4590 0.7830 0.7609 0.6426 0.8165 0.4985 0.5493 0.6443
Wanda 2:4 0.4829 0.7860 0.7174 0.6354 0.7615 0.5390 0.6056 0.6468
FISTAPruner 2:4 0.4735 0.7985 0.7751 0.7004 0.8540 0.5675 0.6620 0.6901
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Figure 3: Comparative analysis of sparsity versus per-
plexity across different methods for OPT-125M and
LLaMA-3-8B models on WikiText dataset.

We also compare FISTAPruner with the prune-539

retrain method PERP, with results presented in Ta-540

ble 4. These results demonstrate that FISTAPruner,541

without any retraining, outperforms the results of542

SparGPT/Wanda retrained using PERP. Moreover,543

our method is also compatible with retraining meth-544

ods and could serve as a superior initialization point545

in the retraining process.546

To further investigate FISTAPruner’s perfor-547

mance under different unstructured sparsity lev-548

els, we conducted experiments on the OPT-125M549

and LLaMA-3-8B models, with perplexity results550

visualized in Figure 3 and measured using Wiki-551

Text. The results indicate that FISTAPruner consis-552

tently outperforms existing methods across differ-553

ent levels of unstructured sparsity. Notably, at 20%554

unstructured sparsity on the OPT-125M model, 555

FISTAPruner’s performance even surpasses that 556

of the dense network. 557

4.3 Zero-Shot Task Results 558

The results of zero-shot tasks on pruned LLaMA-3- 559

70B models, with 50% unstructured and 2:4 semi- 560

structured sparsity, are detailed in Table 5. These re- 561

sults indicate that FISTAPruner surpasses existing 562

methods on most tasks. Furthermore, when evalu- 563

ating the average accuracy across the seven tasks 564

we examined, FISTAPruner consistently shows su- 565

perior performance compared to existing methods, 566

particularly with 2:4 semi-structured sparsity. 567

4.4 Ablation Study 568

We conduct a series of ablation studies to evaluate 569

the impact of the intra-layer error correction mech- 570

anism, calibration data, and warm-start mechanism. 571

The results are presented in Appendix F. 572

5 Conclusion 573

In this paper, we introduce FISTAPruner, a layer- 574

wise post-training pruning method for LLMs. Ini- 575

tially, we develop a convex optimization model that 576

employs the ℓ1-norm to induce unstructured spar- 577

sity in the weights, complemented by an intra-layer 578

error correction mechanism to eliminate cumula- 579

tive errors across operators in the traditional prun- 580

ing process. Subsequently, we utilize FISTA to 581

efficiently solve the proposed model. Additionally, 582

we extend FISTAPruner to accommodate n : m 583

semi-structured pruning. FISTAPruner supports 584

parallel pruning, which can reduce the total prun- 585

ing time by utilizing various devices simultane- 586

ously. Extensive experiments on the OPT, LLaMA, 587

LLaMA-2, and LLaMA-3 model families demon- 588

strate FISTAPruner’s superior performance com- 589

pared to existing methods. 590
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Limitations591

