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ABSTRACT

In actor-critic reinforcement learning (RL), the so-called actor and critic, re-
spectively, compute candidate policies and a value function that evaluates the
candidate policies. Such RL algorithms may be vulnerable to membership in-
ference attacks (MIAs), a privacy attack that infers the data membership, i.e.,
whether a specific data record belongs to the training dataset. We investigate
the vulnerability of value function in actor-critic to MIAs. We develop CriticAt-
tack, a new MIA that targets black-box RL agents by examining the correlation
between the expected reward and the value function. We empirically show that
CriticAttack can correctly infer approximately 90% of the training data mem-
bership, i.e., it achieves 90% attack accuracy. Such accuracy is far beyond the
50% random guessing accuracy, indicating a severe privacy vulnerability of the
value function. To defend against CriticAttack, we design a method called Crit-
icDefense that inserts uniform noise to the value function. CriticDefense can
reduce the attack accuracy to 60% without significantly affecting the agent’s
performance.

1 INTRODUCTION

Membership inference attacks (MIAs) pose privacy vulnerabilities in reinforcement learning
(RL) algorithms (Gomrokchi et al., 2020). Such attacks may make inferences about the train-
ing environments—whether a particular environment has been used in training—by observing
the outcomes of an RL algorithm. For example, Pan et al. (2019); Wang et al. (2019); Chen et al.
(2021) show that MIAs can infer users’ vehicle routes or room layouts.

Most, if not all, existing methods for MIA suffer from high computational complexity or make un-
realistic assumptions. For example, the methods in Pan et al. (2019) and Yang et al. (2021) rely on
observing the learned policies. Both methods are computationally inefficient because they need
to learn separate policies for each environment the attacker wants to infer. The methods in Gom-
rokchi et al. (2021; 2020) do not require learning additional policies for different environments,
but assume that the attacker has full access to the RL algorithm, including the states, transitions,
actions, and rewards on which the algorithm relies.

We propose a new black-box MIA called CriticAttack that alleviates the computational burden
and relaxes the unrealistic assumptions made in the existing works. CriticAttack trains one set
of policies for all environments, as opposed to training one set of policies per environment (e.g.,
Yang et al. (2021)). It makes inferences only based on the values generated by the value function
and the expected rewards, in contrast to the states, transitions, actions, and rewards required by
the existing work (e.g., Gomrokchi et al. (2021)).

We empirically show that CriticAttack can achieve 90% accuracy in inferring environments from
the MiniGrid library (Chevalier-Boisvert et al., 2018). We perform the MIA on a state-of-the-art
actor-critic RL algorithm (Schulman et al., 2017). The actor-critic algorithm trains two compo-
nents: an actor and a critic. The actor generates policies that determine an RL agent’s actions.
The critic learns a value function that evaluates the policies by predicting the expected rewards,
also known as rewards-to-go. The actor and the critic typically memorize their training environ-
ments (Haarnoja et al., 2018; Raichuk et al., 2021). Hence, we expect a high correlation between
the values and the expected rewards from a training environment. On multiple RL tasks, CriticAt-
tack achieves 90% attack accuracy, significantly higher than the 50% random guessing accuracy.

1



Under review as a conference paper at ICLR 2023

Such high attack accuracy is an indication of the severe privacy vulnerability of the value func-
tion.

We then turn our attention to defending against CriticAttack. We design a simple and efficient
defense method called CriticDefense that concentrates on the value function. It inserts uniform
noise to the value function to reduce the correlation between the values and the rewards-to-
go. However, inserting noise introduces a trade-off between the attack accuracy and the agent’s
performance, e.g., measured by the cumulative reward that the agent obtains. CriticDefense can
reduce the attack accuracy from 90% to 60% while degrading no more than 10% of the agent’s
performance.

Furthermore, we provide empirical evidence to show that the correlation between the values
and the rewards-to-go is the primary source of privacy vulnerability. Due to the exploitation
feature of RL, agents tend to choose the states experienced during training. The value function
can accurately predict rewards-to-go on experienced states. Hence the correlation computed
from a training environment is significantly higher than that from a test environment. The high
correlation in the training environment leads to high attack accuracy.

The optimized value function plays a key role in transfer learning and the teacher-student frame-
work. Many well-known transfer learning algorithms for actor-critic require the source agents to
release their optimized value functions (Xu et al., 2020; Zhang & Whiteson, 2019; Takano et al.,
2010). In the teacher-student framework, the student agents learn the optimal policies from the
teacher’s policies and value functions (Kurenkov et al., 2019). Therefore, it is essential to consider
the privacy implications of the value function.

