© O N O g A~ W N =

20
21
22
23
24
25
26

27
28
29
30
31
32
33
34
35

36

Tyr-the-Pruner: Structural Pruning LLMs via
Global Sparsity Distribution Optimization

Anonymous Author(s)
Affiliation
Address
email

Abstract

Structural pruning enhances hardware-agnostic inference efficiency for large lan-
guage models (LLMs) but often struggles to maintain performance. Local pruning
performs efficient layer-by-layer compression but ignores global topology. Al-
though global pruning aims to identify an optimal sparse model, intuitive methods
tend to adopt a two-stage paradigm—first evaluating the saliency of individual
substructures and then applying pruning globally, which ignores inter-structure
dependencies and fails to achieve end-to-end optimization. To address these limi-
tations, we propose Tyr-the-Pruner, an efficient end-to-end search-based global
structural pruning framework. This framework constructs a supernet by repeatedly
applying local pruning across a range of sparsity ratios to each layer in an LLM,
with the core goal of determining the optimal sparsity distribution under a target
overall sparsity ratio. Concretely, we introduce an effective local pruning and an
expectation error accumulation approach to improve supernet construction. Fur-
thermore, we employ an iterative prune-and-search strategy with coarse-to-fine
sparsity granularity to ensure efficient search convergence. Experimental results
show that Tyr-the-Pruner achieves state-of-the-art structural pruning, retaining
97% of the dense model’s performance while removing a challenging 50% of
Llama-3.1-70B’s parameters.

1 Introduction

Large language models (LLMs) have significantly advanced natural language processing, achieving
exceptional performance in tasks such as text understanding, generation, and reasoning [47, (7} 4].
However, the computational and storage resources required for model deployment incur high costs
and environmental impacts, limiting their accessibility in resource-constrained scenarios. Model
compression techniques, such as quantization [20} [10], pruning [9} 22], and low-rank decomposition
[40], are essential for reducing LLLM size and computational demands. This paper focuses on
structural pruning, which enhances inference efficiency in a hardware-agnostic manner.

Existing structural pruning methods for LLMs are typically classified into local and global techniques.
Local pruning methods [16} 24], which prune layers individually, enable efficient compression of
hundred-billion-scale LLMs on a single GPU via offload approaches. However, they overlook global
dependencies in model topology and restrict the sparsity to be uniform across layers. Global pruning
methods [22] [17, [1]] alleviate local constraints, facilitating sparsity allocation and the potential for
optimal pruning. However, many existing methods estimate the saliency of substructures and prune
them accordingly via global ranking, ignoring inter-structure dependencies and hindering end-to-end
optimization. Such methods may also suffer from the inefficiency of backpropagation-based saliency
estimation and overfitting when calibration data is limited. Therefore, a question arises:

How to achieve efficient global structural pruning with end-to-end optimization?

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

37
38
39
40
41
42
43

44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59

60
61
62
63
64
65
66

67

68
69
70
71
72
73
74

75

76
77
78
79

80
81
82
83
84

To address this challenge, we propose Tyr-the-Pruner, an efficient search-based global pruning
framework with end-to-end optimization. Our framework constructs a supernet by applying local
pruning to each layer, producing pruned copies with different sparsity ratios. The objective is
to identify an optimal subnet that satisfies the target overall sparsity ratio within the supernet by
determining the optimal sparsity distribution across layers. We use evolutionary search [21]] to solve
this optimization problem. To construct reliable supernets and perform effective and efficient search,
we make the following contributions:

* To improve supernet construction, we propose an effective local pruning approach for
attention heads and feed-forward networks (FFN), using Taylor expansion-based first- and
second-order optimization information to identify redundant structures and adjust remaining
weights. Pruning and weight adjustments are applied progressively and finely to preserve
accuracy. Additionally, we introduce an expectation error accumulation approach to address
the challenge of unclear error propagation caused by the multiple pruned copies within the
supernet. This approach ensures balanced mutual awareness across sparse structures during
supernet construction.

* To enhance the efficacy and efficiency of subnet search, we employ a tailored distillation-
inspired metric as the optimization objective to guide the search process, aiming to preserve
the subnet’s generative capability. In general, Tyr-the-Pruner is formed as an iterative prune-
and-search framework that refines sparsity allocation for each layer with reduced search
space and fast convergence. Each iteration prunes and constructs a supernet across a specific
range of sparsity ratios, coupled with a sparsity-shift-driven evolutionary search, where
random sparsity shifts between layers generate parent candidates, and the best-performing
ones are filtered as offspring. The sparsity interval is refined after each iteration.

By making these contributions, Tyr-the-Pruner achieves end-to-end global pruning with strong
efficacy and efficiency. Notably, the proposed framework only requires 4M tokens for calibration
and search. Experimental results demonstrate that Tyr-the-Pruner surpasses state-of-the-art pruning
methods. For example, Tyr-the-Pruner outperforms the SOTA method FLAP, achieving 3.45 lower
perplexity in language comprehension and 10.26% higher average downstream accuracy when
pruning 37.5% of the parameters of Llama-3.1-8B. Moreover, it maintains 97% performance with
50% pruning on Llama-3.1-70B, a sparsity ratio that is considered aggressive for existing methods.

2 Method

This section presents Tyr-the-Pruner, a novel structural pruning framework for large language models
(c.f., Section for preliminaries), as illustrated in Figure |1l This framework (1) constructs a
supernet by applying local pruning across various sparsity ratios to each model layer, aiming to
(2) search the optimal sparsity distribution under a target overall sparsity ratio. Specifically, we
propose an effective local pruning approach (c.f., Section[2.2)) and an expectation error accumulation
approach (c.f., Section [2.3) to enhance supernet construction. An iterative prune-and-search strategy
with coarse-to-fine sparsity granularity (c.f., Section[2.4) ensures efficient search convergence.

2.1 Preliminaries

Large language models typically use the Transformer decoder architecture [37], as shown in Fig-
ure [T(a). Each Transformer layer consists of two key components: the multi-head self-attention
(MHA) and the feed-forward network (FFN), followed by a residual connection and layer normaliza-
tion. Given the input X,_; to the ¢-th layer, the output X, can be expressed as:

X = LayerNorm (X,_; + MHA(X,_1)),

X, = LayerNorm (X + FFN(X)) . M
The MHA mechanism captures dependencies across different positions in the input sequence with
multiple attention heads, each with its query (W), key (Wy,), value (W), and out (W) linear
transformations. Modern LLMs typically employ a SwiGLU-based FFN [31], consisting of gate
(W gate), up (W), and down (W g4,) linear transformations, with activation after the gate. This
structure aids in extracting non-linear representations.

85
86
87
88
89
90

91

92
93
94

95
96

97

98
99

100
101
102
103
104

t t Prune T 1
5 Sparsity Granularity | -
> —> Add & Normalize —> Add & Normalize >

Search
s ee—" *I

. . Father
PPL: 18.19
Waown = =
55 ayer

Waate

w

up

e
Select Sparse Structure

I
P

iv

-y

5% sparsity
Aysreds o,Ge+

‘I Layer
1 1 c Son
l — Add & Normalize @ PPL:10.38 — Add & Normalize >
55% L L
I B, 429, T e, I
|
499
Wo'| [Wo
>, o o
‘ H Select Sparse Structure ! L___Select Sparse Structure !
1

|
(@ (b) (c) (d)

Figure 1: An overview for Tyr-the-Pruner. Large language models (a) will be effectively locally
pruned across multiple sparsity ratios and constructed into a supernet (b). An iterative prune-and-
search strategy will be used to select the optimal sparse structure for each layer while maintaining a
target overall sparsity ratio: pruning and sparsity-shift-driven evolutionary search are implemented
iteratively with a coarse-to-fine sparsity interval granularity (c). Ultimately, the post-pruned LLM
with the optimal sparsity distribution (d) is obtained.

Structural pruning for LLMs can be applied across four key dimensions: (1) attention heads, (2) FFN
intermediate neurons, (3) embedding dimension size, and (4) model depth. It can be isotropic (uniform
sparsity across layers) or non-isotropic (layer-specific sparsity). This paper focuses on pruning
attention heads and FFN intermediate neurons with non-uniform sparsity: pruning functionally
independent heads and neurons allows for controllable accuracy loss, while layer-specific sparsity
further enhances pruning by tailoring compression to each layer’s characteristics.

2.2 Effective Local Pruning

Redundant structure identification and weight adjustment. When pruning is scoped to the local
level, one can determine the pruning outcome by eliminating the redundant input channels of each
o_proj and down_proj modules, with a consistent sparsity across layers. Assuming the weight of
a layer is W € R%n*dou and its input activation is X € R%W*dn_ the pruned weight W satisfies the
sparsity constraint C. The corresponding optimization objective is expressed as:

argmingy || XW — XWH% s.t. C(\/N\/') =C.)

The pruning process can be viewed as a perturbation applied to the weights: W = W — §W. There-

fore, the error function is given by £ = || XW — XWH% = || X§W |3, which can be approximated
by a Taylor series expansion around W and whose local fluctuations can be defined as:

T 2
1
o= (5@) W AW oW +O(IWIT.)
S~ ~0
GT20 H#0

0 F reflects the effect of YW on the pruning error, which we aim to minimize. The first-order gradient
G cannot be neglected, as the calibration samples are inevitably misaligned with the proprietary
closed-source pre-training data. The Hessian matrix H helps to identify pruning-sensitive weights
from a curvature perspective. Considering the sparsity constraint (§W,,. = W, .: the p-th input
channel of W is to be pruned), we design the redundant channels and weight adjustment as follows:

105
106
107

108
109
110
111
112
113

114
115
116
117
118

119

120

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

138
139
140
141
142

143
144
145
146
147
148
149
150

W,,..|I2
W, = argminy, | <]Gp7:W£ |+ 2”[Hfl]H2> , W =-HZ) G, 4
p,p

H = X"X and G = HW (analytic solutions computed without backpropagation, efficient) are
used as estimates of the local optimization information. The channel p with the least error impact is
identified and pruned, while W adjusts the remaining weights to compensate for pruning errors.

Pruning heads and neurons. In our framework, feed-forward network neurons are pruned based
on individual channel saliency computed from the down_proj layer, where each channel acts as the
atomic unit for ranking and removal. For multi-head self-attention, saliency is first computed per
output channel of the o_proj layer, then aggregated (averaged) across channels belonging to the
same head, which is treated as the atomic unit for pruning. Similarly, in grouped query attention,
saliency is aggregated over all channels corresponding to the same grouped head.

Progressively pruning and weight adjustment. We adopt progressive pruning with an appropriately
fine granularity: finer granularity allows unpruned weights to gradually and uniformly compensate
for pruning losses in small increments while enabling precise and dynamic redundant channel
identification. Reducing granularity does not significantly complicate pruning, as the key intermediate
variable H™! can be rapidly adjusted to account for partial channel pruning in O(d?2,) complexity [8].

Detailed analysis can be found in Appendix[A.1]

2.3 Prune-to-supernet across Multiple Sparsity Ratios

As illustrated in Figure [I(b), a super- perplexity@Wwikitext2 Perplexity@Wikitext2
net will be constructed by repeatedly |lama-3.1-8B: 5.84 Llama-3.1-8B: 5.84

applying local pruning across a range Local pruned 50%: 538.23 @} Local pruned 50%: 58.09 &

of sparsity ratios to each LLM layer, |_,| Dense DEe | I_,| e f-. Dense
producing pruned copies with varying X X :

sparsity ratios. However, this introduces " Pruned To-prune | = Pfuned < To-prune
challenges in error accumulation across

layers. Error accumulation introduces Layer [Layerl+1 Layer [Layer[+1
an additional forward pass of the post- (a) w/o Error Accum. (b) w/ Error Accum.

pruned layer, using its output activation
as input for the next layer. The change
in the input directly affects the optimiza-
tion of the subsequent layer. In the ex-
ample shown in Figure[2] pruning half of Llama-3.1-8B’s parameters using the local pruning approach
with error accumulation results in significantly lower language comprehension perplexity than pruning
without it. This performance gap highlights the critical role of error accumulation: it enables deeper
layer pruning to be aware of shallower layer pruning.

Figure 2: Implementing layerwise error accumulation gives
a more accurate pruning result than not. Solid lines indicate
forward propagation, and dashed lines indicate pruning.

The existence of multiple sparse structures complicates error accumulation, making it unclear which
pathway to prioritize. To address this issue, we propose an expectation error accumulation approach
to enable balanced mutual awareness among the sparse structures in the supernet. Let the output
activation of the e-th sparse structure with sparsity S, in layer ¢ be X, 1 .. We define the expectation
output activation Xy, for this layer as:

E

1-5,
X1 =Y e X e ®)
e:zl ZeEzl(l - Se)

A higher scaling factor is assigned to low sparsity weights because their output activations are more
stable and reliable. By enabling expectation error accumulation and applying the local pruning
approach, we can prune Llama-3.1-8B to create nine sparse structures in each layer, with 12.5% as the
sparsity interval (covers complete pruning and abandoned pruning). The post-pruned model achieves
a language comprehension perplexity of 66.38 on the WikiText-2 task, with manually picking the
50% sparse structure as an example. This result is close to the ideal perplexity of 58.09 achieved
under full error accumulation and significantly better than the 208.92 perplexity from random error
accumulation and 538.23 perplexity with abandoned error accumulation.