Despite the rigorous theoretical foundation and im-592

pressive pruning performance of FISTAPruner, the593

time required for pruning remains a limitation of594

our method compared to SparseGPT and Wanda.595

This is primarily due to the iterative nature of596

FISTA and the process of tuning λ. Pruning time597

varies with model size; for instance, it takes about598

10 minutes for OPT-125M, while LLaMA-3-70B599

requires approximately 12 hours on a single Nvidia600

A100 GPU with 40GB of memory. However, the601

parallel-pruning capability of FISTAPruner, which602

allows for simultaneous pruning of multiple de-603

coder layers across various devices, can mitigate604

this issue to some extent. Furthermore, as post-605

training pruning is typically an offline process, time606

sensitivity may not be a critical factor in real-world607

applications. In addition, FISTAPruner represents608

an attempt to integrate convex optimization theory609

and algorithms into LLM applications, potentially610

inspiring further advancements in this area.611

Beyond computation time, GPU memory con-612

sumption is a crucial factor, making FISTAPruner613

more practical than frameworks like “post-training614

pruning + fine-tuning” (e.g., “Wanda + LoRA”).615

For example, loading LLaMA-3-70B in FP16 pre-616

cision alone requires approximately 140 GB of617

GPU memory (70 billion parameters × 2 bytes),618

necessitating at least four NVIDIA A100 GPUs619

with 40 GB each. In contrast, FISTAPruner is a620

layer-wise pruning method that treats each decoder621

layer independently. This design significantly re-622

duces memory overhead by allowing each decoder623

layer to be loaded and pruned sequentially on the624

GPU, then offloaded back to the CPU after prun-625

ing. Additionally, it also enables parallel pruning626

across decoder layers. As a result, for LLaMA-3-627

70B, using a minimal hardware budget (4 × A100628

40GB GPUs) for fine-tuning, the total pruning time629

can be reduced from 12 hours to approximately 3630

hours.631

Besides, we would like to note that applying632

LoRA to fine-tune a pruned model presents several633

challenges. For weights pruned with unstructured634

or semi-structured sparsity, directly adding LoRA635

adapters would break the sparsity pattern. To pre-636

serve the sparse structure, a separate LoRA path637

must be introduced, which increases both the num-638

ber of parameters and the computational complex-639

ity of the model.640
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A Derivations of the Proposed886

Optimization Model887

We present detailed derivations of Model Equa-888

tion 3 in the following. Given X∗ ∈ Rn×p and889

WX ∈ Rm×p, we want to find a sparse solution890

W ∗ ∈ Rm×n that minimizes the pruning metric891

∥W ∗X∗ −WX∥F . (8)892

We observe its similarities to the well-known893

least absolute shrinkage and selection operator894

(LASSO) (Tibshirani, 1996) problem and thus895

transform it into a standard LASSO model, which896

could be efficiently solved by operator-splitting897

algorithms such as FISTA. To achieve such a trans-898

formation, first, we leverage the following equality899

to write the decision variable W ∗ in its vector form:900

∥W ∗X∗ −WX∥2F901

=
∥∥∥(X∗)⊤(W ∗)⊤ − (WX)⊤

∥∥∥2

F
902

=

m∑
i=1

∥∥∥(X∗)⊤(W ∗
i,:)

⊤ − (WX)⊤i,:

∥∥∥2

2
903

=

∥∥∥∥∥∥∥∥∥
(X∗)⊤

. . .
(X∗)⊤




(W ∗
1,:)

⊤

(W ∗
2,:)

⊤

...
(W ∗

m,:)
⊤

−


(WX)⊤1,:
(WX)⊤2,:

...
(WX)⊤m,:


∥∥∥∥∥∥∥∥∥
2

2

904

Then we can rewrite the square of the pruning905

metric in its vector form,906

∥Ax− b∥22 , (9)907

where908

A =

(X∗)⊤

. . .
(X∗)⊤

 ∈ Rpm×nm,909

x =


(W ∗

1,:)
⊤

(W ∗
2,:)

⊤

...
(W ∗

m,:)
⊤

 ∈ Rnm, b =


(WX)⊤1,:
(WX)⊤2,:

...
(WX)⊤m,:

 ∈ Rpm.910

Note that finding a sparse W ∗ to minimize Equa-
tion 8 is equivalent to finding a sparse x to mini-
mize Equation 9, which could be modeled by the
LASSO formulation

min
x

1

2
∥Ax− b∥22 + λ∥x∥1.

Now, we have911

1

2
∥Ax− b∥22 + λ∥x∥1 912

=
1

2
∥W ∗X∗ −WX∥2F + λ

∥∥∥∥∥∥∥∥∥


(W ∗

1,:)
⊤

(W ∗
2,:)

⊤

...
(W ∗

m,:)
⊤


∥∥∥∥∥∥∥∥∥
1

913

=
1

2
∥W ∗X∗ −WX∥2F + λ

m∑
i=1

∥∥∥(W ∗
i,:)

⊤
∥∥∥
1
, 914

and hence, we obtain the proposed optimization 915

model Equation 3. 916

B Derivations of the FISTA Iterations 917

We derive here the FISTA Iterations for the op- 918

timization problem Equation 3 in which one full 919

iteration includes a gradient descent step of the 920

quadratic term 1
2∥W

∗X∗ −WX∥2F , a proximal 921

step of the regularization term λ
∑m

i=1

∥∥∥(W ∗
i,:)

⊤
∥∥∥
1

922

and a Nestrov acceleration term that yields a im- 923

proved convergence rate of O(1/k2) (Beck and 924

Teboulle, 2009). 925

Let f : Rm×n → R+ be a function defined by

f(Y ) :=
1

2
∥Y X∗ −WX∥2F .

The gradient of f at Y = W ∗
k is computed as 926

∇f(W ∗
k ) = (W ∗

kX
∗ −WX)(X∗)⊤ 927

= W ∗
kX

∗(X∗)⊤ −WX(X∗)⊤. 928

Thus, given optimal step size 1/L where L is
the maximum eigenvalue of X∗(X∗)⊤ (Beck and
Teboulle, 2009), the gradient descent step Equa-
tion 4a of FISTA reads as

W ∗
k+ 1

3

= W ∗
k−

1

L

(
W ∗

kX(X∗)⊤ −WX(X∗)⊤
)
.

