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ABSTRACT

Unsupervised classification is a core problem in machine learning. Because real-
world data are often imperfect, non-additive frameworks, such as evidential clus-
tering, grounded in Dempster-Shafer theory, explicitly handle uncertainty and im-
precision. These frameworks are particularly well suited to high-stakes decisions,
which tend to require both interpretability and cautiousness. However, while
decision-tree surrogates have enabled transparent explanations for hard clustering,
explainability for evidential clustering remains largely unexplored. We address
this gap by formalizing representativeness, a utility-based criterion that captures
decision-makers’ preferences over explanation misassignments, and introducing
evidential mistakeness, a loss function tailored to credal partitions. Building on
these foundations, we propose the Iterative Evidential Mistakeness Minimization
(IEMM) algorithm, which learns decision-tree explainers for evidential clustering
by optimizing representativeness under uncertainty and imprecision. We provide
theoretical conditions for effective explanations in both hard and evidential set-
tings and show how utility function parameters can be set to reflect different deci-
sion attitudes. Experiments on synthetic and real-world datasets demonstrate that
IEMM improves the performance of existing methods by producing representative
and preference-aligned explanations of evidential clusterings, supporting cautious,
transparent analysis in the presence of imperfect data.

1 INTRODUCTION

Clustering is a fundamental machine learning problem MacQueen (1967) that aims to group similar
objects while distinguishing different ones Hansen & Jaumard (1997). As a core data analysis task,
it reveals patterns and enables applications such as data compression, summarization, visualization,
and anomaly detection Xu & Wunsch (2005). As with other machine learning methods, two major
challenges persist in clustering: imperfections in the input data Hüllermeier & Waegeman (2021)
and interpretability Carvalho et al. (2019).

Real-world scenarios with imperfect data require cautiousness Bengs et al. (2022); Angelopoulos
et al. (2022); Imoussaten & Jacquin (2022); Hüllermeier et al. (2022); Nguyen et al. (2018), defined
as decision-makers’ awareness of model limitations and resulting risk-aversion. Effective cautious-
ness depends on properly characterizing these imperfections, primarily uncertainty and impreci-
sion Dubois & Prade (2009). In machine learning contexts, imperfections typically arise from weak
supervision, aleatoric uncertainty (intrinsic variability in the data), and epistemic uncertainty (a lack
of data in parts of the feature space) Hüllermeier & Waegeman (2021). Approaches that address
these issues include imprecise probability theory Walley (1991), possibility theory Dubois & Prade
(1988), rough sets Pawlak (1982), fuzzy sets Zadeh (1965), and Dempster-Shafer evidence theory
Shafer (1976).

These foundations have given rise to various clustering methods, including fuzzy Ruspini (1969),
possibilistic Krishnapuram & Keller (1993), rough Lingras & West (2004), and evidential cluster-
ing Masson & Denœux (2008). In the latter framework, while classical hard clustering Hartigan &
Wong (1979) assigns each point to exactly one cluster, evidential clustering induces a credal par-
tition Masson & Denœux (2008) that represents both uncertainty and imprecision through partial
membership across multiple cluster combinations.

Interpreting clustering results is equally critical: without interpretation, clusterings often lack prac-
tical utility. This has motivated a growing body of work on interpretable clustering Ben-Hur et al.
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(2001); Carrizosa et al. (2022); Lawless & Gunluk (2022); Ellis et al. (2021; 2024); Alvarez-Garcia
et al. (2024); Tutay & Somech (2023). A prominent approach borrows from supervised learning:
treat the (hard) clustering labels as ground truth and train a surrogate decision-tree classifier to repro-
duce them. A notable example is Iterative Mistake Minimization (IMM) Moshkovitz et al. (2020),
which fits a decision tree aligned with the centroid structure—each leaf holds exactly one centroid,
mapping its points to the associated cluster. Building on the IMM, subsequent work strengthens the-
oretical guarantees of the provided explanation and broadens its scope Makarychev & Shan (2022);
Frost et al. (2020); Laber et al. (2022); Bandyapadhyay et al. (2023); Gabidolla & Carreira-Perpiñán
(2022); Fleissner et al. (2024).