151

152
153
154
155
156
157

159
160
161
162
163

164

165

166
167
168
169
170
171

172
173
174
175
176
177
178

179
180
181
182
183

184

194

2.4 Tyr-the-Pruner

By introducing effective local pruning and expectation error accumulation approaches, we can
construct a supernet to tackle the global sparsity allocation problem. Specifically, we address the
following issues to achieve efficient and effective sparsity allocation: (1) defining generalizable
criteria for selecting a better sparse structure, (2) achieving an efficient search-based sparse structure
selection while maintaining overall sparsity, and (3) handling the contradiction between fine-grained
sparsity intervals and the large search space.

Align to dense model behaviors to win. Towards the definition of better sparse structures, we
consider that large language models are designed for multi-task generalization. Thus, guiding sparse
structure selection on a single task risks overfitting. To mitigate this, we adopt a distillation-inspire

metric to measure the similarity between sparse and dense models. A salient similarity indicates
that the current sparse structure is better aligned with the dense model, making it more suitable
for selection. Specifically, let h{™® and h}”>™ denote the activations of the dense and e-th sparse

)
sparse

dense and z {e} Tepresent the logits of the dense model and selected

(structure) models at layer ¢, and z

({e} = {es}L_,) sparse subnet.

2 QAT
, 4 B KL(Zdense||Zs{1::1}1:se>7 (6)

{e} = argming,y Z oy Hh?ense — h??grse
4

Sparse structure selection via evolutionary search. Evolutionary search can achieve convergence
in model architecture optimization [33| 21]. Compared to intuitive router training, evolutionary
search requires no additional parameters. It maintains constant overall sparsity by shifting sparsity
between sparse structures from different layers, whereas router training relies on penalty terms for
suboptimal soft sparsity control. Evolutionary search is efficient, as it allows the just-in-time loading
(c.f., Appendix [A.4) of sparse structures and leverages the backpropagation-free feature.

Mutation (stochastic perturbation) in our evolutionary search arises from sparsity shifts across layers
(c.f., Select Sparse Structure in Figure[I). For instance, the sparsity of the (-th layer may decrease
by s%, while the ¢'-th layer increases by s% (achieved by selecting different sparse structures). In
each generation, we randomly generate such a group of sparsity distributions as candidates. Starting
from the root generation, the performance of candidates is evaluated, and the best-performing ones
are selected to generate new candidates for the next generation. Generations continue to be explored
until the optimal sparsity distribution is found.

Iterative prune-to-supernet and evolutionary search. The search space for selecting sparse
structures with fine-grained sparsity is enormous. For instance, constructing a supernet with a sparsity
interval of 1.5625% would result in 65 sparse structures per MHA/FFN layer. For a 40-layer LLM,
this would lead to over 5K sparse structures, creating a 10*4°-scaled search space. Identifying
solutions in this large search space is difficult and costly.

To address this issue, we form Tyr-the-Pruner as an iterative prune-and-search framework. We first
prune and construct a supernet with a coarse-grained sparsity interval (c.f., Figure[T(b)). For example,
with 12.5% as the sparsity interval, the resulting supernet could have as few as nine sparse structures
per MHA/FEN layer, yielding a significantly reduced search space. We then perform the evolutionary
search to find the optimal sparsity distribution at this granularity. Based on which, we next refine
the sparsity interval granularity and perform a new iteration of pruning and supernet construction
(c.f., Figure[I[c)). For example, suppose the current optimal sparsity of a layer is 37.5%. In that
case, we reduce the sparsity interval from 12.5% to 6.25%, use 37.5% as the median, and generate
nine new sparse structures with sparsity ratios ranging from 12.5% to 62.5%. Overall, we iteratively
apply the prune-and-search process until the optimal sparsity distribution at the finest granularity is
identified, which is then used for final model compression (c.f., Figure [T(d)). Taking halving the
sparsity granularity at each iteration as an example, our framework reduces the search space size
to 107° per iteration. It only requires four iterations to achieve the same sparsity granularity as the
search-only strategy (1.5625% sparsity interval). This strategy significantly reduces both the search
space and the generations explored per iteration.

Algorithms [T] to] in Appendix [A.2] provide algorithmic procedures for local pruning, supernet
construction, evolutionary search, and Tyr-the-Pruner.

!There is no real knowledge distillation training (weight updates) included in our methodology.

201

202

203
204
205

207
208

210

211
212
213
214

215
216

Table 1: Post pruning performance comparison of different methods. Language comprehension
perplexity is validated on the Wikitext2 test set with a sequence length of 4096, where a lower value
reflects better performance. Downstream accuracy (%, higher is better) is averaged across ARC-Easy,
ARC-Challenge, BoolQ, HellaSwag, OpenbookQA, RTE, WinoGrande, and MMLU, with MMLU
using a 5-shot benchmark and others a 0-shot benchmark. The best results are shown in bold.

Perplexity on Wikitext2 | Average Downstream Accuracy (%) 1

Sparsity| Method Llama-2] Llama-3.x Mistral Llama-2 | Llama-3.x \ Mistral
7B 13B | 23B° 0-8B 1-8B |7B-v0.3 Nemo | 7B 13B [2-3B 0-8B 1-8B [7B-v0.3 Nemo
0% | NA | 512 457 | 729 576 584 | 495 535 |57.96 62.05|57.01 64.08 64.77| 63.72 66.24

ShortGPT 8.86 5.67 1242 1390 13.14 7.58 772 |53.27 59.16|53.13 57.75 58.50| 59.49 59.46
LaCO+ 752 5.69 1225 10.12 9.98 7.46 7.95 ||53.23 57.26(52.46 59.41 60.36| 58.67 59.96
SliceGPT 8.25 7.19 18.71 2046 22.10 7.00 9.74 |/55.89 59.70|51.64 57.55 56.82| 59.67 53.27
Wanda-sp 6.24 6.09 | 18224 8691 18.46 6.86 727 ||55.40 57.41|38.02 33.95 47.89| 59.44 56.82
12.5% | LLM-Pruner | 6.11 5.17 11.14 8.24 8.26 6.17 6.79 |53.38 59.78|46.98 53.96 54.04| 55.26 58.23
ZipLM 586 521 1132 1037 9.30 5.84 7.62 ||55.85 61.91|51.37 57.55 57.54| 62.46 60.24
OSSCAR 594 521 11.11 10.15 9.87 5.75 7.04 |/55.29 61.94(52.23 57.19 58.53| 62.06 53.89
FLAP 6.11 5.75 10.25 8.34 8.07 6.18 7.68 ||54.63 57.55|47.74 55.72 56.66| 59.51 57.67
Tyr-the-Pruner| 5.84 5.03 9.16 7.39 7.41 5.61 6.31 |56.98 62.66|54.78 62.01 63.02| 63.05 64.15

ShortGPT | 23.41 17.94 |1464.20 4836.41 3418.83| 3520 124.20 ||46.68 51.86|41.25 38.12 38.62| 51.07 51.68
LaCO+ 18.84 9.00 | 128.77 124.86 137.17 | 2291 20.79 ||45.47 52.77|46.26 48.58 49.80| 51.84 53.65
SliceGPT 16.84 1250 | 4544 4773 5543 | 12.08 19.37 ||51.40 58.04|45.87 50.01 48.49| 52.26 46.27
Wanda-sp 921 1992 | 94.12 4895 962.72 | 17.83 15.34 |/49.92 38.17|33.93 34.53 32.40| 49.13 41.30
25% LLM-Pruner | 11.56 7.11 25.14 18.65 19.35 10.24 11.81 [[44.09 49.56|39.55 42.36 40.88| 46.32 45.26
ZipLM 749 6.65 4350 2874 52.69 7.39 991 |52.59 60.50|41.61 38.72 39.20| 58.05 45.59
OSSCAR 746 9.19 | 122,63 1740 17.03 7.16 9.57 ||51.99 59.55|33.29 44.27 42.19| 55.94 4595
FLAP 8.31 7.50 15.64 12.65 12.30 8.01 13.59 |[49.36 54.37|44.01 47.41 49.20| 52.64 48.83
Tyr-the-Pruner| 7.51 5.79 1253 13.14 10.38 7.08 7.87 |/ 54.64 61.16|51.72 58.50 58.66| 60.22 60.61

ShortGPT | 70.96 52.24 | 554.88 5.1E+04 9.3E+04|2347.69 864.38 ||43.66 43.13|41.28 39.16 38.97| 35.80 42.52
LaCO+ 87.77 96.00 | 494.07 1645.83 1377.02| 429.78 462.92 ||41.55 47.60|40.24 38.89 38.85| 40.44 42.88
SliceGPT 3510 2622 | 9841 176.81 237.50 | 27.68 38.46 ||43.80 51.83|37.40 39.96 38.97| 43.30 39.55
Wanda-sp 19.97 3470 | 344.17 2422.78 3627.00| 31.85 74.87 |/40.45 35.69|33.08 30.59 32.56| 38.13 33.59
37.5% | LLM-Pruner | 37.75 1496 | 161.10 8793 70.93 | 2490 32.10 | 35.96 40.36|33.26 32.40 32.53| 37.94 37.42
ZipLM 1213 13.01 | 283.53 50.36 12598 | 14.01 15.53 ||47.53 51.89|33.35 34.77 36.55| 48.90 44.86
OSSCAR 1128 1274 | 182.00 27.69 28.87 | 1043 16.00 |47.42 51.74|32.76 40.81 39.87| 4891 4581
FLAP 12.41 11.33 | 26.05 22.61 21.54 | 11.81 27.01 |[43.51 48.54|39.28 41.51 43.07| 4490 45.57
Tyr-the-Pruner| 10.29 7.17 27.88 21.64 18.09 | 10.25 11.47 |[52.21 58.67 | 46.11 53.66 53.46| 52.34 54.63

ShortGPT 226.40 187.23 |2313.30 1473.71 1678.15|5532.76 6804.52 ||36.99 39.47|34.09 37.51 36.52| 35.05 38.00
LaCO+ 256.71 1129.00|6019.01 2.1E+04 5.4E+04|6019.01 5.9E+04 | 34.89 41.79|33.96 35.21 33.28| 33.93 33.25
SliceGPT 65.34 50.66 |205.09 384.04 35321 | 54.66 69.15 |[39.43 43.84|33.52 34.55 34.32| 36.17 34.95
Wanda-sp |122.28 47.89 | 262.92 187.41 18847 | 91.34 293.59 |/32.26 35.82|32.29 33.86 32.39| 33.59 3227
50% LLM-Pruner |117.40 53.96 |473.50 302.15 288.32 | 74.04 469.93 ||31.70 35.17|30.97 31.63 31.58| 32.64 32.89
ZipLM 3291 2470 |356.02 102.76 366.34 | 24.18 24.96 |[32.60 42.66|32.51 33.14 34.45| 39.93 38.42
OSSCAR 2841 44.17 |320.14 80.90 198.87 | 29.58 23.14 |[39.46 40.40|33.85 32.58 34.16| 40.95 37.99
FLAP 2549 16.89 | 27298 82.12 13428 | 34.81 79.46 |[39.84 44.04|33.29 38.68 36.59| 40.57 39.34
Tyr-the-Pruner | 16.17 9.59 29.84 3859 30.89 | 1553 16.85 || 47.41 54.58 41.41 47.41 47.79| 46.21 47.92

3 Experiments

3.1 Experimental Settings

Models. We conduct experiments using the widely adopted large language models Llama?2, Llama3.x,
and Mistrals [36} 7} [14], focusing on models with over three billion parameters. The pruning targets
include attention heads and FFN neurons, which are applied to the Transformer backbone. The
embedding layer and the Im-head remain unchanged.

Calibration. For calibration, we consider FineWeb [29]], a high-quality dataset curated from Common
Crawl snapshots with rigorous deduplication and filtering. Specifically, we extract about 4M tokens
(about 1k samples for a maximum input length of 4k) from its FineWeb-Edu subset to construct
calibration samples, ensuring high data quality and efficiency.

Evaluation. We use perplexity as one evaluation metric for language comprehension performance
[9], validated on the WikiText2 [25] test set. To evaluate the impact of compression across various
downstream tasks, we report 0-shot accuracy on ARC [6], BoolQ [5], HellaSwag [45], OpenBookQA
[26], RTE [38]], and WinoGrande [30] tasks, as well as 5-shot accuracy on the MMLU [13]] benchmark.

Implementation details. We implement Tyr-the-Pruner with PyTorch [28] and leverage the Hug-
gingFace Transformers and Datasets libraries [42]] to manage models and datasets. For local pruning,

217
218
219
220
221
222
223
224
225
226
227
228
229

230

231
232
233
234
235
236
237
238

240
241
242
243
244
245
246
247

248
249
250
251

252
253

Table 2: Post pruning performance on massive language models. Accuracy (%, higher is better)
serves as the comparison metric. MMLU employed a 5-shot benchmark, while other tasks used
0-shot benchmarks. The percentage of average accuracy maintenance after pruning was recorded,
with values >95% highlighted in green and values <95% in red. The best results are shown in bold.

