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Abstract The dynamics of the Riemann`s Zeta function on the critical line

while t rises are studied in this paper. Stated the reason why with big values of
t start occurring exceptions from the Green`s Law and the Lemer`s phenomenon
is explained. It`s shown that almost all non-trivial zeros lie on the critical line
and how to calculate the approximate values of these zeros using known prime
numbers.

Inroduction

1. For complex numbers zeta function s = σ + it with σ > 1 is de�ned as sum
of series:

ζ(s) =

∞∑
n=1

n−s. (1)

L. Euler showed that for real s > 1 takes place the identity:

∞∑
n=1

n−s =
∏
p

(1− p−s)−1, (2)

where composition is taken for all prime numbers. The �rst one to study zeta
function for complex means was B. Riemann, who indicated the set of important
characteristics of this function [1].He proved that this function can be analytically
extended for the whole complex pole, where it has one simple pole with residue
which equals 1 in point s = 1. Riemann also showed (although in di�erent ways)
that this function complies with functional equation.

ζ(s) = χ(s)ζ(1− s), (3)

where

χ(s) = (2π)sπ−1 sin
πs

2
Γ(1− s) = πs−

1
2 Γ

(
1− s

2

)(
Γ
(s

2

))−1
.
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Zeros of a function when σ < 0 will be values s = −2,−4, ... (trivial zeros). Part
of the plane 0 ≤ σ ≤ 1 is called the critical strip and the line σ = 1

2 � is the
critical line. Zeta function has in�nite quantity of complex zeros in the critical
strip. They are situated symmetrically around straight lines t = 0 and σ = 1

2 .
These zeros are called non-trivial. One of the main areas of focus in the theory
of zeta functions is related to studying non-trivial zeros.

2. If N(T ) � is the amount of zeros in rectangle 0 ≤ σ ≤ 1, 0 ≤ t ≤ T , then
asymptotic equality (Riemann-von Mangoldt function) exists.

N(T ) =
T

2π
ln
T

2π
− T

2π
+O(lnT ) (4)

This formula is the logical corollary of the formula

N(T ) =
1

π
θ(T ) + 1 +

1

π
argζ

(
1

2
+ iT

)
, (5)

where through and θ(T ) è argζ
(
1
2 + iT

)
increments of continuous branches of

the function arg
{
π−

1
2 Γ
(
s
2

)}
and argζ(s) along polygonal path with tops at

points 2; 2 + iT ; 1
2 + iT [2] are denoted. Stirling`s formula for gamma function

leads to the equality

θ(T ) =
T

2
ln
T

2π
− T

2
− π

8
+ ∆(T ), (6)

where ∆(T ) = O(T−1). Let S(T ) = 1
πargζ

(
1
2 + iT

)
, S(T ) = 1

2 (S(T − 0) + S(T + 0)),
if T = γk � is ordinate of the zero ζ(s). Then from (5) follows that

S(T ) = N(T )− 1

π
θ(T )− 1 (7)

Function S(T ) is called the argument of Riemann`s zeta function on the
critical line. This function is a piecewise smooth function and is strongly oscillatory.
In case of inde�nite growth of T valuations take place, which belong to J. J.
Littlewood [2]:

S(T ) = O(lnT ),

T∫
0

S(t)dt = O(lnT ). (8)

The set of important characteristics of this function was created by G. Bor, E.
Landau, J. J. Littlewood, A. Selberg, K. M. Tsung and M. Korolev. In particular
Bor and Landau proved that function S(T ) ) is unbounded above and below.

It should be mentioned that the analytic qualities of this function is completely
described through function analytic θ(T ), and the only characteristic connected
with non-trivial zeros ρk = 1

2 + iγk is that in points T = γk function S(T ) has
function jumps of a size which equals to the multiplicity of zero ρk. Formula
(7) doesn`t describe why jumps take place in the mentioned points. The aim of
further contemplation is in researching this fact. Further it will also be proved
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that almost all non-trivial zeros lie on the critical line, and the reason why
�Gram`s law� doesn`t work will be shown, and Lemer`s phenomenon will be
explained.