2 RELATED WORK

Pan et al. (2019) and Yang et al. (2021) develop MIA methods for deep RL that collect policies
or actions for inference. While CriticAttack collects values from the value function and the cu-
mulative reward for membership inference. Gomrokchi et al. (2021) and Gomrokchi et al. (2020)
introduce two MIA methods to infer the roll-out trajectories in off-policy RL algorithms, which
learn the optimal policy independently of the agent’s actions. In contrast, CriticAttack works for
on-policy RL algorithms, which optimize policies that determine what actions to take. From the
defense perspective, several works (Garcelon et al., 2021; Lebensold et al., 2019b; Liao et al., 2021;
Balle et al., 2016b; Chen et al., 2021) enforce differential privacy to the RL algorithm, which can
protect against MIAs. Compared to the differential privacy mechanisms, we design CriticDefense
for protecting the value function specifically. CriticDefense provides robust protection against
attacks on the value function; however, it has limited ability to protect other components in the
algorithm and does not achieve differential privacy.

3 PRELIMINARY

Reinforcement Learning (RL) is an area of machine learning where we train an agent or a set
of agents by interacting with a set of environments. The agent observes a state from the environ-
ment, then takes action based on its policy π, and receives a reward from the environment that
evaluates this action.

We formally define the environment as a Markov decision process (MDP) E = {S, A,P, I ,R}, where
S and A are the sets of states and actions, P : S×A 7→ S is the state transition function, I : S 7→ [0,1]
is the initial distribution of the states, and R : S 7→ R is the reward function. We consider a set of
environments as the training dataset of the agent that may face privacy threats.

Actor-Critic (Konda & Tsitsiklis, 1999) is one of the state-of-the-art RL algorithms that trains
two components: actor and critic. The actor with parameters θ takes the current state repre-
sentation and all possible actions as input and then generates a policy πθ . The critic V π(s) with
parametersφ learns a value function, which takes the current state observation as input and out-
puts a value that evaluates the actions leading to the current state. We present the details of the
actor-critic algorithm in the Appendix.
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In the training stage, we run the agent in the set of environments to collect a set of trajectories.
Each trajectory consists of a sequence of tuples (state st , action at , reward rt , new state st+1)
with respect to timestamp t = 1, ...,T . We then estimate the advantage Aπ

t to compute the param-
eters’ gradient in both the actor and the critic. Most actor-critic algorithms use one of the three
advantage estimation methods in Equation 1.

The value function evaluates the current state and past actions leading to the current state by
estimating the reward-to-go. Reward-to-go is the expected cumulative reward the agent can get
if starting from the current state: r̃t =∑T

k=t rk . Note that rk : k > t is an expected reward the agent
will likely to get at timestamp k. In the training stage, we compute the reward-to-go at timestamp
t by giving the values and the advantage estimation method E :

TD advantage: r̃t = Aπ
t +V π

φ (st ), Aπ
t = rt +γV π

φ (st+1)−V π
φ (st ).

N-step advantage: r̃t ,N = Aπ
t ,N +V π

φ (st ), Aπ
t ,N =

N−1∑
k=0

γk rt+k+1 +γN V π
φ (st+N+1)−V π

φ (st ).

Generalized advantage: r̃t ,λ = Aπ
t ,λ+V π

φ (st ), Aπ
t ,λ =

T∑
k=t

(γλ)k−t Aπ
k .

(1)

We train the critic to estimate the reward-to-go at a given state st , and update the parameters φ
accordingly to minimize the value loss:

L (φ) =∑
t
||V π

φ (st )− r̃t ||2. (2)

Membership Inference Attack (MIA) is one of the well-known privacy attacks that can be ap-
plied to machine learning models to infer whether a selected data record belongs to the training
dataset of the given model. The shadow model framework (Shokri et al., 2017) is the standard
approach to MIAs on machine learning models, where the shadow models mimic the behavior
of the target model. Since the training datasets of the shadow models are known, the attacker
can learn to infer whether a data record is used in training the shadow model. We then apply the
trained attacker to infer the target model. We denote the percentage of the correctly inferred data
records as the attack accuracy.

4 ATTACK METHOD

We design an environment-based MIA on actor-critic algorithms named CriticAttack. In
environment-based (user-based) MIA, the attacker infers about an environment, as opposed to
trajectory-based (sample-based) MIA, where the attacker infers about a single trajectory. Criti-
cAttack determines whether the agent has been trained under a particular environment based
on the observation of the values and rewards-to-go.

4.1 ASSUMPTION

A target agent is the RL agent trained by a set of private environments that the attacker wants to
infer. In this work, we perform CriticAttack on the target agent whose policies and value functions
are composed of neural networks and optimized by the actor-critic algorithm.

The information of the target agent includes the well-trained parameters of the actor-network
and the critic-network, the specifications of the two networks such as the number of layers and
the activation function, the training algorithm with hyper-parameters, loss functions, the gradi-
ent history, and feedback from the environments.