Explainability refers to a model’s ability to provide clear, audience-appropriate reasons for its be-
havior Barredo Arrieta et al. (2020). It enables users to understand, critique, and improve models.
A common taxonomy distinguishes intrinsic methods—models designed to be interpretable—from
post-hoc methods—explanations for already trained black boxes Carvalho et al. (2019). Post-hoc
techniques mainly fall into two families Barredo Arrieta et al. (2020): (i) feature-relevance meth-
ods, which rank or quantify the influence of input features Lundberg et al. (2019); Baehrens et al.
(2010) but, because they reveal little about the dataset’s structure Moshkovitz et al. (2020), face
criticism in high-stakes settings Rudin (2019); and (ii) simplification methods, which approximate
black-box classifiers with interpretable surrogates, such as decision trees, rule lists, or linear models
Guidotti et al. (2018). These categories are not mutually exclusive: explanations may also be deliv-
ered through examples, counterfactuals, or visual/textual modalities Barredo Arrieta et al. (2020).
Nor are they exhaustive. For example, feature relevance can be obtained via simplification, as in
LIME Ribeiro et al. (2016). Our proposed approach can be viewed as both intrinsic (it produces
interpretable models) and post-hoc simplification (it explains a given clustering).

High-stakes domains such as healthcare demand both interpretability and cautiousness. Yet ex-
plaining cautious clustering remains largely unexplored. Only a few works extend explainability to
imprecise methods, with early efforts focusing on supervised classification via counterfactuals and
feature importance Zhang (2023). To our knowledge, no prior work explains evidential clustering.
As noted in literature Zhang et al. (2024), explainable clustering over uncertain or imprecise data
warrants investigation to enable cautious, transparent analysis under imperfect data sources. This
paper addresses that gap.

The main objectives of this paper are:

1. To conduct a comprehensive investigation of decision trees as explainers for hard clustering
functions, establishing conditions that define effective explanations.

2. To develop a theoretical framework that extends these conditions to encompass uncertainty and
imprecision, particularly within the evidential clustering paradigm.

3. To introduce an innovative Explainable Evidential Clustering method through a novel algo-
rithm grounded in these theoretical foundations.

Our key contributions include:

1. We demonstrate that representativity is a necessary and sufficient condition for decision trees
to act as abductive explainers in the hard case. Building upon utility functions, we introduce
the concept of Evidential Representativeness, which quantifies decision-makers’ preferences re-
garding errors committed by an explainer. This advancement enables systematic evaluation of
cautious explanations.

2. We propose the Evidential Mistakeness function, demonstrate that minimizing it leads to rep-
resentative explanations, and develop the Iterative Evidential Mistakeness Minimization
(IEMM) algorithm. This novel approach, inspired by the IMM algorithm Moshkovitz et al.
(2020), generates surrogate decision trees that effectively explain evidential clustering functions.

3. We implement and validate this algorithm on both synthetic and real-world datasets, demonstrat-
ing how to select utility parameters that reflect different decision attitudes.

The remainder of this paper is structured as follows. Section 2 presents the theoretical foundations,
encompassing belief functions, evidential clustering, and explainability. Section 3 introduces the
concepts on which our approach is based: a specific family of utility functions, the representative-
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ness criterion, the Evidential Mistakeness loss function, and the IEMM algorithm. We provide for-
mal analysis of these concepts along with illustrative examples. We also make available the IEMM
Python package and the complete code for all experiments at OMITTED TO AVOID IDENTIFICA-
TION.

2 BACKGROUND

Let X represent a set of observations in a known feature space X. We assume X = {x1, ..., xN} ⊂
X = A1× . . .×AD, where each element of D = {A1, . . . ,AD} is called an attribute. We assume
all attributes are finite1. In essence, X is a set of D measurements for each of N objects, while X
encompasses all possible measurements.

A classification problem is the task of assigning each observation in X to an outcome from a finite
set Ω = {ω1, ..., ωC}, which we call the frame of discernment. A function that performs this as-
signment is called a classifier. When a set of training examples is available, we refer to the problem
of constructing such function as supervised classification. In contrast, if no training examples are
available and the goal is to group observations based on their similarity—without prior knowledge
of the classes or labels—the task is called unsupervised classification or clustering.

2.1 BELIEF FUNCTIONS

The Dempster-Shafer theory of evidence Shafer (1976) provides a framework for representing un-
certain and imprecise information. At the core of this theory lies the mass of belief function, or
simply mass function—a map defined as:

m : 2Ω → [0, 1] such that
∑
A⊆Ω

m(A) = 1.

