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Abstract

Structural pruning enhances hardware-agnostic inference efficiency for large lan-1

guage models (LLMs) but often struggles to maintain performance. Local pruning2

performs efficient layer-by-layer compression but ignores global topology. Al-3

though global pruning aims to identify an optimal sparse model, intuitive methods4

tend to adopt a two-stage paradigm—first evaluating the saliency of individual5

substructures and then applying pruning globally, which ignores inter-structure6

dependencies and fails to achieve end-to-end optimization. To address these limi-7

tations, we propose Týr-the-Pruner, an efficient end-to-end search-based global8

structural pruning framework. This framework constructs a supernet by repeatedly9

applying local pruning across a range of sparsity ratios to each layer in an LLM,10

with the core goal of determining the optimal sparsity distribution under a target11

overall sparsity ratio. Concretely, we introduce an effective local pruning and an12

expectation error accumulation approach to improve supernet construction. Fur-13

thermore, we employ an iterative prune-and-search strategy with coarse-to-fine14

sparsity granularity to ensure efficient search convergence. Experimental results15

show that Týr-the-Pruner achieves state-of-the-art structural pruning, retaining16

97% of the dense model’s performance while removing a challenging 50% of17

Llama-3.1-70B’s parameters.18

1 Introduction19

Large language models (LLMs) have significantly advanced natural language processing, achieving20

exceptional performance in tasks such as text understanding, generation, and reasoning [47, 7, 4].21

However, the computational and storage resources required for model deployment incur high costs22

and environmental impacts, limiting their accessibility in resource-constrained scenarios. Model23

compression techniques, such as quantization [20, 10], pruning [9, 22], and low-rank decomposition24

[40], are essential for reducing LLM size and computational demands. This paper focuses on25

structural pruning, which enhances inference efficiency in a hardware-agnostic manner.26

Existing structural pruning methods for LLMs are typically classified into local and global techniques.27

Local pruning methods [16, 24], which prune layers individually, enable efficient compression of28

hundred-billion-scale LLMs on a single GPU via offload approaches. However, they overlook global29

dependencies in model topology and restrict the sparsity to be uniform across layers. Global pruning30

methods [22, 17, 1] alleviate local constraints, facilitating sparsity allocation and the potential for31

optimal pruning. However, many existing methods estimate the saliency of substructures and prune32

them accordingly via global ranking, ignoring inter-structure dependencies and hindering end-to-end33

optimization. Such methods may also suffer from the inefficiency of backpropagation-based saliency34

estimation and overfitting when calibration data is limited. Therefore, a question arises:35

How to achieve efficient global structural pruning with end-to-end optimization?36
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To address this challenge, we propose Týr-the-Pruner, an efficient search-based global pruning37

framework with end-to-end optimization. Our framework constructs a supernet by applying local38

pruning to each layer, producing pruned copies with different sparsity ratios. The objective is39

to identify an optimal subnet that satisfies the target overall sparsity ratio within the supernet by40

determining the optimal sparsity distribution across layers. We use evolutionary search [21] to solve41

this optimization problem. To construct reliable supernets and perform effective and efficient search,42

we make the following contributions:43

• To improve supernet construction, we propose an effective local pruning approach for44

attention heads and feed-forward networks (FFN), using Taylor expansion-based first- and45

second-order optimization information to identify redundant structures and adjust remaining46

weights. Pruning and weight adjustments are applied progressively and finely to preserve47

accuracy. Additionally, we introduce an expectation error accumulation approach to address48

the challenge of unclear error propagation caused by the multiple pruned copies within the49

supernet. This approach ensures balanced mutual awareness across sparse structures during50

supernet construction.51

• To enhance the efficacy and efficiency of subnet search, we employ a tailored distillation-52

inspired metric as the optimization objective to guide the search process, aiming to preserve53

the subnet’s generative capability. In general, Týr-the-Pruner is formed as an iterative prune-54

and-search framework that refines sparsity allocation for each layer with reduced search55

space and fast convergence. Each iteration prunes and constructs a supernet across a specific56

range of sparsity ratios, coupled with a sparsity-shift-driven evolutionary search, where57

random sparsity shifts between layers generate parent candidates, and the best-performing58

ones are filtered as offspring. The sparsity interval is refined after each iteration.59

By making these contributions, Týr-the-Pruner achieves end-to-end global pruning with strong60

efficacy and efficiency. Notably, the proposed framework only requires 4M tokens for calibration61

and search. Experimental results demonstrate that Týr-the-Pruner surpasses state-of-the-art pruning62

methods. For example, Týr-the-Pruner outperforms the SOTA method FLAP, achieving 3.45 lower63

perplexity in language comprehension and 10.26% higher average downstream accuracy when64

pruning 37.5% of the parameters of Llama-3.1-8B. Moreover, it maintains 97% performance with65

50% pruning on Llama-3.1-70B, a sparsity ratio that is considered aggressive for existing methods.66

2 Method67

This section presents Týr-the-Pruner, a novel structural pruning framework for large language models68

(c.f., Section 2.1 for preliminaries), as illustrated in Figure 1. This framework (1) constructs a69

supernet by applying local pruning across various sparsity ratios to each model layer, aiming to70

(2) search the optimal sparsity distribution under a target overall sparsity ratio. Specifically, we71

propose an effective local pruning approach (c.f., Section 2.2) and an expectation error accumulation72

approach (c.f., Section 2.3) to enhance supernet construction. An iterative prune-and-search strategy73

with coarse-to-fine sparsity granularity (c.f., Section 2.4) ensures efficient search convergence.74

2.1 Preliminaries75

Large language models typically use the Transformer decoder architecture [37], as shown in Fig-76

ure 1(a). Each Transformer layer consists of two key components: the multi-head self-attention77

(MHA) and the feed-forward network (FFN), followed by a residual connection and layer normaliza-78

tion. Given the input Xℓ−1 to the ℓ-th layer, the output Xℓ can be expressed as:79

X = LayerNorm (Xℓ−1 +MHA(Xℓ−1)) ,

Xℓ = LayerNorm (X+ FFN(X)) .
(1)

The MHA mechanism captures dependencies across different positions in the input sequence with80

multiple attention heads, each with its query (Wq), key (Wk), value (Wv), and out (Wo) linear81

transformations. Modern LLMs typically employ a SwiGLU-based FFN [31], consisting of gate82

(Wgate), up (Wup), and down (Wdown) linear transformations, with activation after the gate. This83

structure aids in extracting non-linear representations.84
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Figure 1: An overview for Týr-the-Pruner. Large language models (a) will be effectively locally
pruned across multiple sparsity ratios and constructed into a supernet (b). An iterative prune-and-
search strategy will be used to select the optimal sparse structure for each layer while maintaining a
target overall sparsity ratio: pruning and sparsity-shift-driven evolutionary search are implemented
iteratively with a coarse-to-fine sparsity interval granularity (c). Ultimately, the post-pruned LLM
with the optimal sparsity distribution (d) is obtained.

Structural pruning for LLMs can be applied across four key dimensions: (1) attention heads, (2) FFN85

intermediate neurons, (3) embedding dimension size, and (4) model depth. It can be isotropic (uniform86

sparsity across layers) or non-isotropic (layer-specific sparsity). This paper focuses on pruning87

attention heads and FFN intermediate neurons with non-uniform sparsity: pruning functionally88

independent heads and neurons allows for controllable accuracy loss, while layer-specific sparsity89

further enhances pruning by tailoring compression to each layer’s characteristics.90

2.2 Effective Local Pruning91

Redundant structure identification and weight adjustment. When pruning is scoped to the local92

level, one can determine the pruning outcome by eliminating the redundant input channels of each93

o_proj and down_proj modules, with a consistent sparsity across layers. Assuming the weight of94

a layer is W ∈ Rdin×dout and its input activation is X ∈ RdN×din , the pruned weight Ŵ satisfies the95

sparsity constraint C. The corresponding optimization objective is expressed as:96

argmin
Ŵ
||XW −XŴ||22 s.t. C(Ŵ) = C. (2)

The pruning process can be viewed as a perturbation applied to the weights: Ŵ = W − δW. There-97

fore, the error function is given by E = ∥XW −XŴ∥22 = ∥XδW∥22, which can be approximated98

by a Taylor series expansion around W and whose local fluctuations can be defined as:99

δE =

(
∂E

∂W

)⊤

︸ ︷︷ ︸
G⊤ ̸≈0

δW +
1

2
δW⊤ ∂2E

∂W2︸ ︷︷ ︸
H ̸=0

δW +O
(
∥δW∥3

)︸ ︷︷ ︸
≈0

. (3)

δE reflects the effect of δW on the pruning error, which we aim to minimize. The first-order gradient100

G cannot be neglected, as the calibration samples are inevitably misaligned with the proprietary101

closed-source pre-training data. The Hessian matrix H helps to identify pruning-sensitive weights102

from a curvature perspective. Considering the sparsity constraint (δWp,: = Wp,:: the p-th input103

channel of W is to be pruned), we design the redundant channels and weight adjustment as follows:104
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Wp,: = argminWp,:

(∣∣Gp,:W
⊤
p,:

∣∣+ ∥Wp,:∥22
2 [H−1]p,p

)
, δW∼p,: = −H−1

∼p,∼pG∼p,:. (4)

H = X⊤X and G = HW (analytic solutions computed without backpropagation, efficient) are105

used as estimates of the local optimization information. The channel p with the least error impact is106

identified and pruned, while δW adjusts the remaining weights to compensate for pruning errors.107

Pruning heads and neurons. In our framework, feed-forward network neurons are pruned based108

on individual channel saliency computed from the down_proj layer, where each channel acts as the109

atomic unit for ranking and removal. For multi-head self-attention, saliency is first computed per110

output channel of the o_proj layer, then aggregated (averaged) across channels belonging to the111

same head, which is treated as the atomic unit for pruning. Similarly, in grouped query attention,112

saliency is aggregated over all channels corresponding to the same grouped head.113

Progressively pruning and weight adjustment. We adopt progressive pruning with an appropriately114

fine granularity: finer granularity allows unpruned weights to gradually and uniformly compensate115

for pruning losses in small increments while enabling precise and dynamic redundant channel116

identification. Reducing granularity does not significantly complicate pruning, as the key intermediate117

variable H−1 can be rapidly adjusted to account for partial channel pruning in O(d2in) complexity [8].118

Detailed analysis can be found in Appendix A.1.119

2.3 Prune-to-supernet across Multiple Sparsity Ratios120

Dense Dense

To-prune

𝑋
Pruned

Perplexity@Wikitext2

Llama-3.1-8B: 5.84

Local pruned 50%: 538.23  

Layer 𝑙 Layer 𝑙 + 1

(a) w/o Error Accum.

Dense Dense

To-prune

𝑋
Pruned

Perplexity@Wikitext2

Llama-3.1-8B: 5.84

Local pruned 50%: 58.09 

Layer 𝑙 Layer 𝑙 + 1

(b) w/ Error Accum.

Figure 2: Implementing layerwise error accumulation gives
a more accurate pruning result than not. Solid lines indicate
forward propagation, and dashed lines indicate pruning.