The attacker typically does not have full access to the information of the target agent. Based on
the attacker’s access, we can categorize MIAs into two groups: black-box attack and white-box
attack (Hu et al., 2021). The black-box attacker only has access to the inputs and outputs of the
neural networks, the actor-network and the critic network in this case. In contrast, the white-box
attacker has full access to the parameters of the neural networks, loss functions, and gradients.
However, several black-box MIAs (Shokri et al., 2017; Sablayrolles et al., 2019) can also access the
network specifications, training algorithm, and hyper-parameters.
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To distinguish black-box and white-box attacks, we consider the access to the networks’ param-
eters and gradient history as the borderlines between the two types of attacks. The attacker is a
black-box attacker if it has access to neither networks’ parameters nor gradient history.

In this work, we assume the attacker only has access to the inputs and outputs of the actor
and critic networks, the training algorithm (including the advantage estimation method), hyper-
parameters, and rewards from the environments. Therefore, CriticAttack falls into the category
of black-box attack.

4.2 CRITICATTACK

CriticAttack follows the shadow model framework (Shokri et al., 2017). Since we do not have
access to the target agent’s training environments, we train a set of shadow agents with known
environments to mimic the behavior of the target agent. The attacker learns how the shadow
agents behave differently in visited and new environments.

We assume there is a public universal data distribution that all the environments, regardless of
whether they are used during training, are drawn from this distribution. So, the attacker can ob-
tain similar datasets to train the shadow agents. Once the attacker learns to differentiate whether
an environment has been used in training the shadow agents, we can apply it to the target agent.

Training the attacker takes the following three steps:

First, we obtain a set of environments from the data source and evenly partition the environ-
ments into two groups: training environments and validation environments. We train each
shadow agent using the training environments until its performance is less than 5% different
from the target agent. We measure the performance by the average rewards in the validation
environments. We then repeat this step to construct multiple shadow agents.

Second, we run each shadow agent on its training and validation environments to collect trajec-
tories. For each environment E , we collect a corresponding trajectory set SE that contains n critic
trajectories, which is defined in Definition 4.1.

Definition 4.1. A critic trajectory T v,r̃ consists a sequence of (value, reward-to-go) tuples:

T v,r̃ = {(V π
φ (st ), r̃t ) : t = 0, ...,T },

where T is the trajectory length. The critic trajectory can break up into a value trajectory T v and
a reward-to-go trajectory T r̃ :

T v = {V π
φ (st ) : t = 0, ...,T }, T r̃ = {r̃t : t = 0, ...,T }.

Note that we need to compute the rewards-to-go given the rewards and the value trajectory. We
trace the rewards r = {r1, ...,rT } and the value trajectory T v from T to 0 to compute the reward-
to-go trajectory T r̃ and get the critic trajectory T v,r̃ using Algorithm 1. After obtaining the critic
trajectories, we label each critic trajectory set SE as ‘in’ if E belongs to the training environments
and ‘out’ otherwise. By repeating the second step, we get a critic trajectory set and its label for
every environment in the training and validation dataset. These critic trajectories and labels form
a supervised learning dataset for the attacker.

Third, we train a binary classifier that takes a set of critic trajectories SE as input and determines
the corresponding environment E is ‘in’ or ‘out’ of the training environments. We design two ar-
chitectures for the binary classifier: the logistic regression classifier and the deep neural network
classifier.

Logistic Regression on Correlation Score (LR) focuses on the correlation between values and
rewards-to-go. Suppose we have collected N sets of critic trajectories from the shadow agents,
where each set contains n trajectories. For each environment E , we extract the value trajecto-
ries T v

i and the reward-to-go trajectories T r̃
i from the trajectory set SE , where i = 1, ...,n and n

is number of trajectories in SE . Then, we compute the average correlation between the value
trajectories and reward-to-go trajectories following Equation 3:
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Algorithm 1: REWARD-TO-GO ESTIMATION

Input: value trajectory T v , rewards r , discount factor γ, estimation method E ,
hyper-parameters N ,λ

Output: critic trajectory T v,r̃

Aπ
T+1,N ,λ,V π

φ (sT+1),rt>T = 0,0,rT

for t = T to 0 do
if E is TD advantage then

Aπ
t ,N ,λ = rt +γV π

φ (st+1)−V π
φ (st ) ; /* refer to Equation 1*/

end
if E is N-step advantage then

At = rt+1 −V π
φ (st )+γV π

φ (st+1) ; /* refer to Equation 1*/

At+N = rt+N+1 −V π
φ (st+N+1)+γV π

φ (st+N+2)