In the second step Equation 4b, we do a proximal 929

update with respect to the regularization term by 930

solving 931

min
W ∗∈Rm×n

L

2

∥∥∥W ∗ −W ∗
k+ 1

3

∥∥∥2
F
+ λ

m∑
i=1

∥W ∗
i,:∥1.

(10) 932

Let h : R→ R+ be a function defined by

h(y|z) := 1

2
(y − z)2 +

λ

L
|y|.
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Observe that933

L

2

∥∥∥W ∗ −W ∗
k+ 1

3

∥∥∥2
F
+ λ

m∑
i=1

∥W ∗
i,:∥1934

= L
∑
i,j

h
(
W ∗

ij

∣∣∣W ∗
k+ 1

3
,ij

)
.935

936

Hence problem Equation 10 can be split into m×n
independent subproblems of dimension 1 and we
only need to focus on solving each one of them.
Note that h is convex but not smooth. It suffices to
find a point W ∗

k+ 2
3
,ij

such that

0 ∈ ∂h
(
W ∗

k+ 2
3
,ij

∣∣∣W ∗
k+ 1

3
,ij

)
,

where ∂ denotes the sub-differential operator. Ob-
serve that

∂h(y|z) =


y − z + λ

L , if y > 0,

y − z − λ
L , if y < 0,

{y − z + u λ
L | u ∈ [−1, 1]}, if y = 0.