Model ‘ Sparsity ‘ Method ‘ Arc-C Arc-E BoolQ HellaSwag OBQA RTE WinoGrande MMLU AVG
‘ 0% ‘ N/A ‘ 5444 8274 8373 64.77 3740 67.87 77.98 68.79 67.22 (100%)
SliceGPT 38.65 6839 69.63 38.40 25.00 6354 67.40 50.20 52.65 (78%)
Liama-2-70B LLM-Pruner 2193 29.08 43.18 26.26 14.00 51.62 49.25 23.77 32.39 (48%)
50% ZipLM 46.67 77.61 82.26 56.94 3400 68.95 75.61 54.33 62.05 (92%)
OSSCAR 4821 7837 81.99 57.00 3260 67.15 76.64 56.05 62.25 (93%)
FLAP 40.02 70.79 7474 51.83 32.00 60.29 67.88 39.65 54.65 (81%)
Tyr-the-Pruner | 48.21 79.12 83.18 60.04 3520 70.76 78.14 60.58 64.40 (96 %)
0% ‘ N/A ‘ 60.58 87.29 8529 66.50 37.00 70.04 79.64 78.72 70.63 (100%)
SliceGPT 32.08 58.00 63.85 34.02 20.60 5343 56.99 32.60 43.95 (62%)
Llama-3.1-70B LLM-Pruner 2142 2538 3881 26.22 13.80 54.87 50.83 24.95 32.04 (45%)
e 50% ZipLM 48.55 7854 80.55 55.98 31.60 66.79 78.37 62.73 62.89 (89%)
OSSCAR 4829 78.62 81.44 54.69 32.80 68.23 77.58 60.38 62.75 (89%)
FLAP 37.54 6890 67.34 43.98 2640 60.65 72.30 54.40 53.94 (76%)
Tyr-the-Pruner | 56.74 85.40 85.20 64.07 36.40 71.48 78.91 70.29 68.56 (97 %)

we iteratively prune and adjust weights by removing one attention head or 16 FFN neurons at a time.
The prune-and-search process consists of 4 iterations, where the sparsity interval at the ¢-th iteration
is set to 12.5%/2¢~1, In each iteration, we explore 50 generations with 128 offspring candidates per
generation. The sparsity shifts of the attention or FEN layers are independent to ensure the consistency
of the sparsity interval granularity. Candidate validation is performed using the distillation-inspired
metric with vocabulary logits. We follow [33]] to enhance validation efficiency: the 128 offspring are
first validated on 2K tokens, and the top 16 are selected. These 16 survivors are then validated on
16K tokens, from which the top 4 are selected, and finally, the best one is validated and selected on
128K tokens. To ensure a fair comparison, we use the same FineWeb-Edu samples for calibration to
reproduce the baselines. The benchmark results of the baselines may outperform their reported results
due to the improved calibration sample size and data quality. All experiments for Tyr-the-Pruner were
conducted on 4 AMD Instinct™ MI250 (64GB) Accelerators, with models less than 13B parameters
running on a single accelerator.

3.2 Performance

Language comprehension and downstream task performance of post-pruned LLMs. We applied
structural pruning to various large language models using Tyr-the-Pruner at overall sparsity levels
of 12.5%, 25%, 37.5%, and 50%. The performance was benchmarked against state-of-the-art
methods, including ShortGPT (layer pruning) [23], LaCO+ (ShortGPT with LaCO layer merging)
[44]], SliceGPT (embedding dimension pruning) [3l], Wanda-SP [34} 1], LLM-Pruner [22]], ZipLM
[16], OSSCAR [24], and FLAP [1]]. Table E] summarizes the comparative results, highlighting
post-pruning performance in language comprehension and downstream tasks (c.f., Appendix [A.9] for
detailed results within each task).

Tyr-the-Pruner demonstrates competitive performance across various sparsity ratios and LLMs. It
consistently achieves state-of-the-art results at low sparsity ratios (<25%). For instance, pruning
12.5% of Llama-3-8B’s parameters yields the lowest perplexity (7.39) and the highest average
downstream accuracy (62.37%), surpassing the previous awesome methods, LLM-Pruner and LaCO+,
by 8.0% and 2.6%. At higher sparsities (>37.5%), maintaining performance poses a significant
challenge for existing methods, with advanced techniques like OSSCAR often exhibiting perplexities
exceeding 100 and accuracies dropping below 40%. Tyr-the-Pruner, by contrast, excels under these
conditions. For example, at 37.5% sparsity, the pruned Mistral-Nemo model achieves a perplexity of
11.47 and an accuracy of 55.63%, substantially outperforming ZipLM and FLAP.

Scale up to massive language models. Structural pruning of massive language models challenges
post-pruned performance and resource budgets. We incorporated a CPU offload policy into typical
baseline methods to ensure a fair comparison on 70B-scale models. Table[2]compares the post-pruning
performance of Llama-2-70B and Llama-3.1-70B at 50% sparsity.

Experimental results demonstrate Tyr-the-Pruner’s strong scalability under high sparsity for massive
models. LLM-Pruner shows clear scaling limitations, maintaining only 48% accuracy when pruning

254
255

256
257
258
259

261

262
263
264
265
266
267

269

270
271
272
273
274
275
276
277
278
279
280

281
282
283
284
285

287
288
289
290
291
292

294
295

Table 3: Inference efficiency of post-pruned LLMs Table 4: Ablation study on local pruning.
with Tyr-the-Pruner. Benchmarks were conducted Wikitext2 Perplexity and 0-shot accuracy on
on a single AMD Instinct™ MI250 accelerator using ARC-C, ARC-E, and BoolQ are reported.

PyTorch (HipBlas) for LLM inference, with input

Method | Configurati Wikitext2 ARC-C ARC-E Bool
and output sequence lengths set to 2048. cthod | Configuration | Wikiex ool
FLAP |- | 13428 2099 43.18 5229
- Default 5809 2406 58.67 6346

Model | Sparsity #Params TTFT Decode Throughput Wikitext2 Calibrated 4900 2005 5484 6171
| C4 Calibrated 7307 2142 5758 6217
0% 8.0B 2.49 (1.00x) 12.27 (1.00x) Local Pruning | /o ooressive pruning | 6348 2338 56.65 6217
Llama-3.1-8B | 25% 6.1B 1.94(1.28x) 14.13 (1.15x) wlo Hessian 109.88 2253 51.68 4648
50% 43B 142 (1.75x) 16.97 (1.38x) wlo Gradient 6731 2560 5783 6217
| Default 6638 2305 5846 6235

) O(Z) 14.3B 4.16 (1.00x) 6.68 (1.00x) Local (l;‘runmg wio Error Accum. 53823 2193 3354 4031
Mistral-Nemo | 25% 1L.OB 3.34 (1.25x) 7.55 (1.13x)) w/Random Error Accum. | 20892 2270 3914 45.05
50% 7.8B 2.49(1.67x) 8.93 (1.34x) Build Supemnet|) {yniform Error Accum.| 7510 2372 53.03 60.06

Llama-2-70B. In contrast, Tyr-the-Pruner achieves 97% accuracy maintenance when pruning Llama-
3.1-70B, outperforming alternative methods.

Inference efficiency of post-pruned LLMs. To evaluate the efficiency gains of post-pruned LLMs,
we constructed inference benchmarks summarized in Table [3] For Llama-3.1-8B, 50% sparsity
reduces time to first token (TTFT, in seconds) by 43% and boosts decode throughput (tokens/s) by
38%. These results highlight pruning as a key technique for inference optimization in large language
models. More detailed efficiency analysis can be found in Appendix

3.3 Ablation Study

Prune-to-supernet. The effectiveness of local pruning and supernet construction depends on factors
such as calibration samples, the implementation of local pruning, and error accumulation. Table 4]
presents ablation study evaluating these factors for pruning Llama-3.1-8B at 50% sparsity. Experimen-
tal results show that FineWeb-Edu is consistently preferred as a calibration source, emphasizing the
importance of selecting high-quality calibration samples. The exist of first-second-order-combined
optimization information and progressive pruning significantly impacts accuracy, demonstrating
their necessity. Furthermore, the proposed expectation error accumulation approach outperforms
alternatives, showcasing its ability to make sparse structures mutually aware appropriately.

Evolutionary search direction. To assess the T,ple 5: Ablation study on search direction.
impact of search direction on final performance, wyikitext2 Perplexity and 0-shot accuracy on

we compare the effects of minimizing single- ARC.C. ARC-E BoolQ are reported.
task losses versus our similarity-based metric

when pruning 50% of Llama-3.1-8B’s parame- Search Direction | Wikitext2 ARC-C ARC-E BoolQ
ters, as shown in Table[5] Experiments show that Wikitex2 Perplexity 1722 2069 6406 6223
inel k h d £ . hich Fineweb-Edu Perplexity 31.65 31.06 64.18 62.17
single-task search underperforms our metric, whic Similarity-based 2856 3251 6587 6312

achieves optimal accuracy by calculating the simi- _Similarity-based Logits-only 30.89 31.83 6536 64.62
larity across activations from the first, median, last,

and logits layers, requiring 96 GB for hidden activation checkpointing. Due to this overhead, the
logits-only metric was favored, maintaining strong performance with reduced resource demands.

Execution efficiency: Tyr-the-Pruner vs. fine- Search Time (Minutes)
. . 0 192 384 576 768 960 1152
grained search-only strategy. Figure [3demon-
Tyr-the-Pruner Iter-1 = Tyr-the-Pruner Iter-3 Search Only

strates the advantages of Tyr-the-Pruner over the
search-only strategy in efficacy and efficiency in
identifying the optimal 50% sparsity distribution
on Llama-3.1-8B. In which the search-only strategy 08 W

uses a fine-grained 3.125% sparsity interval. Exper- Accuracy = 47.79
imental results show that Tyr-the-Pruner achieves a
similar convergence trend as the search-only strat-
egy but with faster convergence, fewer generations,
and reduced search time. Additionally, the final
post-pruned model discovered by Tyr-the-Pruner
outperforms the search-only strategy, with an av-
erage accuracy of 47.79 compared to 43.58. Our
evolutionary search maintains time efficiency, with a single generation requiring only 190 seconds.

Tyr-the-Pruner Iter2 = Tyr-the-Pruner lter-4

0 50 100 150 200 250 300 350 400
Generation
Figure 3: Tyr-the-Pruner has faster conver-
gence, fewer exploration generations, shorter
search time, and better search outcomes com-
pared to the fine-grained search-only approach.

296

297
298
299
300
301
302
303

304
305
306
307
308
309
310
311
312

314
315

316
317
318

319
320
321
322
323
324
325
326

327
328
329
330
331

332

333
334
335
336
337

338

339
340
341
342
343
344
345
346

4 Related Work

Pruning techniques for compressing large language models. The growing complexity of
Transformer-based language models, now reaching hundreds of billions of parameters, has intensified
the necessity for effective pruning strategies. Pruning methods are generally divided into unstructural
and structural approaches. Unstructural pruning [9, [34] achieves high accuracy by selectively zeroing
individual elements in the weight. However, it often requires specialized hardware, such as 2:4
sparse tensor cores [48]], for end-to-end acceleration. Structural pruning enables hardware-agnostic
acceleration by removing entire weight groups, but it may result in a pronounced loss of accuracy.

Structural pruning of LLMs can be approached as local optimization, alleviating memory constraints
from loading the full model. ZipLM [16]] accelerates inference by leveraging the Optimal Brain
Surgeon (OBS) [[12] theory, pruning weights to minimize the impact on the Hessian matrix and
adjusting the remaining weights to reduce layerwise loss. Building on ZipLM, OSSCAR [24] in-
troduces a permutation search between pruned and remaining weights within each layer, further
reducing pruning-induced loss. Some approaches apply global optimization strategies to prune LLMs,
overcoming local constraints, enabling customized sparsity distributions, and potentially finding
optimal solutions. [17] introduced Fisher information as a saliency metric, selecting structures to
prune through global dynamic programming. LLM-Pruner [22] defines broad substructure depen-
dency groups and then evaluates their saliency to guide pruning. FLAP [1]] uses a global metric that
considers both weights and activations for sparsity allocation, followed by layerwise pruning and
bias adjustments to mitigate pruning losses.

Additionally, there is growing interest in embedding dimension [3] and depth [23| [44] pruning
techniques for LLMs. Some training-aware structural pruning methods [46| (19} 27| are also gaining
attention, as they further enhance pruning effectiveness by considering training dynamics.

Neural architecture search (NAS) for LLM compression. Several studies have applied NAS to
compress LLMs, seeking architectures that reduce inference costs while maintaining accuracy. multi-
objective NAS has been employed to explore various search space definitions, identifying compressed
LLM architectures that enhance efficiency and accuracy when fine-tuned on specific downstream
tasks [[15]. LLaMAFlex [2] fine-tunes LLMs into supernets with a Gumbel softmax-based trainable
subnet router, realized a “rain once, deploy many" model compression. EvoPress [33]] proves that
evolutionary search can determine suitable layerwise compression configurations and extends this
method to support mixed-precision quantization and non-isotropic unstructural sparsity.

This paper presents a novel structural pruning framework, Tyr-the-Pruner, for large language models.
Unlike conventional methods, this framework searches for the optimal sparsity distribution within a
supernet. Through enhanced supernet construction and an iterative prune-and-search technique, it
achieves end-to-end global pruning optimization with strong efficiency and efficacy, setting a new
benchmark for post-pruning accuracy maintenance.

5 Limitations

Tyr-the-Pruner achieves state-of-the-art structural pruning outcomes by constructing reliable supernets
and employing an iterative prune-and-search process. We have significantly reduced the search space
and the number of generations explored. However, the search time cost remains non-negligible.
Fair time costs in model compression are often considered acceptable, as the goal is to achieve a
sufficiently optimized pruned model. However, we will continue to optimize it in future work.