Aπ
t ,N ,λ = γAπ

t+1,N ,λ+ At −γN At+N ; /* Proof: see Appendix*/

end
if E is Generalized advantage then

Aπ
t ,N ,λ = rt +γV π

φ (st+1)−V π
φ (st )+γλAπ

t+1,N ,λ ; /* refer to Equation 1*/

end
r̃t = Aπ

T+1,N ,λ+V π
φ (st )

end
T v,r̃ = {(vt , r̃t ) : t = 0, ...,T }

ρE = 1

n

n∑
i=1

cov(T v
i ,T r̃

i )

σT v
i
σT r̃

i

= 1

n

n∑
i=1

E[(T v
i −µT v

i
)(T r̃

i −µT r̃
i

)]

σT v
i
σT r̃

i

. (3)

In the training stage, we compute a correlation score ρE for each environment E , form a (corre-
lation, label) tuple, and mark the label 1 to represent ‘in’ and 0 to represent ‘out.’ We then fit the
logistic regression classifier with all the (correlation, label) tuples.

In the inference stage, we compute the average correlation score ρEval for the target agent on a
given environment Eval and use the logistic regression classifier to predict if Eval belongs to the
training dataset of the target agent.

Deep Neural Network (DNN) takes the concatenation ⊕ of the value trajectory and the corre-
sponding reward-to-go trajectory as input and performs binary classification:

N Nω(T v
i ⊕T r̃

i ) =
{

1, as ‘in’,

0, as ‘out’.
.

In the training stage, we assign a label ‘in’ or ‘out’ to each critic trajectory depending on whether
it is collected from a training environment. We then train the neural network with these labeled
trajectories.

In the inference stage, we run the target agent on a given environment E to obtain n trajectories.
We apply the trained neural network to predict each trajectory and take the majority vote as the
prediction for the given environment.

5 DEFENSE METHOD

In practice, the best protection is to conceal the value function from users. However, RL agents
that allow users to fine-tune or allow to be the teacher in transfer learning must release their value
functions. In such scenarios, we introduce a defense method named CriticDefense specifically
against CriticAttack. We consider the correlation between the values and the rewards-to-go as
one of the primary factors impacting the attacker’s decision. Therefore, we develop CriticDefense
to modify the correlations and examine if it can effectively reduce the attack accuracy.
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5.1 CRITICDEFENSE

CriticDefense inserts uniform noise into a certain percentage of the values during training. Prac-
tically, we replace the value function V π

φ in the actor-critic algorithm with the following:

Ṽ π
φ (st ) = (V π

φ (st )+ 1[0,R)(u) ·u ·R)%1, (4)

where R is a hyper-parameter to define the noise percentage, u is sampled from a standard uni-
form distribution: u ∼U (0,1), % is the modulo operation. CriticDefense adds negligible noise to
a small proportion of the values as R approaches 0 and adds large noise to almost all the values
if R approaches 1.

Adding uniform noise to the values indirectly adds noise to the rewards-to-go since we compute
rewards-to-go based on the values according to Algorithm 1. CriticAttack makes inference only
based on the values and rewards-to-go; adding noise to both components is the most straight-
forward approach to protect against such attack.

In RL algorithms, values are strictly between 0 and 1, so we use a modulo to guarantee this. Com-
pared to clipping the noisy values, modulo one ensures the noisy values do not exceed the upper
limit and allows a more significant change, which may further break the correlation between the
values and rewards-to-go. For instance, the original value of 0.95 with a noise of 0.1 will result
in an invalid value of 1.05. Value clipping clips the noisy value to 1 and makes it valid. In con-
trast, modulo results in a new value of 0.05. The modulo will be triggered more constantly as R
approaches 1.

5.2 COMPATIBILITY

CriticDefense is designed to protect the value function against CriticAttack, so it has limited effi-
cacy in protecting the policies and mitigating overfitting. We integrate two other methods with
CriticDefense to strengthen the protection of other components of the actor-critic algorithm,
such as policies. CriticDefense is compatible with the two methods below, which means they
do not interfere with each other and introduce extra performance loss.

Regularization is a prominent approach to prevent overfitting by lowering the complexity of
the neural networks during training (Kukačka et al., 2017). Many works have demonstrated that
regularization reduces MIA accuracy by mitigating overfitting (Ying et al., 2020; Nasr et al., 2018;
Kaya et al., 2020). We consider applying L2 regularization in the actor-critic algorithm: add a
regularization loss with a regularization rate a to the original value loss L (φ).

Value Clipping is another approach to prevent the value function from being over-adapted to
the newly added training environment and losing the information from previous environments
(Schulman et al., 2017). Existing work has shown its effectiveness in protecting against MIA in RL
policies (Yang et al., 2021). It clips the norm of the value loss to ϵcl i p to restrict the step size of
updating the parameters.