We now solve for 0 ∈ ∂h(y|z) by considering the937

following cases:938

• If y > 0, then we set y − z + λ
L = 0. This939

gives y = z − λ
L and requires z > λ

L .940

• If y < 0, then we set y − z − λ
L = 0. This941

gives y = z + λ
L and requires z < − λ

L .942

• If y = 0, then we want 0 ∈ {y−z+u λ
L | u ∈943

[−1, 1]}. This requires − λ
L < z < λ

L .944

Hence, 0 ∈ ∂h
(
W ∗

k+ 2
3
,ij

∣∣∣W ∗
k+ 1

3
,ij

)
yields945

W ∗
k+ 2

3
,ij =


W ∗

k+ 1
3
,ij
− λ

L
, if W ∗

k+ 1
3
,ij

> λ
L
,

W ∗
k+ 1

3
,ij

+ λ
L
, if W ∗

k+ 1
3
,ij

< − λ
L
,

0, otherwise,

which is exactly the value given by946

SoftShrinkageλ/L

(
W ∗

k+ 1
3
,ij

)
.947

Finally, according to (Beck and Teboulle, 2009),948

we add a Nestrov acceleration step by setting t0 = 1949

and computing950

tk+1 =
1

2

(
1 +

√
1 + 4t2k

)
, (11)951

W ∗
k+1 = W ∗

k+ 2
3
+

tk − 1

tk+1

(
W ∗

k+ 2
3
−W ∗

k

)
, (12)952

which gives steps Equation 4c and Equation 4d.953

The above illustrates the details of the FISTA954

iterations.955

C Novelty Compared to Traditional 956

LASSO-based Pruning 957

Compared to traditional LASSO-based or ℓ1- 958

regularization pruning, our work introduces several 959

key innovations that advance the state-of-the-art in 960

post-training pruning for LLMs. 961

We develop a LASSO-based, layer-wise prun- 962

ing approach where each linear layer is optimized 963

independently through a convex formulation (Equa- 964

tion equation 3). This contrasts with (Wen et al., 965

2016), which incorporates group LASSO regular- 966

ization into the training loss, resulting in a non- 967

convex objective that may converge to suboptimal 968

solutions. Our convex formulation guarantees sta- 969

ble convergence while maintaining computational 970

tractability. 971

While (He et al., 2017) adapts LASSO for chan- 972

nel pruning in CNNs using heuristic alternating 973

optimization, we employ FISTA (Fast Iterative 974

Shrinkage-Thresholding Algorithm) with provable 975

O(1/k2) convergence. Our implementation lever- 976

ages closed-form solutions involving only matrix- 977

matrix multiplications and element-wise opera- 978

tions, enabling efficient GPU acceleration – a crit- 979

ical advantage when scaling to billion-parameter 980

LLMs where previous methods become computa- 981

tionally prohibitive. 982

We introduce a bisection-based method to 983

automatically determine the optimal sparsity- 984

controlling parameter λ for any target sparsity level. 985

This represents a significant improvement over (He 986

et al., 2017)’s linear incremental strategy, offering 987

both faster convergence and more reliable results 988

through principled interval halving. 989

The framework natively supports both unstruc- 990

tured sparsity and hardware-friendly 2:4 semi- 991

structured patterns, enabling practical deployment 992

on modern accelerators like NVIDIA Ampere 993

GPUs (Bai and Li, 2023). This hardware com- 994

patibility was not addressed in prior LASSO-based 995

pruning methods. 996

A novel error correction mechanism specifically 997

designed for transformer architectures compen- 998

sates for pruning-induced perturbations within each 999

layer. Comprehensive ablation studies demonstrate 1000

its effectiveness in maintaining model accuracy 1001

compared to baseline approaches. 1002

While previous works have explored individual 1003

components of LASSO-based pruning, our method 1004

represents the first unified framework that simul- 1005

taneously addresses all these aspects for modern 1006
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LLMs.1007

D Proof of Theorem 11008

Assume the weight matrix has p parameters.1009

The sparsity function s(λ) is non-decreasing and1010

piecewise-constant with at most p+ 1 plateaus, as1011

established by the piecewise-linear structure of ℓ1-1012

regularized solution paths. Assume the smallest1013

plateau has length L. The bisection algorithm it-1014

eratively maintains an interval [λ(k)
l , λ

(k)
r ] at step1015

k, where λ
(k)
l and λ

(k)
r denote the lower and up-1016

per bounds respectively, preserving the invariant1017

s(λ
(k)
l ) ≤ s ≤ s(λ

(k)
r ). At each iteration, the mid-1018

point λm = (λ
(k)
l + λ

(k)
r )/2 is computed. The1019

interval is updated by setting λ
(k+1)
l ← λm if1020

s(λm) < s, or λ
(k+1)
r ← λm otherwise. This1021

procedure preserves the invariant while halving the1022

interval width δk = λ
(k)
r − λ

(k)
l at every step.1023

As the iterations proceed, within k O(log δ0
L )1024

steps, we must have δk ≤ L. By the definition1025

of L, for all λ ∈ [λ
(k)
l , λ

(k)
r ], there are at most1026

two possible values of s(λ). Therefore, one of1027

the endpoints, λ(k)
l or λ(k)

r must be the desired λ1028

such that s(λ) = s and the algorithm should have1029

already terminated.1030

E Additional Results1031

E.1 Perplexity Results on PTB1032

We present the PTB perplexity results of pruned1033

OPT, LLaMA, LLaMA-2, LLaMA-3, and Qwen2.51034

models under 50% unstructured and 2:4 semi-1035

structured sparsity in Tables 6 and 7. FISTAPruner1036

outperforms baseline methods on all OPT, LLaMA1037

and LLaMA-3 models, as well as on most LLaMA-1038

2 models on the PTB dataset. The sole exception1039

is the pruning of the LLaMA-2-70B model under1040

50% unstructured sparsity, where FISTAPruner sur-1041

passes Wanda but falls short of SparseGPT. This1042

underperformance may be due to the generally1043

poorer performance of LLaMA-2 models com-1044

pared to similarly sized models from other fam-1045

ilies. For instance, the dense LLaMA-2-13B model1046

exhibits a PTB perplexity of 56.52, even higher1047

than the smaller LLaMA-2-7B model, which has1048

a perplexity of 50.19. Moreover, we observe that1049

the PTB perplexity results for all dense LLaMA1050

and LLaMA-2 models are consistently higher than1051

those for similarly sized OPT models; for exam-1052

ple, the LLaMA-2-13B’s perplexity of 56.52 far1053

exceeds the smallest OPT-125M model’s 38.99. 1054

In contrast, LLaMA-3 models show significantly 1055

better performance on the PTB dataset. Besides, 1056

FISTAPruner performs consistently better than 1057

baselines on Qwen models. 1058

E.2 Perplexity Results on C4 1059

The C4 perplexity results of pruned OPT, LLaMA, 1060

LLaMA-2, LLaMA-3, and Qwen2.5 models under 1061

50% unstructured and 2:4 semi-structured sparsity 1062

are shown in Tables 6 and 7. FISTAPruner per- 1063

forms consistently better than the baselines. 1064

F Ablation Studies 1065
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Figure 4: Studies of FISTAPruner on the WikiText
dataset on OPT-2 125M, showcasing the effects of intra-
layer error correction and varying calibration sample
sizes.