Results

3. Let f(s) � be an analytic expression with the help of which it is possible
to �nd values of zeta function in the right strip 0 ≤ σ ≤ 1

2 (this can be, for
example, one of the variants of approximate functional equation [2; 3]. Then
using (3) values of the function in points of the nearby left strip 0 ≤ σ ≤ 1

2 it
should be found ζ(s) = χ(s)ζ(1− s). Zeta function is continuous in all points of
the critical line, that is why with �xed t we will have: t

ζ

(
1

2
+ it

)
=

1

2

(
ζ

(
1

2
+ it+ 0

)
+ ζ

(
1

2
+ it− 0

))
= (9)

=
1

2

(
f

(
1

2
+ it

)
+ χ

(
1

2
+ it

)
f

(
1

2
− it

))
.

It`s known [2; 3], that χ
(
1
2 + it

)
= e−i2θ(t), where θ(t) is represented like (6).

Then formula (3) shall become

ζ

(
1

2
+ it

)
= k(t)eiϕ(t)

(
1 + e−2i(θ(t)+ϕ(t))

)
, (10)

k(t) =
1

2

∣∣∣∣f (1

2
+ it

)∣∣∣∣ =
1

2

∣∣∣∣f (1

2
− it

)∣∣∣∣ , ϕ(t) = argf

(
1

2
+ it

)
,

Let`s use partial case of approximate functional equation. Then according to
Riemann-Siegel formula we have

ζ

(
1

2
+ it

)
= e−iθ(t)Z(t) =

∑
n≤x

n−it√
n

+ e−2iθ(t)
∑
n≤x

nit√
n

+ e−iθ(t)R(t)

(here x =
√

t
2π ;R(t) = O

(
t−

1
4

)
[2; 3]).

Taking in account that ζ
(
1
2 + it

)
= 1

2

(
ζ
(
1
2 + it

)
+ χ

(
1
2 + it

)
ζ
(
1
2 − it

))
,

we get:

ζ

(
1

2
+ it

)
= g(t) + e−2iθ(t)g(−t), (11)

where

g(t) =
∑
n≤x

n−it√
n

+ e−iθ(t)r(t), r(t) =
1

2
R(t) (12)

Hence, in formula (10) we can take k(t) = |g(t)|, ϕ(t) = argg(t).
Formula (10) explains the dynamic of zeta function on the critical line while

t grows. The right side of this formula can be studied as a composition of the
following moves:

1) S1(t) = e−i2(θ(t)+ϕ(t)) (move of the point at the unit circle with center in
(0,0) in reverse direction with speed V (t) = 2 (θ′(t) + ϕ′(t)) ≈ ln t

2π ;
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2) S2(t) = 1 + S1(t) (Displacement of the circle by 1 to the right);
3) S3(t) = k(t)S2(t) ) (deformation of radius vector which creates a circle

relative to the point O on the k(t), i.e. compression when 0 < k(t) < 1 and
stretching when k(t) > 1);

4) ζ
(
1
2 + it

)
= e−iϕ(t)S3(t) (small oscillation of a circle at the ��xed� point

O)
4. Formula (10) provides the possibility to study non-trivial zeros, which lie

on the critical line. Consequently ζ
(
1
2 + it

)
= 0, when 1 + e−2i(θ(t)+ϕ(t)) = 0

From this follows that

θ(t) + ϕ(t) =
π

2
+ π (k − 2) , k = 1, 2, .... (13)

It has already been mentioned that

θ(t) =
t

2
ln

t

2π
− t

2
− π

8
+ ∆(t),

i. e. θ(t) � is the increasing function when t > 2π.
From (12) follows that:

g(t) =
∑
n≤x

n−it√
n

+ e−iθ(t)r(t) = 1 +
costln2√

2
+
costln3√

3
+ ...+

costlnn√
n

+

+r(t)cosθ(t)− i
(
sintln2√

2
+
sintln3√

3
+ ...+

sintlnn√
n

+ r(t)sinθ(t)

)
=

= u(t)− iν(t), n ≤ x =

√
t

2π
; r(t) = O

(
t−

1
4

)
.