As illustrated in Figure 1(b), a super-121

net will be constructed by repeatedly122

applying local pruning across a range123

of sparsity ratios to each LLM layer,124

producing pruned copies with varying125

sparsity ratios. However, this introduces126

challenges in error accumulation across127

layers. Error accumulation introduces128

an additional forward pass of the post-129

pruned layer, using its output activation130

as input for the next layer. The change131

in the input directly affects the optimiza-132

tion of the subsequent layer. In the ex-133

ample shown in Figure 2, pruning half of Llama-3.1-8B’s parameters using the local pruning approach134

with error accumulation results in significantly lower language comprehension perplexity than pruning135

without it. This performance gap highlights the critical role of error accumulation: it enables deeper136

layer pruning to be aware of shallower layer pruning.137

The existence of multiple sparse structures complicates error accumulation, making it unclear which138

pathway to prioritize. To address this issue, we propose an expectation error accumulation approach139

to enable balanced mutual awareness among the sparse structures in the supernet. Let the output140

activation of the e-th sparse structure with sparsity Se in layer ℓ be Xℓ+1,e. We define the expectation141

output activation Xℓ+1 for this layer as:142

Xℓ+1 =

E∑
e=1

1− Se∑E
e=1(1− Se)

Xℓ+1,e. (5)

A higher scaling factor is assigned to low sparsity weights because their output activations are more143

stable and reliable. By enabling expectation error accumulation and applying the local pruning144

approach, we can prune Llama-3.1-8B to create nine sparse structures in each layer, with 12.5% as the145

sparsity interval (covers complete pruning and abandoned pruning). The post-pruned model achieves146

a language comprehension perplexity of 66.38 on the WikiText-2 task, with manually picking the147

50% sparse structure as an example. This result is close to the ideal perplexity of 58.09 achieved148

under full error accumulation and significantly better than the 208.92 perplexity from random error149

accumulation and 538.23 perplexity with abandoned error accumulation.150
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2.4 Týr-the-Pruner151

By introducing effective local pruning and expectation error accumulation approaches, we can152

construct a supernet to tackle the global sparsity allocation problem. Specifically, we address the153

following issues to achieve efficient and effective sparsity allocation: (1) defining generalizable154

criteria for selecting a better sparse structure, (2) achieving an efficient search-based sparse structure155

selection while maintaining overall sparsity, and (3) handling the contradiction between fine-grained156

sparsity intervals and the large search space.157

Align to dense model behaviors to win. Towards the definition of better sparse structures, we158

consider that large language models are designed for multi-task generalization. Thus, guiding sparse159

structure selection on a single task risks overfitting. To mitigate this, we adopt a distillation-inspired1160

metric to measure the similarity between sparse and dense models. A salient similarity indicates161

that the current sparse structure is better aligned with the dense model, making it more suitable162

for selection. Specifically, let hdense
ℓ and hsparse

ℓ,e denote the activations of the dense and e-th sparse163

(structure) models at layer ℓ, and zdense and zsparse
{e} represent the logits of the dense model and selected164

({e} = {eℓ}Lℓ=1) sparse subnet.165

{ê} = argmin{e}
∑
ℓ

αℓ

∥∥∥hdense
ℓ − hsparse

ℓ,e

∥∥∥2
2
+ β KL(zdense||zsparse

{e} ), (6)

Sparse structure selection via evolutionary search. Evolutionary search can achieve convergence166

in model architecture optimization [33, 21]. Compared to intuitive router training, evolutionary167

search requires no additional parameters. It maintains constant overall sparsity by shifting sparsity168

between sparse structures from different layers, whereas router training relies on penalty terms for169

suboptimal soft sparsity control. Evolutionary search is efficient, as it allows the just-in-time loading170

(c.f., Appendix A.4) of sparse structures and leverages the backpropagation-free feature.171

Mutation (stochastic perturbation) in our evolutionary search arises from sparsity shifts across layers172

(c.f., Select Sparse Structure in Figure 1). For instance, the sparsity of the ℓ-th layer may decrease173

by s%, while the ℓ′-th layer increases by s% (achieved by selecting different sparse structures). In174

each generation, we randomly generate such a group of sparsity distributions as candidates. Starting175

from the root generation, the performance of candidates is evaluated, and the best-performing ones176

are selected to generate new candidates for the next generation. Generations continue to be explored177

until the optimal sparsity distribution is found.178

Iterative prune-to-supernet and evolutionary search. The search space for selecting sparse179

structures with fine-grained sparsity is enormous. For instance, constructing a supernet with a sparsity180

interval of 1.5625% would result in 65 sparse structures per MHA/FFN layer. For a 40-layer LLM,181

this would lead to over 5K sparse structures, creating a 10145-scaled search space. Identifying182

solutions in this large search space is difficult and costly.183

To address this issue, we form Týr-the-Pruner as an iterative prune-and-search framework. We first184

prune and construct a supernet with a coarse-grained sparsity interval (c.f., Figure 1(b)). For example,185

with 12.5% as the sparsity interval, the resulting supernet could have as few as nine sparse structures186

per MHA/FFN layer, yielding a significantly reduced search space. We then perform the evolutionary187

search to find the optimal sparsity distribution at this granularity. Based on which, we next refine188

the sparsity interval granularity and perform a new iteration of pruning and supernet construction189

(c.f., Figure 1(c)). For example, suppose the current optimal sparsity of a layer is 37.5%. In that190

case, we reduce the sparsity interval from 12.5% to 6.25%, use 37.5% as the median, and generate191

nine new sparse structures with sparsity ratios ranging from 12.5% to 62.5%. Overall, we iteratively192

apply the prune-and-search process until the optimal sparsity distribution at the finest granularity is193

identified, which is then used for final model compression (c.f., Figure 1(d)). Taking halving the194

sparsity granularity at each iteration as an example, our framework reduces the search space size195

to 1076 per iteration. It only requires four iterations to achieve the same sparsity granularity as the196

search-only strategy (1.5625% sparsity interval). This strategy significantly reduces both the search197

space and the generations explored per iteration.198

Algorithms 1 to 4 in Appendix A.2 provide algorithmic procedures for local pruning, supernet199

construction, evolutionary search, and Týr-the-Pruner.200

1There is no real knowledge distillation training (weight updates) included in our methodology.
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Table 1: Post pruning performance comparison of different methods. Language comprehension
perplexity is validated on the Wikitext2 test set with a sequence length of 4096, where a lower value
reflects better performance. Downstream accuracy (%, higher is better) is averaged across ARC-Easy,
ARC-Challenge, BoolQ, HellaSwag, OpenbookQA, RTE, WinoGrande, and MMLU, with MMLU
using a 5-shot benchmark and others a 0-shot benchmark. The best results are shown in bold.

Sparsity Method
Perplexity on Wikitext2 ↓ Average Downstream Accuracy (%) ↑

Llama-2 Llama-3.x Mistral Llama-2 Llama-3.x Mistral
7B 13B 2-3B 0-8B 1-8B 7B-v0.3 Nemo 7B 13B 2-3B 0-8B 1-8B 7B-v0.3 Nemo

0% N/A 5.12 4.57 7.29 5.76 5.84 4.95 5.35 57.96 62.05 57.01 64.08 64.77 63.72 66.24

12.5%

ShortGPT 8.86 5.67 12.42 13.90 13.14 7.58 7.72 53.27 59.16 53.13 57.75 58.50 59.49 59.46
LaCO+ 7.52 5.69 12.25 10.12 9.98 7.46 7.95 53.23 57.26 52.46 59.41 60.36 58.67 59.96

SliceGPT 8.25 7.19 18.71 20.46 22.10 7.00 9.74 55.89 59.70 51.64 57.55 56.82 59.67 53.27
Wanda-sp 6.24 6.09 182.24 86.91 18.46 6.86 7.27 55.40 57.41 38.02 33.95 47.89 59.44 56.82

LLM-Pruner 6.11 5.17 11.14 8.24 8.26 6.17 6.79 53.38 59.78 46.98 53.96 54.04 55.26 58.23
ZipLM 5.86 5.21 11.32 10.37 9.30 5.84 7.62 55.85 61.91 51.37 57.55 57.54 62.46 60.24

OSSCAR 5.94 5.21 11.11 10.15 9.87 5.75 7.04 55.29 61.94 52.23 57.19 58.53 62.06 53.89
FLAP 6.11 5.75 10.25 8.34 8.07 6.18 7.68 54.63 57.55 47.74 55.72 56.66 59.51 57.67

Týr-the-Pruner 5.84 5.03 9.16 7.39 7.41 5.61 6.31 56.98 62.66 54.78 62.01 63.02 63.05 64.15

25%

ShortGPT 23.41 17.94 1464.20 4836.41 3418.83 35.20 124.20 46.68 51.86 41.25 38.12 38.62 51.07 51.68
LaCO+ 18.84 9.00 128.77 124.86 137.17 22.91 20.79 45.47 52.77 46.26 48.58 49.80 51.84 53.65

SliceGPT 16.84 12.50 45.44 47.73 55.43 12.08 19.37 51.40 58.04 45.87 50.01 48.49 52.26 46.27
Wanda-sp 9.21 19.92 94.12 48.95 962.72 17.83 15.34 49.92 38.17 33.93 34.53 32.40 49.13 41.30

LLM-Pruner 11.56 7.11 25.14 18.65 19.35 10.24 11.81 44.09 49.56 39.55 42.36 40.88 46.32 45.26
ZipLM 7.49 6.65 43.50 28.74 52.69 7.39 9.91 52.59 60.50 41.61 38.72 39.20 58.05 45.59

OSSCAR 7.46 9.19 122.63 17.40 17.03 7.16 9.57 51.99 59.55 33.29 44.27 42.19 55.94 45.95
FLAP 8.31 7.50 15.64 12.65 12.30 8.01 13.59 49.36 54.37 44.01 47.41 49.20 52.64 48.83

Týr-the-Pruner 7.51 5.79 12.53 13.14 10.38 7.08 7.87 54.64 61.16 51.72 58.50 58.66 60.22 60.61

37.5%

ShortGPT 70.96 52.24 554.88 5.1E+04 9.3E+04 2347.69 864.38 43.66 43.13 41.28 39.16 38.97 35.80 42.52
LaCO+ 87.77 96.00 494.07 1645.83 1377.02 429.78 462.92 41.55 47.60 40.24 38.89 38.85 40.44 42.88

SliceGPT 35.10 26.22 98.41 176.81 237.50 27.68 38.46 43.80 51.83 37.40 39.96 38.97 43.30 39.55
Wanda-sp 19.97 34.70 344.17 2422.78 3627.00 31.85 74.87 40.45 35.69 33.08 30.59 32.56 38.13 33.59

LLM-Pruner 37.75 14.96 161.10 87.93 70.93 24.90 32.10 35.96 40.36 33.26 32.40 32.53 37.94 37.42
ZipLM 12.13 13.01 283.53 50.36 125.98 14.01 15.53 47.53 51.89 33.35 34.77 36.55 48.90 44.86

OSSCAR 11.28 12.74 182.00 27.69 28.87 10.43 16.00 47.42 51.74 32.76 40.81 39.87 48.91 45.81
FLAP 12.41 11.33 26.05 22.61 21.54 11.81 27.01 43.51 48.54 39.28 41.51 43.07 44.90 45.57

Týr-the-Pruner 10.29 7.17 27.88 21.64 18.09 10.25 11.47 52.21 58.67 46.11 53.66 53.46 52.34 54.63

50%

ShortGPT 226.40 187.23 2313.30 1473.71 1678.15 5532.76 6804.52 36.99 39.47 34.09 37.51 36.52 35.05 38.00
LaCO+ 256.71 1129.00 6019.01 2.1E+04 5.4E+04 6019.01 5.9E+04 34.89 41.79 33.96 35.21 33.28 33.93 33.25

SliceGPT 65.34 50.66 205.09 384.04 353.21 54.66 69.15 39.43 43.84 33.52 34.55 34.32 36.17 34.95
Wanda-sp 122.28 47.89 262.92 187.41 188.47 91.34 293.59 32.26 35.82 32.29 33.86 32.39 33.59 32.27

LLM-Pruner 117.40 53.96 473.50 302.15 288.32 74.04 469.93 31.70 35.17 30.97 31.63 31.58 32.64 32.89
ZipLM 32.91 24.70 356.02 102.76 366.34 24.18 24.96 32.60 42.66 32.51 33.14 34.45 39.93 38.42

OSSCAR 28.41 44.17 320.14 80.90 198.87 29.58 23.14 39.46 40.40 33.85 32.58 34.16 40.95 37.99
FLAP 25.49 16.89 272.98 82.12 134.28 34.81 79.46 39.84 44.04 33.29 38.68 36.59 40.57 39.34

Týr-the-Pruner 16.17 9.59 29.84 38.59 30.89 15.53 16.85 47.41 54.58 41.41 47.41 47.79 46.21 47.92

3 Experiments201

3.1 Experimental Settings202

Models. We conduct experiments using the widely adopted large language models Llama2, Llama3.x,203

and Mistrals [36, 7, 14], focusing on models with over three billion parameters. The pruning targets204

include attention heads and FFN neurons, which are applied to the Transformer backbone. The205

embedding layer and the lm-head remain unchanged.206

Calibration. For calibration, we consider FineWeb [29], a high-quality dataset curated from Common207

Crawl snapshots with rigorous deduplication and filtering. Specifically, we extract about 4M tokens208

(about 1k samples for a maximum input length of 4k) from its FineWeb-Edu subset to construct209

calibration samples, ensuring high data quality and efficiency.210

Evaluation. We use perplexity as one evaluation metric for language comprehension performance211

[9], validated on the WikiText2 [25] test set. To evaluate the impact of compression across various212

downstream tasks, we report 0-shot accuracy on ARC [6], BoolQ [5], HellaSwag [45], OpenBookQA213

[26], RTE [38], and WinoGrande [30] tasks, as well as 5-shot accuracy on the MMLU [13] benchmark.214

Implementation details. We implement Týr-the-Pruner with PyTorch [28] and leverage the Hug-215

gingFace Transformers and Datasets libraries [42] to manage models and datasets. For local pruning,216
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Table 2: Post pruning performance on massive language models. Accuracy (%, higher is better)
serves as the comparison metric. MMLU employed a 5-shot benchmark, while other tasks used
0-shot benchmarks. The percentage of average accuracy maintenance after pruning was recorded,
with values ≥95% highlighted in green and values <95% in red. The best results are shown in bold.

