Týr-the-Pruner: Structural Pruning LLMs via Global Sparsity Distribution Optimization

Anonymous Author(s)

Affiliation Address email

Abstract

Structural pruning enhances hardware-agnostic inference efficiency for large language models (LLMs) but often struggles to maintain performance. Local pruning performs efficient layer-by-layer compression but ignores global topology. Although global pruning aims to identify an optimal sparse model, intuitive methods tend to adopt a two-stage paradigm—first evaluating the saliency of individual substructures and then applying pruning globally, which ignores inter-structure dependencies and fails to achieve end-to-end optimization. To address these limitations, we propose **Týr-the-Pruner**, an efficient end-to-end search-based global structural pruning framework. This framework constructs a supernet by repeatedly applying local pruning across a range of sparsity ratios to each layer in an LLM, with the core goal of determining the optimal sparsity distribution under a target overall sparsity ratio. Concretely, we introduce an effective local pruning and an expectation error accumulation approach to improve supernet construction. Furthermore, we employ an iterative prune-and-search strategy with coarse-to-fine sparsity granularity to ensure efficient search convergence. Experimental results show that Týr-the-Pruner achieves state-of-the-art structural pruning, retaining 97% of the dense model's performance while removing a challenging 50% of Llama-3.1-70B's parameters.

1 Introduction

2

3

6

8

9

10

11

12

13

14

15

16

17

18

27

28

29

30

31

32

33

35

36

Large language models (LLMs) have significantly advanced natural language processing, achieving exceptional performance in tasks such as text understanding, generation, and reasoning [47, 7, 4]. However, the computational and storage resources required for model deployment incur high costs and environmental impacts, limiting their accessibility in resource-constrained scenarios. Model compression techniques, such as quantization [20, 10], pruning [9, 22], and low-rank decomposition [40], are essential for reducing LLM size and computational demands. This paper focuses on structural pruning, which enhances inference efficiency in a hardware-agnostic manner.

Existing structural pruning methods for LLMs are typically classified into local and global techniques. Local pruning methods [16, 24], which prune layers individually, enable efficient compression of hundred-billion-scale LLMs on a single GPU via offload approaches. However, they overlook global dependencies in model topology and restrict the sparsity to be uniform across layers. Global pruning methods [22, 17, 1] alleviate local constraints, facilitating sparsity allocation and the potential for optimal pruning. However, many existing methods estimate the saliency of substructures and prune them accordingly via global ranking, ignoring inter-structure dependencies and hindering end-to-end optimization. Such methods may also suffer from the inefficiency of backpropagation-based saliency estimation and overfitting when calibration data is limited. Therefore, a question arises:

How to achieve efficient global structural pruning with end-to-end optimization?

To address this challenge, we propose **Týr-the-Pruner**, an efficient search-based global pruning framework with end-to-end optimization. Our framework constructs a supernet by applying local pruning to each layer, producing pruned copies with different sparsity ratios. The objective is to identify an optimal subnet that satisfies the target overall sparsity ratio within the supernet by determining the optimal sparsity distribution across layers. We use evolutionary search [21] to solve this optimization problem. To construct reliable supernets and perform effective and efficient search, we make the following contributions:

- To improve supernet construction, we propose an effective local pruning approach for attention heads and feed-forward networks (FFN), using Taylor expansion-based first- and second-order optimization information to identify redundant structures and adjust remaining weights. Pruning and weight adjustments are applied progressively and finely to preserve accuracy. Additionally, we introduce an expectation error accumulation approach to address the challenge of unclear error propagation caused by the multiple pruned copies within the supernet. This approach ensures balanced mutual awareness across sparse structures during supernet construction.
- To enhance the efficacy and efficiency of subnet search, we employ a tailored distillation-inspired metric as the optimization objective to guide the search process, aiming to preserve the subnet's generative capability. In general, Týr-the-Pruner is formed as an iterative prune-and-search framework that refines sparsity allocation for each layer with reduced search space and fast convergence. Each iteration prunes and constructs a supernet across a specific range of sparsity ratios, coupled with a sparsity-shift-driven evolutionary search, where random sparsity shifts between layers generate parent candidates, and the best-performing ones are filtered as offspring. The sparsity interval is refined after each iteration.

By making these contributions, Týr-the-Pruner achieves end-to-end global pruning with strong efficacy and efficiency. Notably, the proposed framework only requires 4M tokens for calibration and search. Experimental results demonstrate that Týr-the-Pruner surpasses state-of-the-art pruning methods. For example, Týr-the-Pruner outperforms the SOTA method FLAP, achieving 3.45 lower perplexity in language comprehension and 10.26% higher average downstream accuracy when pruning 37.5% of the parameters of Llama-3.1-8B. Moreover, it maintains 97% performance with 50% pruning on Llama-3.1-70B, a sparsity ratio that is considered aggressive for existing methods.

67 2 Method

This section presents Týr-the-Pruner, a novel structural pruning framework for large language models (c.f., Section 2.1 for preliminaries), as illustrated in Figure 1. This framework (1) constructs a supernet by applying local pruning across various sparsity ratios to each model layer, aiming to (2) search the optimal sparsity distribution under a target overall sparsity ratio. Specifically, we propose an effective local pruning approach (c.f., Section 2.2) and an expectation error accumulation approach (c.f., Section 2.3) to enhance supernet construction. An iterative prune-and-search strategy with coarse-to-fine sparsity granularity (c.f., Section 2.4) ensures efficient search convergence.

75 2.1 Preliminaries

Large language models typically use the Transformer decoder architecture [37], as shown in Figure 1(a). Each Transformer layer consists of two key components: the multi-head self-attention (MHA) and the feed-forward network (FFN), followed by a residual connection and layer normalization. Given the input $\mathbf{X}_{\ell-1}$ to the ℓ -th layer, the output \mathbf{X}_{ℓ} can be expressed as:

$$\mathbf{X} = \text{LayerNorm} \left(\mathbf{X}_{\ell-1} + \text{MHA}(\mathbf{X}_{\ell-1}) \right), \mathbf{X}_{\ell} = \text{LayerNorm} \left(\mathbf{X} + \text{FFN}(\mathbf{X}) \right).$$
 (1)

The MHA mechanism captures dependencies across different positions in the input sequence with multiple attention heads, each with its query (\mathbf{W}_q) , key (\mathbf{W}_k) , value (\mathbf{W}_v) , and out (\mathbf{W}_o) linear transformations. Modern LLMs typically employ a SwiGLU-based FFN [31], consisting of gate (\mathbf{W}_{gate}) , up (\mathbf{W}_{up}) , and down (\mathbf{W}_{down}) linear transformations, with activation after the gate. This structure aids in extracting non-linear representations.

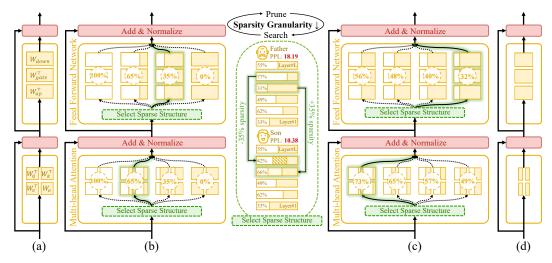


Figure 1: An overview for Týr-the-Pruner. Large language models (a) will be effectively locally pruned across multiple sparsity ratios and constructed into a supernet (b). An iterative prune-andsearch strategy will be used to select the optimal sparse structure for each layer while maintaining a target overall sparsity ratio: pruning and sparsity-shift-driven evolutionary search are implemented iteratively with a coarse-to-fine sparsity interval granularity (c). Ultimately, the post-pruned LLM with the optimal sparsity distribution (d) is obtained.

Structural pruning for LLMs can be applied across four key dimensions: (1) attention heads, (2) FFN intermediate neurons, (3) embedding dimension size, and (4) model depth. It can be isotropic (uniform sparsity across layers) or non-isotropic (layer-specific sparsity). This paper focuses on pruning attention heads and FFN intermediate neurons with non-uniform sparsity: pruning functionally independent heads and neurons allows for controllable accuracy loss, while layer-specific sparsity 89 further enhances pruning by tailoring compression to each layer's characteristics.

2.2 Effective Local Pruning

85

86

87

88

90

91

92

93

94

Redundant structure identification and weight adjustment. When pruning is scoped to the local level, one can determine the pruning outcome by eliminating the redundant input channels of each o_proj and down_proj modules, with a consistent sparsity across layers. Assuming the weight of a layer is $\mathbf{W} \in \mathbb{R}^{d_{\text{in}} \times d_{\text{out}}}$ and its input activation is $\mathbf{X} \in \mathbb{R}^{d_{\text{N}} \times d_{\text{in}}}$, the pruned weight $\widehat{\mathbf{W}}$ satisfies the sparsity constraint C. The corresponding optimization objective is expressed as:

$$\operatorname{argmin}_{\widehat{\mathbf{W}}} ||\mathbf{X}\mathbf{W} - \mathbf{X}\widehat{\mathbf{W}}||_{2}^{2} \quad \text{s.t.} \quad \mathcal{C}(\widehat{\mathbf{W}}) = C. \tag{2}$$

The pruning process can be viewed as a perturbation applied to the weights: $\widehat{\mathbf{W}} = \mathbf{W} - \delta \mathbf{W}$. There-97 fore, the error function is given by $E = \|\mathbf{X}\mathbf{W} - \mathbf{X}\widehat{\mathbf{W}}\|_2^2 = \|\mathbf{X}\delta\mathbf{W}\|_2^2$, which can be approximated by a Taylor series expansion around W and whose local fluctuations can be defined as:

$$\delta E = \underbrace{\left(\frac{\partial E}{\partial \mathbf{W}}\right)^{\top}}_{\mathbf{G}^{\top} \approx 0} \delta \mathbf{W} + \frac{1}{2} \delta \mathbf{W}^{\top} \underbrace{\frac{\partial^{2} E}{\partial \mathbf{W}^{2}}}_{\mathbf{H} \neq 0} \delta \mathbf{W} + \underbrace{O\left(\|\delta \mathbf{W}\|^{3}\right)}_{\approx 0}.$$
 (3)

 δE reflects the effect of $\delta {\bf W}$ on the pruning error, which we aim to minimize. The first-order gradient 100 G cannot be neglected, as the calibration samples are inevitably misaligned with the proprietary 101 closed-source pre-training data. The Hessian matrix H helps to identify pruning-sensitive weights 102 from a curvature perspective. Considering the sparsity constraint ($\delta \mathbf{W}_{p,:} = \mathbf{W}_{p,:}$: the p-th input 103 channel of W is to be pruned), we design the redundant channels and weight adjustment as follows:

$$\mathbf{W}_{p,:} = \operatorname{argmin}_{\mathbf{W}_{p,:}} \left(\left| \mathbf{G}_{p,:} \mathbf{W}_{p,:}^{\top} \right| + \frac{\| \mathbf{W}_{p,:} \|_{2}^{2}}{2 \left[\mathbf{H}^{-1} \right]_{p,p}} \right), \ \delta \mathbf{W}_{\sim p,:} = -\mathbf{H}_{\sim p,\sim p}^{-1} \mathbf{G}_{\sim p,:}.$$
(4)

H = $\mathbf{X}^{\top}\mathbf{X}$ and $\mathbf{G} = \mathbf{H}\mathbf{W}$ (analytic solutions computed without backpropagation, efficient) are used as estimates of the local optimization information. The channel p with the least error impact is identified and pruned, while $\delta \mathbf{W}$ adjusts the remaining weights to compensate for pruning errors.

Pruning heads and neurons. In our framework, feed-forward network neurons are pruned based on individual channel saliency computed from the down_proj layer, where each channel acts as the atomic unit for ranking and removal. For multi-head self-attention, saliency is first computed per output channel of the o_proj layer, then aggregated (averaged) across channels belonging to the same head, which is treated as the atomic unit for pruning. Similarly, in grouped query attention, saliency is aggregated over all channels corresponding to the same grouped head.

Progressively pruning and weight adjustment. We adopt progressive pruning with an appropriately fine granularity: finer granularity allows unpruned weights to gradually and uniformly compensate for pruning losses in small increments while enabling precise and dynamic redundant channel identification. Reducing granularity does not significantly complicate pruning, as the key intermediate variable \mathbf{H}^{-1} can be rapidly adjusted to account for partial channel pruning in $O(d_{\text{in}}^2)$ complexity [8].

Detailed analysis can be found in Appendix A.1.

2.3 Prune-to-supernet across Multiple Sparsity Ratios

As illustrated in Figure 1(b), a supernet will be constructed by repeatedly applying local pruning across a range of sparsity ratios to each LLM layer, producing pruned copies with varying sparsity ratios. However, this introduces challenges in error accumulation across layers. Error accumulation introduces an additional forward pass of the post-pruned layer, using its output activation as input for the next layer. The change in the input directly affects the optimization of the subsequent layer. In the ex-

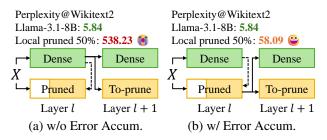


Figure 2: Implementing layerwise error accumulation gives a more accurate pruning result than not. Solid lines indicate forward propagation, and dashed lines indicate pruning.

ample shown in Figure 2, pruning half of Llama-3.1-8B's parameters using the local pruning approach with error accumulation results in significantly lower language comprehension perplexity than pruning without it. This performance gap highlights the critical role of error accumulation: it enables deeper layer pruning to be aware of shallower layer pruning.