6 Conclusion

This paper introduces Tyr-the-Pruner, an end-to-end global structural pruning framework for large
language models. By constructing a supernet through local pruning across various sparsity ratios
and using evolutionary search to identify the optimal subnet, our framework achieves the optimal
sparsity distribution under a target overall sparsity ratio. We propose an effective local pruning
and an expectation error accumulation approach to enhance supernet construction. Additionally, an
iterative prune-and-search strategy with coarse-to-fine sparsity granularity ensures rapid convergence.
Extensive experiments show that Tyr-the-Pruner outperforms state-of-the-art methods, achieving 50%
parameter pruning while retaining 97% accuracy on Llama-3.1-70B.

347

348
349
350
351
352
353

354
355

356

358
359

360
361

363
364
365
366
367

369
370
371
372

374

375
376
377

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393

394
395
396
397
398

399
400
401
402
403

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao Wang. Fluctuation-based adaptive structured
pruning for large language models. In Michael J. Wooldridge, Jennifer G. Dy, and Sriraam Natarajan,
editors, Thirty-Eighth AAAI Conference on Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference
on Innovative Applications of Artificial Intelligence, IAAI 2024, Fourteenth Symposium on Educational
Advances in Artificial Intelligence, EAAI 2014, February 20-27, 2024, Vancouver, Canada, pages 10865—
10873. AAAI Press, 2024.

Anonymous. LLamaflex: Many-in-one LLMs via generalized pruning and weight sharing. In Submitted
to The Thirteenth International Conference on Learning Representations, 2024. under review.

Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari Do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. In The Twelfth
International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net, 2024.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens
Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Lan-
guage models are few-shot learners. In Hugo Larochelle, Marc’ Aurelio Ranzato, Raia Hadsell, Maria-
Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In Jill Burstein,
Christy Doran, and Thamar Solorio, editors, Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages 2924-2936.
Association for Computational Linguistics, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurélien
Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern,
Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe
Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel
Song, Danielle Pintz, Danny Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-
Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan,
Eric Michael Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis
Anderson, Graeme Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar,
Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan Misra, Ivan Evtimov,
Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der
Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie
Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe,
Junteng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin
Stone, and et al. The llama 3 herd of models. CoRR, abs/2407.21783, 2024.

Elias Frantar and Dan Alistarh. Optimal brain compression: A framework for accurate post-training
quantization and pruning. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and
A. Oh, editors, Advances in Neural Information Processing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in one-shot.
In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan
Scarlett, editors, International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu,
Hawaii, USA, volume 202 of Proceedings of Machine Learning Research, pages 10323-10337. PMLR,
2023.

10

404

406
407
408
409
410

411
412
413
414

415
416
417

418
419
420
421

422
423

424
425
426
427
428

429
430
431
432
433

434
435

436
437

438
439
440
441
442

443
444
445

446
447
448
449
450

451
452

454
455
456
457

(10]

(11]

[12]

[13]

[14]

[15]

(16]

[17]

(18]

[19]

(20]

(21]

[22]

(23]

[24]

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. GPTQ: accurate post-training quantiza-
tion for generative pre-trained transformers. CoRR, abs/2210.17323, 2022.

Shangqian Gao, Chi-Heng Lin, Ting Hua, Zheng Tang, Yilin Shen, Hongxia Jin, and Yen-Chang Hsu.
DISP-LLM: dimension-independent structural pruning for large language models. In Amir Globersons,
Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang, edi-
tors, Advances in Neural Information Processing Systems 38: Annual Conference on Neural Information
Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024, 2024.

Babak Hassibi and David G. Stork. Second order derivatives for network pruning: Optimal brain surgeon.
In Stephen Jose Hanson, Jack D. Cowan, and C. Lee Giles, editors, Advances in Neural Information
Processing Systems 5, [NIPS Conference, Denver, Colorado, USA, November 30 - December 3, 1992],
pages 164—-171. Morgan Kaufmann, 1992.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the International
Conference on Learning Representations (ICLR), 2021.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego
de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and
William El Sayed. Mistral 7b. CoRR, abs/2310.06825, 2023.

Aaron Klein, Jacek Golebiowski, Xingchen Ma, Valerio Perrone, and Cedric Archambeau. Structural
pruning of large language models via neural architecture search. In AutoML Conference 2023 (Workshop).

Eldar Kurtic, Elias Frantar, and Dan Alistarh. Ziplm: Inference-aware structured pruning of language
models. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey
Levine, editors, Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023,
2023.

Woosuk Kwon, Sehoon Kim, Michael W. Mahoney, Joseph Hassoun, Kurt Keutzer, and Amir Gholami.
A fast post-training pruning framework for transformers. In Sanmi Koyejo, S. Mohamed, A. Agarwal,
Danielle Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Information Processing Systems 35:

Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022, 2022.

Qi Le, Enmao Diao, Ziyan Wang, Xinran Wang, Jie Ding, Li Yang, and Ali Anwar. Probe pruning:
Accelerating llms through dynamic pruning via model-probing. arXiv preprint arXiv:2502.15618, 2025.

Shengrui Li, Xueting Han, and Jing Bai. Nuteprune: Efficient progressive pruning with numerous teachers
for large language models. CoRR, abs/2402.09773, 2024.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan Xiao,
Xingyu Dang, Chuang Gan, and Song Han. AWQ: activation-aware weight quantization for on-device
LLM compression and acceleration. In Phillip B. Gibbons, Gennady Pekhimenko, and Christopher De Sa,
editors, Proceedings of the Seventh Annual Conference on Machine Learning and Systems, MLSys 2024,
Santa Clara, CA, USA, May 13-16, 2024. mlsys.org, 2024.

Yugiao Liu, Yanan Sun, Bing Xue, Mengjie Zhang, Gary G Yen, and Kay Chen Tan. A survey on
evolutionary neural architecture search. IEEE transactions on neural networks and learning systems,
34(2):550-570, 2021.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large language
models. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey
Levine, editors, Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023,
2023.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect. CoRR,
abs/2403.03853, 2024.

Xiang Meng, Shibal Ibrahim, Kayhan Behdin, Hussein Hazimeh, Natalia Ponomareva, and Rahul
Mazumder. OSSCAR: one-shot structured pruning in vision and language models with combinatorial
optimization. In Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria,
July 21-27, 2024. OpenReview.net, 2024.

11

458

460

461
462

463
464
465

466
467
468
469
470
471
472
473

474
475
476

477
478

479

480
481
482
483
484

485

487
488
489

490
491

492

494
495
496
497
498
499
500
501
502
503

504
505
506
507
508

509
510
511
512

[25]

[26]

(27]

(28]

(29]

(30]

(31]
(32]

(33]

(34]

[35]

(36]

(371

(38]

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models.
In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct electricity?
a new dataset for open book question answering. In EMNLP, 2018.

Saurav Muralidharan, Sharath Turuvekere Sreenivas, Raviraj Joshi, Marcin Chochowski, Mostofa Patwary,
Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz, and Pavlo Molchanov. Compact language models via
pruning and knowledge distillation. CoRR, abs/2407.14679, 2024.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Z.
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library.
In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’ Alché-Buc, Emily B. Fox, and
Roman Garnett, editors, Advances in Neural Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 8024-8035, 2019.

Guilherme Penedo, Hynek Kydlicek, Loubna Ben Allal, Anton Lozhkov, Margaret Mitchell, Colin Raffel,
Leandro von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for the finest text data at
scale. CoRR, abs/2406.17557, 2024.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adversarial
winograd schema challenge at scale. arXiv preprint arXiv:1907.10641, 2019.

Noam Shazeer. GLU variants improve transformer. CoRR, abs/2002.05202, 2020.

Xuan Shen, Pu Zhao, Yifan Gong, Zhenglun Kong, Zheng Zhan, Yushu Wu, Ming Lin, Chao Wu, Xue Lin,
and Yanzhi Wang. Search for efficient large language models. In Amir Globersons, Lester Mackey, Danielle
Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang, editors, Advances in Neural
Information Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024,
NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024, 2024.

Oliver Sieberling, Denis Kuznedelev, Eldar Kurtic, and Dan Alistarh. Evopress: Towards optimal dynamic
model compression via evolutionary search. CoRR, abs/2410.14649, 2024.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning approach for large
language models. In The Twelfth International Conference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.

Shengkun Tang, Oliver Sieberling, Eldar Kurtic, Zhigiang Shen, and Dan Alistarh. Darwinlm: Evolutionary
structured pruning of large language models. arXiv preprint arXiv:2502.07780, 2025.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh
Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao,
Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy
Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan
Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin
Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned
chat models. CoRR, abs/2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von Luxburg, Samy
Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 5998-6008, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. GLUE:
A multi-task benchmark and analysis platform for natural language understanding. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net, 2019.

12

513
514
515

516
517

518
519
520
521
522
523

524
525
526
527
528
529
530

531
532

533
534
535
536

537
538
539

540
541
542
543
544

545
546
547

549
550
551

(39]

(40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

Boyao Wang, Rui Pan, Shizhe Diao, Xingyuan Pan, Jipeng Zhang, Renjie Pi, and Tong Zhang. Adapt-
pruner: Adaptive structural pruning for efficient small language model training. CoRR, abs/2502.03460,
2025.

Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. SVD-LLM: truncation-aware singular value
decomposition for large language model compression. CoRR, abs/2403.07378, 2024.

Yuxin Wang, Minghua Ma, Zekun Wang, Jingchang Chen, Liping Shan, Qing Yang, Dongliang Xu,
Ming Liu, and Bing Qin. CFSP: an efficient structured pruning framework for 1lms with coarse-to-
fine activation information. In Owen Rambow, Leo Wanner, Marianna Apidianaki, Hend Al-Khalifa,
Barbara Di Eugenio, and Steven Schockaert, editors, Proceedings of the 31st International Conference
on Computational Linguistics, COLING 2025, Abu Dhabi, UAE, January 19-24, 2025, pages 9311-9328.
Association for Computational Linguistics, 2025.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language processing. In Qun
Liu and David Schlangen, editors, Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, EMNLP 2020 - Demos, Online, November 16-20, 2020,
pages 38-45. Association for Computational Linguistics, 2020.

Shangyu Wu, Hongchao Du, Ying Xiong, Shuai Chen, Tei-Wei Kuo, Nan Guan, and Chun Jason Xue.
Evop: Robust LLM inference via evolutionary pruning. CoRR, abs/2502.14910, 2025.

Yifei Yang, Zouying Cao, and Hai Zhao. Laco: Large language model pruning via layer collapse. In Yaser
Al-Onaizan, Mohit Bansal, and Yun-Nung Chen, editors, Findings of the Association for Computational
Linguistics: EMNLP 2024, Miami, Florida, USA, November 12-16, 2024, pages 6401-6417. Association
for Computational Linguistics, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine really
finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for Computational

Linguistics, 2019.

Mingyang Zhang, Hao Chen, Chunhua Shen, Zhen Yang, Linlin Ou, Xinyi Yu, and Bohan Zhuang.
Loraprune: Structured pruning meets low-rank parameter-efficient fine-tuning. In Lun-Wei Ku, Andre
Martins, and Vivek Srikumar, editors, Findings of the Association for Computational Linguistics, ACL
2024, Bangkok, Thailand and virtual meeting, August 11-16, 2024, pages 3013-3026. Association for
Computational Linguistics, 2024.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang,
Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. A survey of
large language models. CoRR, abs/2303.18223, 2023.

Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan, Wenxiu Sun, and Hongsheng Li.
Learning N: M fine-grained structured sparse neural networks from scratch. In 9th International Conference
on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

13

552

553

554
555
556
557

558

559

560
561
562

563
564

565
566

567
568

569
570
571

572
573
574
575
576

577
578

580
581

A Appendix

A.1 Theoretical Foundations of Local Pruning

Redundant channel identification. We consider first- and second-order terms to minimize Equa-
tion . For the first-order term, we identify the to-prune channel p by argminy, (|G, . W, |),
which identifies the weights with the minimal contribution in the gradient direction [22]. For the

second-order term, we employ the Optimal Brain Surgeon (OBS) method [[12], which optimizes

2
argmingy (%) by considering the inverse of the diagonal elements of the Hessian matrix.

This method measures each channel’s contribution to the curvature of the loss function.

The identification metric for redundant channels is derived from a manual design that takes into
account both first- and second-order optimization information, distinguishing it from previous work.
Table] demonstrates the validity of our metric by ablation.