Model Sparsity Method Arc-C Arc-E BoolQ HellaSwag OBQA RTE WinoGrande MMLU AVG

Llama-2-70B

0% N/A 54.44 82.74 83.73 64.77 37.40 67.87 77.98 68.79 67.22 (100%)

50%

SliceGPT 38.65 68.39 69.63 38.40 25.00 63.54 67.40 50.20 52.65 (78%)
LLM-Pruner 21.93 29.08 43.18 26.26 14.00 51.62 49.25 23.77 32.39 (48%)

ZipLM 46.67 77.61 82.26 56.94 34.00 68.95 75.61 54.33 62.05 (92%)
OSSCAR 48.21 78.37 81.99 57.00 32.60 67.15 76.64 56.05 62.25 (93%)

FLAP 40.02 70.79 74.74 51.83 32.00 60.29 67.88 39.65 54.65 (81%)
Týr-the-Pruner 48.21 79.12 83.18 60.04 35.20 70.76 78.14 60.58 64.40 (96%)

Llama-3.1-70B

0% N/A 60.58 87.29 85.29 66.50 37.00 70.04 79.64 78.72 70.63 (100%)

50%

SliceGPT 32.08 58.00 63.85 34.02 20.60 53.43 56.99 32.60 43.95 (62%)
LLM-Pruner 21.42 25.38 38.81 26.22 13.80 54.87 50.83 24.95 32.04 (45%)

ZipLM 48.55 78.54 80.55 55.98 31.60 66.79 78.37 62.73 62.89 (89%)
OSSCAR 48.29 78.62 81.44 54.69 32.80 68.23 77.58 60.38 62.75 (89%)

FLAP 37.54 68.90 67.34 43.98 26.40 60.65 72.30 54.40 53.94 (76%)
Týr-the-Pruner 56.74 85.40 85.20 64.07 36.40 71.48 78.91 70.29 68.56 (97%)

we iteratively prune and adjust weights by removing one attention head or 16 FFN neurons at a time.217

The prune-and-search process consists of 4 iterations, where the sparsity interval at the i-th iteration218

is set to 12.5%/2i−1. In each iteration, we explore 50 generations with 128 offspring candidates per219

generation. The sparsity shifts of the attention or FFN layers are independent to ensure the consistency220

of the sparsity interval granularity. Candidate validation is performed using the distillation-inspired221

metric with vocabulary logits. We follow [33] to enhance validation efficiency: the 128 offspring are222

first validated on 2K tokens, and the top 16 are selected. These 16 survivors are then validated on223

16K tokens, from which the top 4 are selected, and finally, the best one is validated and selected on224

128K tokens. To ensure a fair comparison, we use the same FineWeb-Edu samples for calibration to225

reproduce the baselines. The benchmark results of the baselines may outperform their reported results226

due to the improved calibration sample size and data quality. All experiments for Týr-the-Pruner were227

conducted on 4 AMD Instinct™ MI250 (64GB) Accelerators, with models less than 13B parameters228

running on a single accelerator.229

3.2 Performance230

Language comprehension and downstream task performance of post-pruned LLMs. We applied231

structural pruning to various large language models using Týr-the-Pruner at overall sparsity levels232

of 12.5%, 25%, 37.5%, and 50%. The performance was benchmarked against state-of-the-art233

methods, including ShortGPT (layer pruning) [23], LaCO+ (ShortGPT with LaCO layer merging)234

[44], SliceGPT (embedding dimension pruning) [3], Wanda-SP [34, 1], LLM-Pruner [22], ZipLM235

[16], OSSCAR [24], and FLAP [1]. Table 1 summarizes the comparative results, highlighting236

post-pruning performance in language comprehension and downstream tasks (c.f., Appendix A.9 for237

detailed results within each task).238

Týr-the-Pruner demonstrates competitive performance across various sparsity ratios and LLMs. It239

consistently achieves state-of-the-art results at low sparsity ratios (≤25%). For instance, pruning240

12.5% of Llama-3-8B’s parameters yields the lowest perplexity (7.39) and the highest average241

downstream accuracy (62.37%), surpassing the previous awesome methods, LLM-Pruner and LaCO+,242

by 8.0% and 2.6%. At higher sparsities (≥37.5%), maintaining performance poses a significant243

challenge for existing methods, with advanced techniques like OSSCAR often exhibiting perplexities244

exceeding 100 and accuracies dropping below 40%. Týr-the-Pruner, by contrast, excels under these245

conditions. For example, at 37.5% sparsity, the pruned Mistral-Nemo model achieves a perplexity of246

11.47 and an accuracy of 55.63%, substantially outperforming ZipLM and FLAP.247

Scale up to massive language models. Structural pruning of massive language models challenges248

post-pruned performance and resource budgets. We incorporated a CPU offload policy into typical249

baseline methods to ensure a fair comparison on 70B-scale models. Table 2 compares the post-pruning250

performance of Llama-2-70B and Llama-3.1-70B at 50% sparsity.251

Experimental results demonstrate Týr-the-Pruner’s strong scalability under high sparsity for massive252

models. LLM-Pruner shows clear scaling limitations, maintaining only 48% accuracy when pruning253
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Table 3: Inference efficiency of post-pruned LLMs
with Týr-the-Pruner. Benchmarks were conducted
on a single AMD Instinct™ MI250 accelerator using
PyTorch (HipBlas) for LLM inference, with input
and output sequence lengths set to 2048.

Model Sparsity #Params TTFT Decode Throughput

Llama-3.1-8B
0% 8.0B 2.49 (1.00x) 12.27 (1.00x)
25% 6.1B 1.94 (1.28x) 14.13 (1.15x)
50% 4.3B 1.42 (1.75x) 16.97 (1.38x)

Mistral-Nemo
0% 14.3B 4.16 (1.00x) 6.68 (1.00x)
25% 11.0B 3.34 (1.25x) 7.55 (1.13x)
50% 7.8B 2.49 (1.67x) 8.93 (1.34x)

Table 4: Ablation study on local pruning.
Wikitext2 Perplexity and 0-shot accuracy on
ARC-C, ARC-E, and BoolQ are reported.

Method Configuration Wikitext2 ARC-C ARC-E BoolQ

FLAP - 134.28 20.99 43.18 52.29

Local Pruning

Default 58.09 24.06 58.67 63.46
Wikitext2 Calibrated 49.00 20.05 54.84 61.71
C4 Calibrated 73.07 21.42 57.58 62.17
w/o progressive pruning 63.48 23.38 56.65 62.17
w/o Hessian 109.88 22.53 51.68 46.48
w/o Gradient 67.31 25.60 57.83 62.17

Local Pruning
&

Build Supernet

Default 66.38 23.05 58.46 62.35
w/o Error Accum. 538.23 21.93 33.54 40.31
w/ Random Error Accum. 208.92 22.70 39.14 45.05
w/ Uniform Error Accum. 75.10 23.72 53.03 60.06

Llama-2-70B. In contrast, Týr-the-Pruner achieves 97% accuracy maintenance when pruning Llama-254

3.1-70B, outperforming alternative methods.255

Inference efficiency of post-pruned LLMs. To evaluate the efficiency gains of post-pruned LLMs,256

we constructed inference benchmarks summarized in Table 3. For Llama-3.1-8B, 50% sparsity257

reduces time to first token (TTFT, in seconds) by 43% and boosts decode throughput (tokens/s) by258

38%. These results highlight pruning as a key technique for inference optimization in large language259

models. More detailed efficiency analysis can be found in Appendix A.5.260

3.3 Ablation Study261

Prune-to-supernet. The effectiveness of local pruning and supernet construction depends on factors262

such as calibration samples, the implementation of local pruning, and error accumulation. Table 4263

presents ablation study evaluating these factors for pruning Llama-3.1-8B at 50% sparsity. Experimen-264

tal results show that FineWeb-Edu is consistently preferred as a calibration source, emphasizing the265

importance of selecting high-quality calibration samples. The exist of first-second-order-combined266

optimization information and progressive pruning significantly impacts accuracy, demonstrating267

their necessity. Furthermore, the proposed expectation error accumulation approach outperforms268

alternatives, showcasing its ability to make sparse structures mutually aware appropriately.269

Table 5: Ablation study on search direction.
Wikitext2 Perplexity and 0-shot accuracy on
ARC-C, ARC-E, BoolQ are reported.

Search Direction Wikitext2 ARC-C ARC-E BoolQ

Wikitext2 Perplexity 17.22 29.69 64.06 62.23
Fineweb-Edu Perplexity 31.65 31.06 64.18 62.17
Similarity-based 28.56 32.51 65.87 63.12
Similarity-based Logits-only 30.89 31.83 65.36 64.62

Evolutionary search direction. To assess the270

impact of search direction on final performance,271

we compare the effects of minimizing single-272

task losses versus our similarity-based metric273

when pruning 50% of Llama-3.1-8B’s parame-274

ters, as shown in Table 5. Experiments show that275

single-task search underperforms our metric, which276

achieves optimal accuracy by calculating the simi-277

larity across activations from the first, median, last,278

and logits layers, requiring 96 GB for hidden activation checkpointing. Due to this overhead, the279

logits-only metric was favored, maintaining strong performance with reduced resource demands.280

Accuracy = 47.79

Accuracy = 43.58

M
et

ri
c

Figure 3: Týr-the-Pruner has faster conver-
gence, fewer exploration generations, shorter
search time, and better search outcomes com-
pared to the fine-grained search-only approach.

Execution efficiency: Týr-the-Pruner vs. fine-281

grained search-only strategy. Figure 3 demon-282

strates the advantages of Týr-the-Pruner over the283

search-only strategy in efficacy and efficiency in284

identifying the optimal 50% sparsity distribution285

on Llama-3.1-8B. In which the search-only strategy286

uses a fine-grained 3.125% sparsity interval. Exper-287

imental results show that Týr-the-Pruner achieves a288

similar convergence trend as the search-only strat-289

egy but with faster convergence, fewer generations,290

and reduced search time. Additionally, the final291

post-pruned model discovered by Týr-the-Pruner292

outperforms the search-only strategy, with an av-293

erage accuracy of 47.79 compared to 43.58. Our294

evolutionary search maintains time efficiency, with a single generation requiring only 190 seconds.295
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4 Related Work296

Pruning techniques for compressing large language models. The growing complexity of297

Transformer-based language models, now reaching hundreds of billions of parameters, has intensified298

the necessity for effective pruning strategies. Pruning methods are generally divided into unstructural299

and structural approaches. Unstructural pruning [9, 34] achieves high accuracy by selectively zeroing300

individual elements in the weight. However, it often requires specialized hardware, such as 2:4301

sparse tensor cores [48], for end-to-end acceleration. Structural pruning enables hardware-agnostic302

acceleration by removing entire weight groups, but it may result in a pronounced loss of accuracy.303

Structural pruning of LLMs can be approached as local optimization, alleviating memory constraints304

from loading the full model. ZipLM [16] accelerates inference by leveraging the Optimal Brain305

Surgeon (OBS) [12] theory, pruning weights to minimize the impact on the Hessian matrix and306

adjusting the remaining weights to reduce layerwise loss. Building on ZipLM, OSSCAR [24] in-307

troduces a permutation search between pruned and remaining weights within each layer, further308

reducing pruning-induced loss. Some approaches apply global optimization strategies to prune LLMs,309

overcoming local constraints, enabling customized sparsity distributions, and potentially finding310

optimal solutions. [17] introduced Fisher information as a saliency metric, selecting structures to311

prune through global dynamic programming. LLM-Pruner [22] defines broad substructure depen-312

dency groups and then evaluates their saliency to guide pruning. FLAP [1] uses a global metric that313

considers both weights and activations for sparsity allocation, followed by layerwise pruning and314

bias adjustments to mitigate pruning losses.315

Additionally, there is growing interest in embedding dimension [3] and depth [23, 44] pruning316

techniques for LLMs. Some training-aware structural pruning methods [46, 19, 27] are also gaining317

attention, as they further enhance pruning effectiveness by considering training dynamics.318

Neural architecture search (NAS) for LLM compression. Several studies have applied NAS to319

compress LLMs, seeking architectures that reduce inference costs while maintaining accuracy. multi-320

objective NAS has been employed to explore various search space definitions, identifying compressed321

LLM architectures that enhance efficiency and accuracy when fine-tuned on specific downstream322

tasks [15]. LLaMAFlex [2] fine-tunes LLMs into supernets with a Gumbel softmax-based trainable323

subnet router, realized a “rain once, deploy many" model compression. EvoPress [33] proves that324

evolutionary search can determine suitable layerwise compression configurations and extends this325

method to support mixed-precision quantization and non-isotropic unstructural sparsity.326

This paper presents a novel structural pruning framework, Týr-the-Pruner, for large language models.327

Unlike conventional methods, this framework searches for the optimal sparsity distribution within a328

supernet. Through enhanced supernet construction and an iterative prune-and-search technique, it329

achieves end-to-end global pruning optimization with strong efficiency and efficacy, setting a new330

benchmark for post-pruning accuracy maintenance.331

5 Limitations332

Týr-the-Pruner achieves state-of-the-art structural pruning outcomes by constructing reliable supernets333

and employing an iterative prune-and-search process. We have significantly reduced the search space334

and the number of generations explored. However, the search time cost remains non-negligible.335