The existence of multiple sparse structures complicates error accumulation, making it unclear which pathway to prioritize. To address this issue, we propose an *expectation error accumulation* approach to enable balanced mutual awareness among the sparse structures in the supernet. Let the output activation of the e-th sparse structure with sparsity S_e in layer ℓ be $\mathbf{X}_{\ell+1,e}$. We define the expectation output activation $\mathbf{X}_{\ell+1}$ for this layer as:

$$\mathbf{X}_{\ell+1} = \sum_{e=1}^{E} \frac{1 - S_e}{\sum_{e=1}^{E} (1 - S_e)} \mathbf{X}_{\ell+1,e}.$$
 (5)

A higher scaling factor is assigned to low sparsity weights because their output activations are more stable and reliable. By enabling expectation error accumulation and applying the local pruning approach, we can prune Llama-3.1-8B to create nine sparse structures in each layer, with 12.5% as the sparsity interval (covers complete pruning and abandoned pruning). The post-pruned model achieves a language comprehension perplexity of 66.38 on the WikiText-2 task, with manually picking the 50% sparse structure as an example. This result is close to the ideal perplexity of 58.09 achieved under full error accumulation and significantly better than the 208.92 perplexity from random error accumulation and 538.23 perplexity with abandoned error accumulation.

Týr-the-Pruner

151

152

153

154

155

156

157

158

159

160

161

162 163 164

167

168

169

170

171

174

175

176

177

179

180

181

182

183

184

186

187

188

189

190

191

192

193

194 195

196

197

198

By introducing effective local pruning and expectation error accumulation approaches, we can construct a supernet to tackle the global sparsity allocation problem. Specifically, we address the following issues to achieve efficient and effective sparsity allocation: (1) defining generalizable criteria for selecting a better sparse structure, (2) achieving an efficient search-based sparse structure selection while maintaining overall sparsity, and (3) handling the contradiction between fine-grained sparsity intervals and the large search space.

Align to dense model behaviors to win. Towards the definition of better sparse structures, we consider that large language models are designed for multi-task generalization. Thus, guiding sparse structure selection on a single task risks overfitting. To mitigate this, we adopt a distillation-inspired¹ metric to measure the similarity between sparse and dense models. A salient similarity indicates that the current sparse structure is better aligned with the dense model, making it more suitable for selection. Specifically, let $\mathbf{h}^{\text{dense}}_{\ell}$ and $\mathbf{h}^{\text{sparse}}_{\ell,e}$ denote the activations of the dense and e-th sparse (structure) models at layer ℓ , and $\mathbf{z}^{\text{dense}}$ and $\mathbf{z}^{\text{sparse}}_{\{e\}}$ represent the logits of the dense model and selected $(\lbrace e \rbrace = \lbrace e_{\ell} \rbrace_{\ell=1}^{L})$ sparse subnet.

$$\{\hat{e}\} = \operatorname{argmin}_{\{e\}} \sum_{\ell} \alpha_{\ell} \left\| \mathbf{h}_{\ell}^{\text{dense}} - \mathbf{h}_{\ell,e}^{\text{sparse}} \right\|_{2}^{2} + \beta \operatorname{KL}(\mathbf{z}^{\text{dense}} || \mathbf{z}_{\{e\}}^{\text{sparse}}),$$
(6)

Sparse structure selection via evolutionary search. Evolutionary search can achieve convergence in model architecture optimization [33, 21]. Compared to intuitive router training, evolutionary search requires no additional parameters. It maintains constant overall sparsity by shifting sparsity between sparse structures from different layers, whereas router training relies on penalty terms for suboptimal soft sparsity control. Evolutionary search is efficient, as it allows the just-in-time loading (c.f., Appendix A.4) of sparse structures and leverages the backpropagation-free feature.

Mutation (stochastic perturbation) in our evolutionary search arises from sparsity shifts across layers 173 (c.f., Select Sparse Structure in Figure 1). For instance, the sparsity of the ℓ -th layer may decrease by s%, while the ℓ' -th layer increases by s% (achieved by selecting different sparse structures). In each generation, we randomly generate such a group of sparsity distributions as candidates. Starting from the root generation, the performance of candidates is evaluated, and the best-performing ones are selected to generate new candidates for the next generation. Generations continue to be explored until the optimal sparsity distribution is found. 178

Iterative prune-to-supernet and evolutionary search. The search space for selecting sparse structures with fine-grained sparsity is enormous. For instance, constructing a supernet with a sparsity interval of 1.5625% would result in 65 sparse structures per MHA/FFN layer. For a 40-layer LLM, this would lead to over 5K sparse structures, creating a 10¹⁴⁵-scaled search space. Identifying solutions in this large search space is difficult and costly.

To address this issue, we form Týr-the-Pruner as an iterative prune-and-search framework. We first prune and construct a supernet with a coarse-grained sparsity interval (c.f., Figure 1(b)). For example, with 12.5% as the sparsity interval, the resulting supernet could have as few as nine sparse structures per MHA/FFN layer, yielding a significantly reduced search space. We then perform the evolutionary search to find the optimal sparsity distribution at this granularity. Based on which, we next refine the sparsity interval granularity and perform a new iteration of pruning and supernet construction (c.f., Figure 1(c)). For example, suppose the current optimal sparsity of a layer is 37.5%. In that case, we reduce the sparsity interval from 12.5% to 6.25%, use 37.5% as the median, and generate nine new sparse structures with sparsity ratios ranging from 12.5% to 62.5%. Overall, we iteratively apply the prune-and-search process until the optimal sparsity distribution at the finest granularity is identified, which is then used for final model compression (c.f., Figure 1(d)). Taking halving the sparsity granularity at each iteration as an example, our framework reduces the search space size to 10^{76} per iteration. It only requires four iterations to achieve the same sparsity granularity as the search-only strategy (1.5625% sparsity interval). This strategy significantly reduces both the search space and the generations explored per iteration.

Algorithms 1 to 4 in Appendix A.2 provide algorithmic procedures for local pruning, supernet construction, evolutionary search, and Týr-the-Pruner.

¹There is no real knowledge distillation training (weight updates) included in our methodology.

Table 1: **Post pruning performance comparison of different methods**. Language comprehension perplexity is validated on the Wikitext2 test set with a sequence length of 4096, where a lower value reflects better performance. Downstream accuracy (%, higher is better) is averaged across ARC-Easy, ARC-Challenge, BoolQ, HellaSwag, OpenbookQA, RTE, WinoGrande, and MMLU, with MMLU using a 5-shot benchmark and others a 0-shot benchmark. The best results are shown in **bold**.

				Perplex	xity on W	ikitext2↓	,		A	verage	e Down	ıstrean	n Accu	racy (%)	1
Sparsity	Method	Lla	ma-2		Llama-3.	ĸ	Mi	stral	Llaı	na-2	L	lama-3	.x	Mis	tral
		7B	13B	2-3B	0-8B	1-8B	7B-v0.3	Nemo	7B	13B	2-3B	0-8B	1-8B	7B-v0.3	Nemo
0%	N/A	5.12	4.57	7.29	5.76	5.84	4.95	5.35	57.96	62.05	57.01	64.08	64.77	63.72	66.24
	ShortGPT	8.86	5.67	12.42	13.90	13.14	7.58	7.72	53.27	59.16	53.13	57.75	58.50	59.49	59.46
	LaCO+	7.52	5.69	12.25	10.12	9.98	7.46	7.95	53.23	57.26	52.46	59.41	60.36	58.67	59.96
	SliceGPT	8.25	7.19	18.71	20.46	22.10	7.00	9.74	55.89	59.70	51.64	57.55	56.82	59.67	53.27
	Wanda-sp	6.24	6.09	182.24	86.91	18.46	6.86	7.27	55.40	57.41	38.02	33.95	47.89	59.44	56.82
12.5%	LLM-Pruner	6.11	5.17	11.14	8.24	8.26	6.17	6.79	53.38	59.78	46.98	53.96	54.04	55.26	58.23
	ZipLM	5.86	5.21	11.32	10.37	9.30	5.84	7.62	55.85	61.91	51.37	57.55	57.54	62.46	60.24
	OSSCAR	5.94	5.21	11.11	10.15	9.87	5.75	7.04	55.29	61.94	52.23	57.19	58.53	62.06	53.89
	FLAP	6.11	5.75	10.25	8.34	8.07	6.18	7.68	54.63	57.55	47.74	55.72	56.66	59.51	57.67
	Týr-the-Pruner	5.84	5.03	9.16	7.39	7.41	5.61	6.31	56.98	62.66	54.78	62.01	63.02	63.05	64.15
	ShortGPT	23.41	17.94	1464.20	4836.41	3418.83	35.20	124.20	46.68	51.86	41.25	38.12	38.62	51.07	51.68
	LaCO+	18.84	9.00	128.77	124.86	137.17	22.91	20.79	45.47	52.77	46.26	48.58	49.80	51.84	53.65
	SliceGPT	16.84	12.50	45.44	47.73	55.43	12.08	19.37	51.40	58.04	45.87	50.01	48.49	52.26	46.27
	Wanda-sp	9.21	19.92	94.12	48.95	962.72	17.83	15.34	49.92	38.17	33.93	34.53	32.40	49.13	41.30
25%	LLM-Pruner	11.56	7.11	25.14	18.65	19.35	10.24	11.81	44.09	49.56	39.55	42.36	40.88	46.32	45.26
	ZipLM	7.49	6.65	43.50	28.74	52.69	7.39	9.91	52.59	60.50	41.61	38.72	39.20	58.05	45.59
	OSSCAR	7.46	9.19	122.63	17.40	17.03	7.16	9.57	51.99	59.55	33.29	44.27	42.19	55.94	45.95
	FLAP	8.31	7.50	15.64	12.65	12.30	8.01	13.59	49.36	54.37	44.01	47.41	49.20	52.64	48.83
	Týr-the-Pruner	7.51	5.79	12.53	13.14	10.38	7.08	7.87	54.64	61.16	51.72	58.50	58.66	60.22	60.61
	ShortGPT	70.96	52.24	554.88		9.3E+04		864.38				39.16		35.80	42.52
	LaCO+	87.77	96.00	494.07		1377.02	429.78	462.92				38.89		40.44	42.88
	SliceGPT	35.10	26.22	98.41	176.81	237.50	27.68	38.46				39.96		43.30	39.55
	Wanda-sp	19.97	34.70	344.17	2422.78	3627.00	31.85	74.87				30.59		38.13	33.59
37.5%	LLM-Pruner	37.75	14.96	161.10	87.93	70.93	24.90	32.10				32.40		37.94	37.42
	ZipLM	12.13	13.01	283.53	50.36	125.98	14.01	15.53				34.77		48.90	44.86
	OSSCAR	11.28	12.74	182.00	27.69	28.87	10.43	16.00				40.81		48.91	45.81
	FLAP	12.41	11.33	26.05	22.61	21.54	11.81	27.01				41.51		44.90	45.57
	Týr-the-Pruner	10.29	7.17	27.88	21.64	18.09	10.25	11.47	52.21	58.67	46.11	53.66	53.46	52.34	54.63
	ShortGPT	226.40	187.23		1473.71			6804.52				37.51		35.05	38.00
	LaCO+		1129.00		2.1E+04			5.9E+04				35.21		33.93	33.25
	SliceGPT	65.34	50.66	205.09	384.04	353.21	54.66	69.15				34.55		36.17	34.95
	Wanda-sp	122.28	47.89	262.92	187.41	188.47	91.34	293.59				33.86		33.59	32.27
50%	LLM-Pruner	117.40	53.96	473.50	302.15	288.32	74.04	469.93				31.63		32.64	32.89
	ZipLM	32.91	24.70	356.02	102.76	366.34	24.18	24.96				33.14		39.93	38.42
	OSSCAR	28.41	44.17	320.14	80.90	198.87	29.58	23.14				32.58		40.95	37.99
	FLAP	25.49	16.89	272.98	82.12	134.28	34.81	79.46				38.68		40.57	39.34
	Týr-the-Pruner	16.17	9.59	29.84	38.59	30.89	15.53	16.85	47.41	54.58	41.41	47.41	47.79	46.21	47.92

3 Experiments

3.1 Experimental Settings

Models. We conduct experiments using the widely adopted large language models Llama2, Llama3.x, and Mistrals [36, 7, 14], focusing on models with over three billion parameters. The pruning targets include attention heads and FFN neurons, which are applied to the Transformer backbone. The embedding layer and the lm-head remain unchanged.

Calibration. For calibration, we consider FineWeb [29], a high-quality dataset curated from Common Crawl snapshots with rigorous deduplication and filtering. Specifically, we extract about 4M tokens (about 1k samples for a maximum input length of 4k) from its FineWeb-Edu subset to construct calibration samples, ensuring high data quality and efficiency.

Evaluation. We use perplexity as one evaluation metric for language comprehension performance [9], validated on the WikiText2 [25] test set. To evaluate the impact of compression across various downstream tasks, we report 0-shot accuracy on ARC [6], BoolQ [5], HellaSwag [45], OpenBookQA [26], RTE [38], and WinoGrande [30] tasks, as well as 5-shot accuracy on the MMLU [13] benchmark.