Then
k(t) =

√
u2 (t) + ν2(t), ϕ(t) = arg g(t). (14)

It can be shown that value of ϕ(t) at certain t in�nitely many times gets
positive and negative values and that is why ϕ(t) is the oscillatory function.

From (13) follows that N(t) =
[
1
π (θ(t) + ϕ(t)) + 3

2

]
. Then for the function

S(T ) we get formula S(t) = − 1
π θ(t) +

[
1
π (θ(t) + ϕ(t)) + 1

2

]
, that describes the

reason of the jumps of a function. From this equation we get that,

ϕ(t) = πS(t)− π
(

1

2
−
{

1

π
(θ(t) + ϕ(t)) +

1

2

})
Since S(t) = O(ln t) then ϕ(t) = O(ln t).
( {a} - - fractional part of à ).
Analysis of formula (13) and its graph explains why with the growth of

t Gram`s Law gets violated, i. e., why points γk go beyond (gk−1; gk) (gk �
Gram`s points, i. e. solutions of equation θ(t) = π(k − 1)). At a large enough
t function θ(t) will surge forward and the density of points will rise as well gk.
. If at these t function ϕ(t) is positive and surging forward to its maximum,
then some share of points of intersection of graph θ(t) +ϕ(t) with straight lines
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π
2 +πk, , i. e. part of points γk will move in negative direction. Herewith, function
S(t), ), which makes jumps by 1 in points γk, on average grows by the value
approximate to m−1, where m � is the amount of points γk, which have moved
to the left beyond their intervals (gk−1; gk). And vice versa, when ϕ(t) is rapidly
decreasing, points γk will move in positive direction, while function S(T ) will
be decreasing by jumps on average.

ÐSolutions of equation (13) are the abscisses of graph intersection points
y = θ(t) + ϕ(t) (in Cartesian coordinate system tOy) with straight lines. y =
π
2 + πk. By virtue of the fact that θ(t) is growing function, and ϕ(t) � is the
oscillatory function ϕ(t) = O(ln t), v θ(t) + ϕ(t) at 0 ≤ t ≤ T will intersect
the abovementioned straight lines approximately as many times as graph of the
function θ(t), , i. e. there will be approximately points of intersection T

2π ln
T
2π −

T
2π . That proves that almost all non-trivial zeros lay on the critical line, i.e takes
place

Theorem

lim
T→∞

N0(T )

N(T )
= 1 (15)

N0(T ) is the amount of zeros on the section of the critical line 0 ≤ t ≤ T of
the critical line. Riemann argued [1], that function ξ

(
1
2 + it

)
on the gap [0;T ]

has aproximetely T
2π ln

T
2π −

T
2π real roots, which is equivalent to the fact that

N0(T ) ≈ T
2π ln

T
2π −

T
2π . Besides, the reasoning of the growth of the function

θ(t) + ϕ(t) indicates that Riemann`s hypothesis about that all trivial zeros lay
on the critical line will be equal to the fact that θ(t) + ϕ(t) is the growing
function for all t > 2π.

5. Let`s study the qualities of value k(t) = |g(t)| at growing t where g(t) is
represented by (12). In order to achieve this, �rst of all we study the subsum∑
x(s) =

∑
n≤x n

−s. We express this sum through the multiplication by simple
numbers

pi ≤ x: ∑
n≤x

n−s =
∏
pli
i
≤x

(
1 + p−si + p−2si + ...+ plisi

)
−
∑′

n−sj (16)

(in the last sum
∑′

n−sj additive components which we get after multiplying the
composition which is given above and which are not components of the original
sum occur). Then

∑
n≤x

n−s =
∏
pli
i
≤x

1− p−(li+1)s
i

1− p−si

(
1−

∑′∏ )
, (17)

here
∑′

=
∑′

n−sj ,
∏

=
∏
pli
i
≤x
(
1 + p−si + p−2si + ...+ plisi

)
.