Fair time costs in model compression are often considered acceptable, as the goal is to achieve a336

sufficiently optimized pruned model. However, we will continue to optimize it in future work.337

6 Conclusion338

This paper introduces Týr-the-Pruner, an end-to-end global structural pruning framework for large339

language models. By constructing a supernet through local pruning across various sparsity ratios340

and using evolutionary search to identify the optimal subnet, our framework achieves the optimal341

sparsity distribution under a target overall sparsity ratio. We propose an effective local pruning342

and an expectation error accumulation approach to enhance supernet construction. Additionally, an343

iterative prune-and-search strategy with coarse-to-fine sparsity granularity ensures rapid convergence.344

Extensive experiments show that Týr-the-Pruner outperforms state-of-the-art methods, achieving 50%345

parameter pruning while retaining 97% accuracy on Llama-3.1-70B.346
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A Appendix552

A.1 Theoretical Foundations of Local Pruning553

Redundant channel identification. We consider first- and second-order terms to minimize Equa-554

tion (3). For the first-order term, we identify the to-prune channel p by argminWp,:

(∣∣Gp,:W
⊤
p,:

∣∣),555

which identifies the weights with the minimal contribution in the gradient direction [22]. For the556

second-order term, we employ the Optimal Brain Surgeon (OBS) method [12], which optimizes557

argminWp,:

(
∥Wp,:∥2

2

2[H−1]p,p

)
by considering the inverse of the diagonal elements of the Hessian matrix.558

This method measures each channel’s contribution to the curvature of the loss function.559

The identification metric for redundant channels is derived from a manual design that takes into560

account both first- and second-order optimization information, distinguishing it from previous work.561

Table 4 demonstrates the validity of our metric by ablation.562

Weight adjustment. We minimize Equation (3) by applying the Lagrange multiplier method to563

impose constraints on the p-th channel should be pruned (δWp,: = Wp,:):564

L(δW,λ) = G⊤δW +
1

2
δW⊤HδW + λ⊤ (δWp,: −Wp,:) (7)

Under the constraints, the resulting loss function L(δW,λ) will be differentiated with respect to δW565

and λ to find the minimum value:566


∂L(δW,λ)

∂δW
= G+HδW +Epλ

⊤ = 0,

∂L(δW,λ)

∂λ
= δWp,: −Wp,: = 0.

(8)

For the G +HδW + Epλ
⊤ term, we use p and ∼ p to denote channels to prune and channels to567

remain. Corresponding variables can be expanded in this way:568

[
Gp,:

G∼p,:

]
+

[
Hp,p Hp,∼p = 0
H∼p,p = 0 H∼p,∼p

] [
δWp,:

δW∼p,:

]
+

[
λ⊤

0

]
= 0, (9)

where the elements of the Hessian matrix corresponding to the pruned positions p can be set to zero569

(when a channel of the weights is pruned, the same position of the Hessian/invHessian matrix are570

pruned correspondingly [8]). Overall, the solution is δW∼p,: = −H−1
∼p,∼pG∼p,:.571

Fast update of inverse Hessian matrix. When the p-th channel is pruned, the inverse Hessian572

matrix H−1 must be updated to account for the removal of the corresponding channel p in W. This573

update can be efficiently derived by leveraging the properties of partitioned matrices and applying the574

Sherman-Morrison-Woodbury formula. The main idea is that the pruning of the p-th channel results575

in a rank-1 update to H−1, which is mathematically represented as:576

H−1 ← H−1 − 1

[H−1]pp
H−1

:,pH
−1
p,: . (10)

By updating the inverse Hessian with a rank-1 adjustment, the influence of the p-th channel is properly577

removed through the outer product of the corresponding column and row vectors, using the reciprocal578

of the p-th diagonal element. The updated H−1 ensures consistency for the remaining channels,579

enabling efficient and scalable pruning operations. This method has a time complexity of O(d2in),580

avoiding full recomputation of the inverse and ensuring computational efficiency.581
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A.2 Algorhthms for Týr-the-Pruner582

Algorithm 1 Function local_pruning
1: Inputs: to-prune weight W,

input activations X,
sparsity S,
pruning granularity (pruning times) K

2: Mask← ones_like(W)
3: H← X⊤X
4: G← HW
5: for k ← 1 to K do
6: p← argminp

(∣∣Gp,:W
⊤
p,:

∣∣+ ∥Wp,:∥22
2[H−1]

p,p

)
7: Maskp ← 0
8: W∼p,: ←W∼p,: +H−1

∼p,∼pG∼p,:

9: H−1 ← H−1 − 1

[H−1]
p,p

H−1
:,pH

−1
p,:

10: end for
11: Return Mask⊙W

Algorithm 2 Function prune_to_supernet
1: Inputs: LLM weights {W1,W2, ...,WL},

sparsity ratios
{S1,1, ..., S1,E , ..., SL,E},
input activations for first weight X,
pruning granularity (pruning times) K

2: for ℓ← 1 to L do
3: X_list← []
4: for e← 1 to E do
5: Ŵℓ,e← local_pruning(Wℓ,X, Sℓ,e,K)

6: store(Ŵℓ,e)

7: X_list. append(X · Ŵℓ,e)
8: end for
9: X←

∑E
e=1

1−Sℓ,e∑E
e=1(1−Sℓ,e)

X_list[e]
10: end for
11: Return {Ŵℓ,e}L,E

ℓ=1,e=1

Algorithm 3 Function evolutionary_search

1: Inputs: sparse structures W = {W1,1, ...,W1,E , ...,WL,E},
sparsity ratios {Sℓ}Lℓ=1, sparsity interval Sg

2: procedure makeCandidates(numCanidates,W, {Sℓ}Lℓ=1, Sg)
3: Candidates← []
4: for i← 1 to numCanidates do
5: Candidates. append(randSparsityShift(W, {Sℓ}Lℓ=1, S

g, randChoice(L), randChoice(L)))
6: end for
7: end procedure: return Candidates
8: {Ŝℓ}Lℓ=1 ← {Sℓ}Lℓ=1

9: for g ← 1 to numGenerations do
10: Offsprings← makeCandidates(numCanidates,W, {Ŝℓ}Lℓ=1, S

g)

11: {Ŝℓ}Lℓ=1 ← checkSparsity(argminSearchMetric(Offsprings))
12: Return {Ŝℓ}Lℓ=1

Algorithm 4 Function Týr-the-Pruner

1: Inputs: LLM weights {W1,W2, ...,WL}, input activations for first weight X,
pruning granularity (pruning times) K, overall sparsity S, sparsity interval Sg ,
num sparse structures E, iterations T

2: procedure generateSparsities(L, E, {Sℓ}Lℓ=1, Sg)
3: Sparsities = {}
4: for ℓ← 0 to range(L) do
5: for e← 0 to range(E) do
6: Sparsities. append(Sℓ − ((e− 1)× 0.5)× Sg + i× Sg)
7: end for
8: end for
9: end procedure: return Sparsities

10: {Ŝℓ}Lℓ=1 ← {S}L
11: for t← 1 to T do
12: Sparsities← generateSparsities(L,E, {Ŝℓ}Lℓ=1, S

g)

13: {Ŵℓ,e}L,E
ℓ=1,e=1← prune_to_supernet({Wℓ}Lℓ=1, Sparsities,X,K)

14: {Ŝℓ}Lℓ=1 ← evolutionary_search({Ŵℓ,e}L,E
ℓ=1,e=1, {Ŝℓ}Lℓ=1, S

g)
15: Sg ← Sg × 0.5
16: end for
17: Return compress({Ŵℓ,e}L,E

ℓ=1,e=1, {Ŝℓ}Lℓ=1)
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A.3 Further Comparisons583

Table 6: Further comparisons. Perplexity on Wikitext2 (lower
is better) and 0-shot accuracy (%, higher is better, DarwinLLM
reported the 25-shot Arc-C benchmark) serve as the comparison
metrics. Optimal results are bolded.

Model Sparsity Method Wikitext2 ↓ BoolQ ↑ WinoGrande ↑ ARC-E ↑ ARC-C ↑

Llama-7B
0% N/A 5.68 71.38 67.01 67.45 41.38

20% SearchLLM 6.89 70.98 74.92 64.23 36.52
25% Týr-the-Pruner 7.36 75.81 75.68 66.36 42.06

Llama-2-7B

0% N/A 5.12 77.68 69.06 76.30 43.43

30% PruneNet - - 61.09 53.20 33.53
DISP-LLM 6.85 - 62.27 59.81 33.19

37.5% Týr-the-Pruner 10.29 68.87 66.93 71.13 38.31
40% ProbePruning 8.01 64.70 58.10 62.50 37.70

50%
DISP-LLM 9.84 - 58.41 43.06 25.85
DarwinLM - 62.70 55.80 63.30 38.10

Týr-the-Pruner 16.17 65.54 62.12 66.12 33.62

Llama-2-13B

0% N/A 4.57 80.61 72.22 79.46 48.46

20% EvoP 6.33 - 68.00 73.00 40.00
25% Týr-the-Pruner 5.79 81.35 72.06 77.74 44.97

30% DISP-LLM 5.77 - 66.85 63.80 39.42
37.5% Týr-the-Pruner 7.17 80.76 72.06 76.35 43.26

50%
CFSP - - 64.17 62.33 38.05

DISP-LLM 7.11 - 59.27 52.57 33.28
Týr-the-Pruner 9.59 74.46 70.09 72.18 39.85

Llama-3.1-8B

0% N/A 5.84 82.17 73.56 81.31 51.54

40% Adapt-Pruner 33.75 - 56.75 45.16 25.97

50% DarwinLM - 62.20 57.30 59.60 34.20
Týr-the-Pruner 30.89 66.64 61.80 65.86 31.83

Llama-3-8B
0% N/A 5.76 81.10 73.01 80.05 50.43

40% MLP-only ProbePruning 14.90 70.30 67.20 57.40 39.00
25% Týr-the-Pruner 13.14 76.02 71.11 75.63 42.15

To further demonstrate the ef-584

fectiveness of our proposed585

method, Týr-the-Pruner, we586

conducted a more comprehen-587

sive comparison. The com-588

petitors include the pure subnet589

search framework SearchLLM590

[32], the probe-based dynamic591

pruning approach ProbePrun-592

ing [18], the sparsity distri-593

bution optimizer Adapt-Pruner594

[39], the coarse-and-fine com-595

bined approach CFSP [41],596

the calibration-free approach597

PruneNet [18], the structure-598

independent approach DISP-599

LLM [11], the cluster-based600

evolutionary pruning approach601

EvoP [43], and the search-602

only approach DarwinLLM603

[35]. The experimental results,604

with competitor performance605

taken from their respective pa-606

pers, are presented in Table 6.607

It is evident that Týr-the-Pruner608

significantly outperforms other609

structured pruning methods,610

achieving better performance even at higher sparsities compared to other methods at lower sparsities.611

In particular, Týr-the-Pruner surpasses the search-based methods SearchLLM, EvoP, and DarwinLLM,612

demonstrating the effectiveness of our effective local pruning approach, expected error accumulation,613

and iterative prune-and-search strategy.614

A.4 Memory/Storage Efficiency Analysis of Týr-the-Pruner615

Table 7: Resource requirements for Týr-the-Pruner

Model Size Submodules in Supernet HBM Usage Disk Storage Usage
7-8B 576 14-16GB 39.6GB
13B 720 26GB 66.6GB
70B 1440 140GB 414.7GB

Týr-the-Pruner employs a supernet616

search technique, where storing a617

large-scale supernet in memory is ob-618

viously costly. To address memory619

concerns, we optimize our approach620

by storing pruned substructures on621

disk instead of in high-bandwidth622

memory (HBM). An integer Python list is used to track the currently selected substructures, ensuring623

that only one entire LLM is loaded into HBM at any given time (e.g., the 7B model uses approxi-624

mately 14GB, and the 13B model uses around 26GB). Table 7 provides detailed data on HBM and625

disk storage occupancy. Furthermore, since there is no dependency between iterations (in iterative626

prune-and-search), the storage from previous iterations can be cleaned, further minimizing disk usage.627

Due to the low cost of disk storage, these memory and storage demands are highly acceptable.628

A.5 Efficiency Analysis on Non-isotropic Structural Pruning629

Large language models (LLMs) with non-isotropic pruning may be considered to exhibit inferior630

inference efficiency compared to those with isotropic sparsity across layers. To explore, we provide631

a comparative analysis of inference efficiency for Llama-3.1-8B and Mistral-Nemo, both pre- and632

post-50% structural pruning. The evaluation was conducted on an AMD Instinct™ MI250 Accelerator633

using Pytorch (HipBlas), covering both prefilling and decoding tasks across a range of sentence634

lengths, as illustrated in Figure 4.635
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(a) Llama-3.1-8B prefilling benchmarks (b) Llama-3.1-8B decoding benchmarks

(c) Mistral-Nemo prefilling benchmarks (d) Mistral-Nemo decoding benchmarks

Figure 4: Pre- and post-pruning large language model inference benchmarks.