Implementation details. We implement Týr-the-Pruner with PyTorch [28] and leverage the HuggingFace Transformers and Datasets libraries [42] to manage models and datasets. For local pruning,

Table 2: Post pruning performance on massive language models. Accuracy (%, higher is better) serves as the comparison metric. MMLU employed a 5-shot benchmark, while other tasks used 0-shot benchmarks. The percentage of average accuracy maintenance after pruning was recorded, with values $\geq 95\%$ highlighted in green and values < 95% in red. The best results are shown in **bold**.

Model	Sparsity	Method	Arc-C	Arc-E	BoolQ	HellaSwag	OBQA	RTE	WinoGrande	MMLU	AVG
<u> </u>	0%	N/A	54.44	82.74	83.73	64.77	37.40	67.87	77.98	68.79	67.22 (100%)
		SliceGPT	38.65	68.39	69.63	38.40	25.00	63.54	67.40	50.20	52.65 (78%)
1.1 0.70D		LLM-Pruner	21.93	29.08	43.18	26.26	14.00	51.62	49.25	23.77	32.39 (48%)
Llama-2-70B	50%	ZipLM	46.67	77.61	82.26	56.94	34.00	68.95	75.61	54.33	62.05 (92%)
	30%	OSSCAR	48.21	78.37	81.99	57.00	32.60	67.15	76.64	56.05	62.25 (93%)
		FLAP	40.02	70.79	74.74	51.83	32.00	60.29	67.88	39.65	54.65 (81%)
		Týr-the-Pruner	48.21	79.12	83.18	60.04	35.20	70.76	78.14	60.58	64.40 (96%)
	0%	N/A	60.58	87.29	85.29	66.50	37.00	70.04	79.64	78.72	70.63 (100%)
		SliceGPT	32.08	58.00	63.85	34.02	20.60	53.43	56.99	32.60	43.95 (62%)
1.1 2.1.70D		LLM-Pruner	21.42	25.38	38.81	26.22	13.80	54.87	50.83	24.95	32.04 (45%)
Llama-3.1-70B	50%	ZipLM	48.55	78.54	80.55	55.98	31.60	66.79	78.37	62.73	62.89 (89%)
	30%	OSSCAR	48.29	78.62	81.44	54.69	32.80	68.23	77.58	60.38	62.75 (89%)
		FLAP	37.54	68.90	67.34	43.98	26.40	60.65	72.30	54.40	53.94 (76%)
		Týr-the-Pruner	56.74	85.40	85.20	64.07	36.40	71.48	78.91	70.29	68.56 (97%)

we iteratively prune and adjust weights by removing one attention head or 16 FFN neurons at a time. The prune-and-search process consists of 4 iterations, where the sparsity interval at the i-th iteration is set to $12.5\%/2^{i-1}$. In each iteration, we explore 50 generations with 128 offspring candidates per generation. The sparsity shifts of the attention or FFN layers are independent to ensure the consistency of the sparsity interval granularity. Candidate validation is performed using the distillation-inspired metric with vocabulary logits. We follow [33] to enhance validation efficiency: the 128 offspring are first validated on 2K tokens, and the top 16 are selected. These 16 survivors are then validated on 16K tokens, from which the top 4 are selected, and finally, the best one is validated and selected on 128K tokens. To ensure a fair comparison, we use the same FineWeb-Edu samples for calibration to reproduce the baselines. The benchmark results of the baselines may outperform their reported results due to the improved calibration sample size and data quality. All experiments for Týr-the-Pruner were conducted on 4 AMD Instinct $^{\text{TM}}$ MI250 (64GB) Accelerators, with models less than 13B parameters running on a single accelerator.

3.2 Performance

Language comprehension and downstream task performance of post-pruned LLMs. We applied structural pruning to various large language models using Týr-the-Pruner at overall sparsity levels of 12.5%, 25%, 37.5%, and 50%. The performance was benchmarked against state-of-the-art methods, including ShortGPT (layer pruning) [23], LaCO+ (ShortGPT with LaCO layer merging) [44], SliceGPT (embedding dimension pruning) [3], Wanda-SP [34, 1], LLM-Pruner [22], ZipLM [16], OSSCAR [24], and FLAP [1]. Table 1 summarizes the comparative results, highlighting post-pruning performance in language comprehension and downstream tasks (c.f., Appendix A.9 for detailed results within each task).

Týr-the-Pruner demonstrates competitive performance across various sparsity ratios and LLMs. It consistently achieves state-of-the-art results at low sparsity ratios (≤25%). For instance, pruning 12.5% of Llama-3-8B's parameters yields the lowest perplexity (7.39) and the highest average downstream accuracy (62.37%), surpassing the previous awesome methods, LLM-Pruner and LaCO+, by 8.0% and 2.6%. At higher sparsities (≥37.5%), maintaining performance poses a significant challenge for existing methods, with advanced techniques like OSSCAR often exhibiting perplexities exceeding 100 and accuracies dropping below 40%. Týr-the-Pruner, by contrast, excels under these conditions. For example, at 37.5% sparsity, the pruned Mistral-Nemo model achieves a perplexity of 11.47 and an accuracy of 55.63%, substantially outperforming ZipLM and FLAP.

Scale up to massive language models. Structural pruning of massive language models challenges post-pruned performance and resource budgets. We incorporated a CPU offload policy into typical baseline methods to ensure a fair comparison on 70B-scale models. Table 2 compares the post-pruning performance of Llama-2-70B and Llama-3.1-70B at 50% sparsity.

Experimental results demonstrate Týr-the-Pruner's strong scalability under high sparsity for massive models. LLM-Pruner shows clear scaling limitations, maintaining only 48% accuracy when pruning

Table 3: Inference efficiency of post-pruned LLMs Table 4: Ablation study on local pruning. with Týr-the-Pruner. Benchmarks were conducted Wikitext2 Perplexity and 0-shot accuracy on on a single AMD InstinctTM MI250 accelerator using ARC-C, ARC-E, and BoolQ are reported. PyTorch (HipBlas) for LLM inference, with input and output sequence lengths set to 2048.

Model	Sparsity	#Params	TTFT	Decode Throughput
	0%	8.0B	2.49 (1.00x)	12.27 (1.00x)
Llama-3.1-8B	25%	6.1B	1.94 (1.28x)	14.13 (1.15x)
	50%	4.3B	1.42 (1.75x)	16.97 (1.38x)
	0%	14.3B	4.16 (1.00x)	6.68 (1.00x)
Mistral-Nemo	25%	11.0B	3.34 (1.25x)	7.55 (1.13x)
	50%	7.8B	2.49 (1.67x)	8.93 (1.34x)

Method	Configuration	Wikitext2	ARC-C	ARC-E	BoolQ
FLAP	-	134.28	20.99	43.18	52.29
Local Pruning	Default Wikitext2 Calibrated C4 Calibrated w/o progressive pruning w/o Hessian w/o Gradient	58.09 49.00 73.07 63.48 109.88 67.31	24.06 20.05 21.42 23.38 22.53 25.60	58.67 54.84 57.58 56.65 51.68 57.83	63.46 61.71 62.17 62.17 46.48 62.17
Local Pruning & Build Supernet	Default w/o Error Accum.	66.38 538.23 208.92 75.10	23.05 21.93 22.70 23.72	58.46 33.54 39.14 53.03	62.17 62.35 40.31 45.05 60.06

Llama-2-70B. In contrast, Týr-the-Pruner achieves 97% accuracy maintenance when pruning Llama-3.1-70B, outperforming alternative methods.

Inference efficiency of post-pruned LLMs. To evaluate the efficiency gains of post-pruned LLMs, we constructed inference benchmarks summarized in Table 3. For Llama-3.1-8B, 50% sparsity reduces time to first token (TTFT, in seconds) by 43% and boosts decode throughput (tokens/s) by 38%. These results highlight pruning as a key technique for inference optimization in large language models. More detailed efficiency analysis can be found in Appendix A.5.

3.3 Ablation Study

255

256

257

258

259

260

261

262

263

265

268

269

270

271

272

273

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

Prune-to-supernet. The effectiveness of local pruning and supernet construction depends on factors such as calibration samples, the implementation of local pruning, and error accumulation. Table 4 presents ablation study evaluating these factors for pruning Llama-3.1-8B at 50% sparsity. Experimental results show that FineWeb-Edu is consistently preferred as a calibration source, emphasizing the importance of selecting high-quality calibration samples. The exist of first-second-order-combined optimization information and progressive pruning significantly impacts accuracy, demonstrating their necessity. Furthermore, the proposed expectation error accumulation approach outperforms alternatives, showcasing its ability to make sparse structures mutually aware appropriately.

Evolutionary search direction. To assess the impact of search direction on final performance, we compare the effects of minimizing singletask losses versus our similarity-based metric when pruning 50% of Llama-3.1-8B's parameters, as shown in Table 5. Experiments show that single-task search underperforms our metric, which achieves optimal accuracy by calculating the similarity across activations from the first, median, last,

Table 5: Ablation study on search direction. Wikitext2 Perplexity and 0-shot accuracy on ARC-C, ARC-E, BoolQ are reported.

Search Direction	Wikitext2	ARC-C	ARC-E	BoolQ
Wikitext2 Perplexity	17.22	29.69	64.06	62.23
Fineweb-Edu Perplexity	31.65	31.06	64.18	62.17
Similarity-based	28.56	32.51	65.87	63.12
Similarity-based Logits-only	30.89	31.83	65.36	64.62

and logits layers, requiring 96 GB for hidden activation checkpointing. Due to this overhead, the logits-only metric was favored, maintaining strong performance with reduced resource demands.

Execution efficiency: Týr-the-Pruner vs. finegrained search-only strategy. Figure 3 demonstrates the advantages of Týr-the-Pruner over the search-only strategy in efficacy and efficiency in identifying the optimal 50% sparsity distribution on Llama-3.1-8B. In which the search-only strategy uses a fine-grained 3.125% sparsity interval. Experimental results show that Týr-the-Pruner achieves a similar convergence trend as the search-only strategy but with faster convergence, fewer generations, and reduced search time. Additionally, the final post-pruned model discovered by Týr-the-Pruner outperforms the search-only strategy, with an average accuracy of 47.79 compared to 43.58. Our

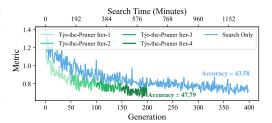


Figure 3: Týr-the-Pruner has faster convergence, fewer exploration generations, shorter search time, and better search outcomes compared to the fine-grained search-only approach.

evolutionary search maintains time efficiency, with a single generation requiring only 190 seconds.

96 4 Related Work

297 298

299

300

301

302

303

Pruning techniques for compressing large language models. The growing complexity of Transformer-based language models, now reaching hundreds of billions of parameters, has intensified the necessity for effective pruning strategies. Pruning methods are generally divided into unstructural and structural approaches. Unstructural pruning [9, 34] achieves high accuracy by selectively zeroing individual elements in the weight. However, it often requires specialized hardware, such as 2:4 sparse tensor cores [48], for end-to-end acceleration. Structural pruning enables hardware-agnostic acceleration by removing entire weight groups, but it may result in a pronounced loss of accuracy.

Structural pruning of LLMs can be approached as local optimization, alleviating memory constraints from loading the full model. ZipLM [16] accelerates inference by leveraging the Optimal Brain Surgeon (OBS) [12] theory, pruning weights to minimize the impact on the Hessian matrix and 306 adjusting the remaining weights to reduce layerwise loss. Building on ZipLM, OSSCAR [24] in-307 troduces a permutation search between pruned and remaining weights within each layer, further 308 reducing pruning-induced loss. Some approaches apply global optimization strategies to prune LLMs, 309 overcoming local constraints, enabling customized sparsity distributions, and potentially finding 310 optimal solutions. [17] introduced Fisher information as a saliency metric, selecting structures to 311 prune through global dynamic programming. LLM-Pruner [22] defines broad substructure depen-312 dency groups and then evaluates their saliency to guide pruning. FLAP [1] uses a global metric that 313 considers both weights and activations for sparsity allocation, followed by layerwise pruning and 314 bias adjustments to mitigate pruning losses. 315

Additionally, there is growing interest in embedding dimension [3] and depth [23, 44] pruning techniques for LLMs. Some training-aware structural pruning methods [46, 19, 27] are also gaining attention, as they further enhance pruning effectiveness by considering training dynamics.

Neural architecture search (NAS) for LLM compression. Several studies have applied NAS to compress LLMs, seeking architectures that reduce inference costs while maintaining accuracy. multiobjective NAS has been employed to explore various search space definitions, identifying compressed LLM architectures that enhance efficiency and accuracy when fine-tuned on specific downstream tasks [15]. LLaMAFlex [2] fine-tunes LLMs into supernets with a Gumbel softmax-based trainable subnet router, realized a "rain once, deploy many" model compression. EvoPress [33] proves that evolutionary search can determine suitable layerwise compression configurations and extends this method to support mixed-precision quantization and non-isotropic unstructural sparsity.

This paper presents a novel structural pruning framework, Týr-the-Pruner, for large language models.
Unlike conventional methods, this framework searches for the optimal sparsity distribution within a
supernet. Through enhanced supernet construction and an iterative prune-and-search technique, it
achieves end-to-end global pruning optimization with strong efficiency and efficacy, setting a new
benchmark for post-pruning accuracy maintenance.

332 5 Limitations

Týr-the-Pruner achieves state-of-the-art structural pruning outcomes by constructing reliable supernets and employing an iterative prune-and-search process. We have significantly reduced the search space and the number of generations explored. However, the search time cost remains non-negligible. Fair time costs in model compression are often considered acceptable, as the goal is to achieve a sufficiently optimized pruned model. However, we will continue to optimize it in future work.