Weight adjustment. We minimize Equation (3) by applying the Lagrange multiplier method to
impose constraints on the p-th channel should be pruned (§W,, . = W, .):

LEW,) = GT6W + %5WTH5W + AT (6W,. —W,.) 7

Under the constraints, the resulting loss function £(6W, A) will be differentiated with respect to SW
and A to find the minimum value:

OLOW,A) _ G +HIW +E,\" =0,

DOW ®
OL(OW, A)
— o =W, =W, =0,

For the G + H6W + Ep)\T term, we use p and ~ p to denote channels to prune and channels to
remain. Corresponding variables can be expanded in this way:

Gy, H,, H, =0 5Wp,: AT _
[Gy] + [H 0 H oW, |Tlo [T ©)

~p.p ~p,~p

where the elements of the Hessian matrix corresponding to the pruned positions p can be set to zero
(when a channel of the weights is pruned, the same position of the Hessian/invHessian matrix are

pruned correspondingly [8]]). Overall, the solution is §W ., . = _H:;),NpGNP»Z‘

Fast update of inverse Hessian matrix. When the p-th channel is pruned, the inverse Hessian
matrix H~! must be updated to account for the removal of the corresponding channel p in W. This
update can be efficiently derived by leveraging the properties of partitioned matrices and applying the
Sherman-Morrison-Woodbury formula. The main idea is that the pruning of the p-th channel results
in a rank-1 update to H~!, which is mathematically represented as:

H'«H'- H H ! (10)

H,p

By updating the inverse Hessian with a rank-1 adjustment, the influence of the p-th channel is properly
removed through the outer product of the corresponding column and row vectors, using the reciprocal
of the p-th diagonal element. The updated H~ ensures consistency for the remaining channels,
enabling efficient and scalable pruning operations. This method has a time complexity of O(d2),
avoiding full recomputation of the inverse and ensuring computational efficiency.

14

582 A.

2 Algorhthms for Tyr-the-Pruner

Al

gorithm 1 Function local_pruning

Algorithm 2 Function prune_to_supernet

1: Inputs: to-prune weight W,

—_—

= P AN A i

input activations X,
sparsity S,

pruning granularity (pruning times) K

: Mask < ones_like(W)
H«X"X
G+~ HW
:fork < 1to K do
2
p ¢ argmin,, (!GP’:W;:| + %)
Mask, <0 pp
Wep: + Wep. + HZ) L, Gp:
—1 1 1 "1 i
H — H - WH:’p pr:
: end for
: Return Mask © W

1: Inputs: LLM weights {W1, Wy, ..., W},

10:

11

2
3
4
5:
6
7
8
9

sparsity ratios

{81,158, ., SLE}

input activations for first weight X,
pruning granularity (pruning times) K

: for / <+ 1to L do

X_list < []

for ¢ < 1to E do
W, + local_pruning(W,, X, S¢., K)
store(We,e)
X _list. append(X - Wg)

end for

E 1-Sy e .
XS, 725:1(12_»5£1€)X_11st[e]

end for
Return {Wz,e}fz’}iezl

Al

gorithm 3 Function evolutionary_search

1

10:
11:

12

R A A

: Inputs: sparse structures W = {W11,..., W1 g,.... W g},

sparsity ratios { Sy }¢_,, sparsity interval S¢
: procedure makeCandidates(numCanidates,W, {Se}t_,, S9)

Candidates +]
for i < 1 to numCanidates do

end for
end procedure: return Candidates

t {Sebiza = {Setis
: for g < 1 to numGenerations do

. Return {5,}}_,

Candidates. append(randSparsityShift(W, {S¢}£_, S, randChoice(L), randChoice(L)))

Offsprings < makeCandidates(numCanidates, W, {§g}£:1, S9)
{Se}}_| < checkSparsity (argminSearchMetric(Offsprings))

Al

gorithm 4 Function Tyr-the-Pruner

1: Inputs: LLM weights {W1, W3, ..., W}, input activations for first weight X,
pruning granularity (pruning times) K, overall sparsity .S, sparsity interval S9,

11:
12:

13:

14:
15:

17:

R A O Rl

num sparse structures F, iterations '
procedure generateSparsities(L, E, {S¢}f_1, S9)

Sparsities = {}
for ¢ < 0 to range(L) do
for e + 0 to range(FE) do

end for
end for
end procedure: return Sparsities
{Se}izn < {S)e
fort < 1to T do

SS9+ 59 %05
: end for

Return compress({v\we}ZL:’If’e:1 ASED)

Sparsities +— generateSparsities(L, E, {ge}eLzl, S9)
{Wﬁ,e}eL:’Pf,eﬁ + prune_to_supernet({W}r_1, Sparsities, X, K)

{S}b, « evolutionary_search({V/\\fg,e Yot o=t

Sparsities. append(Sy — ((e — 1) x 0.5) x S +1i x 59)

{Se}ics, 59)

583

584
585
586
587
588
589
590
591

593
594
595
596
597
598
599
600
601
602
603
604
605
606
607

608
609
610
611
612
613
614

615

616
617
618
619

621
622
623
624
625
626
627
628

629

630
631
632
633
634
635

A.3 Further Comparisons

To further demonstrate the ef-
fectiveness of our proposed
method, Tyr-the-Pruner, we
conducted a more comprehen-
sive comparison. The com-
petitors include the pure subnet
search framework SearchLLM Model | Sparsity
[32]], the probe-based dynamic 0%

pruning approach ProbePrun- i

Table 6: Further comparisons. Perplexity on Wikitext2 (lower
is better) and O-shot accuracy (%, higher is better, DarwinLLLM
reported the 25-shot Arc-C benchmark) serve as the comparison
metrics. Optimal results are bolded.

Method ‘ Wikitext2 | ‘ BoolQ © WinoGrande t ARC-E 1 ARC-C 1
N/A | 568 | 7138 67.01 67.45 41.38
SearchLLM 6.89 70.98 74.92 64.23 36.52

\

\ \
‘ 25% ‘ Tyr-the-Pruner | 7.36 75.81 75.68 66.36 4206
ing [18]], the sparsity distri- | 0% | NA | 512 | 7768 69.06 7630 4343
bution optimizer Adapt-Pruner ‘ 0% ‘ PruneNet - ‘ - 61.09 5320 3353
39). th d-fi DISP-LLM 6.85 - 6227 5981 33.19
[‘ » e coarse-and-line com- rjama-2-78 375% | Tyr-thePruner| 1029 6887 66.93 7113 3831
bined approach CFSP [41]], 40% ProbePruning 801 | 6470 58.10 62.50 37.70
: i ON- DISP-LLM 9.84 - 58.41 4306 2585
the calibration-free approach 50% DarwinLM - ‘ 6270 55.80 6330 38.10
PruneNet [18]], the structure- Tyr-the-Pruner| 1617 6554 62.12 6612 33.62
independent approach DISP_ | 0% | N/A | 457 | 80.61 7222 79.46 48.46
20% EvoP 633 | - 68.00 7300 40.00
LLM .[11]’ the ?luswr'based ‘ 25% ‘T}’/r—[he-Pruner 579 81.35 72.06 7174 4497
evolutionary pruning approach =~ Llama-2-138 30% DISP-LLM s | - 66.85 6380 39.42
EvoP [43], and the search- 375% | Tyr-the-Pruner| 7.17 80.76 72.06 7635 4326

9
. CFSP - - 64.17 6233 3805
only approach DarwinLLM 50% DISP-LLM 711 ‘ - 59.27 52.57 33.28
[33). The experimental results Tyr-the-Pruner | 9.59 74.46 70.09 7218 39.85
. b

with competitor performance | 0% | N/A | 584 | 8217 73.56 81.31 51.54
. . Llama-3.1-88 40% Adapt-Pruner | 33.75 - 5675 4516 2597
taken from their respective pa- S0% DarwinLM - 62.20 5730 59.60 3420
pers’ are presented in Table@ Tyr-the-Pruner 30.89 66.64 61.80 65.86 31.83
| 0% | NA | 576 | 8110 73.01 8005 5043
It is evident that Tyr-the-Pruner ™™™ |40% MLP-only | ProbePruning | 1490 | 7030 67.20 5740 39.00
25% Tyr-the-Pruner| 1314 76.02 7111 7563 4215

significantly outperforms other
structured pruning methods,
achieving better performance even at higher sparsities compared to other methods at lower sparsities.
In particular, Tyr-the-Pruner surpasses the search-based methods SearchLLM, EvoP, and DarwinLLLM,
demonstrating the effectiveness of our effective local pruning approach, expected error accumulation,
and iterative prune-and-search strategy.

A.4 Memory/Storage Efficiency Analysis of Tyr-the-Pruner

Tyr-the-Pruner employs a supernet
search technique, where storing a
large-scale supernet in memory is Ob- Model Size | Submodules in Supernet | HBM Usage | Disk Storage Usage

Table 7: Resource requirements for Tyr-the-Pruner

viously costly. To address memory 7-8B 576 14-16GB 39.6GB
imi 13B 720 26GB 66.6GB
concerns, we optimize our approach on 0 by Piypaved

by storing pruned substructures on
disk instead of in high-bandwidth
memory (HBM). An integer Python list is used to track the currently selected substructures, ensuring
that only one entire LLM is loaded into HBM at any given time (e.g., the 7B model uses approxi-
mately 14GB, and the 13B model uses around 26GB). Table|/|provides detailed data on HBM and
disk storage occupancy. Furthermore, since there is no dependency between iterations (in iterative
prune-and-search), the storage from previous iterations can be cleaned, further minimizing disk usage.
Due to the low cost of disk storage, these memory and storage demands are highly acceptable.

A.5 Efficiency Analysis on Non-isotropic Structural Pruning

Large language models (LLMs) with non-isotropic pruning may be considered to exhibit inferior
inference efficiency compared to those with isotropic sparsity across layers. To explore, we provide
a comparative analysis of inference efficiency for Llama-3.1-8B and Mistral-Nemo, both pre- and
post-50% structural pruning. The evaluation was conducted on an AMD Instinct™ MI250 Accelerator
using Pytorch (HipBlas), covering both prefilling and decoding tasks across a range of sentence
lengths, as illustrated in Figure

16

636
637
638
639
640
641
642

643

644
645
646
647

648
649

651
652
653

654
655

3000

- 2
& 2000 220
e = —eo— o o
—)
% 1000 —8— Dense 50% Var=0.5 g 15 —8— Dense @ 50% Var=0.5
£ —8— 50% Isptropic ®— 50% Var=0.1 A —8— 50% Isptropic ®— 50% Var=0.1
50% Var=1 —8— 50% Var=0.01 10 50% Var=1 —8— 50% Var=0.01
0
32 64 128 256 512 1024 2048 4096 32 64 128 256 512 1024 2048 4096
Sequence Length Sequence Length
(a) Llama-3.1-8B prefilling benchmarks (b) Llama-3.1-8B decoding benchmarks
20
., 1500 ”
P P
g 515
£ 1000 c
2 /./0—0\‘\. = 0—0\.\.\
=)
% 500 —8— Dense @ 50% Var=0.5 F% 10 —8— Dense ®— 50% Var=0.5
& —8— 50% Isptropic ®— 50% Var=0.1 8 —8— 50% Isptropic ®— 50% Var=0.1 \‘
50% Var=1 —8— 50% Var=0.01 5 50% Var=1 —8&— 50% Var=0.01
0
32 64 128 256 512 1024 2048 4096 32 64 128 256 512 1024 2048 4096
Sequence Length Sequence Length
(c) Mistral-Nemo prefilling benchmarks (d) Mistral-Nemo decoding benchmarks

Figure 4: Pre- and post-pruning large language model inference benchmarks.

Table 8: Tyr-the-Pruner progressively refines and optimizes the sparsity distribution in iterations,
steadily enhancing performance.

Method \ Wikitext2 \ ARC-C ARC-E BoolQ HellaSwag OBQA RTE WinoGrande MMLU \ AVG
w/o search \ 66.38 \ 23.55 58.46 62.35 32.51 16.60 51.26 52.88 28.34 \ 40.74
search-only \ 27.96 \ 25.34 59.30 64.71 36.52 2220 5523 56.20 29.17 \ 43.58
Tyr-the-Pruner I1 28.92 26.45 56.19 62.17 37.05 2220 50.54 56.75 29.29 42.58
Tyr-the-Pruner 12 31.80 29.27 62.54 63.51 38.18 23.80 50.54 56.85 30.23 44.37
Tyr-the-Pruner 13 29.75 29.86 63.09 64.62 39.28 25.00 51.62 59.51 31.62 45.58
Tyr-the-Pruner 14 30.89 31.83 65.36 66.64 39.99 2480 58.12 61.80 33.76 47.79

The variance (Var) quantifies the degree of variation in sparsity under non-isotropic pruning conditions;
a larger variance indicates more fluctuation in sparsity across layers. As shown in Figured] the 50%
structural pruned LLMs achieve up to 1.3x or greater speedup in both prefilling and decoding tasks
compared to their dense counterparts across most sentence lengths. Variations in layer sparsity do
not have a significant impact on efficiency. A slight efficiency decrease is only observed when the
variance reaches 1. In this case, the reduction in efficiency is likely due to the frequent high sparsity,
which leads to more memory-bottlenecked “thin" matrix multiplications in the computational graph.

A.6 Detailed Analysis on Tyr-the-Pruner and the Search-only Strategy

To further evaluate the impact of Tyr-the-Pruner (iterative prune-and-search) versus the search-only
strategy, we present the 50% post-pruned performance on Llama-3.1-8B across several tasks: Wiki-
text2 perplexity (), O-shot accuracy (1) on Arc, BoolQ, HellaSwag, OBQA, RTE, and WinoGrande,
and 5-shot accuracy (1) on MMLU, as shown in Table

Experimental results highlight the superiority of Tyr-the-Pruner over the search-only strategy. Em-
ploying isotropic pruning, the “w/o search" method yields suboptimal performance across all tasks.
In contrast, Tyr-the-Pruner outperforms the search-only strategy from the second iteration (I12),
demonstrating the benefits of progressively refining the sparsity distribution. The search-only strategy
struggles with the large search space, leading to prolonged search times and limited effectiveness.
Ultimately, Tyr-the-Pruner achieves the best results in the fourth iteration (14).