Table 8: Týr-the-Pruner progressively refines and optimizes the sparsity distribution in iterations,
steadily enhancing performance.

Method Wikitext2 ARC-C ARC-E BoolQ HellaSwag OBQA RTE WinoGrande MMLU AVG

w/o search 66.38 23.55 58.46 62.35 32.51 16.60 51.26 52.88 28.34 40.74

search-only 27.96 25.34 59.30 64.71 36.52 22.20 55.23 56.20 29.17 43.58

Týr-the-Pruner I1 28.92 26.45 56.19 62.17 37.05 22.20 50.54 56.75 29.29 42.58
Týr-the-Pruner I2 31.80 29.27 62.54 63.51 38.18 23.80 50.54 56.85 30.23 44.37
Týr-the-Pruner I3 29.75 29.86 63.09 64.62 39.28 25.00 51.62 59.51 31.62 45.58
Týr-the-Pruner I4 30.89 31.83 65.36 66.64 39.99 24.80 58.12 61.80 33.76 47.79

The variance (Var) quantifies the degree of variation in sparsity under non-isotropic pruning conditions;636

a larger variance indicates more fluctuation in sparsity across layers. As shown in Figure 4, the 50%637

structural pruned LLMs achieve up to 1.3x or greater speedup in both prefilling and decoding tasks638

compared to their dense counterparts across most sentence lengths. Variations in layer sparsity do639

not have a significant impact on efficiency. A slight efficiency decrease is only observed when the640

variance reaches 1. In this case, the reduction in efficiency is likely due to the frequent high sparsity,641

which leads to more memory-bottlenecked “thin" matrix multiplications in the computational graph.642

A.6 Detailed Analysis on Týr-the-Pruner and the Search-only Strategy643

To further evaluate the impact of Týr-the-Pruner (iterative prune-and-search) versus the search-only644

strategy, we present the 50% post-pruned performance on Llama-3.1-8B across several tasks: Wiki-645

text2 perplexity (↓), 0-shot accuracy (↑) on Arc, BoolQ, HellaSwag, OBQA, RTE, and WinoGrande,646

and 5-shot accuracy (↑) on MMLU, as shown in Table 8.647

Experimental results highlight the superiority of Týr-the-Pruner over the search-only strategy. Em-648

ploying isotropic pruning, the “w/o search" method yields suboptimal performance across all tasks.649

In contrast, Týr-the-Pruner outperforms the search-only strategy from the second iteration (I2),650

demonstrating the benefits of progressively refining the sparsity distribution. The search-only strategy651

struggles with the large search space, leading to prolonged search times and limited effectiveness.652

Ultimately, Týr-the-Pruner achieves the best results in the fourth iteration (I4).653

Figure 5(a) and Figure 5(b) compare the sparsity distributions of the MHA and FFN layers in Llama-654

3.1-8B after pruning with Týr-the-Pruner and the search-only methods, respectively. The sparsity655
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(a) MHA: Týr-the-Pruner vs. Search-only (b) FFN: Týr-the-Pruner vs. Search-only

(c) MHA: variations during iterations (d) FFN: variations during iterations

Figure 5: Sparsity distribution of Týr-the-Pruner and the search-only strategy on Llama-3.1-8B.

distribution obtained by Týr-the-Pruner resembles that of the search-only strategy, yet Týr-the-Pruner656

performs better. Its search process is more refined, incorporating multiple rounds of expectation error657

accumulation, ultimately leading to a superior sparsity distribution and higher performance in the658

pruned model.659

Figure 5(c) and Figure 5(d) compare the sparsity distributions of the MHA and FFN layers in the660

post-pruned Llama-3.1-8B across different iterations of Týr-the-Pruner. Týr-the-Pruner identifies a661

relatively ideal and coarse-grained sparsity distribution in the first search (with a sparsity interval of662

12.5%). In the subsequent iterations (2nd, 3rd, and 4th), with sparsity intervals of 6.25%, 3.125%,663

and 1.5625%, respectively, the sparsity distribution is progressively refined and optimized, ultimately664

converging to an optimal solution.665

A.7 Sparsity Distribution of Different Pruning Methods666

Different pruning methods vary in the distribution of sparsity. Figure 6(a) and Figure 6(b) show667

the sparsity distributions of MHA and FFN of Llama-3.1-8B after 50% pruning by a series of LLM668

structural pruning methods, respectively.669

(a) MHA (b) FFN

Figure 6: Sparsity distributions with different structural pruning methods.
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ZipLM and OSSCAR maintain isotropic sparsity distribution. LLM-Pruner incorporates prior670

knowledge, recognizing that the shallow and deep layers of LLMs are more pruning-sensitive and671

thus preserve them while only isotropically pruning the intermediate layers. These three methods672

fail to account for the unique characteristics of different LLMs, leading to clear suboptimal sparsity673

assignments. Conversely, FLAP combines local activations and weights to assess the global sparsity674

distribution, resulting in non-isotropic pruning. While this method seeks a balance between local and675

global sparsity, it does not fully address the gap between them, making it challenging to achieve an676

optimal sparsity distribution.677

Týr-the-Pruner’s sparsity distribution clearly differs from that of other methods. It directly searches678

for the optimal sparsity distribution at the global level without the local and global gaps. The resulting679

sparsity distribution does not adhere to prior assumptions: for instance, the 2-nd FFN layer is largely680

retained, while the 12-th FFN layer is entirely pruned, and there is no discernible pattern in the681

sparsity ratio as layers become deeper or shallower. This demonstrates that model optimization682

should fully account for the model’s unique characteristics.683

A.8 Statistical Significance Analysis684

Table 9: Statistical significance analysis for Týr-the-Pruner.

Model Sparsity Wikitext2 ↓ BoolQ ↑ ARC-E ↑ ARC-C ↑

Llama-2-7B 25% 7.51 ± 0.07 69.45 ± 0.04 75.13 ± 0.10 42.58 ± 0.09

Llama-2-13B 25% 5.79 ± 0.00 81.35 ± 0.06 77.74 ± 0.03 44.97 ± 0.05

Llama-3.1-8B 25% 10.38 ± 0.11 76.36 ± 0.12 77.23 ± 0.09 45.48 ± 0.06
50% 30.89 ± 0.21 66.64 ± 0.26 65.86 ± 0.33 31.83 ± 0.16

To verify the robustness of the pro-685

posed method, Týr-the-Pruner, we ad-686

just the random seeds (the change687

of random seeds triggers the change688

of calibration samples) for multiple689

(number of tests: n=5) experiments690

and observe the error bar (± standard691

deviation), as shown in Table 9.692

From the global observation of exper-693

imental results, the proposed method performs relatively consistently in multiple randomized trials,694

with standard deviations within acceptable limits (< 0.21 for Wikitext2 perplexity and < 0.33 for695

downstream performance). From the local observation of experimental results, it can be seen that696

pruning yields a more stable performance for larger models or under lower sparsity ratios.697
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A.9 Detailed Downstream Task Results698

Table 10: 0-shot acc (%) on ARC-Challenge.
Sparsity Method LLaMA-2 LLaMA-3.x Mistral

7B 13B 2-3B 0-8B 1-8B 7B-v0.3 Nemo

0% N/A 43.43 48.46 42.32 50.43 51.54 48.81 55.72

12.5%

ShortGPT 36.18 43.86 37.80 43.94 44.20 43.43 46.16
LaCO+ 37.97 43.60 37.63 43.69 44.20 42.15 45.14

SliceGPT 41.81 46.25 35.15 41.64 42.15 42.49 31.66
Wanda-sp 43.34 45.05 24.06 19.28 34.04 46.16 48.89

LLM-Pruner 38.40 44.45 31.83 38.57 37.97 40.02 43.52
ZipLM 41.55 49.15 38.23 40.19 42.49 47.27 52.30

OSSCAR 42.41 49.23 38.14 40.70 40.78 46.59 30.80
FLAP 40.02 42.15 33.45 41.30 41.47 43.86 45.48

Týr-the-Pruner 42.06 48.05 38.82 47.44 49.15 48.55 54.35

25%

ShortGPT 32.34 37.88 30.97 26.88 27.39 33.96 38.99
LaCO+ 30.89 38.65 32.34 36.26 36.77 33.87 40.10

SliceGPT 37.88 41.47 28.33 35.32 37.46 38.99 24.49
Wanda-sp 38.14 20.82 18.09 16.89 19.20 37.37 23.21

LLM-Pruner 28.24 37.63 22.35 26.11 24.57 31.66 31.40
ZipLM 39.51 46.93 29.52 18.43 20.31 43.69 27.39

OSSCAR 40.53 45.65 18.17 27.47 23.46 42.66 27.22
FLAP 31.91 40.78 26.54 31.91 33.45 36.52 40.70

Týr-the-Pruner 42.58 44.97 35.41 42.15 45.48 44.88 48.38

37.5%

ShortGPT 28.58 31.14 25.85 26.88 27.56 29.10 27.90
LaCO+ 28.24 32.08 25.43 27.30 27.05 28.24 31.57

SliceGPT 32.00 36.60 23.29 27.65 27.39 28.67 19.45
Wanda-sp 27.99 21.76 20.39 20.90 19.97 20.65 20.31

LLM-Pruner 17.58 24.40 17.49 16.89 16.98 20.90 19.28
ZipLM 33.53 32.08 20.56 19.80 21.16 38.31 37.03

OSSCAR 35.49 33.96 18.77 26.54 23.98 36.77 37.63
FLAP 29.18 35.75 24.40 25.17 23.98 29.69 32.51

Týr-the-Pruner 38.31 43.26 30.97 38.99 39.68 38.31 42.41

50%

ShortGPT 23.46 28.16 21.84 23.29 23.56 26.19 32.22
LaCO+ 23.55 27.05 21.25 24.74 22.87 24.49 21.67

SliceGPT 24.91 30.63 18.86 20.99 21.50 19.45 18.52
Wanda-sp 17.58 19.54 20.73 18.60 19.54 18.00 18.00

LLM-Pruner 18.60 19.54 19.11 17.32 19.62 18.52 21.59
ZipLM 20.14 27.99 19.20 17.15 20.48 23.72 21.16

OSSCAR 23.81 25.34 20.56 17.58 19.97 27.13 20.82
FLAP 29.10 27.47 22.78 21.76 20.99 25.34 28.24

Týr-the-Pruner 33.62 39.85 25.51 32.34 31.83 32.94 32.59

Table 11: 0-shot acc (%) on ARC-Easy.
Sparsity Method LLaMA-2 LLaMA-3.x Mistral

7B 13B 2-3B 0-8B 1-8B 7B-v0.3 Nemo

0% N/A 76.30 79.46 74.49 80.05 81.31 79.67 83.00

12.5%

ShortGPT 65.87 75.55 68.10 71.17 72.18 71.51 75.84
LaCO+ 68.39 75.04 64.69 73.44 75.67 71.25 75.67

SliceGPT 73.40 77.78 67.68 74.71 75.51 76.85 53.70
Wanda-sp 74.62 76.43 48.95 28.70 64.44 77.61 79.29

LLM-Pruner 72.05 77.10 62.92 70.83 72.47 73.32 75.46
ZipLM 75.72 79.80 71.51 73.74 75.34 78.62 79.63

OSSCAR 76.01 79.59 71.55 74.37 76.05 78.28 52.90
FLAP 71.38 72.69 64.44 73.36 74.16 75.76 75.88

Týr-the-Pruner 75.84 79.62 72.94 79.08 79.80 79.84 81.61

25%

ShortGPT 52.74 61.24 49.58 38.85 43.18 52.57 63.30
LaCO+ 53.03 64.73 49.41 53.41 55.47 52.23 62.50

SliceGPT 71.80 74.92 58.67 67.80 68.60 71.46 47.56
Wanda-sp 70.41 33.59 37.46 42.26 28.41 70.83 53.66

LLM-Pruner 59.97 70.20 50.72 59.43 57.79 65.87 64.02
ZipLM 74.66 78.45 61.32 27.86 26.47 75.88 50.04

OSSCAR 74.45 77.57 27.95 53.70 40.03 75.59 51.60
FLAP 64.23 69.23 53.96 60.31 65.95 67.22 68.69

Týr-the-Pruner 75.13 77.74 69.40 75.63 77.23 77.23 80.13

37.5%

ShortGPT 41.58 48.95 40.07 37.50 39.94 33.88 42.72
LaCO+ 36.11 48.57 40.49 39.27 40.45 35.40 46.09