Within this framework, an element ω ∈ Ω represents the finest level of discernible information.
The mass m(A) quantifies the degree of confidence in the statement that ’the correct hypothesis ω
belongs to A ⊆ Ω, yet it remains impossible to determine which specific element of A is correct’.
When m(∅) = 0, we say the mass satisfies the closed-world hypothesis Smets (1988), meaning it
rejects the possibility that the correct hypothesis ω lies outside Ω.

We define the focal set of m as Fm = m−1(]0, 1])—the collection of all subsets of Ω assigned
nonzero belief. Each member of this set is known as a focal element. Mass functions can be
categorized based on their focal elements:

• If all focal elements are singletons (of cardinality 1), then p(ω) = m({ω}) forms a probability
mass function, and m is called a Bayesian mass function.

• A mass function with exactly one focal element A is called categorical, representing the logical
assertion that ’ω belongs to A’. If this single focal element is Ω itself, the function is vacuous,
conveying no information beyond the closed-world hypothesis.

We denote by M the set of all mass functions defined on Ω. For notational simplicity, we may write
ωi∪ωj ∪ωk∪ ... to represent the subset {ωi, ωj , ωk, ...}. In Appendix A we present some additional
constructions (belief/plausability/pignistic functions) allowing decision-making for a mass of belief
function.

2.2 EVIDENTIAL CLUSTERING

Definition 1. An evidential clustering is a mapM : X →M.

For an observation x ∈ X , the function M(x), which we may denote as mx, when evaluated at
A ⊆ Ω, returns the degree of confidence attributed to the statement ’the class ω corresponding to

1This finite attribute assumption is crucial for decision tree operations. This assumption reflects this work’s
aim of explaining the clustering of tabular data. We may occasionally refer to X as RD for simplicity, though
this is an abuse of notation. When working with continuous attributes, we implicitly discretize the space (for
example, with a dataset X ⊂ RD , we typically consider binary attributes Ad,θ = {True, False} for each
dimension d ∈ {1, ..., D} and threshold θ ∈ {xd : x ∈ X}, where xAd,θ = True if and only if xd ≥ θ).
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x belongs to A, and it is not possible, given the available information, to determine which specific
element of A is the correct one’.

We refer to each element of Ω as a cluster and each subset of Ω as a metacluster. Within the context
of an evidential clustering function, we denote FM =

⋃
x∈X Fmx

. When all mx are categorical,
we say that M is categorical. Similarly, when all elements of FM are singletons, we call M
bayesian. An evidential clustering function that is both categorical and bayesian naturally induces a
hard clustering. A hard clustering is simply a partition of observations into clusters, formalized as a
surjection C : X → Ω. Appendix A further discusses evidential clustering and offers a visualization.
Some clustering algorithms naturally produce a centroid for each cluster. A centroid vω (resp. vA)
is a point in the feature space X that represents its cluster ω ∈ Ω (resp. metacluster A ⊂ Ω). For the
remainder of this work, we assume ∅ /∈ FM, rejecting the outlier hypothesis.

2.3 DECISION TREES AS EXPLAINERS

Decision Trees (DTs) Quinlan (1987) are classical machine learning algorithms, classifiers based
on rooted computation trees expressed as recursive partitions of the observation space Rokach &
Maimon (2005). Building upon these partitional aspects, a node of a decision tree is defined as
the subset S ⊆ X associated with its vertices. Decision trees are widely used in explainability for
their inherent interpretability Barredo Arrieta et al. (2020), as they yield "a set of decision rules with
the if–then form" Guidotti et al. (2018). In this context, a particularly desirable outcome Amgoud
& Ben-Naim (2022) is an abductive explanation: it answers the question "Why is Γ(x) = ω?" by
providing a sufficient reason for assigning the label ω, where Γ : X → Ω is a supervised classifier
Ignatiev et al. (2019). Throughout the paper, we denote by C the set of all consistent subsets of
feature literals2 and call an explainer any map χΓ : Ω→ 2C. Further definitions and formal aspects
of explainers are provided in Appendix B.