F.1 Ablation Study on Intra-layer Error 1066

Corrections 1067

We perform ablation studies on the OPT-125M 1068

model with 50% unstructured sparsity to evalu- 1069

ate the intra-layer error correction mechanism. We 1070

compare the performance of FISTAPruner with and 1071

without the intra-layer error correction mechanism, 1072

with perplexity results on the WikiText, PTB and 1073

C4 datasets displayed in Figures 4(a), 5(a), and 6(a). 1074

We observe that the perplexity of the pruned model 1075

incorporating this mechanism consistently outper- 1076

forms the version without it, thereby confirming its 1077

14



Table 6: PTB perplexity of pruned OPT models under 50% unstructured and 2:4 semi-structured sparsity.
FISTAPruner outperforms baseline methods.

OPT

Method Sparsity 125M 350M 1.3B 2.7B 6.7B 13B 30B
Dense 0% 38.99 31.07 20.29 17.97 15.77 14.52 14.04
SparseGPT 50% 55.38 43.58 25.64 20.52 17.38 15.98 14.97
Wanda 50% 57.60 55.47 27.98 21.85 17.92 17.45 15.47
FISTAPruner 50% 49.79 41.26 25.08 20.15 17.08 15.87 14.92
SparseGPT 2:4 94.21 72.82 37.30 26.87 21.65 18.69 16.56
Wanda 2:4 111.55 135.98 43.85 34.64 25.07 22.16 21.65
FISTAPruner 2:4 67.80 59.51 36.26 24.43 20.04 18.08 16.18

Table 7: PTB perplexity (↓) of pruned LLaMA, LLaMA-2, LLaMA-3, and Qwen2.5 models under 50% unstructured
and 2:4 semi-structured sparsity.

LLaMA LLaMA-2 LLaMA-3 Qwen2.5

Method Sparsity 7B 13B 30B 65B 7B 13B 70B 8B 70B 0.5B 1.5B
Dense 0% 41.15 28.10 23.51 25.07 50.19 56.52 22.68 10.17 7.87 26.03 17.85
SparseGPT 50% 79.67 37.49 26.14 27.64 1020.01 95.41 24.87 14.00 9.24 38.41 24.89
Wanda 50% 80.48 36.43 26.64 25.77 97.58 86.79 26.07 15.54 9.44 46.83 27.15
FISTAPruner 50% 58.67 35.30 25.63 25.15 96.72 78.23 25.36 12.93 8.88 41.62 23.15
SparseGPT 2:4 154.62 71.68 32.44 32.91 1163.57 154.15 31.51 23.42 13.01 75.98 41.45
Wanda 2:4 211.40 74.29 35.56 33.39 587.54 224.55 33.97 48.96 14.17 142.19 103.61
FISTAPruner 2:4 91.84 64.04 30.86 30.78 361.16 136.84 31.49 22.60 11.11 57.34 35.20
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Figure 5: Studies of FISTAPruner on the PTB dataset on
OPT-125M, showcasing the effects of intra-layer error
correction and varying calibration sample sizes.

effectiveness. Moreover, FISTAPruner, even with-1078

out the intra-layer error correction mechanism, out-1079

performs existing methods such as SparseGPT and1080

Wanda. This underscores the effectiveness of ap-1081

plying convex optimization theory and algorithms1082

to pruning problems. Additionally, we treat each1083

decoder layer as an independent pruning unit with1084
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Figure 6: Studies of FISTAPruner on the C4 dataset on
OPT-125M, showcasing the effects of intra-layer error
correction and varying calibration sample sizes.

intra-layer error correction, rather than using both 1085

intra- and inter-layer error correction for a global 1086

mechanism, for the following reasons: (1) Intra- 1087

layer error correction allows independent pruning 1088

of each decoder layer, enabling distribution of the 1089

task across multiple devices and improving overall 1090

efficiency. (2) While combining intra- and inter- 1091

15



Table 8: C4 perplexity (↓) of pruned OPT models under 50% unstructured and 2:4 semi-structured sparsity.
FISTAPruner outperforms baseline methods.

OPT

Method Sparsity 125M 350M 1.3B 2.7B 6.7B 13B 30B
Dense 0% 26.56 22.59 16.07 14.34 12.71 12.06 11.45
SparseGPT 50% 33.52 29.14 19.23 15.77 13.73 12.98 11.96
Wanda 50% 34.89 34.46 20.63 16.44 14.25 13.57 12.32
FISTAPruner 50% 30.93 27.36 18.56 15.58 13.61 12.94 11.92
SparseGPT 2:4 52.11 46.36 25.77 19.35 16.44 14.85 13.18
Wanda 2:4 64.73 88.62 28.59 22.88 19.00 16.19 16.18
FISTAPruner 2:4 38.08 36.45 24.29 17.82 15.35 14.19 12.78

Table 9: C4 perplexity (↓) of pruned LLaMA, LLaMA-2, LLaMA-3, and Qwen2.5 models under 50% unstructured
and 2:4 semi-structured sparsity. FISTAPruner outperforms baseline methods.