SliceGPT 62.75 67.47 46.89 55.72 57.49 58.46 40.45
Wanda-sp 57.03 32.37 26.94 25.72 25.00 47.90 35.90

LLM-Pruner 38.93 54.76 31.69 32.53 32.07 47.10 47.98
ZipLM 68.48 61.95 27.99 27.10 27.02 70.54 70.79

OSSCAR 68.90 62.16 28.03 54.21 47.10 71.04 70.08
FLAP 53.45 58.16 46.55 46.63 52.15 56.65 61.70

Týr-the-Pruner 71.13 76.35 64.52 72.56 73.53 71.38 75.51

50%

ShortGPT 32.45 37.75 30.39 31.23 32.83 32.87 36.28
LaCO+ 30.01 37.71 29.00 28.58 28.54 30.18 28.96

SliceGPT 48.40 54.84 36.20 41.33 41.62 43.56 35.23
Wanda-sp 27.95 35.86 26.89 30.98 30.47 32.79 35.94

LLM-Pruner 28.11 33.54 24.49 28.24 28.70 28.70 28.16
ZipLM 29.38 54.00 27.57 25.57 28.28 50.84 49.96

OSSCAR 50.72 45.92 27.15 28.07 26.05 59.22 41.92
FLAP 47.01 43.18 27.23 42.30 43.18 52.61 52.57

Týr-the-Pruner 66.12 72.18 56.23 65.36 65.36 66.37 66.04

Table 12: 0-shot acc (%) on BoolQ.
Sparsity Method LLaMA-2 LLaMA-3.x Mistral

7B 13B 2-3B 0-8B 1-8B 7B-v0.3 Nemo

0% N/A 77.68 80.61 73.00 81.10 82.17 82.17 85.14

12.5%

ShortGPT 74.77 75.84 63.30 73.70 70.70 77.31 66.21
LaCO+ 61.13 68.90 62.72 72.78 70.06 77.19 68.62

SliceGPT 73.12 80.67 68.99 75.75 75.57 81.19 77.71
Wanda-sp 71.68 77.28 51.90 53.64 63.09 77.31 68.04

LLM-Pruner 76.48 80.43 65.72 74.34 71.90 72.72 77.58
ZipLM 69.36 82.84 65.60 75.63 77.00 82.26 71.83

OSSCAR 69.02 83.00 68.59 74.80 79.91 81.53 73.03
FLAP 70.98 76.21 60.06 73.49 71.87 77.49 80.24

Týr-the-Pruner 70.67 82.78 72.32 80.12 80.24 82.11 82.94

25%

ShortGPT 62.17 62.54 44.83 37.80 37.65 67.25 67.22
LaCO+ 50.83 58.23 70.64 63.85 59.14 75.14 66.70

SliceGPT 68.93 79.27 65.81 72.02 67.68 75.78 68.41
Wanda-sp 68.96 62.17 46.02 48.90 42.17 62.45 61.93

LLM-Pruner 62.97 68.35 61.59 60.89 57.89 68.78 64.25
ZipLM 67.19 81.31 59.20 56.02 65.08 77.16 65.14

OSSCAR 66.42 79.48 54.28 60.06 65.66 77.13 64.28
FLAP 65.47 68.81 64.89 68.29 67.28 65.14 63.82

Týr-the-Pruner 69.45 81.35 67.89 76.02 76.36 79.39 82.26

37.5%

ShortGPT 62.17 37.25 68.87 56.57 55.66 45.60 58.99
LaCO+ 62.11 62.78 63.30 48.78 45.38 63.12 64.62

SliceGPT 63.00 71.44 42.08 50.49 46.85 65.41 60.06
Wanda-sp 62.26 62.17 52.66 38.13 51.68 62.05 49.97

LLM-Pruner 61.74 62.11 50.70 41.31 40.03 62.35 61.87
ZipLM 64.89 76.79 49.76 51.56 61.47 69.91 62.72

OSSCAR 64.65 74.25 49.54 58.01 62.26 67.37 62.26
FLAP 63.46 65.60 61.93 62.66 64.62 62.54 65.50

Týr-the-Pruner 68.87 80.76 66.33 70.09 70.55 70.85 74.65

50%

ShortGPT 62.17 62.20 46.61 62.57 62.17 51.90 55.29
LaCO+ 54.83 59.51 44.40 55.32 51.41 42.66 46.57

SliceGPT 57.16 62.26 40.76 41.74 38.56 51.13 51.53
Wanda-sp 46.91 62.14 41.59 54.77 40.37 48.99 43.06

LLM-Pruner 38.23 61.31 38.10 39.54 37.83 43.24 43.94
ZipLM 43.79 64.80 44.95 54.19 57.43 62.72 62.23

OSSCAR 61.62 62.94 56.48 53.36 61.04 60.95 62.17
FLAP 58.50 65.14 51.25 61.65 52.29 61.47 48.87

Týr-the-Pruner 65.54 74.46 62.26 65.63 66.64 62.17 65.26

Table 13: 0-shot acc (%) on HellaSwag.
Sparsity Method LLaMA-2 LLaMA-3.x Mistral

7B 13B 2-3B 0-8B 1-8B 7B-v0.3 Nemo

0% N/A 57.14 60.04 55.20 60.11 60.04 60.92 62.90

12.5%

ShortGPT 49.88 55.70 49.76 55.12 55.09 54.93 56.26
LaCO+ 51.11 56.22 48.94 54.51 54.68 54.79 55.95

SliceGPT 52.32 56.16 47.73 52.03 50.97 54.57 50.66
Wanda-sp 56.53 53.96 34.60 27.29 40.76 55.97 52.57

LLM-Pruner 51.60 57.06 43.62 49.63 50.02 51.28 52.34
ZipLM 55.41 59.42 48.85 51.87 52.37 57.92 54.77

OSSCAR 55.39 59.53 48.60 51.35 55.21 57.83 54.05
FLAP 53.98 57.21 43.88 50.97 51.66 54.20 51.15

Týr-the-Pruner 55.88 59.39 51.55 56.52 56.32 58.27 59.31

25%

ShortGPT 41.94 47.70 37.31 28.89 28.37 42.51 43.61
LaCO+ 42.16 49.34 39.36 43.97 43.92 42.73 45.33

SliceGPT 46.16 49.84 39.29 43.29 42.10 44.24 40.37
Wanda-sp 51.21 34.47 28.87 28.04 27.25 44.23 34.65

LLM-Pruner 38.80 46.81 32.91 33.94 33.05 38.66 38.11
ZipLM 51.57 55.93 33.39 32.32 30.47 51.34 43.72

OSSCAR 51.61 55.16 26.55 36.45 36.44 50.69 43.09
FLAP 47.73 51.42 37.10 42.54 43.16 45.80 44.20

Týr-the-Pruner 52.86 57.49 46.62 53.10 52.87 58.27 55.04

37.5%

ShortGPT 33.53 39.31 31.44 32.11 30.71 27.72 34.81
LaCO+ 33.56 41.75 33.12 34.16 34.07 31.45 32.18

SliceGPT 37.65 41.27 32.08 34.14 33.37 34.50 32.48
Wanda-sp 35.07 29.49 26.48 25.66 26.38 30.63 26.08

LLM-Pruner 28.17 33.06 26.68 27.52 27.55 29.38 28.36
ZipLM 38.29 45.79 26.89 29.11 27.43 40.65 35.69

OSSCAR 42.86 48.20 26.66 30.70 31.49 41.37 35.09
FLAP 41.53 45.52 32.69 36.48 36.50 37.49 39.28

Týr-the-Pruner 48.47 54.11 39.97 47.22 47.12 46.01 48.22

50%

ShortGPT 28.61 32.44 28.01 27.82 27.87 26.30 30.83
LaCO+ 27.72 31.64 28.31 27.71 26.01 28.28 27.51

SliceGPT 30.91 32.35 28.22 28.96 29.07 29.60 29.02
Wanda-sp 26.65 28.52 26.32 26.72 26.73 27.61 26.11

LLM-Pruner 26.76 27.78 26.60 26.43 26.36 27.09 25.96
ZipLM 26.53 35.84 26.46 27.52 26.42 32.17 30.51

OSSCAR 32.21 32.16 26.58 27.81 26.92 32.15 30.26
FLAP 37.02 41.13 26.29 32.96 29.43 33.09 32.51

Týr-the-Pruner 42.62 49.45 33.68 39.71 39.99 38.68 40.24
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Table 14: 0-shot acc (%) on OpenBookQA.
Sparsity Method LLaMA-2 LLaMA-3.x Mistral

7B 13B 2-3B 0-8B 1-8B 7B-v0.3 Nemo

0% N/A 31.40 35.20 31.00 34.80 33.20 33.40 36.40

12.5%

ShortGPT 28.20 33.20 26.60 33.00 30.80 27.00 31.60
LaCO+ 30.00 30.20 25.60 30.80 31.20 25.60 28.80

SliceGPT 32.00 34.00 27.20 28.60 26.60 27.20 26.40
Wanda-sp 31.60 32.00 15.40 13.20 22.80 28.00 28.60

LLM-Pruner 28.40 34.40 24.60 27.20 26.40 26.80 31.00
ZipLM 31.60 34.60 27.50 25.80 26.60 34.20 32.80

OSSCAR 31.20 35.80 27.00 25.40 26.40 32.60 31.80
FLAP 29.20 32.40 27.60 30.60 30.40 33.40 31.60

Týr-the-Pruner 31.20 35.80 29.20 33.40 34.60 34.20 34.80

25%

ShortGPT 23.40 27.00 23.20 19.60 18.40 20.40 23.00
LaCO+ 25.20 25.20 22.40 20.60 20.00 23.40 22.20

SliceGPT 25.00 30.40 23.00 24.40 22.60 23.00 23.00
Wanda-sp 29.20 17.80 12.40 14.20 13.40 26.60 21.20

LLM-Pruner 21.00 28.80 15.40 19.80 18.00 20.40 21.00
ZipLM 31.40 34.80 17.60 24.40 18.80 29.20 19.20

OSSCAR 31.40 34.20 13.00 20.20 21.60 24.40 21.00
FLAP 27.40 29.80 24.60 26.60 28.40 29.80 28.00

Týr-the-Pruner 31.60 34.20 28.20 34.00 31.80 33.40 31.80

37.5%

ShortGPT 21.60 22.00 18.80 18.80 18.40 17.20 17.20
LaCO+ 17.00 21.40 17.00 17.80 16.60 17.00 19.80

SliceGPT 19.80 27.20 17.60 17.00 15.00 17.00 17.40
Wanda-sp 17.60 13.40 11.80 12.60 11.80 14.80 12.60

LLM-Pruner 12.80 17.80 12.20 12.80 13.20 14.80 13.00
ZipLM 25.60 27.00 13.80 14.40 13.20 21.80 14.60

OSSCAR 25.20 26.40 14.20 15.20 14.80 21.60 17.80
FLAP 24.20 27.20 21.60 22.80 23.40 24.00 25.80

Týr-the-Pruner 31.00 32.40 26.00 29.80 30.00 26.20 29.20

50%

ShortGPT 16.00 17.80 18.20 16.80 17.00 15.40 14.00
LaCO+ 16.20 18.00 14.60 14.00 14.00 16.60 16.00

SliceGPT 16.60 22.00 14.20 14.00 12.80 14.80 15.00
Wanda-sp 12.20 11.80 13.00 13.60 13.40 13.60 13.80

LLM-Pruner 12.60 12.00 12.40 13.40 13.40 14.80 15.40
ZipLM 14.00 19.60 12.40 13.80 11.60 17.40 13.20

OSSCAR 17.00 20.00 11.80 11.60 10.60 16.60 14.40
FLAP 21.20 25.80 13.20 21.40 16.80 21.40 21.00

Týr-the-Pruner 27.20 30.40 20.40 26.60 24.80 22.80 26.20

Table 15: 0-shot acc (%) on RTE.
Sparsity Method LLaMA-2 LLaMA-3.x Mistral

7B 13B 2-3B 0-8B 1-8B 7B-v0.3 Nemo

0% N/A 62.82 65.34 54.87 67.87 71.12 68.95 64.26

12.5%

ShortGPT 55.96 63.90 55.96 57.04 62.82 70.04 57.40
LaCO+ 63.54 58.48 57.40 68.23 70.40 65.34 64.26

SliceGPT 64.26 58.84 58.48 64.62 63.90 66.06 57.40
Wanda-sp 58.48 64.98 46.93 57.04 57.76 57.76 62.82

LLM-Pruner 62.82 61.73 48.38 56.68 61.01 65.34 55.60
ZipLM 61.37 63.18 50.18 66.06 60.65 68.23 61.37