338 6 Conclusion

This paper introduces Týr-the-Pruner, an end-to-end global structural pruning framework for large language models. By constructing a supernet through local pruning across various sparsity ratios and using evolutionary search to identify the optimal subnet, our framework achieves the optimal sparsity distribution under a target overall sparsity ratio. We propose an effective local pruning and an expectation error accumulation approach to enhance supernet construction. Additionally, an iterative prune-and-search strategy with coarse-to-fine sparsity granularity ensures rapid convergence. Extensive experiments show that Týr-the-Pruner outperforms state-of-the-art methods, achieving 50% parameter pruning while retaining 97% accuracy on Llama-3.1-70B.

References

- 11] Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao Wang. Fluctuation-based adaptive structured pruning for large language models. In Michael J. Wooldridge, Jennifer G. Dy, and Sriraam Natarajan, editors, Thirty-Eighth AAAI Conference on Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence, IAAI 2024, Fourteenth Symposium on Educational Advances in Artificial Intelligence, EAAI 2014, February 20-27, 2024, Vancouver, Canada, pages 10865–10873. AAAI Press, 2024.
- 254 [2] Anonymous. LLamaflex: Many-in-one LLMs via generalized pruning and weight sharing. In Submitted to The Thirteenth International Conference on Learning Representations, 2024. under review.
- Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari Do Nascimento, Torsten Hoefler, and James
 Hensman. Slicegpt: Compress large language models by deleting rows and columns. In <u>The Twelfth</u>
 International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024.
 OpenReview.net, 2024.
- Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind 360 Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, 361 Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens 362 363 Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Lan-364 guage models are few-shot learners. In Hugo Larochelle, Marc'Aurelio Ranzato, Raia Hadsell, Maria-365 366 Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 367 2020, virtual, 2020. 368
- [5] Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
 Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In Jill Burstein,
 Christy Doran, and Thamar Solorio, editors, Proceedings of the 2019 Conference of the North American
 Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT
 Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages 2924–2936.
 Association for Computational Linguistics, 2019.
- Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge. arXiv:1803.05457v1, 2018.
- [7] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 378 Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, 379 Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurélien 380 Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière, Bethany Biron, Binh Tang, Bobbie Chern, 381 Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe 382 Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel 383 384 Song, Danielle Pintz, Danny Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-385 Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis 386 Anderson, Graeme Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, 387 Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan Misra, Ivan Evtimov, 388 Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der 389 Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie 390 Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, 391 Junteng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin 392 393 Stone, and et al. The llama 3 herd of models. CoRR, abs/2407.21783, 2024.
- [8] Elias Frantar and Dan Alistarh. Optimal brain compression: A framework for accurate post-training quantization and pruning. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 December 9, 2022, 2022.
- [9] Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in one-shot.
 In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan
 Scarlett, editors, International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu,
 Hawaii, USA, volume 202 of Proceedings of Machine Learning Research, pages 10323–10337. PMLR,
 2023.

- 404 [10] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. GPTQ: accurate post-training quantization for generative pre-trained transformers. CoRR, abs/2210.17323, 2022.
- Shangqian Gao, Chi-Heng Lin, Ting Hua, Zheng Tang, Yilin Shen, Hongxia Jin, and Yen-Chang Hsu.
 DISP-LLM: dimension-independent structural pruning for large language models. In Amir Globersons,
 Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang, editors, Advances in Neural Information Processing Systems 38: Annual Conference on Neural Information
 Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 15, 2024, 2024.
- [12] Babak Hassibi and David G. Stork. Second order derivatives for network pruning: Optimal brain surgeon.
 In Stephen Jose Hanson, Jack D. Cowan, and C. Lee Giles, editors, <u>Advances in Neural Information</u>
 Processing Systems 5, [NIPS Conference, Denver, Colorado, USA, November 30 December 3, 1992],
 pages 164–171. Morgan Kaufmann, 1992.
- [13] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
 Steinhardt. Measuring massive multitask language understanding. Proceedings of the International
 Conference on Learning Representations (ICLR), 2021.
- 418 [14] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego
 419 de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud,
 420 Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and
 421 William El Sayed. Mistral 7b. CoRR, abs/2310.06825, 2023.
- 422 [15] Aaron Klein, Jacek Golebiowski, Xingchen Ma, Valerio Perrone, and Cedric Archambeau. Structural 423 pruning of large language models via neural architecture search. In AutoML Conference 2023 (Workshop).
- 424 [16] Eldar Kurtic, Elias Frantar, and Dan Alistarh. Ziplm: Inference-aware structured pruning of language 425 models. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey 426 Levine, editors, Advances in Neural Information Processing Systems 36: Annual Conference on Neural 427 Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, 428 2023.
- 429 [17] Woosuk Kwon, Sehoon Kim, Michael W. Mahoney, Joseph Hassoun, Kurt Keutzer, and Amir Gholami.
 430 A fast post-training pruning framework for transformers. In Sanmi Koyejo, S. Mohamed, A. Agarwal,
 431 Danielle Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Information Processing Systems 35:
 432 Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA,
 433 USA, November 28 December 9, 2022, 2022.
- 434 [18] Qi Le, Enmao Diao, Ziyan Wang, Xinran Wang, Jie Ding, Li Yang, and Ali Anwar. Probe pruning: 435 Accelerating llms through dynamic pruning via model-probing. arXiv preprint arXiv:2502.15618, 2025.
- 436 [19] Shengrui Li, Xueting Han, and Jing Bai. Nuteprune: Efficient progressive pruning with numerous teachers for large language models. CoRR, abs/2402.09773, 2024.
- 438 [20] Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan Xiao,
 439 Xingyu Dang, Chuang Gan, and Song Han. AWQ: activation-aware weight quantization for on-device
 440 LLM compression and acceleration. In Phillip B. Gibbons, Gennady Pekhimenko, and Christopher De Sa,
 441 editors, Proceedings of the Seventh Annual Conference on Machine Learning and Systems, MLSys 2024,
 442 Santa Clara, CA, USA, May 13-16, 2024. mlsys.org, 2024.
- 443 [21] Yuqiao Liu, Yanan Sun, Bing Xue, Mengjie Zhang, Gary G Yen, and Kay Chen Tan. A survey on evolutionary neural architecture search. <u>IEEE transactions on neural networks and learning systems</u>, 34(2):550–570, 2021.
- 446 [22] Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large language
 447 models. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey
 448 Levine, editors, Advances in Neural Information Processing Systems 36: Annual Conference on Neural
 449 Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 16, 2023,
 450 2023.
- 451 [23] Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and 452 Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect. <u>CoRR</u>, 453 abs/2403.03853, 2024.
- Xiang Meng, Shibal Ibrahim, Kayhan Behdin, Hussein Hazimeh, Natalia Ponomareva, and Rahul
 Mazumder. OSSCAR: one-shot structured pruning in vision and language models with combinatorial
 optimization. In Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria,
 July 21-27, 2024. OpenReview.net, 2024.

- 458 [25] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models.
 459 In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
 460 2017, Conference Track Proceedings. OpenReview.net, 2017.
- [26] Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct electricity?
 a new dataset for open book question answering. In EMNLP, 2018.
- 463 [27] Saurav Muralidharan, Sharath Turuvekere Sreenivas, Raviraj Joshi, Marcin Chochowski, Mostofa Patwary,
 464 Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz, and Pavlo Molchanov. Compact language models via
 465 pruning and knowledge distillation. CoRR, abs/2407.14679, 2024.
- Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor 466 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Z. 467 Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, 468 Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. 469 In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d'Alché-Buc, Emily B. Fox, and 470 Roman Garnett, editors, Advances in Neural Information Processing Systems 32: Annual Conference 471 on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC 472 Canada, pages 8024-8035, 2019. 473
- 474 [29] Guilherme Penedo, Hynek Kydlícek, Loubna Ben Allal, Anton Lozhkov, Margaret Mitchell, Colin Raffel, Leandro von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for the finest text data at scale. CoRR, abs/2406.17557, 2024.
- 477 [30] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adversarial winograd schema challenge at scale. arXiv preprint arXiv:1907.10641, 2019.
- 479 [31] Noam Shazeer. GLU variants improve transformer. CoRR, abs/2002.05202, 2020.
- 480 [32] Xuan Shen, Pu Zhao, Yifan Gong, Zhenglun Kong, Zheng Zhan, Yushu Wu, Ming Lin, Chao Wu, Xue Lin,
 481 and Yanzhi Wang. Search for efficient large language models. In Amir Globersons, Lester Mackey, Danielle
 482 Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang, editors, Advances in Neural
 483 Information Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024,
 484 NeurIPS 2024, Vancouver, BC, Canada, December 10 15, 2024, 2024.
- 485 [33] Oliver Sieberling, Denis Kuznedelev, Eldar Kurtic, and Dan Alistarh. Evopress: Towards optimal dynamic model compression via evolutionary search. CoRR, abs/2410.14649, 2024.
- Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning approach for large language models. In The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.
- 490 [35] Shengkun Tang, Oliver Sieberling, Eldar Kurtic, Zhiqiang Shen, and Dan Alistarh. Darwinlm: Evolutionary 491 structured pruning of large language models. arXiv preprint arXiv:2502.07780, 2025.
- [36] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay 492 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-493 Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, 494 Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan 495 Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh 496 Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, 497 Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy 498 499 Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin 500 Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien 501 Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned 502 chat models. CoRR, abs/2307.09288, 2023. 503
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
 Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von Luxburg, Samy
 Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances
 in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing
 Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 5998–6008, 2017.
- Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. GLUE:
 A multi-task benchmark and analysis platform for natural language understanding. In 7th International
 Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

- [39] Boyao Wang, Rui Pan, Shizhe Diao, Xingyuan Pan, Jipeng Zhang, Renjie Pi, and Tong Zhang. Adapt-pruner: Adaptive structural pruning for efficient small language model training. <u>CoRR</u>, abs/2502.03460,
 2025.
- 516 [40] Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. SVD-LLM: truncation-aware singular value decomposition for large language model compression. CoRR, abs/2403.07378, 2024.
- Yuxin Wang, Minghua Ma, Zekun Wang, Jingchang Chen, Liping Shan, Qing Yang, Dongliang Xu,
 Ming Liu, and Bing Qin. CFSP: an efficient structured pruning framework for llms with coarse-tofine activation information. In Owen Rambow, Leo Wanner, Marianna Apidianaki, Hend Al-Khalifa,
 Barbara Di Eugenio, and Steven Schockaert, editors, Proceedings of the 31st International Conference
 on Computational Linguistics, COLING 2025, Abu Dhabi, UAE, January 19-24, 2025, pages 9311–9328.

 Association for Computational Linguistics, 2025.
- Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language processing. In Qun Liu and David Schlangen, editors, Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, EMNLP 2020 Demos, Online, November 16-20, 2020, pages 38–45. Association for Computational Linguistics, 2020.
- [43] Shangyu Wu, Hongchao Du, Ying Xiong, Shuai Chen, Tei-Wei Kuo, Nan Guan, and Chun Jason Xue.
 Evop: Robust LLM inference via evolutionary pruning. CoRR, abs/2502.14910, 2025.
- Yifei Yang, Zouying Cao, and Hai Zhao. Laco: Large language model pruning via layer collapse. In Yaser
 Al-Onaizan, Mohit Bansal, and Yun-Nung Chen, editors, Findings of the Association for Computational
 Linguistics: EMNLP 2024, Miami, Florida, USA, November 12-16, 2024, pages 6401–6417. Association
 for Computational Linguistics, 2024.
- [45] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine really
 finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for Computational
 Linguistics, 2019.
- [46] Mingyang Zhang, Hao Chen, Chunhua Shen, Zhen Yang, Linlin Ou, Xinyi Yu, and Bohan Zhuang.
 Loraprune: Structured pruning meets low-rank parameter-efficient fine-tuning. In Lun-Wei Ku, Andre
 Martins, and Vivek Srikumar, editors, Findings of the Association for Computational Linguistics, ACL
 2024, Bangkok, Thailand and virtual meeting, August 11-16, 2024, pages 3013–3026. Association for
 Computational Linguistics, 2024.
- [47] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
 Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang,
 Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. A survey of
 large language models. CoRR, abs/2303.18223, 2023.
- [48] Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan, Wenxiu Sun, and Hongsheng Li.
 Learning N: M fine-grained structured sparse neural networks from scratch. In 9th International Conference
 on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

2 A Appendix

553

A.1 Theoretical Foundations of Local Pruning

Redundant channel identification. We consider first- and second-order terms to minimize Equation (3). For the first-order term, we identify the to-prune channel p by $\operatorname{argmin}_{\mathbf{W}_{p,:}}\left(|\mathbf{G}_{p,:}\mathbf{W}_{p,:}^{\top}|\right)$, which identifies the weights with the minimal contribution in the gradient direction [22]. For the second-order term, we employ the Optimal Brain Surgeon (OBS) method [12], which optimizes $\operatorname{argmin}_{\mathbf{W}_{p,:}}\left(\frac{\|\mathbf{W}_{p,:}\|_{2}^{2}}{2[\mathbf{H}^{-1}]_{p,p}}\right)$ by considering the inverse of the diagonal elements of the Hessian matrix. This method measures each channel's contribution to the curvature of the loss function.

The identification metric for redundant channels is derived from a manual design that takes into account both first- and second-order optimization information, distinguishing it from previous work.
Table 4 demonstrates the validity of our metric by ablation.