To simplify the future notes we will take
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αlipi(s) =
1−p−(li+1)s

i

1−p−s
i

, ε1(x; s) =

∑′∏ , and then formula (17) will become

∑
n≤x

n−s =
∏
pli
i
≤x

αlipi(s) (1 + ε1 (x; s)) . (18)

Now let`s study the multipliers αlipi(s).

(1− p−si )−1 =
(

1− p−(σ+it)i

)−1
=
(
1− p−σi costlnpi + ip−σi sintlnpi

)−1
,

Then ∣∣∣(1− p−si )−1∣∣∣ =
pσi√

p2σi − 2pσi costlnpi + 1
. (19)

It`s obvious that
pσi

pσi + 1
≤
∣∣∣(1− p−si )−1∣∣∣ ≤ pσi

pσi − 1
, (20)

1− p−(li+1)s
i = 1− p(−li+1)(σ+it)

i =

1− p−(li+1)s
i = cos (li+ 1) tlnpi + ip

−(li+1)σ
i sin (li+ 1) tlnpi.∣∣∣1− p−(li+1)s

i

∣∣∣ =

√
1− 2cos (li+ 1) tlnpi

p
(li+1)σ
i

+
1

p
2(li+1)σ
i

, (21)

1− 1

p
(li+1)σ
i

≤
∣∣∣1− p−(li+1)s

i

∣∣∣ ≤ 1 +
1

p
(li+1)σ
i

. (22)

Expression
∣∣∣1− p−(li+1)s

i

∣∣∣ at large enough pi and li is close to 1, that is why
major oscillations αupi(s) are set by the �rst multiplier

∣∣∣(1− p−si )−1∣∣∣.
Then

g(t) =
∑
n≤x

n−it√
n

+ e−iθ(t)r(t) =
∑
n≤x

n−it√
n

(
1 +

e−iθ(t)r(t)∑ )
=

=
∏
p
li
i
≤x

αlipi

(
1

2
+ it

)(
1− ε1

(
x;

1

2
+ it

))
(1 + ε2 (x; t)) ,

where ε2(x; t) = e−iθ(t)r(t)∑
n≤x

n−
1
2
−it ). Then

k(t) = |g(t)| =
∏
p
li
i
≤x

ki(t) |1− ε1| |1 + ε2| , (23)

where

ki(t) =

∣∣∣∣(1− p−
1
2−it

i

)−1∣∣∣∣ ∣∣∣∣1− p−(li+1)( 1
2+it)

i

∣∣∣∣ , ε1 = ε1

(
x;

1

2
+ it

)
,

ε2 = ε2(x; t).
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Formula (23) provides possibility to describe the oscillation of value k(t), and
make the dynamic of zeta function on the critical line more precise. Taking into
account that numbers 2π(lnpi)

−1 create coprime periods for functions costlnpi
we can set large enough values of t, when maximums of coe�cients ki(t) will

be almost equal and value k(t) will be close to
√
2√

2−1

√
3√

3−1 ...
√
pi√
pi−1 (the �nal

two multipliers |1− ε1| and |1 + ε2| oscillate near 1). Then the curve ζ
(
1
2 + it

)
will make a loop with the diameter k(t). We can also set the value of t, when

k(t) reaches its minimum, which approximately equals to
√
2√

2+1

√
3√

3+1
...
√
pi√
pi+1 .