LLaMA LLaMA-2 LLaMA-3 Qwen2.5

Method Sparsity 7B 13B 30B 65B 7B 13B 70B 8B 70B 0.5B 1.5B
Dense 0% 7.34 6.80 6.13 5.81 7.04 6.52 5.53 9.01 6.82 20.39 15.13
SparseGPT 50% 9.33 8.14 7.34 6.66 9.00 7.96 6.25 13.93 9.34 28.60 19.83
Wanda 50% 9.34 8.15 7.29 6.71 8.94 8.04 6.30 14.97 9.80 35.36 21.69
FISTAPruner 50% 8.90 7.96 7.05 6.49 8.62 7.73 6.22 13.12 8.94 27.29 18.89
SparseGPT 2:4 13.65 11.38 9.50 8.41 13.58 11.39 7.99 24.16 14.81 49.72 31.85
Wanda 2:4 14.47 12.11 9.46 8.78 15.07 12.13 7.89 36.70 14.47 131.21 66.58
FISTAPruner 2:4 11.95 10.27 8.81 7.82 12.41 10.34 7.59 23.15 12.18 40.66 27.00

layer error correction can reduce error accumu-1092

lation, it is effective only at low sparsity levels.1093

At higher sparsity, global error correction domi-1094

nates layer-specific pruning, leading to worse per-1095

formance. A detailed analysis of this is provided1096

in Appendix G.1097

F.2 Impact of Calibration Data and Warm1098

Start1099

We conduct studies to evaluate the impact of the1100

number of calibration samples and warm start.1101

Amount of Calibration Data. We investigate the1102

performance of FISTAPruner and existing methods,1103

SparseGPT and Wanda, in relation to the number of1104

calibration data samples, which we vary in powers1105

of two. The results for the WikiText dataset with1106

the OPT-125M model at 50% sparsity are shown1107

in Figure 4(b). We observe that using more calibra-1108

tion samples significantly enhances performance,1109

but only up to a certain point as the improvement1110

curve quickly flattens. This finding aligns with ob-1111

servations in (Frantar and Alistarh, 2023; Sun et al.,1112

2023). Given that using more samples increases1113

computational and memory costs, we consistently1114

use 128 calibration samples in all our experiments.1115

The results of pruning performance in relation to1116

the number of calibration data samples on PTB and1117

C4 datasets are displayed in Figures 5(b) and 6(b).1118

The same curve pattern as shown in Figure 4(b) is1119

observed. 1120

Choice of Calibration Dataset. We evaluate 1121

perplexity across different calibration datasets on 1122

OPT-125M. The C4 calibration dataset consistently 1123

achieved the lowest total perplexity scores (113.59 1124

at 50% sparsity, 155.47 at 2:4 sparsity), outper- 1125

forming both WikiText and PTB. This aligns with 1126

findings from recent work (Ji et al., 2024), demon- 1127

strating that web-scale, diverse datasets like C4 1128

tend to produce more robust pruning results com- 1129

pared to domain-specific calibration data. Three 1130

factors likely contribute to C4’s superior perfor- 1131

mance: (1) Its broad domain coverage better repre- 1132

sents the model’s pretraining distribution, (2) The 1133

dataset’s size and diversity provide more stable 1134

importance score estimation during pruning, and 1135

(3) Reduced domain mismatch between calibration 1136

and test conditions. The performance gap becomes 1137

more pronounced with stricter sparsity constraints 1138

(2:4 vs 50%), underscoring how calibration data 1139

quality grows increasingly critical with aggressive 1140

pruning. 1141

Warm Start. Warm start is a widely recognized 1142

technique in optimization that leverages starting at 1143

a point near the optimal solution to significantly re- 1144

duce the total convergence time. In our framework, 1145

we evaluate the efficiency of warm start mechanism 1146

as follows: Dense Weights < Magnitude Pruning 1147

≈ Wanda < SparseGPT. Dense weights, though 1148
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Table 10: Perplexity across calibration datasets and
sparsity levels of pruned OPT-125M.