6 EMPIRICAL ANALYSIS

In this section, we perform two sets of MIA experiments. In the first set of experiments, we pro-
vide empirical evidence to show that CriticAttack can correctly infer above 90% of the training
environments. In the second set of experiments, we demonstrate the vulnerability factor of Crit-
icAttack and show that CriticDefense can reduce the attack accuracy to 60% while maintaining
the agent’s performance.

In both the attack and defense section, we clip the values to ϵcl i p = 0.2 and enforce L2-
regularization with a = 0.01 to mitigate overfitting while training the agents. We apply the two
methods in both sections to show that: 1) CriticAttack works well even if the mitigation methods
are applied, and 2) the attack accuracy drops due to CriticDefense rather than the two mitigation
methods.
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Figure 1: RL tasks from left to right: Multi-Rooms, Door-Key, Lava-Crossing, Four-Rooms.

Environment Setup In all the experiments, we use the MiniGrid toolkit (Chevalier-Boisvert
et al., 2018) as the underlying testbed. We choose four tasks listed in Figure 1, wherein the agent
learns to reach a target destination without bumping into obstacles. Once the agent reaches
the destination or a fixed number of steps, the environment resets to a new map while the task
remains the same. We control the map’s layout by fixing random seeds due to the one-to-one cor-
respondence between seeds and maps. We use the maps to simulate room/warehouse layouts in
real-world settings and reveal their privacy. Assuming that each new map represents a floor map
of private property, we perform MIA to infer whether the agent has visited a given floor map in
its training, which violates the privacy of the private properties.

Experiment Setup We have presented three different advantage estimation methods in Equa-
tion 1, so we perform three subsets of experiments for the three estimation methods separately.
We use the Proximal Policy Optimization (PPO) algorithm (Schulman et al., 2017) for deploying
the three advantage estimations: TD advantage, N-step advantage (N-Step), and Generalized ad-
vantage (GAE). We apply the PPO algorithm on 40 unique maps to train each target agent (we also
show the MIA results on targets with more training maps in the Appendix). We implement the
PPO algorithm using the RL-Starter-Files library (Willems, 2018) with default hyper-parameters
unless specified below.

6.1 ATTACK

Following CriticAttack in the Methodology section, we train five shadow agents for each target
agent. Due to the assumption that the attacker does not have access to the training data size,
we use 20 distinct maps to train each shadow agent until it converges to the same reward as the
target agent.

Then, we apply each shadow agent to 40 distinct maps- in which 20 maps are used to train this
shadow agent- to collect 25 critic trajectories from each map. So, we can collect 200 trajectory
sets with 5,000 critic trajectories from 5 shadow agents and use them for training the attacker.
Once we finish training the attacker, we apply it to the target agent to infer the training maps of
the target agent.

We have proposed two architectures for the attacker: LR and DNN. We present the MIA results of
the two architectures in Table 1 and show some visualized examples in Figure 2. The LR attacker
can achieve approximately 90% accuracies by only finding a correlation threshold. The DNN
attacker can get close to 95% accuracies; however, it is computationally inefficient compared to
the LR. In summary, both attackers demonstrate the severe vulnerability of the value function by
showing such high attack accuracies.

Estimation(Attacker) Multi-Rooms Door-Key Lava-Crossing Four-Rooms
TD Advantage (LR) 90.5±1.6 89.2±1.3 91.8±0.9 93.1±0.8

TD Advantage (DNN) 95.2±1.1 92.9±1.2 93.8±1.2 96.2±0.5
N-Step (LR) 89.7±1.4 88.7±1.6 90.6±1.2 91.5±1.1

N-Step (DNN) 94.2±0.8 91.4±1.4 93.2±1.3 94.8±0.6
GAE (LR) 89.7±1.4 89.7±1.6 90.2±1.3 92.5±1.0

GAE (DNN) 95.7±1.3 94.1±1.3 94.2±0.9 97.1±0.6

Table 1: MIA accuracies (mean ± standard deviation) across five repetitions.
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Figure 2: MIA on a PPO algorithm with GAE trained for the Multi-Rooms task. The figures in the
first row show the value and rewards-to-go trajectories. The second and third rows show the MIA
results using LR and DNN, respectively.

6.2 DEFENSE

We now investigate the effects of CriticDefense and compare it with the well-known differential
privacy mechanism DP-SGD. We assume the attacker knows the defense methods applied to the
target model, so we also deploy the defense methods with the same parameters while training
the shadow models. Note that we are not trying to indicate that the CriticDefense outperforms
DP-SGD. CriticDefense is more suitable for protecting the value function against CriticAttack, but
DP-SGD is potentially more effective in protecting the policies.