Figure [5{a) and Figure [5[b) compare the sparsity distributions of the MHA and FFN layers in Llama-
3.1-8B after pruning with Tyr-the-Pruner and the search-only methods, respectively. The sparsity

17

656
657
658
659

660
661
662
663
664
665

666

667
668
669

—e— Search-only —#e— Tyr-the-Pruner

0.8
0.8
z 06 206
o 04 & o4
0.2 0.2
—e— Search-only ~ —#— Tyr-the-Pruner
0.0 0.0
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Layer Layer
(a) MHA: Tyr-the-Pruner vs. Search-only (b) FFN: Tyr-the-Pruner vs. Search-only
lteration 0 —e— lteration2 ~ —— lteration 4 10
0.8 o Tteration | —e— Jteration 3
0.8
0.6
z 206
g g
204 y g
n N04
0.2 .
0.2 [Iteration 0 ~ —e— Iteration2 == Iteration 4
00 7 e lteration] —e— Iteration3
: 0.0
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Layer Layer
(c) MHA: variations during iterations (d) FFN: variations during iterations

Figure 5: Sparsity distribution of Tyr-the-Pruner and the search-only strategy on Llama-3.1-8B.

distribution obtained by Tyr-the-Pruner resembles that of the search-only strategy, yet Tyr-the-Pruner
performs better. Its search process is more refined, incorporating multiple rounds of expectation error
accumulation, ultimately leading to a superior sparsity distribution and higher performance in the
pruned model.

Figure [5c) and Figure [5{d) compare the sparsity distributions of the MHA and FFN layers in the
post-pruned Llama-3.1-8B across different iterations of Tyr-the-Pruner. Tyr-the-Pruner identifies a
relatively ideal and coarse-grained sparsity distribution in the first search (with a sparsity interval of
12.5%). In the subsequent iterations (2nd, 3rd, and 4th), with sparsity intervals of 6.25%, 3.125%,
and 1.5625%, respectively, the sparsity distribution is progressively refined and optimized, ultimately
converging to an optimal solution.

A.7 Sparsity Distribution of Different Pruning Methods

Different pruning methods vary in the distribution of sparsity. Figure [6{a) and Figure [6(b) show
the sparsity distributions of MHA and FFN of Llama-3.1-8B after 50% pruning by a series of LLM
structural pruning methods, respectively.

—e— LLM-Pruner —e— ZipLM & OSSCAR

0.8 | —e— FLAP —— Tyr-the-Pruner 08
0.6
z 206
= 7
5] s
204 & 0.4
02 0.2 : .
—o— LLM-Pruner —e— ZipLM & OSSCAR
—e— FLAP —— Tyr-the-Pruner
0.0 0.0
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Layer Layer
(a) MHA (b) FEN

Figure 6: Sparsity distributions with different structural pruning methods.

18

670
671
672
673
674
675
676
677

679
680
681
682
683

684

685
686
687
688
689
690
691
692

693
694
695
696
697

ZipLM and OSSCAR maintain isotropic sparsity distribution. LLM-Pruner incorporates prior
knowledge, recognizing that the shallow and deep layers of LLMs are more pruning-sensitive and
thus preserve them while only isotropically pruning the intermediate layers. These three methods
fail to account for the unique characteristics of different LLMs, leading to clear suboptimal sparsity
assignments. Conversely, FLAP combines local activations and weights to assess the global sparsity
distribution, resulting in non-isotropic pruning. While this method seeks a balance between local and
global sparsity, it does not fully address the gap between them, making it challenging to achieve an
optimal sparsity distribution.

Tyr-the-Pruner’s sparsity distribution clearly differs from that of other methods. It directly searches
for the optimal sparsity distribution at the global level without the local and global gaps. The resulting
sparsity distribution does not adhere to prior assumptions: for instance, the 2-nd FFN layer is largely
retained, while the 12-th FFN layer is entirely pruned, and there is no discernible pattern in the
sparsity ratio as layers become deeper or shallower. This demonstrates that model optimization
should fully account for the model’s unique characteristics.

A.8 Statistical Significance Analysis

To verify the rol/austness of the pro- Taple 9: Statistical significance analysis for Tyr-the-Pruner.
posed method, Tyr-the-Pruner, we ad-

just the random seeds (the change Model | Sparsity | Wikitext2 | BoolQ? ARC-Ef ARC-Ct
of random seeds triggers the change Liama2-78 | 25% | 7.51 £ 007 69.45 + 004 7513 + 0.10 4258 - 0.09
of calibration samples) for multiple 7,5 135 | 25% | 579 - 0.00 8135~ 0.06 7774 =003 4497 =005
(number of tests: n=5) experiments 25% | 10.38 £ 0.11 76.36 = 0.12 77.23 + 0.09 45.48 + 0.06
and observe the error bar (+ standard ~ Mama-3.1-88 ‘ 50% ‘30.89 L0201 6664026 6586 1033 31.83 1 0.16
deviation), as shown in Table 9}

From the global observation of exper-

imental results, the proposed method performs relatively consistently in multiple randomized trials,
with standard deviations within acceptable limits (< 0.21 for Wikitext2 perplexity and < 0.33 for
downstream performance). From the local observation of experimental results, it can be seen that
pruning yields a more stable performance for larger models or under lower sparsity ratios.

19

698 A.9 Detailed Downstream Task Results

Table 10: 0-shot acc (%) on ARC-Challenge.

Table 11: 0-shot acc (%) on ARC-Easy.

Sparsit Method | LLaMA2 | LLaMA3x | Mistral Sparsit Method | LLaMA2 | LLaMA3x | Mistral
parsity [7B 138 |23B 08B 188 |7B-v0.3 Nemo parsity [7B 138 |23B 08B 188 |7B-v0.3 Nemo
0% | N/A |43.43 48.46]42.32 5043 51.54| 4881 5572 0% | NA |7630 79.46]74.49 80.05 81.31| 79.67 83.00

ShortGPT [36.18 43.86|37.80 43.94 44.20| 4343 46.16 ShortGPT [65.87 75.55|68.10 71.17 72.18| 7151 75.84

LaCO+ |37.97 43.60|37.63 43.69 44.20| 42.15 45.14 LaCO+ |68.39 75.04|64.60 73.44 75.67| 7125 75.67

SliceGPT |41.81 4625|3515 41.64 42.15| 4249 3166 SliceGPT |73.40 77.78|67.68 74.71 7551 | 76.85 53.70
Wanda-sp [43.34 45.05|24.06 19.28 34.04| 46.16 48.89 Wanda-sp | 74.62 76.43|48.95 28.70 64.44 | 77.61 7929

125% | LLM-Pruncr |38.40 44.45|31.83 3857 37.97| 40.02 43.52 125% | LLM-Pruner |72.05 77.10|62.92 7083 72.47| 7332 7546
ZipLM | 4155 49.15|38.23 40.19 42.49| 4727 5230 ZipLM | 75.72 79.80| 7151 73.74 7534 7862 79.63

OSSCAR |42.41 49.23|38.14 40.70 40.78| 46.59 30.80 OSSCAR |76.01 79.50|71.55 74.37 76.05| 7828 5290

FLAP [40.02 42.15|3345 4130 4147| 4386 45.48 FLAP 7138 72.69|64.44 7336 74.16| 75.76 7588
Tyr-the-Pruner | 42.06 48.05|38.82 47.44 49.15 4855 5435 Tyr-the-Pruner | 75.84 79.62|72.94 79.08 79.80 79.84 8161
ShortGPT | 32.34 37.88|30.97 26.88 27.39| 33.96 38.99 ShortGPT [52.74 61.24|49.58 38.85 43.18| 5257 63.30

LaCO+ |30.89 38.65|32.34 3626 36.77| 33.87 40.10 LaCO+ |53.03 64.73|49.41 5341 5547| 5223 6250

SliceGPT |37.88 41.47|28.33 3532 37.46| 38.99 24.49 SliceGPT | 71.80 74.92|58.67 67.80 68.60 | 71.46 47.56
Wanda-sp |38.14 20.82(18.09 16.89 19.20| 37.37 2321 Wanda-sp | 70.41 33.59|37.46 42.26 28.41| 70.83 53.66

25% | LLM-Pruner |28.24 37.63|22.35 26.11 2457 3166 3140 25% | LLM-Pruner |59.97 70.20|50.72 59.43 57.79| 65.87 64.02
ZipLM | 3951 46.93|29.52 1843 2031| 43.69 27.39 ZipLM | 74.66 78.45|61.32 27.86 26.47| 75.88 50.04

OSSCAR |40.53 45.65|18.17 27.47 23.46| 42.66 2722 OSSCAR | 7445 77.57|27.95 53.70 40.03| 75.59 5160

FLAP 3191 40.78|26.54 3191 3345| 3652 40.70 FLAP [64.23 6923|5396 60.31 65.95| 67.22 68.69
Tyr-the-Pruner | 42.58 44.97|35.41 42.15 4548 44.88 d8.38 Tyr-the-Pruner | 75.13 77.74| 69.40 75.63 7723 7123 8013
ShortGPT [28.58 31.14|25.85 26.88 27.56| 20.10 27.90 ShortGPT [41.58 48.95|40.07 37.50 39.94| 33.88 42.72

LaCO+ |2824 32.08|25.43 27.30 27.05| 2824 3157 LaCO+ |36.11 4857|4049 39.27 40.45| 3540 46.09

SliceGPT |32.00 36.60(23.20 27.65 27.39| 28.67 19.45 SliceGPT | 62.75 67.47|46.89 55.72 57.49| 58.46 4045
Wanda-sp [27.99 2176|2039 2090 19.97| 20.65 2031 Wanda-sp [57.03 3237|2694 25.72 25.00| 47.90 35.90

37.5% | LLM-Pruncr |17.58 24.40|17.49 16.89 16.98| 20.90 19.28 37.5% | LLM-Pruncr |38.93 5476|3169 32.53 32.07| 47.10 47.98
ZipLM |33.53 32.08|20.56 19.80 21.16| 3831 37.03 ZipLM | 68.48 61.95(27.99 27.10 27.02| 70.54 70.79

OSSCAR |35.49 33.96|18.77 26.54 23.98| 36.77 37.63 OSSCAR |68.90 62.16|28.03 54.21 47.10| 71.04 70.08

FLAP |20.18 35.75|24.40 25.17 2398 29.69 32.51 FLAP |53.45 58.16(46.55 46.63 52.15| 56.65 61.70
Tyr-the-Pruner | 38.31 43.26(30.97 38.99 39.68 3831 4241 Tyr-the-Pruner | 71.13 76.35|64.52 72.56 7353 7138 7551
ShortGPT [23.46 28.16|21.84 2329 23.56| 2619 32.22 ShortGPT [3245 37.75|30.39 3123 32.83| 3287 36.28

LaCO+ |23.55 27.05|21.25 24.74 22.87| 2449 2167 LaCO+ |30.01 37.71|20.00 28.58 28.54| 30.18 28.96

SliceGPT |24.91 30.63|18.86 20.99 21.50| 19.45 1852 SliceGPT | 48.40 54.84|36.20 4133 41.62| 43.56 3523
Wanda-sp [17.58 19.54|20.73 18.60 19.54| 18.00 18.00 Wanda-sp [27.95 35.86|26.89 30.98 30.47| 3279 35.94

50% | LLM-Pruncr |18.60 19.54|19.11 17.32 1962 1852 21.59 50% | LLM-Pruncr |28.11 33.54|24.49 2824 28.70| 28.70 28.16
ZipLM | 20.14 27.99|19.20 17.15 2048 | 23.72 21.16 ZipLM | 2938 54.00|27.57 25.57 28.28| 50.84 49.96

OSSCAR |23.81 2534|2056 17.58 19.97| 27.13 20.82 OSSCAR |50.72 45.92|27.15 28.07 26.05| 59.22 41.92

FLAP [29.10 27.47|22.78 21.76 20.99| 25.34 284 FLAP [47.01 43.18]27.23 4230 43.18| 5261 5257
Tyr-the-Pruner | 33.62 39.85|25.51 32.34 3183 3294 3259 Tyr-the-Pruner | 66.12 72.18|56.23 65.36 65.36 66.37 66.04

Table 12: 0-shot acc (%) on BoolQ.

Table 13: 0-shot acc (%) on HellaSwag.