A decision tree ∆ : X→ Ω induces an explainer χ∆
Γ : Ω→ 2C that provides abductive explanations

to a supervised classifier Γ if and only if ∆ = Γ. This equality between the original classifier and the
DT surrogate model is equivalent to the property that Amgoud & Ben-Naim (2022) calls representa-
tivity. A representative explainer is one that, for all observations x with label ω = Γ(x), can provide
an explanation in χ∆

Γ (ω) that holds at x. More details on the DT construction from the standpoint
of explainability can be found in appendix C, along with our proposed proof that representativity is
a necessary and sufficient condition for decision trees to provide abductive explanations.

As the complete representativity is rarely attainable, it is natural to assess the quality of explanations
by the "representativeness" of the explainer χ∆

Γ . This assessment, in the supervised case, is typically
performed by measuring the accuracy Ribeiro et al. (2016); Izza et al. (2022b); Narodytska et al.
(2019) of the underlying classifier ∆. Thus, the quality of the explanation provided by χ∆

Γ about Γ
is quantified as:

AccuracyΓ(∆) =
|{x ∈ X : Γ(x) = ∆(x)}|

|X|
. (1)

2.3.1 THE IMM: DECISION TREES EXPLAINING HARD CLUSTERING

Iterative Mistake Minimization (IMM) Moshkovitz et al. (2020) explains a hard clustering by train-
ing a decision tree that mimics the cluster assignments (see Figure 1) while minimizing the price of
explanation. To this end, it relies on the concept of mistake.

X hard clustering DT Training ∆ : X→ Ω
C : X → Ω

Figure 1: Schematic of explainable clustering.

Definition 2. Let C be a hard clustering function. A mistake in a decision-tree (DT) node S ⊆ X
occurs when a point x ∈ S has its associated cluster centroid vC(x) outside of S, i.e., vC(x) /∈ S.

2A feature literal is a pair ⟨A, v⟩ where A ∈ D and v ∈ A. A consistent subset of feature literals is some
set L of feature literals such that ⟨A, v⟩, ⟨A, v′⟩ ∈ L ⇒ v = v′.
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The number of mistakes in a decision tree is the sum of mistakes committed with respect to C
across all leaves. The IMM aims to greedily minimize the number of mistakes induced by each
axis-aligned split in the decision tree Moshkovitz et al. (2020).

To assess explanation quality, as discussed in the previous section, it is natural to measure how
representative the resulting explainer is. The original IMM evaluation Moshkovitz et al. (2020)
relied on an explanation cost derived from the k-means and k-medians objectives. Some works
Fleissner et al. (2024); Lawless & Gunluk (2022)—not restricted to these clustering methods—use
the Rand index Rand (1971) or the AccuracyC(∆) to assess the similarity between the original
clustering and the clustering induced by the decision tree.

3 AN ALGORITHM FOR EXPLAINING EVIDENTIAL CLUSTERING

Our objective is to extend the concept of decision trees for cluster explanation to the evidential
setting. We aim to construct a decision tree that provides a representative approximation of the
evidential clustering function, as illustrated in Figure 2.

X evidential clustering DT Training ∆ : X→ 2Ω
M : X →M

Figure 2: Scheme of Explainable Evidential Clustering.

To achieve this, we build on the hard case: we first generalize what it means for an explainer to be
representative, and then, inspired by IMM, derive the notion of a mistake for evidential classifiers
and propose an algorithm that seeks to minimize the resulting loss. We start with the specific case
of categorical mass functions and then extend to the general case.

3.1 EXPLAINING CLASSIFIERS UNDER UNCERTAINTY AND IMPRECISION

Given an evidential classifier3 M : X → M, we seek to construct an interpretable decision tree
∆ : X → 2Ω that approximatesM. We first formalize this approximation based on the quality of
the generated explanations.

3.1.1 UTILITY FUNCTIONS

Let us consider a categorical evidential classifierMc : X → M. Let us defineMc : X → 2Ω such
that, for any x ∈ X and A ⊆ Ω,Mc(x)(A) = 1 if and only ifMc(x) = A.

Assessing the quality of a surrogate partition ∆ is challenging in the evidential setting: predictions
and truths are subsets of Ω, so errors vary in severity. For example, predicting {ω1, ω2} when
Mc(x) = {ω1} is arguably less severe than predicting {ω2}, yet exact-match representativeness
treats both equally. Such binary criteria ignore partial agreement and domain-specific preferences
across clusters. To make these trade-offs explicit, we introduce a specific family of bounded utility
functions that quantifies the decision-maker’s satisfaction when A is predicted while the ground
truth is B.