OSSCAR 58.84 61.73 56.32 64.62 63.18 69.31 59.57
FLAP 57.76 59.21 50.54 52.35 55.96 67.51 56.68

Týr-the-Pruner 66.06 67.15 56.68 66.79 71.84 68.95 62.82

25%

ShortGPT 57.76 59.57 48.38 62.82 63.90 64.98 63.54
LaCO+ 53.79 62.45 57.04 63.90 58.12 64.26 58.12

SliceGPT 55.96 66.79 59.21 58.12 57.40 57.40 52.71
Wanda-sp 48.38 52.71 52.71 52.71 53.43 53.79 53.43

LLM-Pruner 56.68 50.54 52.35 52.35 53.07 55.23 53.07
ZipLM 55.60 68.23 55.23 50.18 51.99 68.95 53.43

OSSCAR 52.35 67.51 48.74 54.51 50.54 63.18 53.79
FLAP 62.82 64.26 53.43 50.90 52.71 63.90 49.46

Týr-the-Pruner 62.09 69.31 59.57 63.90 63.18 65.34 59.57

37.5%

ShortGPT 62.09 52.35 58.48 50.54 53.79 49.82 53.79
LaCO+ 57.40 55.60 57.04 54.87 58.84 61.37 54.15

SliceGPT 53.43 58.48 53.07 52.71 53.43 55.23 52.71
Wanda-sp 48.38 52.71 54.51 46.57 50.54 53.07 49.46

LLM-Pruner 52.71 52.71 52.71 52.71 52.71 51.26 52.71
ZipLM 58.12 64.26 52.71 50.54 53.79 54.15 52.35

OSSCAR 51.62 63.18 49.82 52.71 50.90 60.29 52.71
FLAP 48.38 54.51 46.57 51.26 55.60 53.79 55.96

Týr-the-Pruner 61.37 65.70 55.96 60.29 58.84 58.84 54.15

50%

ShortGPT 51.26 51.62 51.99 60.65 51.62 51.26 50.54
LaCO+ 51.62 61.01 57.40 51.62 45.13 53.43 49.82

SliceGPT 53.43 52.71 53.07 53.43 55.96 53.07 52.71
Wanda-sp 53.07 52.71 54.51 53.07 51.62 52.71 49.46

LLM-Pruner 53.07 52.71 52.71 52.71 52.35 52.71 53.07
ZipLM 52.71 52.71 53.07 52.35 52.71 52.71 51.26

OSSCAR 53.43 52.71 50.90 47.65 51.26 53.79 55.96
FLAP 45.49 58.48 51.62 53.07 52.71 52.71 55.23

Týr-the-Pruner 55.96 59.93 53.43 58.84 58.12 53.79 60.65

Table 16: 0-shot acc (%) on WinoGrande.
Sparsity Method LLaMA-2 LLaMA-3.x Mistral

7B 13B 2-3B 0-8B 1-8B 7B-v0.3 Nemo

0% N/A 69.06 72.22 69.06 73.01 73.56 73.64 73.64

12.5%

ShortGPT 68.98 71.03 67.64 71.67 70.09 70.24 74.11
LaCO+ 68.35 70.96 69.61 73.16 73.16 71.35 74.03

SliceGPT 67.32 70.48 60.54 67.17 66.61 70.64 64.01
Wanda-sp 67.64 70.72 52.01 51.38 58.80 66.54 62.27

LLM-Pruner 64.25 69.30 60.93 65.35 65.51 66.06 68.51
ZipLM 70.48 72.69 60.77 68.75 66.93 72.53 65.98

OSSCAR 69.46 73.40 60.30 68.19 68.27 71.59 65.11
FLAP 68.03 70.32 62.19 69.53 70.40 70.24 68.43

Týr-the-Pruner 70.09 73.85 67.40 73.24 72.53 73.40 72.69

25%

ShortGPT 65.67 70.96 61.40 53.99 55.17 67.25 63.14
LaCO+ 64.25 69.77 63.14 67.32 65.27 67.80 71.59

SliceGPT 65.27 70.40 57.62 62.67 59.75 61.48 58.25
Wanda-sp 63.69 54.30 51.78 48.78 49.57 60.62 57.06

LLM-Pruner 57.70 61.56 52.57 55.41 55.17 56.20 57.62
ZipLM 67.96 72.38 51.85 58.88 58.25 66.93 54.70

OSSCAR 68.11 70.56 52.72 56.91 56.75 64.33 55.41
FLAP 64.72 68.03 57.06 62.75 63.46 64.72 64.64

Týr-the-Pruner 68.51 72.06 64.01 71.11 71.11 71.11 70.01

37.5%

ShortGPT 60.30 65.98 61.56 54.54 55.09 59.19 53.99
LaCO+ 59.04 65.82 58.01 60.38 61.25 59.43 55.49

SliceGPT 46.73 65.19 55.09 54.78 53.04 55.80 54.85
Wanda-sp 49.49 49.57 48.38 51.30 49.49 49.33 51.38

LLM-Pruner 51.07 52.57 49.96 51.07 50.83 51.78 50.36
ZipLM 60.46 63.46 50.36 53.83 54.38 57.38 51.14

OSSCAR 61.64 63.14 50.04 55.09 54.46 57.38 53.83
FLAP 61.72 64.96 52.57 57.85 58.17 57.38 56.20

Týr-the-Pruner 66.93 72.06 60.22 66.54 66.54 64.17 65.27

50%

ShortGPT 56.20 61.80 51.46 54.70 54.14 53.12 52.64
LaCO+ 51.38 59.19 51.22 53.75 52.17 51.30 50.12

SliceGPT 54.62 56.99 51.30 50.99 49.88 51.38 49.33
Wanda-sp 49.17 50.04 51.07 47.43 51.22 49.88 48.07

LLM-Pruner 50.43 49.88 51.07 50.12 49.64 50.20 49.80
ZipLM 48.54 56.91 51.54 49.17 52.49 51.93 50.59

OSSCAR 51.54 52.80 51.70 48.86 51.14 52.49 50.43
FLAP 56.51 61.72 50.51 52.80 54.14 52.88 52.09

Týr-the-Pruner 62.12 70.09 53.28 60.30 61.80 59.43 59.04

Table 17: 5-shot acc (%) on MMLU.
Sparsity Method LLaMA-2 LLaMA-3.x Mistral

7B 13B 2-3B 0-8B 1-8B 7B-v0.3 Nemo

0% N/A 45.84 55.06 65.27 56.17 65.20 62.18 68.83

12.5%

ShortGPT 46.28 54.16 56.33 55.90 62.14 61.44 68.10
LaCO+ 45.34 54.71 58.70 53.10 63.54 61.69 67.23

SliceGPT 42.88 53.43 55.85 47.34 53.22 58.38 64.58
Wanda-sp 39.99 44.64 25.78 26.69 43.26 56.42 58.22

LLM-Pruner 37.40 50.51 48.71 39.30 50.26 54.09 54.59
ZipLM 41.33 53.57 58.38 48.31 58.95 58.62 63.20

OSSCAR 40.02 53.25 58.08 47.31 58.45 58.71 63.83
FLAP 40.60 47.66 49.86 41.90 52.29 55.82 52.98

Týr-the-Pruner 44.07 54.61 59.50 49.32 59.66 59.11 64.66

25%

ShortGPT 37.38 48.00 36.10 34.30 34.88 59.66 50.66
LaCO+ 43.63 53.82 39.36 35.78 59.68 55.28 62.63

SliceGPT 40.20 51.21 36.46 35.02 32.30 45.76 55.35
Wanda-sp 29.40 29.53 24.47 24.07 25.78 37.15 25.25

LLM-Pruner 27.37 32.58 30.95 28.49 27.47 33.72 32.60
ZipLM 32.79 45.99 41.67 24.79 42.25 51.22 51.12

OSSCAR 31.04 46.28 44.89 24.89 43.06 49.51 51.18
FLAP 30.57 42.66 35.96 34.47 39.18 47.99 31.09

Týr-the-Pruner 34.90 52.18 52.12 42.66 51.22 52.17 57.68

37.5%

ShortGPT 39.40 48.03 36.35 25.16 30.64 23.90 50.72
LaCO+ 38.94 52.76 28.57 27.54 27.13 27.50 39.10

SliceGPT 35.04 46.98 27.21 29.13 25.17 31.33 39.03
Wanda-sp 25.79 24.05 23.87 23.44 25.62 26.61 22.99

LLM-Pruner 24.65 25.50 24.38 24.63 26.88 25.97 25.79
ZipLM 30.85 43.82 31.82 24.76 33.97 38.48 34.54

OSSCAR 28.98 42.65 34.01 25.05 33.98 35.42 37.06
FLAP 26.17 36.58 29.24 27.89 30.17 37.64 27.59

Týr-the-Pruner 31.56 44.72 43.78 24.92 41.43 42.96 47.63

50%

ShortGPT 25.77 23.97 23.00 24.24 22.97 23.37 32.22
LaCO+ 23.81 40.19 25.95 25.48 26.08 24.47 25.35

SliceGPT 29.37 38.94 24.93 25.54 25.17 26.34 28.24
Wanda-sp 24.55 25.97 25.72 24.21 25.76 25.13 23.72

LLM-Pruner 25.81 24.63 25.24 23.31 24.70 25.89 25.17
ZipLM 25.70 29.40 25.35 24.87 26.16 27.92 28.46

OSSCAR 25.35 31.36 25.71 25.60 26.33 25.27 27.97
FLAP 23.87 29.40 23.49 23.40 23.18 25.07 24.23

Týr-the-Pruner 26.06 40.29 30.46 26.46 33.76 33.51 33.34
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NeurIPS Paper Checklist699

1. Claims700

Question: Do the main claims made in the abstract and introduction accurately reflect the701

paper’s contributions and scope?702

Answer: [Yes]703

Justification: The abstract and introduction sections offer a comprehensive discussion of the704

manuscript’s context, intuition, and ambitions, as well as its contributions.705

Guidelines:706

• The answer NA means that the abstract and introduction do not include the claims707

made in the paper.708

• The abstract and/or introduction should clearly state the claims made, including the709

contributions made in the paper and important assumptions and limitations. A No or710

NA answer to this question will not be perceived well by the reviewers.711

• The claims made should match theoretical and experimental results, and reflect how712

much the results can be expected to generalize to other settings.713

• It is fine to include aspirational goals as motivation as long as it is clear that these goals714

are not attained by the paper.715

2. Limitations716

Question: Does the paper discuss the limitations of the work performed by the authors?717

Answer: [Yes]718

Justification: The limitations of this work are discussed at the end of the manuscript.719

Guidelines:720

• The answer NA means that the paper has no limitation while the answer No means that721

the paper has limitations, but those are not discussed in the paper.722

• The authors are encouraged to create a separate "Limitations" section in their paper.723

• The paper should point out any strong assumptions and how robust the results are to724

violations of these assumptions (e.g., independence assumptions, noiseless settings,725

model well-specification, asymptotic approximations only holding locally). The authors726

should reflect on how these assumptions might be violated in practice and what the727

implications would be.728

• The authors should reflect on the scope of the claims made, e.g., if the approach was729

only tested on a few datasets or with a few runs. In general, empirical results often730

depend on implicit assumptions, which should be articulated.731

• The authors should reflect on the factors that influence the performance of the approach.732

For example, a facial recognition algorithm may perform poorly when image resolution733

is low or images are taken in low lighting. Or a speech-to-text system might not be734

used reliably to provide closed captions for online lectures because it fails to handle735

technical jargon.736

• The authors should discuss the computational efficiency of the proposed algorithms737

and how they scale with dataset size.738

• If applicable, the authors should discuss possible limitations of their approach to739

address problems of privacy and fairness.740

• While the authors might fear that complete honesty about limitations might be used by741

reviewers as grounds for rejection, a worse outcome might be that reviewers discover742

limitations that aren’t acknowledged in the paper. The authors should use their best743

judgment and recognize that individual actions in favor of transparency play an impor-744

tant role in developing norms that preserve the integrity of the community. Reviewers745

will be specifically instructed to not penalize honesty concerning limitations.746

3. Theory assumptions and proofs747

Question: For each theoretical result, does the paper provide the full set of assumptions and748

a complete (and correct) proof?749

Answer: [Yes]750
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Justification: This manuscript uses existing theories as a basis, while providing complete751

and correct derivations.752

Guidelines:753

• The answer NA means that the paper does not include theoretical results.754

• All the theorems, formulas, and proofs in the paper should be numbered and cross-755

referenced.756

• All assumptions should be clearly stated or referenced in the statement of any theorems.757

• The proofs can either appear in the main paper or the supplemental material, but if758

they appear in the supplemental material, the authors are encouraged to provide a short759

proof sketch to provide intuition.760

• Inversely, any informal proof provided in the core of the paper should be complemented761

by formal proofs provided in appendix or supplemental material.762

• Theorems and Lemmas that the proof relies upon should be properly referenced.763