Privacy-Performance Trade-off Figure 3 shows the defense results on GAE on the Multi-Rooms
task, while the MIA settings are identical to Section 6.1. We observe that both of the defense
methods can reduce attack accuracies. CriticDefense can reduce the attack accuracy to approx-
imately 60% with less than 10% performance loss, measured by rewards. We compute the per-
formance loss using the cumulative reward of the unprotected agent rT and the cumulative re-

ward of the protected agent r ′
T : Lper f = rT −r ′T

rT
. CriticDefense can reduce the attack accuracies

to around 60% with approximately 10% of performance losses in the other tasks, regardless of
the estimation methods. Figure 2 compares attack results before and after applying CriticDefense
and shows how CriticDefense reduces the attack accuracy. We also present the numerical results
in Table 4 in the Appendix.

In contrast, the DP-SGD algorithm can reduce the MIA accuracy to approximately 50% with over
60% performance loss. Additionally, the actor-critic algorithm with DP-SGD requires a signifi-
cantly larger number of steps to convergence than CriticDefense. It means the computation of
training a protected agent is ten times more expensive than training an unprotected one.
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Figure 3: Protections against MIA. The first row shows the results of CriticDefense, and the second
row shows the results of DP-SGD. The columns from left to right present the required number of
steps to convergence, final rewards upon convergence, the average correlation between values
and rewards-to-go, and attack accuracies. In DP-SGD, we use the noise variance σ as the x-axis.
We define the differential privacy budget ϵ,δ, and plot σ vs. ϵ in the Appendix.

6.3 VULNERABILITY FACTOR

Due to the exploitation feature of RL, when we place an agent in its training environment, the
agent tends to take the ‘best’ trajectory that it has experienced during training. Therefore, the
value function can accurately predict the rewards-to-go, causing the correlations from training
environments to be significantly higher than correlations from validation environments. Hence
we can achieve above 85% attack accuracy simply by using a logistic regression classifier to find
the threshold between the training and validation correlations.

CriticDefense significantly reduces the training correlation and shrinks the gap between the train-
ing correlation and validation correlation. We can observe that the attack accuracies are decreas-
ing as the training and validation correlations approach each other. Therefore, we conclude that
the correlation between values and rewards-to-go is the primary source of privacy vulnerability
to CriticAttack.

Since CriticDefense can reduce the correlation by only adding a small amount of noise (e.g., R =
0.3), it is sufficient to protect the value function against CriticAttack while maintaining the agent’s
performance. We also present specific examples to support our claims in the Appendix.

7 CONCLUSION

In this work, we introduce an effective and efficient black-box membership inference attack
named CriticAttack that concentrates on the value function of the actor-critic algorithm. We
empirically demonstrate the high vulnerability of the value function of the actor-critic algorithm
to MIAs by showing approximately 90% attack accuracies. Therefore, RL services should provide
users with the least possible access to the value function. We then design a corresponding de-
fense method called CriticDefense, which can significantly reduce the attack accuracies of Crit-
icAttack without hurting the target agent’s performance. A limitation of the current work is that
CriticAttack only works for actor-critic algorithms. We can generalize this MIA to other reinforce-
ment learning algorithms consisting of value functions as a future direction.
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A APPENDIX

A.1 ACTOR-CRITIC ALGORITHM

Algorithm 2: ACTOR-CRITIC

Input: policy πθ, value function V π
φ , environment E = {S, A,P, I ,R}, discount factor γ,

learning rate α, episode τ
Output: optimized policy πθ , optimized value function V π

φ

for k = 1 to τ do
Initialize first state s0, timestamp t = 0
while st is not terminal do

ai ∼πθ(at |st ), st+1 = P (st , ai ),rt = R(st ) ; /* take an action ai, observe
the next state st+1 and the reward rt*/

Compute V π
φ (st )

compute advantage Aπ
t and reward-to-go r̃t ; /* varied by estimation

methods, stated in Equation 1*/
θ = θ+α▽θ logπθ(a|s)Aπ

t ; /* update parameters in actor*/
φ=φ+α▽φ(V π

φ (st )− r̃t )2 ; /* update parameters in critic*/
t = t +1

end
end

A.2 CRITICATTACK PIPELINE

Figure 4: CriticAttack Pipeline.

A.3 PROOF OF THE N-STEP ADVANTAGE IN ALGORITHM 2

Theorem A.1. In the N-Step Advantage, given the {t +1}th advantage Aπ
t+1,N , then the t th advan-

tage is

Aπ
t ,N = γAπ

t+1,N +
(
rt+1 −V π

φ (st )+γV π
φ (st+1)

)
−γN

(
rt+N+1 −V π

φ (st+N+1)+γV π
φ (st+N+2)

)
.

(5)

Proof. We have shown the N-Step Advantage in the Background section:

Aπ
t ,N =

N−1∑
k=0

γk rt+k+1 +γN V π
φ (st+N+1)−V π

φ (st )

= rt+1 +γrt+2 + ...+γN−1rt+N

+γN V π
φ (st+N+1)−V π

φ (st ).