Sparsity | Method | LLaMA-2 | LLaMA-3x | Mistral Sparsit Method | LLaMA2 | LLaMA3x | Mistral
[7B 13B [2-3B 0-8B 1-8B |7B-v0.3 Nemo Y [7B 13B [2-3B 0-8B 1-8B |7B-v0.3 Nemo
0% | N/A]77.68 80.61|73.00 81.10 82.17| 82.17 85.14 0% | N/A]57.14 60.04|5520 60.11 60.04| 60.92 62.90
ShortGPT | 74.77 75.84|63.30 73.70 70.70| 77.31 6621 ShortGPT | 49.88 55.70(49.76 55.12 55.09| 5493 56.26
LaCO+ |61.13 68.90|62.72 72.78 70.06| 77.19 68.62 LaCO+ |51.11 56.22|48.94 54.51 54.68| 54.79 5595
SliceGPT | 73.12 80.67|68.99 75.75 75.57| 81.19 77.71 SliceGPT | 52.32 56.16(47.73 52.03 50.97| 5457 50.66
Wanda-sp | 71.68 77.28|51.90 53.64 63.09| 77.31 68.04 Wanda-sp | 56.53 53.96|34.60 27.29 40.76 | 5597 52.57
125% | LLM-Pruner |76.48 80.43|65.72 7434 71.90| 7272 77.58 125% | LLM-Pruner |51.60 57.06(43.62 49.63 50.02| 5128 52.34
ZipLM | 69.36 82.84|65.60 75.63 77.00| 82.26 71.83 ZipLM | 5541 59.42|48.85 51.87 52.37| 57.92 5477
OSSCAR | 69.02 83.00|68.59 74.80 79.91| 81.53 73.03 OSSCAR |55.39 59.53|48.60 5135 55.21| 57.83 54.05
FLAP |70.98 76.21(60.06 7349 71.87| 7749 80.24 FLAP |53.98 57.21(43.88 50.97 51.66| 54.20 51.15
Tyr-the-Pruner [70.67 82.78|72.32 80.12 80.24 82.11 82.94 Tyr-the-Pruner | 55.88 59.39|51.55 56.52 56.32 5827 59.31
ShortGPT | 62.17 62.54|44.83 37.80 37.65| 67.25 67.22 ShortGPT |41.94 47.70|37.31 28.89 28.37| 42.51 4361
LaCO+ |50.83 58.23|70.64 63.85 59.14| 75.14 66.70 LaCO+ |42.16 49.34|39.36 43.97 43.92| 4273 4533
SliceGPT | 68.93 79.27|65.81 72.02 67.68| 75.78 6841 SliceGPT | 46.16 49.84(39.29 4329 42.10| 4424 40.37
Wanda-sp | 68.96 62.17|46.02 48.90 42.17| 6245 61.93 Wanda-sp | 51.21 34.47|28.87 28.04 27.25| 44.23 34.65
25% | LLM-Pruner |62.97 68.35|61.59 60.89 57.89| 68.78 64.25 25% | LLM-Pruner |38.80 46.81|32.91 33.94 33.05| 38.66 38.11
ZipLM | 67.19 81.31|59.20 56.02 65.08| 77.16 65.14 ZipLM | 51.57 55.93|33.39 32.32 3047| 51.34 4372
OSSCAR | 66.42 79.48|54.28 60.06 65.66| 77.13 64.28 OSSCAR |51.61 55.16|26.55 36.45 36.44| 50.69 43.09
FLAP |6547 68.81(64.89 6829 67.28| 65.14 63.82 FLAP |47.73 51.42(37.10 42.54 43.16| 4580 44.20
Tyr-the-Pruner | 69.45 81.35|67.89 76.02 7636 7939 82.26 Tyr-the-Pruner | 52.86 57.49|46.62 53.10 52.87 5827 55.04
ShortGPT | 62.17 37.25|68.87 56.57 55.66| 45.60 58.99 ShortGPT |33.53 39.31|31.44 32.11 30.71| 27.72 34381
LaCO+ |62.11 6278|6330 48.78 45.38| 63.12 64.62 LaCO+ |33.56 41.75|33.12 34.16 34.07| 3145 32.18
SliceGPT | 63.00 71.44(42.08 50.49 46.85| 65.41 60.06 SliceGPT | 37.65 41.27(32.08 34.14 3337 3450 32.48
Wanda-sp | 62.26 62.17|52.66 38.13 51.68| 62.05 49.97 Wanda-sp | 35.07 29.49(26.48 25.66 26.38| 30.63 26.08
37.5% | LLM-Pruner |61.74 62.11{50.70 41.31 40.03| 6235 61.87 37.5% | LLM-Pruner |28.17 33.06|26.68 27.52 27.55| 2938 28.36
ZipLM | 64.89 76.79|49.76 51.56 61.47| 69.91 62.72 ZipLM | 3829 45.79|26.89 29.11 27.43| 40.65 35.69
OSSCAR | 64.65 74.25|49.54 58.01 62.26| 6737 62.26 OSSCAR |42.86 48.20|26.66 30.70 31.49| 4137 35.09
FLAP |63.46 65.60(61.93 62.66 64.62| 62.54 65.50 FLAP |41.53 45.52(32.69 3648 36.50| 3749 39.28
Tyr-the-Pruner | 68.87 80.76|66.33 70.09 70.55 70.85 74.65 Tyr-the-Pruner |48.47 54.11|39.97 47.22 47.12 46.01 48.22
ShortGPT | 62.17 62.20|46.61 62.57 62.17| 51.90 55.29 ShortGPT | 28.61 32.44|28.01 27.82 27.87| 2630 30.83
LaCO+ |54.83 59.51|44.40 5532 51.41| 4266 46.57 LaCO+ |27.72 31.64|2831 27.71 26.01| 2828 27.51
SliceGPT | 57.16 62.26(40.76 41.74 38.56| 51.13 51.53 SliceGPT | 30.91 32.35(28.22 28.96 29.07| 29.60 29.02
Wanda-sp |46.91 62.14|41.59 54.77 40.37| 48.99 43.06 Wanda-sp | 26.65 28.52|26.32 26.72 26.73| 27.61 26.11
50% | LLM-Pruner |38.23 61.31|38.10 39.54 37.83| 4324 43.94 50% | LLM-Pruner |26.76 27.78|26.60 26.43 26.36| 27.09 25.96
ZipLM | 4379 64.80|44.95 54.19 5743| 6272 6223 ZipLM | 26.53 35.84|26.46 27.52 2642| 3217 3051
OSSCAR | 61.62 62.94|56.48 5336 61.04| 60.95 62.17 OSSCAR 3221 32.16|26.58 27.81 26.92| 32.15 30.26
FLAP |58.50 65.14(51.25 61.65 52.29| 6147 48.87 FLAP [37.02 41.13(26.29 32.96 29.43| 33.09 3251
Tyr-the-Pruner | 65.54 74.46| 62.26 65.63 66.64 62.17 65.26 Tyr-the-Pruner [42.62 49.45|33.68 39.71 39.99 38.68 40.24

20

Table 14: 0-shot acc (%) on OpenBookQA.

Table 15: 0-shot acc (%) on RTE.

Sparsit Method | LLaMA2 | LLaMA3x | Mistral Sparsit Method | LLaMA2 | LLaMA3x | Mistral
parsity [7B 138 |23B 08B 188 |7B-v0.3 Nemo parsity [7B 138 |23B 08B 188 |7B-v0.3 Nemo
0% | N/A [31.40 3520|3100 34.80 33.20| 3340 36.40 0% | N/A |62.82 6534|5487 67.87 7LI2| 68.95 64.26

ShortGPT [28.20 33.20|26.60 33.00 30.80| 27.00 31.60 ShortGPT [55.96 63.90|55.96 57.04 62.82| 70.04 57.40

LaCO+ |30.00 30.20|25.60 30.80 31.20| 25.60 28.80 LaCO+ |63.54 58.48|57.40 68.23 70.40| 65.34 64.26

SliceGPT |32.00 34.00(27.20 28.60 26.60| 27.20 2640 SliceGPT | 64.26 58.84|58.48 64.62 63.90| 66.06 57.40
Wanda-sp [31.60 32.00| 15.40 13.20 22.80| 28.00 28.60 Wanda-sp | 58.48 64.98|46.93 57.04 57.76| 57.76 6282

125% | LLM-Pruncr |28.40 34.40 |24.60 27.20 26.40| 2680 31.00 125% | LLM-Pruner |62.82 6173|4838 56.68 61.01| 6534 55.60
ZipLM |31.60 34.60|27.50 25.80 26.60| 34.20 32.80 ZipLM | 6137 63.18|50.18 66.06 60.65| 6823 61.37

OSSCAR |31.20 35.80(27.00 25.40 26.40| 32.60 3180 OSSCAR |58.84 6173|5632 64.62 63.18| 69.31 5957

FLAP (2920 32.40|27.60 30.60 30.40| 3340 31.60 FLAP [57.76 5021|5054 5235 55.96| 67.51 56.68
Tyr-the-Pruner |31.20 35.80|29.20 33.40 34.60 3420 3480 Tyr-the-Pruner | 66.06 67.15|56.68 66.79 7184 63.95 62.82
ShortGPT [23.40 27.00|23.20 19.60 18.40| 2040 23.00 ShortGPT [57.76 59.57|48.38 62.82 63.90| 6498 63.54

LaCO+ |2520 25.20|22.40 20.60 20.00| 2340 2220 LaCO+ |53.79 62.45|57.04 63.90 58.12| 64.26 58.12

SliceGPT |25.00 30.40|23.00 24.40 22.60| 23.00 23.00 SliceGPT |55.96 66.79|59.21 58.12 57.40| 57.40 5271
Wanda-sp [29.20 17.80| 12.40 14.20 13.40| 2660 21.20 Wanda-sp [48.38 5271|5271 5271 53.43| 53.79 53.43

25% | LLM-Pruncr |21.00 28.80|15.40 19.80 18.00| 2040 21.00 25% | LLM-Pruncr |56.68 50.54|52.35 52.35 53.07| 5523 53.07
ZipLM | 31.40 34.80|17.60 24.40 18.80| 29.20 19.20 ZipLM | 55.60 68.23|55.23 50.18 5199 68.95 5343

OSSCAR |31.40 34.20|13.00 20.20 21.60| 24.40 21.00 OSSCAR |5235 67.51|48.74 54.51 50.54| 63.18 53.79

FLAP |27.40 29.80|24.60 26.60 28.40| 29.80 28.00 FLAP [62.82 64.26|53.43 50.90 52.71| 63.90 49.46
Tyr-the-Pruner | 31.60 34.20|28.20 34.00 31.80 33.40 3180 Tyr-the-Pruner | 62.00 69.31|59.57 63.90 63.18 6534 59.57
ShortGPT [21.60 22.00| 18.80 18.80 18.40| 17.20 17.20 ShortGPT [62.09 52.35|58.48 5054 53.79| 49.82 53.79

LaCO+ |17.00 21.40|17.00 17.80 16.60| 17.00 19.80 LaCO+ |57.40 55.60|57.04 54.87 58.84| 6137 54.15

SliceGPT | 19.80 27.20|17.60 17.00 15.00| 17.00 17.40 SliceGPT |53.43 58.48(53.07 52.71 53.43| 5523 5271
Wanda-sp | 17.60 13.40|11.80 12.60 11.80| 14.80 12.60 Wanda-sp |48.38 5271|5451 46.57 50.54| 53.07 49.46

37.5% | LLM-Pruner |12.80 17.80|12.20 12.80 13.20| 14.80 13.00 37.5% | LLM-Pruner |52.71 5271|5271 5271 52.71| 51.26 5271
ZipLM | 25.60 27.00| 13.80 14.40 13.20| 21.80 14.60 ZipLM | 58.12 64.26|52.71 50.54 53.79| 54.15 5235

OSSCAR |2520 2640|14.20 1520 14.80| 21.60 17.80 OSSCAR |51.62 63.18|49.82 52.71 50.90| 60.29 52.71

FLAP 2420 27.20|21.60 22.80 23.40| 24.00 25.80 FLAP [4838 5451|4657 51.26 55.60| 53.79 55.96
Tyr-the-Pruner | 31.00 32.40|26.00 29.80 30.00 2620 29.20 Tyr-the-Pruner | 61.37 65.70(55.96 60.29 58.84 58.84 54.15
ShortGPT [16.00 17.80|18.20 16.80 17.00| 1540 14.00 ShortGPT [51.26 51.62|51.99 60.65 51.62| 5126 50.54

LaCO+ |1620 18.00|14.60 14.00 14.00| 16.60 16.00 LaCO+ |51.62 61.01|57.40 51.62 45.13| 5343 49.82

SliceGPT | 16.60 22.00| 14.20 14.00 12.80| 14.80 15.00 SliceGPT | 5343 52.71[53.07 53.43 55.96| 53.07 5271
Wanda-sp [12.20 11.80|13.00 13.60 13.40| 13.60 13.80 Wanda-sp [53.07 5271|5451 53.07 51.62| 5271 49.46

50% | LLM-Pruncr |12.60 12.00|12.40 13.40 13.40| 14.80 1540 50% | LLM-Pruncr |53.07 5271|5271 5271 5235| 5271 53.07
ZipLM | 14.00 19.60|12.40 13.80 11.60| 17.40 13.20 ZipLM | 5271 52.71|53.07 5235 5271 5271 5126

OSSCAR |17.00 20.00|11.80 11.60 10.60| 16.60 1440 OSSCAR |53.43 5271|5090 47.65 51.26| 53.79 55.96

FLAP (2120 25.80| 1320 21.40 16.80| 21.40 21.00 FLAP 4549 5848|5162 53.07 5271| 5271 5523
Tyr-the-Pruner | 27.20 30.40|20.40 26.60 24.80 22.80 2620 Tyr-the-Pruner | 55.96 59.93|53.43 58.84 58.12 5379 60.65

Table 16: 0-shot acc (%) on WinoGrande.

Table 17: 5-shot acc (%) on MMLU.