Weight adjustment. We minimize Equation (3) by applying the Lagrange multiplier method to impose constraints on the p-th channel should be pruned ($\delta \mathbf{W}_{p,:} = \mathbf{W}_{p,:}$):

$$\mathcal{L}(\delta \mathbf{W}, \boldsymbol{\lambda}) = \mathbf{G}^{\top} \delta \mathbf{W} + \frac{1}{2} \delta \mathbf{W}^{\top} \mathbf{H} \delta \mathbf{W} + \boldsymbol{\lambda}^{\top} \left(\delta \mathbf{W}_{p,:} - \mathbf{W}_{p,:} \right)$$
(7)

Under the constraints, the resulting loss function $\mathcal{L}(\delta \mathbf{W}, \lambda)$ will be differentiated with respect to $\delta \mathbf{W}$ and λ to find the minimum value:

$$\begin{cases} \frac{\partial \mathcal{L}(\delta \mathbf{W}, \boldsymbol{\lambda})}{\partial \delta \mathbf{W}} = \mathbf{G} + \mathbf{H} \delta \mathbf{W} + \mathbf{E}_{p} \boldsymbol{\lambda}^{\top} = \mathbf{0}, \\ \frac{\partial \mathcal{L}(\delta \mathbf{W}, \boldsymbol{\lambda})}{\partial \boldsymbol{\lambda}} = \delta \mathbf{W}_{p,:} - \mathbf{W}_{p,:} = \mathbf{0}. \end{cases}$$
(8)

For the $\mathbf{G} + \mathbf{H}\delta\mathbf{W} + \mathbf{E}_p\boldsymbol{\lambda}^{\top}$ term, we use p and $\sim p$ to denote channels to prune and channels to remain. Corresponding variables can be expanded in this way:

$$\begin{bmatrix} \mathbf{G}_{p,:} \\ \mathbf{G}_{\sim p,:} \end{bmatrix} + \begin{bmatrix} \mathbf{H}_{p,p} & \mathbf{H}_{p,\sim p} = 0 \\ \mathbf{H}_{\sim p,p} = 0 & \mathbf{H}_{\sim p,\sim p} \end{bmatrix} \begin{bmatrix} \delta \mathbf{W}_{p,:} \\ \delta \mathbf{W}_{\sim p,:} \end{bmatrix} + \begin{bmatrix} \boldsymbol{\lambda}^{\top} \\ \mathbf{0} \end{bmatrix} = \mathbf{0}, \tag{9}$$

where the elements of the Hessian matrix corresponding to the pruned positions p can be set to zero (when a channel of the weights is pruned, the same position of the Hessian/invHessian matrix are pruned correspondingly [8]). Overall, the solution is $\delta \mathbf{W}_{\sim p,:} = -\mathbf{H}_{\sim p,\sim p}^{-1}\mathbf{G}_{\sim p,:}$

Fast update of inverse Hessian matrix. When the p-th channel is pruned, the inverse Hessian matrix \mathbf{H}^{-1} must be updated to account for the removal of the corresponding channel p in \mathbf{W} . This update can be efficiently derived by leveraging the properties of partitioned matrices and applying the Sherman-Morrison-Woodbury formula. The main idea is that the pruning of the p-th channel results in a rank-1 update to \mathbf{H}^{-1} , which is mathematically represented as:

$$\mathbf{H}^{-1} \leftarrow \mathbf{H}^{-1} - \frac{1}{[\mathbf{H}^{-1}]_{pp}} \mathbf{H}_{:,p}^{-1} \mathbf{H}_{p,:}^{-1}.$$
 (10)

By updating the inverse Hessian with a rank-1 adjustment, the influence of the p-th channel is properly removed through the outer product of the corresponding column and row vectors, using the reciprocal of the p-th diagonal element. The updated \mathbf{H}^{-1} ensures consistency for the remaining channels, enabling efficient and scalable pruning operations. This method has a time complexity of $O(d_{\rm in}^2)$, avoiding full recomputation of the inverse and ensuring computational efficiency.

582

Algorithm 1 Function local_pruning

```
1: Inputs: to-prune weight \mathbf{W}, input activations \mathbf{X}, sparsity S, pruning granularity (pruning times) K

2: \mathbf{Mask} \leftarrow \mathrm{ones\_like}(\mathbf{W})

3: \mathbf{H} \leftarrow \mathbf{X}^{\top} \mathbf{X}

4: \mathbf{G} \leftarrow \mathbf{HW}

5: \mathbf{for} \ k \leftarrow 1 \ \mathbf{to} \ K \ \mathbf{do}

6: p \leftarrow \mathrm{argmin}_p \left( \left| \mathbf{G}_{p,:} \mathbf{W}_{p,:}^{\top} \right| + \frac{\|\mathbf{W}_{p,:}\|_2^2}{2[\mathbf{H}^{-1}]_{p,p}} \right)

7: \mathbf{Mask}_p \leftarrow 0

8: \mathbf{W}_{\sim p,:} \leftarrow \mathbf{W}_{\sim p,:} + \mathbf{H}_{\sim p,\sim p}^{-1} \mathbf{G}_{\sim p,:}

9: \mathbf{H}^{-1} \leftarrow \mathbf{H}^{-1} - \frac{1}{[\mathbf{H}^{-1}]_{p,p}} \mathbf{H}_{:,p}^{-1} \mathbf{H}_{p,:}^{-1}

10: end for

11: Return \mathbf{Mask} \odot \mathbf{W}
```

Algorithm 2 Function prune_to_supernet

```
1: Inputs: LLM weights \{\mathbf{W}_1, \mathbf{W}_2, ..., \mathbf{W}_L\}, sparsity ratios \{S_{1,1}, ..., S_{1,E}, ..., S_{L,E}\}, input activations for first weight \mathbf{X}, pruning granularity (pruning times) K

2: for \ell \leftarrow 1 to L do

3: \mathbf{X}_list \leftarrow []

4: for e \leftarrow 1 to E do

5: \widehat{\mathbf{W}}_{\ell,e} \leftarrow \text{local\_pruning}(\mathbf{W}_{\ell}, \mathbf{X}, S_{\ell,e}, K)

6: \text{store}(\widehat{\mathbf{W}}_{\ell,e})

7: \mathbf{X}_list append (\mathbf{X} \cdot \widehat{\mathbf{W}}_{\ell,e})

8: end for

9: \mathbf{X} \leftarrow \sum_{e=1}^{E} \frac{1-S_{\ell,e}}{\sum_{e=1}^{E}(1-S_{\ell,e})} \mathbf{X}_list [e]

10: end for

11: Return \{\widehat{\mathbf{W}}_{\ell,e}\}_{\ell=1,e=1}^{L,E}
```

Algorithm 3 Function evolutionary_search

```
1: Inputs: sparse structures \mathbb{W} = \{\mathbf{W}_{1,1}, ..., \mathbf{W}_{1,E}, ..., \mathbf{W}_{L,E}\}, sparsity ratios \{S_{\ell}\}_{\ell=1}^{L}, sparsity interval S^{g}

2: procedure makeCandidates(numCanidates, \mathbb{W}, \{S_{\ell}\}_{\ell=1}^{L}, S^{g})

3: Candidates \leftarrow []

4: for i \leftarrow 1 to numCanidates do

5: Candidates. append(randSparsityShift(\mathbb{W}, \{S_{\ell}\}_{\ell=1}^{L}, S^{g}, randChoice(L), randChoice(L)))

6: end for

7: end procedure: return Candidates

8: \{\widehat{S}_{\ell}\}_{\ell=1}^{L} \leftarrow \{S_{\ell}\}_{\ell=1}^{L}

9: for g \leftarrow 1 to numGenerations do

10: Offsprings \leftarrow makeCandidates(numCanidates, \mathbb{W}, \{\widehat{S}_{\ell}\}_{\ell=1}^{L}, S^{g})

11: \{\widehat{S}_{\ell}\}_{\ell=1}^{L} \leftarrow checkSparsity(argminSearchMetric(<math>Offsprings))

12: Return \{\widehat{S}_{\ell}\}_{\ell=1}^{L}
```

Algorithm 4 Function Týr-the-Pruner

```
1: Inputs: LLM weights \{W_1, W_2, ..., W_L\}, input activations for first weight X,
                     pruning granularity (pruning times) K, overall sparsity S, sparsity interval S^g,
                     num sparse structures E, iterations T
 2: procedure generateSparsities(L, E, \{S_\ell\}_{\ell=1}^L, S^g)
           Sparsities = \{\}
 4:
           for \ell \leftarrow 0 to \operatorname{range}(L) do
 5:
               for e \leftarrow 0 to range(E) do
                   Sparsities. append(S_{\ell} - ((e-1) \times 0.5) \times S^g + i \times S^g)
 6:
 7:
           end for
 9: end procedure: return Sparsities
10: \{\widehat{S}_{\ell}\}_{\ell=1}^{L} \leftarrow \{S\}_{L}
11: for t \leftarrow 1 to T do
          Sparsities \leftarrow generateSparsities(L, E, \{\widehat{S}_{\ell}\}_{\ell=1}^{L}, S^{g}) \{\widehat{\mathbf{W}}_{\ell, e}\}_{\ell=1, e=1}^{L, E} \leftarrow \text{prune\_to\_supernet}(\{\mathbf{W}_{\ell}\}_{\ell=1}^{L}, \text{Sparsities}, \mathbf{X}, K)
13:
           \{\widehat{S}_{\ell}\}_{\ell=1}^{L} \leftarrow \text{evolutionary\_search}(\{\widehat{\mathbf{W}}_{\ell,e}\}_{\ell=1,e=1}^{L,E}, \{\widehat{S}_{\ell}\}_{\ell=1}^{L}, S^g)
           S^g \leftarrow S^g \times 0.5
16: end for
17: Return compress(\{\widehat{\mathbf{W}}_{\ell,e}\}_{\ell=1,e=1}^{L,E}, \{\widehat{S}_{\ell}\}_{\ell=1}^{L})
```

583 A.3 Further Comparisons

584

585

586

587

588

590

591

592

593

594

595

597

598

599

600

601

602

603

605

606

607

629

630

631

632

633

To further demonstrate the effectiveness of our proposed method, Týr-the-Pruner, we conducted a more comprehensive comparison. The competitors include the pure subnet search framework SearchLLM [32], the probe-based dynamic pruning approach ProbePruning [18], the sparsity distribution optimizer Adapt-Pruner [39], the coarse-and-fine combined approach CFSP [41], the calibration-free approach PruneNet [18], the structureindependent approach DISP-LLM [11], the cluster-based evolutionary pruning approach EvoP [43], and the searchonly approach DarwinLLM [35]. The experimental results, with competitor performance taken from their respective papers, are presented in Table 6.

Table 6: **Further comparisons**. Perplexity on Wikitext2 (lower is better) and 0-shot accuracy (%, higher is better, DarwinLLM reported the 25-shot Arc-C benchmark) serve as the comparison metrics. Optimal results are **bolded**.

Model	Sparsity	Method	Wikitext2 ↓	BoolQ ↑	WinoGrande ↑	ARC-E↑	ARC-C↑
	0%	N/A	5.68	71.38	67.01	67.45	41.38
Llama-7B	20% 25%	SearchLLM Týr-the-Pruner	6.89 7.36	70.98 75.81	74.92 75.68	64.23 66.36	36.52 42.06
	23%	Tyr-the-Pruner	7.30	/5.61	/5.08	00.30	42.00
	0%	N/A	5.12	77.68	69.06	76.30	43.43
	30%	PruneNet	-	-	61.09	53.20	33.53
	30%	DISP-LLM	6.85	-	62.27	59.81	33.19
Llama-2-7B	37.5%	Týr-the-Pruner	10.29	68.87	66.93	71.13	38.31
	40%	ProbePruning	8.01	64.70	58.10	62.50	37.70
		DISP-LLM	9.84	-	58.41	43.06	25.85
	50%	DarwinLM	-	62.70	55.80	63.30	38.10
		Týr-the-Pruner	16.17	65.54	62.12	66.12	33.62
	0%	N/A	4.57	80.61	72.22	79.46	48.46
	20%	EvoP	6.33	-	68.00	73.00	40.00
	25%	Týr-the-Pruner	5.79	81.35	72.06	77.74	44.97
Llama-2-13B	30%	DISP-LLM	5.77	-	66.85	63.80	39.42
	37.5%	Týr-the-Pruner	7.17	80.76	72.06	76.35	43.26
		CFSP	-	-	64.17	62.33	38.05
	50%	DISP-LLM	7.11	-	59.27	52.57	33.28
		Týr-the-Pruner	9.59	74.46	70.09	72.18	39.85
	0%	N/A	5.84	82.17	73.56	81.31	51.54
Llama-3.1-8B	40%	Adapt-Pruner	33.75	-	56.75	45.16	25.97
	50%	DarwinLM	-	62.20	57.30	59.60	34.20
	3070	Týr-the-Pruner	30.89	66.64	61.80	65.86	31.83
	0%	N/A	5.76	81.10	73.01	80.05	50.43
Llama-3-8B	40% MLP-only	ProbePruning	14.90	70.30	67.20	57.40	39.00
	25%	Týr-the-Pruner	13.14	76.02	71.11	75.63	42.15

It is evident that Týr-the-Pruner significantly outperforms other structured pruning methods,

achieving better performance even at higher sparsities compared to other methods at lower sparsities.
In particular, Týr-the-Pruner surpasses the search-based methods SearchLLM, EvoP, and DarwinLLM, demonstrating the effectiveness of our effective local pruning approach, expected error accumulation, and iterative prune-and-search strategy.