(6)
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The {t +1}th advantage is

Aπ
t+1,N =

N−1∑
k=0

γk rt+k+2 +γN V π
φ (st+N+2)−V π

φ (st+1)

= rt+2 +γrt+3 + ...+γN−1rt+N+1

+γN V π
φ (st+N+2)−V π

φ (st+1).

(7)

Then, we can compute

γAπ
t+1,N = γrt+2 +γ2rt+3 + ...+γN rt+N+1

+γN+1V π
φ (st+N+2)−γV π

φ (st+1),
(8)

hence

Aπ
t ,N −γAπ

t+1,N = rt+1 −γN rt+N+1 +γN V π
φ (st+N+1)

−V π
φ (st )−γN+1V π

φ (st+N+2)+γV π
φ (st+1),

(9)

Aπ
t ,N = γAπ

t+1,N +
(
rt+1 −V π

φ (st )+γV π
φ (st+1)

)
−γN

(
rt+N+1 −V π

φ (st+N+1)+γV π
φ (st+N+2)

)
.

(10)

A.4 COMPARISON BETWEEN EXISTING MIAS

Attacker Multi-Rooms Door-Key Lava-Crossing Four-Rooms
Pan et al. (2019) 82.3±1.9 79.5±2.3 78.4±2.5 87.2±1.6

Yang et al. (2021) 93.9±1.2 93.5±0.7 91.6±1.5 96.1±0.4
CriticAttack (LR) 89.7±1.4 89.7±1.6 90.2±1.3 92.5±1.0

CriticAttack (DNN) 95.7±1.3 94.1±1.3 94.2±0.9 97.1±0.6

Table 2: MIA accuracies (mean ± standard deviation) across five repetitions. We use GAE for all
the results.

A.5 MORE EXAMPLES OF CRITICATTACK

We present more examples of CriticAttack on all three advantage estimation methods in Figure
5. We also show the value trajectories and reward-to-go trajectories collected from a selected
environment which is ‘in’ agent 1’s training dataset but ‘out’ of agent 2’s training dataset. We
can observe the value and reward-to-go trajectories generated by agent 1 are highly correlated
compared to agent 2.

We also perform CriticAttack on target agents whose training data sizes are varied. We attack the
target agents trained using 10, 20,..., and 100 environments and observe how the training data
size affects the attack accuracy. We train the shadow models using identical numbers of training
environments as the target model. We present the results in Figure 6.

We can observe a negative correlation between the training data size and the attack accuracy.
Increasing the training data size will improve the RL agent’s generalization power, reducing the
attack accuracy. However, the impact of training data size to attack accuracy is insignificant.
We can only reduce the attack accuracy by approximately 5% by doubling the training data size.
Simultaneously, the training time significantly increases while we have more training data.

A.6 DIFFERENTIAL PRIVACY

Differential Privacy is a technique for describing the overall patterns of the dataset while conceal-
ing the individual information. It guarantees that two adjacent sets of objects have an indistin-
guishable impact on the overall outcomes by adding a proper amount of statistical noise to the
raw data.
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Figure 5: The first and second rows show the value and reward-to-go trajectories collected from
a selected environment E0, generated by two separate agents: agent 1 and agent 2. Note that E0
is in the training dataset of agent 1 but out of the training dataset of agent 2. The third and fourth
rows show CriticAttack results where the attacker uses a logistic regression classifier and a deep
neural network, respectively.
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Figure 6: the left figure MIA results on target agents with varied numbers of training environ-
ments. These target agents are trained by GAE advantage for the Multi-Room task. The right
figure shows the number of steps required for convergence.
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Definition A.1. Let f be a given function. Define two datasets D and D ′, both in the input domain
of f , adjacent if the number of entries in which the two datasets hold different values is at most
one.

After defining the adjacent dataset, we can define (ϵ,δ)-differential privacy as the following:

Definition A.2 ((ϵ,δ)-DIFFERENTIAL PRIVACY). . Let ϵ be a positive real number and M be a ran-
domized algorithm that takes a dataset as input. Let Y be the image of M . The algorithm M is
ϵ-differentially private if, for all adjacent datasets D1 and D2, and all R ⊆Y :

P[M(D1) ∈ R] ≤ exp(ϵ)P[M(D2) ∈ R]+δ, (11)

where δ captures the probability that ϵ-differential privacy fails. If δ = 0, then we say M is an
ϵ-DIFFERENTIAL PRIVACY.

DP-LSL (Balle et al., 2016a; Lebensold et al., 2019a) is a pretraining protection mechanism that
construct a differentially private value function (critic network). It achieves differential privacy
by adding Gaussian noise to the critic’s parameters before running the actor-critic algorithm.