Sparsit Method | LLaMA2 | LLaMA-3x | Mistral Sparsit Method | LLaMA2 | LLaMA-3x | Mistral
parsiy | 78 13B |23B 08B 18B|7B-v0.3 Nemo parsiy | 7B 13B |23B 08B 18B|7B-v0.3 Nemo
0% | N/A [69.06 72.22|69.06 73.01 73.56| 73.64 73.64 0% | N/A |45.84 5506|6527 56.17 65.20| 62.18 68.83

ShortGPT | 68.98 71.03|67.64 71.67 70.09| 70.24 74.11 ShortGPT |46.28 54.16[56.33 55.90 62.14| 6144 68.10

LaCO+ [68.35 70.96|69.61 73.16 73.16| 7135 74.03 LaCO+ (4534 5471|5870 53.10 63.54| 61.69 6723

SliceGPT | 67.32 70.48|60.54 67.17 66.61 | 70.64 64.01 SliceGPT |42.88 53.43|55.85 4734 53.22| 5838 64.58
Wanda-sp | 67.64 70.72|52.01 51.38 58.80| 66.54 62.27 Wanda-sp | 39.99 44.64|25.78 26.69 43.26| 5642 58.22

12.5% | LLM-Pruner |64.25 69.30|60.93 65.35 65.51| 66.06 68.51 12.5% | LLM-Pruner |37.40 50.51|48.71 39.30 50.26| 54.09 54.59
ZipLM |7048 72.69(60.77 68.75 66.93| 7253 6598 ZipLM 4133 53.57|58.38 4831 58.95| 58.62 63.20

OSSCAR | 69.46 73.40{60.30 68.19 68.27| 71.59 65.11 OSSCAR [40.02 5325|5808 47.31 5845| 58.71 63.83

FLAP |68.03 70.32|62.19 69.53 70.40| 7024 6843 FLAP |40.60 47.66(49.86 41.90 52.29| 5582 52.98
Tyr-the-Pruner | 70.09 73.85|67.40 73.24 72.53 7340 72.69 Tyr-the-Pruner | 44.07 54.61|59.50 4932 59.66 59.11 64.66
ShortGPT |65.67 70.96|61.40 53.99 55.17| 67.25 63.14 ShortGPT ~ |37.38 48.00|36.10 3430 34.88| 59.66 50.66

LaCO+ |64.25 69.77|63.14 6732 65.27| 67.80 7159 LaCO+ |43.63 53.82|39.36 3578 59.68| 5528 62.63

SliceGPT | 65.27 70.40|57.62 62.67 59.75| 6148 58.25 SliceGPT |40.20 51.21|36.46 35.02 32.30| 4576 55.35
Wanda-sp | 63.69 54.30|51.78 48.78 49.57| 60.62 57.06 Wanda-sp | 29.40 29.53|24.47 24.07 25.78| 37.15 2525

25% | LLM-Pruner |57.70 61.56|52.57 5541 55.17| 5620 57.62 25% | LLM-Pruner |27.37 32.58|30.95 2849 27.47| 3372 32.60
ZipLM 6796 72.38|51.85 58.88 58.25| 66.93 54.70 ZipLM (3279 45.99(41.67 24.79 42.25| 5122 5112

OSSCAR | 68.11 70.56(52.72 56.91 56.75| 6433 55.41 OSSCAR | 31.04 46.28|44.89 24.89 43.06| 4951 5118

FLAP |6472 68.03|57.06 6275 6346| 6472 64.64 FLAP |30.57 42.66(35.96 3447 39.18| 47.99 31.09
Tyr-the-Pruner | 68.51 72.06|64.01 7111 7L.11 7111 70.01 Tyr-the-Pruner | 34.90 52.18|52.12 42.66 51.22 5217 57.68
ShortGPT |60.30 65.98|61.56 54.54 55.09| 59.19 53.99 ShortGPT |39.40 48.03|36.35 25.16 30.64| 2390 50.72

LaCO+ [59.04 65.82|58.01 6038 61.25| 59.43 5549 LaCO+ [38.94 52.76|28.57 27.54 27.13| 27.50 39.10

SliceGPT |46.73 65.19|55.09 54.78 53.04| 55.80 54.85 SliceGPT |35.04 46.98|27.21 29.13 25.17| 3133 39.03
Wanda-sp | 49.49 49.57|48.38 51.30 49.49| 49.33 51.38 Wanda-sp | 25.79 24.05|23.87 2344 25.62| 26.61 22.99

37.5% | LLM-Pruner |51.07 52.57|49.96 51.07 50.83| 51.78 5036 37.5% | LLM-Pruner |24.65 25.50|24.38 24.63 26.88| 2597 25.79
ZipLM |60.46 63.46(50.36 53.83 54.38| 57.38 51.14 ZipLM [30.85 43.82(31.82 24.76 33.97| 3848 34.54

OSSCAR | 61.64 63.14|50.04 55.09 54.46| 57.38 5383 OSSCAR | 28.98 42.65|34.01 25.05 33.98| 3542 37.06

FLAP |61.72 64.96|52.57 57.85 58.17| 57.38 56.20 FLAP |26.17 36.58|29.24 27.89 30.17| 37.64 27.59
Tyr-the-Pruner | 66.93 72.06 | 60.22 66.54 66.54 64.17 6527 Tyr-the-Pruner | 31.56 44.72|43.78 24.92 41.43 4296 47.63
ShortGPT |56.20 61.80|51.46 54.70 54.14| 53.12 52.64 ShortGPT |25.77 23.97|23.00 2424 22.97| 2337 32.22

LaCO+ |51.38 59.19|51.22 5375 52.17| 5130 50.12 LaCO+ [23.81 4019|2595 2548 26.08| 2447 2535

SliceGPT | 54.62 56.99|51.30 50.99 49.88| 51.38 49.33 SliceGPT |29.37 38.94|24.93 2554 25.17| 2634 2824
Wanda-sp | 49.17 50.04|51.07 47.43 51.22| 49.88 48.07 Wanda-sp | 24.55 25.97|25.72 2421 25.76| 25.13 23.72

50% | LLM-Pruner |50.43 49.88|51.07 50.12 49.64| 50.20 49.80 50% | LLM-Pruner |25.81 24.63|25.24 2331 2470| 2589 25.17
ZipLM (4854 56.91(51.54 49.17 52.49| 5193 50.59 ZipLM (2570 29.40(25.35 24.87 26.16| 27.92 28.46

OSSCAR |51.54 52.80|51.70 48.86 51.14| 5249 5043 OSSCAR |25.35 3136|2571 25.60 2633| 2527 27.97

FLAP |56.51 61.72|50.51 52.80 54.14| 5288 52.09 FLAP |23.87 2940|2349 2340 23.18| 2507 24.23
Tyr-the-Pruner | 62.12 70.09 | 53.28 60.30 61.80 59.43 59.04 Tyr-the-Pruner | 26.06 40.29|30.46 26.46 33.76 3351 33.34

699

700

701
702

703

704

706

707
708

710
711

712
713

714
715
716
77
718
719
720
721
722
723

724
725
726
727
728
729
730
731
732
733
734

736
737

739
740
741
742
743
744
745
746

747

748
749

750

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction sections offer a comprehensive discussion of the
manuscript’s context, intuition, and ambitions, as well as its contributions.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations of this work are discussed at the end of the manuscript.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

22

751 Justification: This manuscript uses existing theories as a basis, while providing complete
752 and correct derivations.

753 Guidelines:

754 * The answer NA means that the paper does not include theoretical results.

755 All the theorems, formulas, and proofs in the paper should be numbered and cross-
756 referenced.

757 * All assumptions should be clearly stated or referenced in the statement of any theorems.
758 * The proofs can either appear in the main paper or the supplemental material, but if
759 they appear in the supplemental material, the authors are encouraged to provide a short
760 proof sketch to provide intuition.

761 * Inversely, any informal proof provided in the core of the paper should be complemented
762 by formal proofs provided in appendix or supplemental material.

763 * Theorems and Lemmas that the proof relies upon should be properly referenced.

764 4. Experimental result reproducibility

765 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
766 perimental results of the paper to the extent that it affects the main claims and/or conclusions
767 of the paper (regardless of whether the code and data are provided or not)?

768 Answer: [Yes]

769 Justification: The pipeline of the methods and the details of experiments are presented with
770 corresponding reproducible credentials.

77 Guidelines:

772 * The answer NA means that the paper does not include experiments.

773 * If the paper includes experiments, a No answer to this question will not be perceived
774 well by the reviewers: Making the paper reproducible is important, regardless of
775 whether the code and data are provided or not.

776 * If the contribution is a dataset and/or model, the authors should describe the steps taken
777 to make their results reproducible or verifiable.

778 * Depending on the contribution, reproducibility can be accomplished in various ways.
779 For example, if the contribution is a novel architecture, describing the architecture fully
780 might suffice, or if the contribution is a specific model and empirical evaluation, it may
781 be necessary to either make it possible for others to replicate the model with the same
782 dataset, or provide access to the model. In general. releasing code and data is often
783 one good way to accomplish this, but reproducibility can also be provided via detailed
784 instructions for how to replicate the results, access to a hosted model (e.g., in the case
785 of a large language model), releasing of a model checkpoint, or other means that are
786 appropriate to the research performed.

787 * While NeurIPS does not require releasing code, the conference does require all submis-
788 sions to provide some reasonable avenue for reproducibility, which may depend on the
789 nature of the contribution. For example

790 (a) If the contribution is primarily a new algorithm, the paper should make it clear how
791 to reproduce that algorithm.

792 (b) If the contribution is primarily a new model architecture, the paper should describe
793 the architecture clearly and fully.

794 (c) If the contribution is a new model (e.g., a large language model), then there should
795 either be a way to access this model for reproducing the results or a way to reproduce
796 the model (e.g., with an open-source dataset or instructions for how to construct
797 the dataset).

798 (d) We recognize that reproducibility may be tricky in some cases, in which case
799 authors are welcome to describe the particular way they provide for reproducibility.
800 In the case of closed-source models, it may be that access to the model is limited in
801 some way (e.g., to registered users), but it should be possible for other researchers
802 to have some path to reproducing or verifying the results.

803 5. Open access to data and code

23

804
805
806

807

808
809
810

811

812

813
814

815
816
817
818

819
820
821

822
823

824
825
826

827
828

829
830

831

832
833
834

835

836
837

838

839

840
841

842
843

844

845
846

847

848
849

850

851

853
854

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Code and data are only allowed to be made public in our institution after
the manuscript has been officially published. For the time being, sufficient experimental
setup/details are used to ensure reproducibility.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The pipeline of the methods and the details of experiments are presented with
corresponding reproducible credentials.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The results contain the standard deviation of the results over several random
runs.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

855
856
857

858
859

860

862

863
864
865

866
867
868

869
870
871

872
873
874

875

876
877

878

879

880
881

882
883

884
885
886

887

888
889

890

891
892

893

894

895

897
898

899

900
901

902

903
904
905

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provided sufficient information on the computer resources needed
to reproduce the experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed: This paper discusses the
lightweighting of LLMs that can reduce the consumption of resources without obvious
broader impacts.

25

https://neurips.cc/public/EthicsGuidelines

906

907

908
909
910
911
912
913
914
915
916
917
918
919
920
921
922

924

925
926
927
928

929

930
931
932

933

934

936

937
938
939
940

941
942

943
944
945

946

947
948
949

950

951

953

954

955

956

957
958

11.

12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The original owners of assets, including data and models used in the paper, are
properly credited, and the licenses and terms of use are explicitly mentioned and properly
respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

26

959

960
961

962
963
964
965

966
967

968
969
970

971
972

973

974

975

976

977
978
979

980
981

982
983
984

985
986
987

988

989

990

991

992

993
994
995
996
997
998

999
1000

1001
1002
1003
1004

1005

1006

1007

1008
1009

13.

14.

15.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

27

paperswithcode.com/datasets

1010 * Depending on the country in which research is conducted, IRB approval (or equivalent)

1011 may be required for any human subjects research. If you obtained IRB approval, you
1012 should clearly state this in the paper.

1013 * We recognize that the procedures for this may vary significantly between institutions
1014 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
1015 guidelines for their institution.

1016 * For initial submissions, do not include any information that would break anonymity (if
1017 applicable), such as the institution conducting the review.

1018 16. Declaration of LLLM usage

1019 Question: Does the paper describe the usage of LLMs if it is an important, original, or
1020 non-standard component of the core methods in this research? Note that if the LLM is used
1021 only for writing, editing, or formatting purposes and does not impact the core methodology,
1022 scientific rigorousness, or originality of the research, declaration is not required.

1023 Answer: [NA]

1024 Justification: The core method development in this research does not involve LLMs as any
1025 important, original, or non-standard components.

1026 Guidelines:

1027 * The answer NA means that the core method development in this research does not
1028 involve LLMs as any important, original, or non-standard components.

1029 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
1030 for what should or should not be described.

28

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Method
	Preliminaries
	Effective Local Pruning
	Prune-to-supernet across Multiple Sparsity Ratios
	Týr-the-Pruner

	Experiments
	Experimental Settings
	Performance
	Ablation Study

	Related Work
	Limitations
	Conclusion
	Appendix
	Theoretical Foundations of Local Pruning
	Algorhthms for Týr-the-Pruner
	Further Comparisons
	Memory/Storage Efficiency Analysis of Týr-the-Pruner
	Efficiency Analysis on Non-isotropic Structural Pruning
	Detailed Analysis on Týr-the-Pruner and the Search-only Strategy
	Sparsity Distribution of Different Pruning Methods
	Statistical Significance Analysis
	Detailed Downstream Task Results