615 A.4 Memory/Storage Efficiency Analysis of Týr-the-Pruner

Týr-the-Pruner employs a supernet search technique, where storing a large-scale supernet in memory is obviously costly. To address memory concerns, we optimize our approach by storing pruned substructures on

disk instead of in high-bandwidth

Table 7: Resource requirements for Týr-the-Pruner

Model Size	Submodules in Supernet	HBM Usage	Disk Storage Usage
7-8B	576	14-16GB	39.6GB
13B	720	26GB	66.6GB
70B	1440	140GB	414.7GB

memory (HBM). An integer Python list is used to track the currently selected substructures, ensuring that only one entire LLM is loaded into HBM at any given time (e.g., the 7B model uses approximately 14GB, and the 13B model uses around 26GB). Table 7 provides detailed data on HBM and disk storage occupancy. Furthermore, since there is no dependency between iterations (in iterative prune-and-search), the storage from previous iterations can be cleaned, further minimizing disk usage.

Due to the low cost of disk storage, these memory and storage demands are highly acceptable.

A.5 Efficiency Analysis on Non-isotropic Structural Pruning

Large language models (LLMs) with non-isotropic pruning may be considered to exhibit inferior inference efficiency compared to those with isotropic sparsity across layers. To explore, we provide a comparative analysis of inference efficiency for Llama-3.1-8B and Mistral-Nemo, both pre- and post-50% structural pruning. The evaluation was conducted on an AMD InstinctTM MI250 Accelerator using Pytorch (HipBlas), covering both prefilling and decoding tasks across a range of sentence lengths, as illustrated in Figure 4.

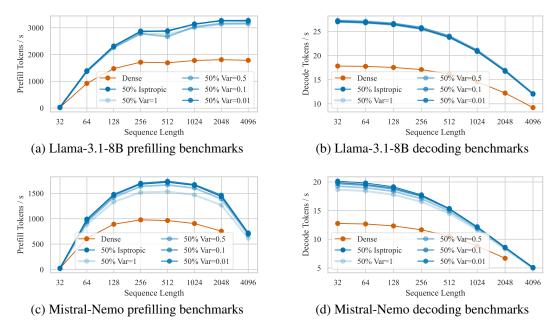


Figure 4: Pre- and post-pruning large language model inference benchmarks.

Table 8: Týr-the-Pruner progressively refines and optimizes the sparsity distribution in iterations, steadily enhancing performance.

Method	Wikitext2	ARC-C	ARC-E	BoolQ	HellaSwag	OBQA	RTE	WinoGrande	MMLU	AVG
w/o search	66.38	23.55	58.46	62.35	32.51	16.60	51.26	52.88	28.34	40.74
search-only	27.96	25.34	59.30	64.71	36.52	22.20	55.23	56.20	29.17	43.58
Týr-the-Pruner I1	28.92	26.45	56.19	62.17	37.05	22.20	50.54	56.75	29.29	42.58
Týr-the-Pruner I2	31.80	29.27	62.54	63.51	38.18	23.80	50.54	56.85	30.23	44.37
Týr-the-Pruner I3	29.75	29.86	63.09	64.62	39.28	25.00	51.62	59.51	31.62	45.58
Týr-the-Pruner I4	30.89	31.83	65.36	66.64	39.99	24.80	58.12	61.80	33.76	47.79

The variance (Var) quantifies the degree of variation in sparsity under non-isotropic pruning conditions; a larger variance indicates more fluctuation in sparsity across layers. As shown in Figure 4, the 50% structural pruned LLMs achieve up to 1.3x or greater speedup in both prefilling and decoding tasks compared to their dense counterparts across most sentence lengths. Variations in layer sparsity do not have a significant impact on efficiency. A slight efficiency decrease is only observed when the variance reaches 1. In this case, the reduction in efficiency is likely due to the frequent high sparsity, which leads to more memory-bottlenecked "thin" matrix multiplications in the computational graph.

A.6 Detailed Analysis on Týr-the-Pruner and the Search-only Strategy

To further evaluate the impact of Týr-the-Pruner (iterative prune-and-search) versus the search-only strategy, we present the 50% post-pruned performance on Llama-3.1-8B across several tasks: Wiki-text2 perplexity (\$\psi\$), 0-shot accuracy (\$\phi\$) on Arc, BoolQ, HellaSwag, OBQA, RTE, and WinoGrande, and 5-shot accuracy (\$\phi\$) on MMLU, as shown in Table 8.

Experimental results highlight the superiority of Týr-the-Pruner over the search-only strategy. Employing isotropic pruning, the "w/o search" method yields suboptimal performance across all tasks. In contrast, Týr-the-Pruner outperforms the search-only strategy from the second iteration (I2), demonstrating the benefits of progressively refining the sparsity distribution. The search-only strategy struggles with the large search space, leading to prolonged search times and limited effectiveness. Ultimately, Týr-the-Pruner achieves the best results in the fourth iteration (I4).

Figure 5(a) and Figure 5(b) compare the sparsity distributions of the MHA and FFN layers in Llama-3.1-8B after pruning with Týr-the-Pruner and the search-only methods, respectively. The sparsity

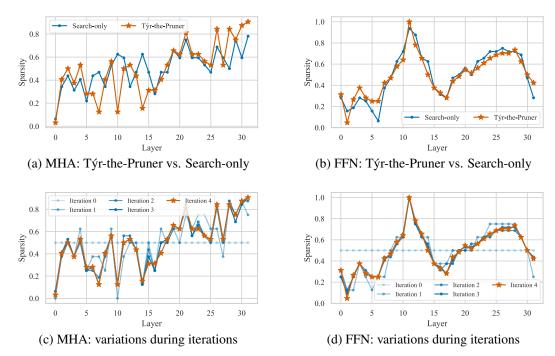


Figure 5: Sparsity distribution of Týr-the-Pruner and the search-only strategy on Llama-3.1-8B.

distribution obtained by Týr-the-Pruner resembles that of the search-only strategy, yet Týr-the-Pruner performs better. Its search process is more refined, incorporating multiple rounds of expectation error accumulation, ultimately leading to a superior sparsity distribution and higher performance in the pruned model.

Figure 5(c) and Figure 5(d) compare the sparsity distributions of the MHA and FFN layers in the post-pruned Llama-3.1-8B across different iterations of Týr-the-Pruner. Týr-the-Pruner identifies a relatively ideal and coarse-grained sparsity distribution in the first search (with a sparsity interval of 12.5%). In the subsequent iterations (2nd, 3rd, and 4th), with sparsity intervals of 6.25%, 3.125%, and 1.5625%, respectively, the sparsity distribution is progressively refined and optimized, ultimately converging to an optimal solution.

A.7 Sparsity Distribution of Different Pruning Methods

Different pruning methods vary in the distribution of sparsity. Figure 6(a) and Figure 6(b) show the sparsity distributions of MHA and FFN of Llama-3.1-8B after 50% pruning by a series of LLM structural pruning methods, respectively.



Figure 6: Sparsity distributions with different structural pruning methods.

ZipLM and OSSCAR maintain isotropic sparsity distribution. LLM-Pruner incorporates prior knowledge, recognizing that the shallow and deep layers of LLMs are more pruning-sensitive and thus preserve them while only isotropically pruning the intermediate layers. These three methods fail to account for the unique characteristics of different LLMs, leading to clear suboptimal sparsity assignments. Conversely, FLAP combines local activations and weights to assess the global sparsity distribution, resulting in non-isotropic pruning. While this method seeks a balance between local and global sparsity, it does not fully address the gap between them, making it challenging to achieve an optimal sparsity distribution.

Týr-the-Pruner's sparsity distribution clearly differs from that of other methods. It directly searches for the optimal sparsity distribution at the global level without the local and global gaps. The resulting sparsity distribution does not adhere to prior assumptions: for instance, the 2-nd FFN layer is largely retained, while the 12-th FFN layer is entirely pruned, and there is no discernible pattern in the sparsity ratio as layers become deeper or shallower. This demonstrates that model optimization should fully account for the model's unique characteristics.

A.8 Statistical Significance Analysis

To verify the robustness of the proposed method, Týr-the-Pruner, we adjust the random seeds (the change of random seeds triggers the change of calibration samples) for multiple (number of tests: n=5) experiments and observe the error bar (± standard deviation), as shown in Table 9.

Table 9: Statistical significance analysis for Týr-the-Pruner.

Model	Sparsity	Wikitext2 ↓	BoolQ ↑	ARC-E↑	ARC-C↑
Llama-2-7B	25%	7.51 ± 0.07	69.45 ± 0.04	$\textbf{75.13} \pm 0.10$	$\textbf{42.58} \pm 0.09$
Llama-2-13B	25%	5.79 ± 0.00	$\textbf{81.35} \pm 0.06$	$\textbf{77.74} \pm 0.03$	44.97 ± 0.05
Llama-3.1-8B	25% 50%	$\begin{vmatrix} 10.38 \pm 0.11 \\ 30.89 \pm 0.21 \end{vmatrix}$	$\begin{array}{c} \textbf{76.36} \pm 0.12 \\ \textbf{66.64} \pm 0.26 \end{array}$	$\begin{array}{c} 77.23 \pm 0.09 \\ 65.86 \pm 0.33 \end{array}$	$\begin{array}{c} \textbf{45.48} \pm 0.06 \\ \textbf{31.83} \pm 0.16 \end{array}$

From the global observation of exper-

imental results, the proposed method performs relatively consistently in multiple randomized trials, with standard deviations within acceptable limits (< 0.21 for Wikitext2 perplexity and < 0.33 for downstream performance). From the local observation of experimental results, it can be seen that pruning yields a more stable performance for larger models or under lower sparsity ratios.

698 A.9 Detailed Downstream Task Results

Table 10: 0-shot acc (%) on ARC-Challenge.

 LLaMA-2
 LLaMA-3.x
 Mistral

 7B
 13B
 2-3B
 0-8B
 1-8B
 7B-v0.3
 Nemo
 Method Sparsity 43.43 48.46 42.32 50.43 51.54 48.81 0% N/A ShortGPT 36.18 43.86 37.80 43.94 44.20 LaCO+ 37.97 43.60 37.63 43.69 44.20 42.15 45.14 SliceGPT 41.81 46.25 35.15 41.64 42.15 42.49 31.66 43.34 45.05 24.06 19.28 34.04 Wanda-sp 46.16 48.89 12.5% LLM-Pruner 38.40 44.45 31.83 38.57 37.97 40.02 43.52 ZipLM OSSCAR 41.55 49.15 38.23 40.19 42.49 47.27 52.30 42.41 49.23 38.14 40.70 40.78 46.59 30.80 FLAP 40.02 42.15 33.45 41.30 41.47 43.86 45.48 Týr-the-Pruner 42.06 48.05 38.82 47.44 49.15 48.55 54.35 32.34 37.88 30.97 26.88 27.39 38.99 ShortGPT 33.96 30.89 38.65 32.34 36.26 36.77 SliceGPT 37.88 41.47 28.33 35.32 37.46 38.99 24 49 38.14 20.82 18.09 16.89 19.20 Wanda-sp 37.37 23.21 25% LLM-Pruner 28.24 37.63 22.35 26.11 24.57 31.66 31.40 ZipLM OSSCAR 39.51 **46.93** 29.52 18.43 20.31 40.53 45.65 18.17 27.47 23.46 27.39 27.22 43.69 42.66 FLAP 31.91 40.78 26.54 31.91 33.45 40.70 Týr-the-Pruner 42.58 44.97 35.41 42.15 45.48 44.88 48.38 ShortGPT 28 58 31 14 25 85 26 88 27 56 29 10 27 90 28.24 32.08 25.43 27.30 27.05 LaCO+ 28.24 31.57 SliceGPT 32.00 36.60 23.29 27.65 27.39 28.67 19.45 Wanda-sp 27.99 21.76 20.39 20.90 19.97 20.65 20.31 37.5% LLM-Pruner 17.58 24.40 17.49 16.89 16.98 20.90 19.28 ZipLM 33.53 32.08 20.56 19.80 21.16 38.31 37.03 35.49 33.96 18.77 26.54 23.98 29.18 35.75 24.40 25.17 23.98 OSSCAR 36.77 37.63 FLAP 29.69 Týr-the-Prune 38.31 43.26 30.97 38.99 39.68 38.31 42.41 32.22 ShortGPT 23.46 28.16 21.84 23.29 23.56 26.19 23.55 27.05 21.25 24.74 22.87 LaCO+ 24.49 21.67 SliceGPT 24.91 30.63 18.86 20.99 21.50 19.45 18.52 Wanda-sp LLM-Pruner 17.58 19.54 20.73 18.60 19.54 18.00 18.00 18.60 19.54 19.11 17.32 19.62 21.59 50% 18.52 20.14 27.99 19.20 17.15 20.48 ZipLM 23.72 21.16 23.81 25.34 20.56 17.58 19.97 29.10 27.47 22.78 21.76 20.99 27.13 25.34 OSSCAR 20.82 28.24 FLAP Týr-the-Pruner 33.62 39.85 25.51 32.34 31.83 32.59

Table 12: 0-shot acc (%) on BoolQ.