4. Experimental result reproducibility764

Question: Does the paper fully disclose all the information needed to reproduce the main ex-765

perimental results of the paper to the extent that it affects the main claims and/or conclusions766

of the paper (regardless of whether the code and data are provided or not)?767

Answer: [Yes]768

Justification: The pipeline of the methods and the details of experiments are presented with769

corresponding reproducible credentials.770

Guidelines:771

• The answer NA means that the paper does not include experiments.772

• If the paper includes experiments, a No answer to this question will not be perceived773

well by the reviewers: Making the paper reproducible is important, regardless of774

whether the code and data are provided or not.775

• If the contribution is a dataset and/or model, the authors should describe the steps taken776

to make their results reproducible or verifiable.777

• Depending on the contribution, reproducibility can be accomplished in various ways.778

For example, if the contribution is a novel architecture, describing the architecture fully779

might suffice, or if the contribution is a specific model and empirical evaluation, it may780

be necessary to either make it possible for others to replicate the model with the same781

dataset, or provide access to the model. In general. releasing code and data is often782

one good way to accomplish this, but reproducibility can also be provided via detailed783

instructions for how to replicate the results, access to a hosted model (e.g., in the case784

of a large language model), releasing of a model checkpoint, or other means that are785

appropriate to the research performed.786

• While NeurIPS does not require releasing code, the conference does require all submis-787

sions to provide some reasonable avenue for reproducibility, which may depend on the788

nature of the contribution. For example789

(a) If the contribution is primarily a new algorithm, the paper should make it clear how790

to reproduce that algorithm.791

(b) If the contribution is primarily a new model architecture, the paper should describe792

the architecture clearly and fully.793

(c) If the contribution is a new model (e.g., a large language model), then there should794

either be a way to access this model for reproducing the results or a way to reproduce795

the model (e.g., with an open-source dataset or instructions for how to construct796

the dataset).797

(d) We recognize that reproducibility may be tricky in some cases, in which case798

authors are welcome to describe the particular way they provide for reproducibility.799

In the case of closed-source models, it may be that access to the model is limited in800

some way (e.g., to registered users), but it should be possible for other researchers801

to have some path to reproducing or verifying the results.802

5. Open access to data and code803
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Question: Does the paper provide open access to the data and code, with sufficient instruc-804

tions to faithfully reproduce the main experimental results, as described in supplemental805

material?806

Answer: [No]807

Justification: Code and data are only allowed to be made public in our institution after808

the manuscript has been officially published. For the time being, sufficient experimental809

setup/details are used to ensure reproducibility.810

Guidelines:811

• The answer NA means that paper does not include experiments requiring code.812

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/813

public/guides/CodeSubmissionPolicy) for more details.814

• While we encourage the release of code and data, we understand that this might not be815

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not816

including code, unless this is central to the contribution (e.g., for a new open-source817

benchmark).818

• The instructions should contain the exact command and environment needed to run to819

reproduce the results. See the NeurIPS code and data submission guidelines (https:820

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.821

• The authors should provide instructions on data access and preparation, including how822

to access the raw data, preprocessed data, intermediate data, and generated data, etc.823

• The authors should provide scripts to reproduce all experimental results for the new824

proposed method and baselines. If only a subset of experiments are reproducible, they825

should state which ones are omitted from the script and why.826

• At submission time, to preserve anonymity, the authors should release anonymized827

versions (if applicable).828

• Providing as much information as possible in supplemental material (appended to the829

paper) is recommended, but including URLs to data and code is permitted.830

6. Experimental setting/details831

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-832

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the833

results?834

Answer: [Yes]835

Justification: The pipeline of the methods and the details of experiments are presented with836

corresponding reproducible credentials.837

Guidelines:838

• The answer NA means that the paper does not include experiments.839

• The experimental setting should be presented in the core of the paper to a level of detail840

that is necessary to appreciate the results and make sense of them.841

• The full details can be provided either with the code, in appendix, or as supplemental842

material.843

7. Experiment statistical significance844

Question: Does the paper report error bars suitably and correctly defined or other appropriate845

information about the statistical significance of the experiments?846

Answer: [Yes]847

Justification: The results contain the standard deviation of the results over several random848

runs.849

Guidelines:850

• The answer NA means that the paper does not include experiments.851

• The authors should answer "Yes" if the results are accompanied by error bars, confi-852

dence intervals, or statistical significance tests, at least for the experiments that support853

the main claims of the paper.854
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• The factors of variability that the error bars are capturing should be clearly stated (for855

example, train/test split, initialization, random drawing of some parameter, or overall856

run with given experimental conditions).857

• The method for calculating the error bars should be explained (closed form formula,858

call to a library function, bootstrap, etc.)859

• The assumptions made should be given (e.g., Normally distributed errors).860

• It should be clear whether the error bar is the standard deviation or the standard error861

of the mean.862

• It is OK to report 1-sigma error bars, but one should state it. The authors should863

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis864

of Normality of errors is not verified.865

• For asymmetric distributions, the authors should be careful not to show in tables or866

figures symmetric error bars that would yield results that are out of range (e.g. negative867

error rates).868

• If error bars are reported in tables or plots, The authors should explain in the text how869

they were calculated and reference the corresponding figures or tables in the text.870

8. Experiments compute resources871

Question: For each experiment, does the paper provide sufficient information on the com-872

puter resources (type of compute workers, memory, time of execution) needed to reproduce873

the experiments?874

Answer: [Yes]875

Justification: The paper provided sufficient information on the computer resources needed876

to reproduce the experiments.877

Guidelines:878

• The answer NA means that the paper does not include experiments.879

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,880

or cloud provider, including relevant memory and storage.881

• The paper should provide the amount of compute required for each of the individual882

experimental runs as well as estimate the total compute.883

• The paper should disclose whether the full research project required more compute884

than the experiments reported in the paper (e.g., preliminary or failed experiments that885

didn’t make it into the paper).886

9. Code of ethics887

Question: Does the research conducted in the paper conform, in every respect, with the888

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?889

Answer: [Yes]890

Justification: The research conducted in the paper conforms with the NeurIPS Code of891

Ethics.892

Guidelines:893

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.894

• If the authors answer No, they should explain the special circumstances that require a895

deviation from the Code of Ethics.896

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-897

eration due to laws or regulations in their jurisdiction).898

10. Broader impacts899

Question: Does the paper discuss both potential positive societal impacts and negative900

societal impacts of the work performed?901

Answer: [NA]902

Justification: There is no societal impact of the work performed: This paper discusses the903

lightweighting of LLMs that can reduce the consumption of resources without obvious904

broader impacts.905
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Guidelines:906

• The answer NA means that there is no societal impact of the work performed.907

• If the authors answer NA or No, they should explain why their work has no societal908

impact or why the paper does not address societal impact.909

• Examples of negative societal impacts include potential malicious or unintended uses910

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations911

(e.g., deployment of technologies that could make decisions that unfairly impact specific912

groups), privacy considerations, and security considerations.913

• The conference expects that many papers will be foundational research and not tied914

to particular applications, let alone deployments. However, if there is a direct path to915

any negative applications, the authors should point it out. For example, it is legitimate916

to point out that an improvement in the quality of generative models could be used to917

generate deepfakes for disinformation. On the other hand, it is not needed to point out918

that a generic algorithm for optimizing neural networks could enable people to train919

models that generate Deepfakes faster.920

• The authors should consider possible harms that could arise when the technology is921

being used as intended and functioning correctly, harms that could arise when the922

technology is being used as intended but gives incorrect results, and harms following923

from (intentional or unintentional) misuse of the technology.924

• If there are negative societal impacts, the authors could also discuss possible mitigation925

strategies (e.g., gated release of models, providing defenses in addition to attacks,926

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from927

feedback over time, improving the efficiency and accessibility of ML).928

11. Safeguards929

Question: Does the paper describe safeguards that have been put in place for responsible930

release of data or models that have a high risk for misuse (e.g., pretrained language models,931

image generators, or scraped datasets)?932

Answer: [NA]933

Justification: The paper poses no such risks.934

Guidelines:935

• The answer NA means that the paper poses no such risks.936

• Released models that have a high risk for misuse or dual-use should be released with937

necessary safeguards to allow for controlled use of the model, for example by requiring938

that users adhere to usage guidelines or restrictions to access the model or implementing939

safety filters.940

• Datasets that have been scraped from the Internet could pose safety risks. The authors941

should describe how they avoided releasing unsafe images.942

• We recognize that providing effective safeguards is challenging, and many papers do943

not require this, but we encourage authors to take this into account and make a best944

faith effort.945

12. Licenses for existing assets946

Question: Are the creators or original owners of assets (e.g., code, data, models), used in947

the paper, properly credited and are the license and terms of use explicitly mentioned and948

properly respected?949

Answer: [Yes]950

Justification: The original owners of assets, including data and models used in the paper, are951

properly credited, and the licenses and terms of use are explicitly mentioned and properly952

respected.953

Guidelines:954

• The answer NA means that the paper does not use existing assets.955

• The authors should cite the original paper that produced the code package or dataset.956

• The authors should state which version of the asset is used and, if possible, include a957

URL.958
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.959

• For scraped data from a particular source (e.g., website), the copyright and terms of960

service of that source should be provided.961

• If assets are released, the license, copyright information, and terms of use in the962

package should be provided. For popular datasets, paperswithcode.com/datasets963

has curated licenses for some datasets. Their licensing guide can help determine the964

license of a dataset.965

• For existing datasets that are re-packaged, both the original license and the license of966

the derived asset (if it has changed) should be provided.967

• If this information is not available online, the authors are encouraged to reach out to968

the asset’s creators.969

13. New assets970

Question: Are new assets introduced in the paper well documented and is the documentation971

provided alongside the assets?972

Answer: [NA]973

Justification: The paper does not release new assets.974

Guidelines:975

• The answer NA means that the paper does not release new assets.976

• Researchers should communicate the details of the dataset/code/model as part of their977

submissions via structured templates. This includes details about training, license,978

limitations, etc.979

• The paper should discuss whether and how consent was obtained from people whose980

asset is used.981

• At submission time, remember to anonymize your assets (if applicable). You can either982

create an anonymized URL or include an anonymized zip file.983

14. Crowdsourcing and research with human subjects984

Question: For crowdsourcing experiments and research with human subjects, does the paper985

include the full text of instructions given to participants and screenshots, if applicable, as986

well as details about compensation (if any)?987

Answer: [NA]988

Justification: The paper does not involve crowdsourcing nor research with human subjects.989

Guidelines:990

• The answer NA means that the paper does not involve crowdsourcing nor research with991

human subjects.992

• Including this information in the supplemental material is fine, but if the main contribu-993

tion of the paper involves human subjects, then as much detail as possible should be994

included in the main paper.995

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,996

or other labor should be paid at least the minimum wage in the country of the data997

collector.998

15. Institutional review board (IRB) approvals or equivalent for research with human999

subjects1000

Question: Does the paper describe potential risks incurred by study participants, whether1001

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1002

approvals (or an equivalent approval/review based on the requirements of your country or1003

institution) were obtained?1004

Answer: [NA]1005

Justification: The paper does not involve crowdsourcing nor research with human subjects.1006

Guidelines:1007

• The answer NA means that the paper does not involve crowdsourcing nor research with1008

human subjects.1009

27

paperswithcode.com/datasets


• Depending on the country in which research is conducted, IRB approval (or equivalent)1010

may be required for any human subjects research. If you obtained IRB approval, you1011

should clearly state this in the paper.1012

• We recognize that the procedures for this may vary significantly between institutions1013

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1014

guidelines for their institution.1015

• For initial submissions, do not include any information that would break anonymity (if1016

applicable), such as the institution conducting the review.1017

16. Declaration of LLM usage1018

Question: Does the paper describe the usage of LLMs if it is an important, original, or1019

non-standard component of the core methods in this research? Note that if the LLM is used1020

only for writing, editing, or formatting purposes and does not impact the core methodology,1021

scientific rigorousness, or originality of the research, declaration is not required.1022

Answer: [NA]1023

Justification: The core method development in this research does not involve LLMs as any1024

important, original, or non-standard components.1025

Guidelines:1026

• The answer NA means that the core method development in this research does not1027

involve LLMs as any important, original, or non-standard components.1028

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1029

for what should or should not be described.1030

28

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Method
	Preliminaries
	Effective Local Pruning
	Prune-to-supernet across Multiple Sparsity Ratios
	Týr-the-Pruner

	Experiments
	Experimental Settings
	Performance
	Ablation Study

	Related Work
	Limitations
	Conclusion
	Appendix
	Theoretical Foundations of Local Pruning
	Algorhthms for Týr-the-Pruner
	Further Comparisons
	Memory/Storage Efficiency Analysis of Týr-the-Pruner
	Efficiency Analysis on Non-isotropic Structural Pruning
	Detailed Analysis on Týr-the-Pruner and the Search-only Strategy
	Sparsity Distribution of Different Pruning Methods
	Statistical Significance Analysis
	Detailed Downstream Task Results