In the initialization phase, we construct a differentially private critic in the actor-critic algorithm
by adding Gaussian noise to the critic’s parameters. DP-LSL refers to the process of adding noise,
which takes the differential privacy budget ϵ and δ as input.

Then, we apply CriticAttack to the actor-critic algorithm with the differentially private critic. We
present the MIA results in Table 3 and show that the DP-LSL has a negligible effect on protect-
ing against CriticAttack. Note that we obtain the results by performing MIAs on the actor-critic
algorithm with GAE.

The work (Lebensold et al., 2019a) empirically shows that DP-LSL can achieve differential privacy
with minimal loss in performance. However, our experiments demonstrate that DP-LSL does not
affect protecting against CriticAttack. We present the results on Table 3.

ϵ δ LR MIA DNN MIA Final Reward
10 2e-5 90.2±1.1 91.1±1.3 0.973±0.012
1 2e-5 90.5±1.6 90.6±1.8 0.967±0.009

0.1 2e-5 89.8±1.4 91.3±1.5 0.955±0.014

Table 3: MIA accuracy and performance loss under DP-LSL. We report the (mean ± standard
deviation) tuple across five repetitions.

DP-SGD (Abadi et al., 2016) is a standard approach that helps deep learning models satisfy dif-
ferential privacy. DP-SGD modifies the stochastic gradient descent in the training algorithm to
enforce differential privacy to the algorithm itself. DP-SGD modifies the stochastic gradient de-
scent in the training algorithm of the deep learning model to enforce differential privacy to the
algorithm itself.

During the training procedure, DP-SGD first clips the gradients computed over the training data;
then applies the Gaussian mechanism to add statistical noise drawn from a defined Gaussian
distribution to the gradients; finally updates the model with the noisy gradients. Let θ be the
parameters of the deep learning model; the DP-SGD works as the following:

θi+1 = θi − α

β
Mg auss

(
β∑

j=1
g (▽θL j (θ),C ),σ

)
, (12)

where θi is the parameters of the deep learning model at iteration i ;α,β are the learning rate and
the batch size of the training algorithm; g (x,C ) is the clipping function defined by

g (x,C ) = x ·min
(
1, C

∥x∥
)
.

C ,σ are the clipping value and the noise standard deviation of the DP-SGD algorithm.

We define the Gaussian mechanism as Mg auss ( f (x),σ) = f (x)+n, where n ∼N (0,σ2I).
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Estimation(Attacker) Multi-Rooms Door-Key Lava-Crossing Four-Rooms
TD Advantage (LR) 55.6(8.9) 52.1(6.7) 53.8(11.2) 56.3(7.5)

TD Advantage (DNN) 62.4(8.9) 64.6(6.7) 58.1(11.2) 65.2(7.5)
N-Step (LR) 56.3(9.9) 50.8(7.5) 58.1(11.9) 54.2(8.8)

N-Step (DNN) 63.6(9.9) 59.7(7.5) 64.1(11.9) 58.4(8.8)
GAE (LR) 53.7(8.4) 51.5(7.2) 55.9(9.7) 52.6(8.1)

GAE (DNN) 64.4(8.4) 60.8(7.2) 65.7(9.7) 62.5(8.1)

Table 4: MIA accuracies (corresponding performance loss in percentage) across five repetitions.

DP-SGD Privacy Budget We apply the DP-SGD algorithm to enforce differential privacy to
actor-critic reinforcement learning. We set the gradient clipping value ϵcl i p = 0.2, epoch = 4,
batch size β = 256, privacy offset δ = 1e − 4, and sample size n = 1000. We show the privacy
budget ϵ at each noise variance σ in Figure 7.
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Figure 7: DP-SGD privacy budget at each noise level.

A.7 EXAMPLE OF DEFENSE AN ENVIRONMENT

We apply run several agents on the same environment E0 to collect value and reward-to-go trajec-
tories. The first agent is unprotected and has experienced E0 in its training phase, which means
E0 is ‘in’ the training dataset of the first agent. The second, third, and fourth agents are agents
protected by DP-SGD with different noise variances during training. E0 is ‘in’ the training dataset
of these three agents. The fifth agent is unprotected and has not experienced E0 during training.
We present five sets of trajectories in Figure 8, respectively.

The correlations between the value and reward-to-go trajectories in the five rows are 0.88, 0.83,
0.71, 0.32, and 0.26.

We observe that a smaller amount of noise does not affect the correlation between the rewards-
to-go and values, as shown in the second and third rows in Figure 8. Instead, a small amount of
noise only changes the trajectories’ smoothness. We must increase the noise variance to reduce
the correlation, as in the third and fourth rows in Figure 8. However, we already significantly
degrade the agent’s performance by introducing a large noise.

A.8 MORE DEFENSE RESULTS
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Figure 8: Each figure shows the value and reward-to-go trajectories from a selected environment
under various conditions.
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