Dataset Sparsity WikiText C4 PTB Total

WikiText 50% 30.74 35.03 50.48 116.26
C4 50% 32.82 30.90 49.87 113.59
PTB 50% 40.07 40.81 41.71 122.59

WikiText 2:4 37.22 47.85 72.39 157.45
C4 2:4 45.69 39.21 70.57 155.47
PTB 2:4 61.18 63.59 46.96 171.74

readily obtainable, slow down the convergence due1149

to their significant deviation from the target spar-1150

sity level. Magnitude pruning, involving absolute1151

value computations and comparisons, meets spar-1152

sity requirements but generally yields lower-quality1153

solutions. Wanda, requiring absolute value compu-1154

tations, ℓ2-norm calculations of activation columns,1155

and element-wise multiplication, is nearly as ef-1156

ficient as magnitude pruning. This near parity in1157

efficiency is due to our model’s reliance on activa-1158

tion data from calibration, allowing ℓ2-norm com-1159

putations to occur incidentally during the process.1160

Despite their similar efficiencies, Wanda’s solu-1161

tions markedly outperform those from magnitude1162

pruning. SparseGPT is less efficient compared with1163

magnitude pruning and Wanda but may provide a1164

stronger initial point.1165

To further illustrate the impact of warm start on1166

FISTAPruner, we conduct additional tests using1167

both dense weights and magnitude pruning results1168

as starting points. The results are presented in1169

Table 11, which indicates that FISTAPruner still1170

can achieve comparable results.1171

G Why Intra-Layer Error Correction Is1172

Preferred Over Intra- and Inter-Layer1173

Error Correction1174

We apply only the intra-layer error correction mech-1175

anism for two reasons:1176

1. Parallelization: Intra-layer error correction1177

enables independent pruning of each decoder1178

layer, allowing us to distribute the pruning1179

task across multiple devices by assigning dif-1180

ferent decoder layers to different devices. This1181

increases the overall pruning efficiency.1182

2. Sparsity Sensitivity: While combining intra-1183

and inter-layer error correction could intu-1184

itively reduce error accumulation across the1185

network, we found that this approach is effec-1186

tive only at low sparsity levels. When the prun-1187

ing task becomes harder (i.e., higher sparsity), 1188

global error correction tends to overshadow 1189

the pruning process of individual layers, ulti- 1190

mately leading to worse performance. 1191

The first reason is straightforward; we will ex- 1192

plain the second reason in more detail below. 1193

We conducted a series of comparison experi- 1194

ments on OPT-125M at sparsity levels of 5%, 10%, 1195

20%, and 50%. The experiments included three 1196

conditions: intra-layer error correction only, both 1197

intra- and inter-layer error correction, and no error 1198

correction. The results are presented in the follow- 1199

ing tables. 1200

As shown in the results above, we summarize 1201

the perplexity comparison across different sparsity 1202

levels as follows: 1203

• 5% and 10%: intra- and inter-layer error 1204

correction < intra-layer error correction only 1205

< no error correction. 1206

• 20%: intra-layer error correction only < intra- 1207

and inter-layer error correction < no error cor- 1208

rection. 1209

• 50%: intra-layer error correction only < no 1210

error correction < intra- and inter-layer error 1211

correction. 1212

First, the results confirm the effectiveness of our 1213

intra-layer error correction mechanism, as it con- 1214

sistently outperforms the no-error-correction ap- 1215

proach. 1216

Second, the results confirm the effectiveness of 1217

using both intra- and inter-layer error correction at 1218

low sparsity levels, as it consistently outperforms 1219

the intra-layer error correction alone at 5% and 1220

10% sparsity. 1221

Third, the results show that using both intra- and 1222

inter-layer error correction is sensitive to sparsity 1223

levels and tends to perform worse at higher spar- 1224

sity. Specifically, at 20% sparsity, it underperforms 1225

compared to intra-layer error correction alone, and 1226

at 50% sparsity, it even performs worse than the 1227

no-error-correction approach. 1228

To explain why the use of both intra- and inter- 1229

layer error correction is sensitive to sparsity levels, 1230

we believe this occurs because higher sparsity lev- 1231

els make the pruning task more difficult, leading 1232

to greater error accumulation across layers. When 1233

both intra- and inter-layer error correction are ap- 1234

plied, mitigating the accumulated error from previ- 1235

ous layers may dominate the optimization objective 1236
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Table 11: Perplexity (↓) results for WikiText, PTB and C4 under 50% unstructured and 2:4 semi-structured sparsity.
FISTAPruner is initialized with magnitude pruning and dense weights.