Sparsity	Method	LLaN	ИА-2		aMA-3	3.x	Mist	
Sparsity	Method	7B	13B	2-3B	0-8B	1-8B	7B-v0.3	Nemo
0%	N/A	77.68	80.61	73.00	81.10	82.17	82.17	85.14
	ShortGPT	74.77	75.84	63.30	73.70	70.70	77.31	66.21
	LaCO+	61.13	68.90	62.72	72.78	70.06	77.19	68.62
12.5%	SliceGPT	73.12	80.67	68.99	75.75	75.57	81.19	77.71
	Wanda-sp	71.68	77.28	51.90	53.64	63.09	77.31	68.04
12.5%	LLM-Pruner	76.48	80.43	65.72	74.34	71.90	72.72	77.58
	ZipLM	69.36	82.84	65.60	75.63	77.00	82.26	71.83
	OSSCAR	69.02	83.00	68.59	74.80	79.91	81.53	73.03
	FLAP	70.98	76.21	60.06	73.49	71.87	77.49	80.24
	Týr-the-Pruner	70.67	82.78	72.32	80.12	80.24	82.11	82.94
	ShortGPT	62.17	62.54	44.83	37.80	37.65	67.25	67.22
	LaCO+	50.83	58.23	70.64	63.85	59.14	75.14	66.70
	SliceGPT	68.93	79.27	65.81	72.02	67.68	75.78	68.41
	Wanda-sp	68.96	62.17	46.02	48.90	42.17	62.45	61.93
25%	LLM-Pruner	62.97	68.35	61.59	60.89	57.89	68.78	64.25
	ZipLM	67.19	81.31	59.20	56.02	65.08	77.16	65.14
	OSSCAR	66.42	79.48	54.28	60.06	65.66	77.13	64.28
	FLAP	65.47	68.81	64.89	68.29	67.28	65.14	63.82
	Týr-the-Pruner	69.45	81.35	67.89	76.02	76.36	79.39	82.26
	ShortGPT	62.17	37.25	68.87	56.57	55.66	45.60	58.99
	LaCO+	62.11	62.78	63.30	48.78	45.38	63.12	64.62
	SliceGPT	63.00	71.44	42.08	50.49	46.85	65.41	60.06
	Wanda-sp	62.26	62.17	52.66	38.13	51.68	62.05	49.97
37.5%	LLM-Pruner	61.74	62.11	50.70	41.31	40.03	62.35	61.87
	ZipLM	64.89	76.79	49.76	51.56	61.47	69.91	62.72
	OSSCAR	64.65	74.25	49.54	58.01	62.26	67.37	62.26
	FLAP	63.46	65.60	61.93	62.66	64.62	62.54	65.50
	Týr-the-Pruner	68.87	80.76	66.33	70.09	70.55	70.85	74.65
	ShortGPT	62.17	62.20	46.61	62.57	62.17	51.90	55.29
	LaCO+	54.83	59.51	44.40	55.32	51.41	42.66	46.57
	SliceGPT	57.16	62.26	40.76	41.74	38.56	51.13	51.53
	Wanda-sp	46.91	62.14	41.59	54.77	40.37	48.99	43.06
50%	LLM-Pruner	38.23	61.31	38.10	39.54	37.83	43.24	43.94
	ZipLM	43.79	64.80	44.95	54.19	57.43	62.72	62.23
	OSSCAR	61.62	62.94	56.48	53.36	61.04	60.95	62.17
	FLAP	58.50	65.14	51.25	61.65	52.29	61.47	48.87
	Týr-the-Pruner	65.54	74.46	62.26	65.63	66.64	62.17	65.26

Table 11: 0-shot acc (%) on ARC-Easy.

	l	LLaN	/A-2	l LI	aMA-3	3.x	Mist	ral
Sparsity	Method	7B	13B	2-3B	0-8B	1-8B	7B-v0.3	Nemo
0%	N/A	76.30	79.46	74.49	80.05	81.31	79.67	83.00
	ShortGPT	65.87	75.55	68.10	71.17	72.18	71.51	75.84
	LaCO+	68.39	75.04	64.69	73.44	75.67	71.25	75.67
	SliceGPT	73.40	77.78	67.68	74.71	75.51	76.85	53.70
	Wanda-sp	74.62	76.43	48.95	28.70	64.44	77.61	79.29
12.5%	LLM-Pruner	72.05	77.10	62.92	70.83	72.47	73.32	75.46
	ZipLM	75.72	79.80	71.51	73.74	75.34	78.62	79.63
	OSSCAR	76.01	79.59	71.55	74.37	76.05	78.28	52.90
	FLAP	71.38	72.69	64.44	73.36	74.16	75.76	75.88
	Týr-the-Pruner	75.84	79.62	72.94	79.08	79.80	79.84	81.61
	ShortGPT	52.74	61.24	49.58	38.85	43.18	52.57	63.30
	LaCO+	53.03	64.73	49.41	53.41	55.47	52.23	62.50
	SliceGPT	71.80	74.92	58.67	67.80	68.60	71.46	47.56
	Wanda-sp	70.41	33.59	37.46	42.26	28.41	70.83	53.66
25%	LLM-Pruner	59.97	70.20	50.72	59.43	57.79	65.87	64.02
	ZipLM	74.66	78.45	61.32	27.86	26.47	75.88	50.04
	OSSCAR	74.45	77.57	27.95	53.70	40.03	75.59	51.60
	FLAP	64.23	69.23	53.96	60.31	65.95	67.22	68.69
	Týr-the-Pruner	75.13	77.74	69.40	75.63	77.23	77.23	80.13
	ShortGPT	41.58	48.95	40.07	37.50	39.94	33.88	42.72
	LaCO+	36.11	48.57	40.49	39.27	40.45	35.40	46.09
	SliceGPT	62.75	67.47	46.89	55.72	57.49	58.46	40.45
	Wanda-sp	57.03	32.37	26.94	25.72	25.00	47.90	35.90
37.5%	LLM-Pruner	38.93	54.76	31.69	32.53	32.07	47.10	47.98
	ZipLM	68.48	61.95	27.99	27.10	27.02	70.54	70.79
	OSSCAR	68.90	62.16		54.21	47.10	71.04	70.08
	FLAP	53.45	58.16	46.55	46.63	52.15	56.65	61.70
	Týr-the-Pruner	71.13	76.35	64.52	72.56	73.53	71.38	75.51
	ShortGPT	32.45	37.75	30.39	31.23	32.83	32.87	36.28
	LaCO+	30.01	37.71	29.00	28.58	28.54	30.18	28.96
	SliceGPT	48.40	54.84		41.33	41.62	43.56	35.23
	Wanda-sp	27.95	35.86	26.89	30.98	30.47	32.79	35.94
50%	LLM-Pruner	28.11	33.54	24.49	28.24	28.70	28.70	28.16
	ZipLM	29.38	54.00	27.57	25.57	28.28	50.84	49.96
	OSSCAR	50.72	45.92	27.15	28.07	26.05	59.22	41.92
	FLAP	47.01	43.18	27.23	42.30	43.18	52.61	52.57
	Týr-the-Pruner	66.12	72.18	56.23	65.36	65.36	66.37	66.04

Table 13: 0-shot acc (%) on HellaSwag.

		LLaN	ЛА-2	LI	aMA-3	3 x	Mist	
Sparsity	Method	7B	13B	2-3B	0-8B	1-8B	7B-v0.3	
	l						'	
0%	N/A	57.14	60.04	55.20	60.11	60.04	60.92	62.90
	ShortGPT	49.88	55.70		55.12	55.09		56.26
	LaCO+	51.11	56.22	48.94	54.51	54.68	54.79	55.95
	SliceGPT	52.32	56.16	47.73	52.03	50.97	54.57	50.66
	Wanda-sp	56.53			27.29		55.97	52.57
12.5%	LLM-Pruner	51.60	57.06	43.62	49.63	50.02	51.28	52.34
	ZipLM	55.41	59.42	48.85	51.87	52.37	57.92	54.77
	OSSCAR	55.39	59.53	48.60	51.35	55.21	57.83	54.05
	FLAP	53.98	57.21	43.88	50.97	51.66	54.20	51.15
	Týr-the-Pruner	55.88	59.39	51.55	56.52	56.32	58.27	59.31
	ShortGPT	41.94	47.70	37.31	28.89	28.37	42.51	43.61
	LaCO+	42.16	49.34	39.36	43.97	43.92	42.73	45.33
	SliceGPT	46.16	49.84	39.29	43.29	42.10	44.24	40.37
	Wanda-sp	51.21	34.47	28.87	28.04	27.25	44.23	34.65
25%	LLM-Pruner	38.80	46.81	32.91	33.94	33.05	38.66	38.11
	ZipLM	51.57	55.93	33.39	32.32	30.47	51.34	43.72
	OSSCAR	51.61	55.16	26.55	36.45	36.44	50.69	43.09
	FLAP	47.73	51.42	37.10	42.54	43.16	45.80	44.20
	Týr-the-Pruner	52.86	57.49	46.62	53.10	52.87	58.27	55.04
	ShortGPT	33.53	39.31	31.44	32.11	30.71	27.72	34.81
	LaCO+	33.56	41.75	33.12	34.16	34.07	31.45	32.18
	SliceGPT	37.65	41.27	32.08	34.14	33.37	34.50	32.48
	Wanda-sp	35.07	29.49	26.48	25.66	26.38	30.63	26.08
37.5%	LLM-Pruner	28.17	33.06	26.68	27.52	27.55	29.38	28.36
	ZipLM	38.29	45.79	26.89	29.11	27.43	40.65	35.69
	OSSCAR	42.86	48.20	26.66	30.70	31.49	41.37	35.09
	FLAP	41.53	45.52	32.69	36.48	36.50	37.49	39.28
	Týr-the-Pruner	48.47	54.11	39.97	47.22	47.12	46.01	48.22
	ShortGPT	28.61	32.44	28.01	27.82	27.87	26.30	30.83
	LaCO+	27.72	31.64	28.31	27.71	26.01	28.28	27.51
	SliceGPT	30.91	32.35	28.22	28.96	29.07	29.60	29.02
	Wanda-sp	26.65	28.52	26.32	26.72	26.73	27.61	26.11
50%	LLM-Pruner	26.76	27.78	26.60	26.43	26.36	27.09	25.96
	ZipLM	26.53	35.84	26.46	27.52	26.42	32.17	30.51
	OSSCAR	32.21	32.16	26.58	27.81	26.92	32.15	30.26
	FLAP	37.02	41.13	26.29	32.96	29.43	33.09	32.51
	Týr-the-Pruner	42.62		33.68	39.71	39.99	38.68	40.24

Table 14: 0-shot acc (%) on OpenBookQA.

Table 14. 0-shot acc (%) on OpenbookQA.								
Sparsity	Method	LLaMA-2		LLaMA-3.x			Mistral	
		7B	13B	2-3B	0-8B	1-8B	7B-v0.3	Nemo
0%	N/A	31.40	35.20	31.00	34.80	33.20	33.40	36.40
	ShortGPT	28.20	33.20	26.60	33.00	30.80	27.00	31.60
	LaCO+	30.00	30.20	25.60	30.80	31.20	25.60	28.80
	SliceGPT	32.00	34.00	27.20	28.60	26.60	27.20	26.40
	Wanda-sp	31.60	32.00	15.40	13.20	22.80	28.00	28.60
12.5%	LLM-Pruner	28.40	34.40	24.60	27.20	26.40	26.80	31.00
	ZipLM	31.60	34.60	27.50	25.80	26.60	34.20	32.80
	OSSCAR	31.20	35.80	27.00	25.40	26.40	32.60	31.80
	FLAP	29.20	32.40	27.60	30.60	30.40	33.40	31.60
	Týr-the-Pruner	31.20	35.80	29.20	33.40	34.60	34.20	34.80
	ShortGPT	23.40	27.00	23.20	19.60	18.40	20.40	23.00
	LaCO+	25.20	25.20	22.40	20.60	20.00	23.40	22.20
	SliceGPT	25.00	30.40	23.00	24.40	22.60	23.00	23.00
	Wanda-sp	29.20	17.80	12.40	14.20	13.40	26.60	21.20
25%	LLM-Pruner	21.00	28.80	15.40	19.80	18.00	20.40	21.00
	ZipLM	31.40	34.80	17.60	24.40	18.80	29.20	19.20
	OSSCAR	31.40	34.20	13.00	20.20	21.60	24.40	21.00
	FLAP	27.40	29.80	24.60	26.60	28.40	29.80	28.00
	Týr-the-Pruner	31.60	34.20	28.20	34.00	31.80	33.40	31.80
	ShortGPT	21.60	22.00	18.80	18.80	18.40	17.20	17.20
	LaCO+	17.00	21.40	17.00	17.80	16.60	17.00	19.80
	SliceGPT	19.80	27.20	17.60	17.00	15.00	17.00	17.40
	Wanda-sp	17.60	13.40	11.80	12.60	11.80	14.80	12.60
37.5%	LLM-Pruner	12.80	17.80	12.20	12.80	13.20	14.80	13.00
	ZipLM	25.60	27.00	13.80	14.40	13.20	21.80	14.60
	OSSCAR	25.20	26.40	14.20	15.20	14.80	21.60	17.80
	FLAP	24.20	27.20	21.60	22.80	23.40	24.00	25.80
	Týr-the-Pruner	31.00	32.40	26.00	29.80	30.00	26.20	29.20
	ShortGPT	16.00	17.80	18.20	16.80	17.00	15.40	14.00
50%	LaCO+	16.20	18.00	14.60	14.00	14.00	16.60	16.00
	SliceGPT	16.60	22.00	14.20	14.00	12.80	14.80	15.00
	Wanda-sp	12.20	11.80	13.00	13.60	13.40	13.60	13.80
	LLM-Pruner	12.60	12.00	12.40	13.40	13.40	14.80	15.40
	ZipLM	14.00	19.60	12.40	13.80	11.60	17.40	13.20
	OSSCAR	17.00	20.00	11.80	11.60	10.60	16.60	14.40
	FLAP	21.20	25.80	13.20	21.40	16.80	21.40	21.00
	Týr-the-Pruner	27.20	30.40	20.40	26.60	24.80	22.80	26.20

Table 15: 0-shot acc (%) on RTE.