The last-mentioned fact gives us a possibility to explain Lemer`s e�ect. [3]. It is
enough to make an elementary transition from function ζ

(
1
2 + it

)
to function

Z(t) = eiθ(t)ζ
(
1
2 + it

)
, which is known to have all real values for all real t to

achieve this. Then loops of the curve ζ
(
1
2 + it

)
of a very small diameter will

transit into fragments of function Z(t), where Lemer`s e�ect occurs.
In a similar way it can be shown that

ϕ(t) =
∑
p
li
i
≤x

ϕi(t) + β1(t) + β2(t),

where

ϕi(t) == −arctg sintlnpi√
pi − costlnpi

+ arctg
sin (li + 1) tlnpi

p
1
2 (li+1)
i − cos (li + 1) tlnpi

β1(t) = arg (1− ε1) , β2 (t) = arg (1 + ε2) .

6. If we use the above-stated arguments to study the problem which is
opposite to the problem of studying the asymptotic law of prime numbers (the
problem of searching for the non-trivial zeros of zeta function through the known
simple numbers) then it is possible to �nd values of γk in this method.

We call the solutions of the equation θ(t) = π
2 +π (k − 2) , k = 1, 2, ... (here,

t1 = 14, 521..., t2 = 20, 655..., t3 = 25, 492..., t4 = 25, 739..., t5 = 33, 624...) the
Gram`s zeros.

These zeros are regular in nature and they are easy to calculate. Then value
of γk can be described as deviation of point tk by small distances in positive
and negative directions, that is why it is appropriate to take γk = tk + ∆k and
to search for corrections ∆k out of the conditions related to the distribution of
primes and their values.

Let`s similarly analyze Chebyshev`s psi-function

ψ(x) =
∑
pk
i
≤x

lnpi (24)

and using Mangoldt`s formula

ψ(x) = x−
∑
ρk

xρk

ρk
− 1

2
ln
(
1− x−2

)
− ln2π =
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= x−
√
x
∑
γk

cosγklnx+ 2γksinγklnx
1
4 + γ2k

− 1

2
ln
(
1− x−2

)
− ln2π, (25)

where xε[a; b], a ≥ 1 è ρk = 1
2 ± iγk.

Then we search approximate values of function ψ(x), which is described by
formula (24), )) look in the form

ψn(x) = x−
n∑
k=1

xδk

δk
− 1

2
ln
(
1− x−2

)
− ln2π (26)

(here sum is taken the same way as in the case of (25) to group additive
components with δk and δ̄k, δk = 1

2 + i (tk + ∆k)). Unknown corrections ∆k are
found out of the condition of minimum (in any given case) disparity εn(x) =
ψ(x)− ψn(x),for example from the condition that

b∫
a

ε2n(x)dx = F (∆1,∆2, ...,∆n)→ min. (27)

Further it`s possible to use the necessary criterion of multivariable function
minimum, to be more precise

∂F

∂∆k
= 0, k = 1, n. (28)

Also it is possible to use iteration process, searching for functional sequence
ψ1(x), ψ2(x), ..., which is characterized by the fact that the amount of additive
components in the right part of sum from equality (26) grows at each step of
iteration cycle-by-cycle and herewith previously found corrections become more
accurate. ∆k.

Conclusion It is proved that on the critical line there are almost all non
trivial zeros of the zeta function. The behavior of the Zeta function on this line
is investigated and the Lemmer phenomenon is explained.

Refences

[1.] Ðèìàí Á. Î ÷èñëå ïðîñòûõ ÷èñåë, íå ïðåâîñõîäÿùèõ äàííîé âåëè÷è-
íû: ñî÷èíåíèÿ. � Ìîñêâà: ÎÃÈÇ, 1948. � 543 ñ.

[2.] Òèò÷ìàðø Å. Ê. Òåîðèÿ äçåòà-ôóíêöèè Ðèìàíà. � Ìîñêâà: ÈË, 1953
� 409 ñ.

[3.] Edward H. M. Riemann's Zeta Function � Acad. Press, 1974 � 317 p.

8