Method Sparsity WikiText PTB C4
Magnitude 25% 31.38 38.99 26.56
FISTAPruner (initialized with magnitude pruning) 25% 28.67 40.29 27.07
FISTAPruner (initialized with dense weights) 25% 28.66 40.27 27.07
Magnitude 50% 193.35 276.17 141.00
FISTAPruner (initialized with magnitude pruning) 50% 38.62 52.26 32.87
FISTAPruner (initialized with dense weights) 50% 38.62 52.43 32.89
Magnitude 2:4 343.91 810.42 223.98
FISTAPruner (initialized with magnitude pruning) 2:4 57.43 78.37 45.20
FISTAPruner (initialized with dense weights) 2:4 58.55 80.72 45.51

Table 12: OPT-125M under 5% Sparsity

WikiText C4 PTB

Intra-layer Error Correction Only 27.64 26.57 38.99
Intra-layer and Inter-layer Error Correction 27.63 26.56 38.98
No Error Correction 27.69 26.60 38.98

Table 13: OPT-125M under 10% Sparsity

WikiText C4 PTB

Intra-layer Error Correction Only 27.47 26.59 39.00
Intra-layer and Inter-layer Error Correction 27.43 26.58 39.04
No Error Correction 27.52 26.69 39.07

Table 14: OPT-125M under 20% Sparsity

WikiText C4 PTB

Intra-layer Error Correction Only 27.36 26.71 39.39
Intra-layer and Inter-layer Error Correction 27.37 26.72 39.53
No Error Correction 27.61 26.91 39.85

Table 15: OPT-125M under 50% Sparsity

WikiText C4 PTB

Intra-layer Error Correction Only 33.54 30.93 49.79
Intra-layer and Inter-layer Error Correction 35.90 32.93 55.24
No Error Correction 34.48 32.24 54.11

in deeper layers, causing the pruning performance1237

of the current layer to suffer.1238

Mathematically, let Wk and Xk represent the1239

weight matrix and the activation of the k-th layer1240

in the original network, respectively. Similarly, let1241

W ∗
k and X∗

k denote the pruned weight matrix and1242

the corresponding activation in the pruned network.1243

In a layer-wise pruning scheme with both intra-1244

and inter-layer error correction mechanisms, we1245

minimize the loss for each layer individually: 1246

∥W ∗
kX

∗
k −WkXk∥2F . (13) 1247

Xk depends on the activation from the previous 1248

layer: 1249

Xk = fk(Wk−1Xk−1), (14) 1250

where fk represents some operations (e.g., activa- 1251

tion function or normalization). Therefore, we can 1252

express the pruned activations recursively as: 1253

X∗
k = fk(W

∗
k−1X

∗
k−1). (15) 1254
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The error at layer k is defined as:1255

∆Xk = fk(W
∗
k−1X

∗
k−1)− fk(Wk−1Xk−1).

(16)1256

Under high sparsity levels, this amplification1257

often results in the accumulated error ∆Xk becom-1258

ing dominant at deeper layers. Thus, for large k,1259

considering both intra- and inter-layer error correc-1260

tion mechanisms, we have:1261

∥W ∗
k (Xk +∆Xk)−WkXk∥2F (17)1262

≈ ∥W ∗
k∆Xk −WkXk∥2F . (18)1263

As a result, the optimization process shifts focus1264

towards correcting this accumulated error rather1265

than pruning the current weight matrix Wk.1266

In other words, minimizing the term in Equa-1267

tion 17 primarily addresses the error correction1268

from previous layers rather than properly pruning1269

the weight matrix Wk, which negatively impacts1270

the pruning performance in deeper layers.1271

H Inference Efficiency of Pruned Models1272

FISTAPruner supports both unstructured and 2:41273

semi-structured sparsity patterns while maintaining1274

model accuracy and compatibility with standard1275

inference kernels. Although our primary focus is1276

on optimizing post-pruning accuracy rather than1277

inference acceleration, the sparsity patterns gener-1278

ated by FISTAPruner align with those evaluated in1279

prior work, enabling direct comparisons of infer-1280

ence efficiency.1281

For unstructured sparsity, prior studies have1282

demonstrated practical speedups on CPU platforms.1283

For instance, DeepSparse achieves a 1.82× end-to-1284

end speedup for OPT-2.7B at 50% sparsity (Frantar1285

and Alistarh, 2023). However, unstructured spar-1286

sity currently offers limited acceleration on GPUs1287

due to hardware constraints. In contrast, 2:4 semi-1288

structured sparsity is natively supported on mod-1289

ern NVIDIA Ampere GPUs (Bai and Li, 2023).1290

Empirical results show that this format yields up1291

to 1.5× speedup for LLaMA-2-7B and LLaMA-1292

2-13B models during inference (Ashkboos et al.,1293

2024).1294

Since FISTAPruner produces models with iden-1295

tical sparsity formats to those studied in (Frantar1296

and Alistarh, 2023; Ashkboos et al., 2024), we ex-1297

pect similar inference speedups in practice. This1298

compatibility ensures that our pruning framework1299

remains practical for deployment while achieving1300

its primary goal of high-accuracy sparse models.1301
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