	I	LLaMA-2		LLaMA-3.x			Mistral	
Sparsity	Method	7B	13B	2-3B	0-8B	1-8B	7B-v0.3	
0.07	1 27/4						'	
0%	N/A	62.82	65.34	54.87	67.87	71.12	68.95	64.26
	ShortGPT	55.96		55.96	57.04	62.82	70.04	57.40
	LaCO+	63.54	58.48	57.40	68.23	70.40	65.34	64.26
	SliceGPT	64.26	58.84	58.48	64.62	63.90	66.06	57.40
	Wanda-sp	58.48	64.98		57.04	57.76	57.76	62.82
12.5%	LLM-Pruner		61.73		56.68		65.34	55.60
	ZipLM		63.18		66.06		68.23	61.37
	OSSCAR	58.84	61.73	56.32	64.62	63.18	69.31	59.57
	FLAP	57.76	59.21		52.35	55.96	67.51	56.68
	Týr-the-Pruner	66.06	67.15	56.68	66.79	71.84	68.95	62.82
	ShortGPT	57.76	59.57	48.38	62.82	63.90	64.98	63.54
	LaCO+	53.79	62.45	57.04	63.90	58.12	64.26	58.12
	SliceGPT	55.96	66.79	59.21	58.12	57.40	57.40	52.71
	Wanda-sp	48.38	52.71	52.71	52.71	53.43	53.79	53.43
25%	LLM-Pruner	56.68	50.54	52.35	52.35	53.07	55.23	53.07
	ZipLM	55.60	68.23	55.23	50.18	51.99	68.95	53.43
	OSSCAR	52.35	67.51	48.74	54.51	50.54	63.18	53.79
	FLAP	62.82	64.26	53.43	50.90	52.71	63.90	49.46
	Týr-the-Pruner	62.09	69.31	59.57	63.90	63.18	65.34	59.57
	ShortGPT	62.09	52.35	58.48	50.54	53.79	49.82	53.79
	LaCO+	57.40	55.60	57.04	54.87	58.84	61.37	54.15
	SliceGPT		58.48	53.07	52.71	53.43	55.23	52.71
	Wanda-sp	48.38	52.71	54.51	46.57	50.54	53.07	49.46
37.5%	LLM-Pruner	52.71	52.71	52.71	52.71	52.71	51.26	52.71
	ZipLM	58.12	64.26	52.71	50.54	53.79	54.15	52.35
	OSSCAR	51.62	63.18	49.82	52.71	50.90	60.29	52.71
	FLAP	48.38	54.51	46.57	51.26	55.60	53.79	55.96
	Týr-the-Pruner	61.37	65.70	55.96	60.29	58.84	58.84	54.15
	ShortGPT	51.26	51.62	51.99	60.65	51.62	51.26	50.54
50%	LaCO+	51.62	61.01	57.40	51.62	45.13	53.43	49.82
	SliceGPT	53.43	52.71	53.07	53.43	55.96	53.07	52.71
	Wanda-sp	53.07	52.71	54.51	53.07	51.62	52.71	49.46
	LLM-Pruner	53.07	52.71	52.71	52.71	52.35	52.71	53.07
	ZipLM	52.71	52.71	53.07	52.35	52.71	52.71	51.26
	OSSCAR	53.43	52.71	50.90	47.65	51.26	53.79	55.96
	FLAP	45.49	58.48	51.62	53.07	52.71	52.71	55.23
	Týr-the-Pruner	55.96	59.93	53.43	58.84	58.12	53.79	60.65

Table 16: 0-shot acc (%) on WinoGrande.

Sparsity	Method	LLaMA-2		LLaMA-3.x			Mistral	
	Wichiod	7B	13B	2-3B	0-8B	1-8B	7B-v0.3	Nemo
0%	N/A	69.06	72.22	69.06	73.01	73.56	73.64	73.64
	ShortGPT	68.98	71.03	67.64	71.67	70.09	70.24	74.11
	LaCO+	68.35	70.96	69.61	73.16	73.16	71.35	74.03
	SliceGPT	67.32	70.48	60.54	67.17	66.61	70.64	64.01
	Wanda-sp	67.64	70.72	52.01	51.38	58.80	66.54	62.27
12.5%	LLM-Pruner	64.25	69.30	60.93	65.35	65.51	66.06	68.51
	ZipLM	70.48	72.69	60.77	68.75	66.93	72.53	65.98
	OSSCAR	69.46	73.40	60.30	68.19	68.27	71.59	65.11
	FLAP	68.03	70.32	62.19		70.40	70.24	68.43
	Týr-the-Pruner	70.09	73.85	67.40	73.24	72.53	73.40	72.69
	ShortGPT	65.67	70.96	61.40	53.99	55.17	67.25	63.14
	LaCO+	64.25	69.77	63.14	67.32	65.27	67.80	71.59
	SliceGPT	65.27	70.40	57.62	62.67	59.75	61.48	58.25
	Wanda-sp	63.69	54.30	51.78	48.78	49.57	60.62	57.06
25%	LLM-Pruner	57.70	61.56	52.57	55.41	55.17	56.20	57.62
	ZipLM	67.96	72.38	51.85	58.88	58.25	66.93	54.70
	OSSCAR	68.11	70.56	52.72	56.91	56.75	64.33	55.41
	FLAP	64.72	68.03	57.06	62.75	63.46	64.72	64.64
	Týr-the-Pruner	68.51	72.06	64.01	71.11	71.11	71.11	70.01
	ShortGPT	60.30	65.98	61.56	54.54	55.09	59.19	53.99
	LaCO+	59.04	65.82	58.01	60.38	61.25	59.43	55.49
	SliceGPT	46.73	65.19	55.09	54.78	53.04	55.80	54.85
	Wanda-sp	49.49	49.57	48.38	51.30	49.49	49.33	51.38
37.5%	LLM-Pruner	51.07	52.57	49.96	51.07	50.83	51.78	50.36
	ZipLM	60.46	63.46	50.36	53.83	54.38	57.38	51.14
	OSSCAR	61.64	63.14	50.04	55.09	54.46	57.38	53.83
	FLAP	61.72	64.96	52.57	57.85	58.17	57.38	56.20
	Týr-the-Pruner	66.93	72.06	60.22	66.54	66.54	64.17	65.27
50%	ShortGPT	56.20	61.80	51.46	54.70	54.14	53.12	52.64
	LaCO+	51.38	59.19	51.22	53.75	52.17	51.30	50.12
	SliceGPT	54.62	56.99	51.30	50.99	49.88	51.38	49.33
	Wanda-sp	49.17	50.04	51.07	47.43	51.22	49.88	48.07
	LLM-Pruner	50.43	49.88	51.07	50.12	49.64	50.20	49.80
	ZipLM	48.54	56.91	51.54	49.17	52.49	51.93	50.59
	OSSCAR	51.54	52.80	51.70	48.86	51.14	52.49	50.43
	FLAP	56.51	61.72	50.51	52.80	54.14	52.88	52.09
	Týr-the-Pruner	62.12	70.09	53.28	60.30	61.80	59.43	59.04

Table 17: 5-shot acc (%) on MMLU.

a	34.1.1	LLaMA-2		LLaMA-3.x			Mistral	
Sparsity	Method	7B	13B	2-3B	0-8B	1-8B	7B-v0.3	Nemo
0%	N/A	45.84	55.06	65.27	56.17	65.20	62.18	68.83
	ShortGPT	46.28	54.16	56.33	55.90	62.14	61.44	68.10
	LaCO+	45.34		58.70	53.10	63.54	61.69	67.23
	SliceGPT	42.88	53.43	55.85	47.34	53.22	58.38	64.58
	Wanda-sp	39.99	44.64	25.78	26.69	43.26	56.42	58.22
12.5%	LLM-Pruner	37.40	50.51	48.71	39.30	50.26	54.09	54.59
	ZipLM	41.33	53.57	58.38	48.31	58.95	58.62	63.20
	OSSCAR	40.02	53.25	58.08	47.31	58.45	58.71	63.83
	FLAP	40.60		49.86	41.90	52.29	55.82	52.98
	Týr-the-Pruner	44.07	54.61	59.50	49.32	59.66	59.11	64.66
	ShortGPT	37.38	48.00	36.10	34.30	34.88	59.66	50.66
	LaCO+	43.63	53.82	39.36	35.78	59.68	55.28	62.63
	SliceGPT	40.20	51.21	36.46	35.02	32.30	45.76	55.35
	Wanda-sp	29.40	29.53	24.47	24.07	25.78	37.15	25.25
25%	LLM-Pruner	27.37	32.58	30.95	28.49	27.47	33.72	32.60
	ZipLM	32.79	45.99	41.67	24.79	42.25	51.22	51.12
	OSSCAR	31.04	46.28	44.89	24.89	43.06	49.51	51.18
	FLAP	30.57	42.66	35.96	34.47	39.18	47.99	31.09
	Týr-the-Pruner	34.90	52.18	52.12	42.66	51.22	52.17	57.68
	ShortGPT	39.40	48.03	36.35	25.16	30.64	23.90	50.72
	LaCO+	38.94	52.76	28.57	27.54	27.13	27.50	39.10
	SliceGPT	35.04	46.98	27.21	29.13	25.17	31.33	39.03
	Wanda-sp	25.79	24.05	23.87	23.44	25.62	26.61	22.99
37.5%	LLM-Pruner	24.65	25.50	24.38	24.63	26.88	25.97	25.79
	ZipLM	30.85	43.82	31.82	24.76	33.97	38.48	34.54
	OSSCAR	28.98	42.65	34.01	25.05	33.98	35.42	37.06
	FLAP	26.17	36.58	29.24	27.89	30.17	37.64	27.59
	Týr-the-Pruner	31.56	44.72	43.78	24.92	41.43	42.96	47.63
	ShortGPT	25.77	23.97		24.24	22.97	23.37	32.22
50%	LaCO+	23.81	40.19	25.95	25.48	26.08	24.47	25.35
	SliceGPT	29.37	38.94	24.93	25.54	25.17	26.34	28.24
	Wanda-sp	24.55	25.97	25.72	24.21	25.76	25.13	23.72
	LLM-Pruner	25.81	24.63	25.24	23.31	24.70	25.89	25.17
	ZipLM	25.70	29.40	25.35	24.87	26.16	27.92	28.46
	OSSCAR	25.35	31.36	25.71	25.60	26.33	25.27	27.97
	FLAP	23.87	29.40	23.49	23.40	23.18	25.07	24.23
	Týr-the-Pruner	26.06	40.29	30.46	26.46	33.76	33.51	33.34

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction sections offer a comprehensive discussion of the manuscript's context, intuition, and ambitions, as well as its contributions.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals
 are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations of this work are discussed at the end of the manuscript.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was
 only tested on a few datasets or with a few runs. In general, empirical results often
 depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: This manuscript uses existing theories as a basis, while providing complete and correct derivations.

Guidelines:

751

752

753

754

755

756

757

758

759

761

762

763

764

766

767

768

769

770

771 772

773

774

775

776

777

778

780

781

782

783

784

785

786

787

789

790

791

793

794

795

796

797

798

799

800

801

802

803

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The pipeline of the methods and the details of experiments are presented with corresponding reproducible credentials.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived
 well by the reviewers: Making the paper reproducible is important, regardless of
 whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [No]

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

825

826

827

828

830

831

834

835

836

837 838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

Justification: Code and data are only allowed to be made public in our institution after the manuscript has been officially published. For the time being, sufficient experimental setup/details are used to ensure reproducibility.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be
 possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
 including code, unless this is central to the contribution (e.g., for a new open-source
 benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new
 proposed method and baselines. If only a subset of experiments are reproducible, they
 should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The pipeline of the methods and the details of experiments are presented with corresponding reproducible credentials.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The results contain the standard deviation of the results over several random runs.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.

- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how
 they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: The paper provided sufficient information on the computer resources needed to reproduce the experiments.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed: This paper discusses the lightweighting of LLMs that can reduce the consumption of resources without obvious broader impacts.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal
 impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with
 necessary safeguards to allow for controlled use of the model, for example by requiring
 that users adhere to usage guidelines or restrictions to access the model or implementing
 safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: The original owners of assets, including data and models used in the paper, are properly credited, and the licenses and terms of use are explicitly mentioned and properly respected.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.

- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
 - For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
 - If assets are released, the license, copyright information, and terms of use in the
 package should be provided. For popular datasets, paperswithcode.com/datasets
 has curated licenses for some datasets. Their licensing guide can help determine the
 license of a dataset.
 - For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
 - If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997 998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

 The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.

- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any important, original, or non-standard components.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.