Definition 3. A utility function is a map U : 2Ω × 2Ω → [0, 1] such that, ∀A,B ∈ 2Ω,

a) U(A,A) = 1 and
b) A ∩B = ∅⇒ U(A,B) = 0.

Utility functions are standard tools in decision theory Keeney & Raiffa (1993) and the existence
of utility functions that encode decision-maker’s (DM’s) preferences has been widely discussed
Von Neumann & Morgenstern (1947); Savage (1954); Schmeidler (1989). In the evidential setting,
several works explore desirable properties and elicitation procedures for utilities. Some of them
focused on the case where ground truth is assumed to be known precisely Zaffalon et al. (2012);
Ma & Denœux (2021) and others Jacquin et al. (2019); Imoussaten & Jacquin (2022); Imoussaten

3We use the term classifier to emphasize that the development of this section is valid not only for clustering
but also for all evidential partitions of the data.
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(2023) extend to the cases where ground truth is itself imprecise. In our formulation, we consider
a bounded utility as described by conditions a) and b) in Definition 3: a perfect prediction yields
total satisfaction for the DM (utility equals 1), whereas completely disjoint prediction and truth
yield unacceptable satisfaction for the DM (utility equals 0). This assumption is convenient for our
analysis but is not the general case Kunitomo-Jacquin et al. (2025). In Appendix D, we discuss how
such utilities relate to explanation costs of misassignments in the categorical case and provide an
illustrative example.

3.1.2 EVIDENTIAL REPRESENTATIVENESS

Definition 4. A cautious explainer for a categorical evidential classifierMc : X → M is a map
χMc

: 2Ω → 2C.

The cautious explainer differs from a standard explainer in its capability to explain the classifier’s
imprecise predictions. In this context, a good explainer should ensure that if x is assigned to A by
the classifier, then there exists some B such that U(A,B) = 1 and x is explained by χMc

(B). We
therefore characterize the representativeness of a cautious explainer with respect to a utility.
Definition 5. A U-representative cautious explainer for a categorical evidential clustering is a cau-
tious explainer χMc

such that, ∀A ∈ 2Ω, ∀x ∈ M−1

c ({A}), there exists L ∈
⋃

U(B,A)=1 χMc
(B)

such that, ∀⟨A, v⟩ ∈ L, xA = v.

Different utility functions induce different notions of representativeness. Intuitively, more permis-
sive utilities yield higher scores and tolerate more error. In the categorical evidential case, utility
allows us to define the U-categorical representativeness of a cautious explainer as its average util-
ity:

RMc,U (∆) =
1

|X|
∑
x∈X

U(∆(x),Mc(x)). (2)

For any evidential partition M : X → M, we can extend Equation 2. Let us define then the U-
evidential representativeness RM,U : (X → 2Ω) → [0, 1] of a cautious explainer as the expected
categorical representativeness weighted by the mass function:

RM,U (∆) =
1

|X|
∑
x∈X

∑
B∈FM

U(∆(x), B)mx(B). (3)

Equation (2) is clearly a special case of (3) whenM is categorical. Additionally, equations (3) and
(1) coincide whenM is a hard partition and U(A,B) = 1A=B .

The literature offers several ways to compare evidential partitions, mainly via distances between
mass functions or by aggregating nonspecificity with measures of conflict Jousselme et al. (2001);
Jousselme & Maupin (2012); Hoarau et al. (2023a); Denoux et al. (2018); Campagner et al. (2023);
Masson & Denœux (2008). However, we believe that utility-based representativeness offers ad-
vantages for our setting. As we face an explanation task, the choice of utilities lets us encode
decision-maker preferences in a more interpretable way than tuning parameters of a clustering ob-
jective Masson & Denœux (2008) or weighting nonspecificity and conflict Denoux et al. (2018);
Denoeux & Bjanger (2000), as those values often lack an immediate meaning to the explanation
audience. Moreover, unlike distances, utilities can capture complex and possibly asymmetric pref-
erences. For instance, mapping A = {ω1} to B = {ω1, ω2} need not be penalized the same as
mapping A = {ω1, ω2} to B = {ω1}.

3.1.3 EVIDENTIAL MISTAKENESS

With this updated notion of representativeness, we can extend the concept of a mistake to the ev-
idential case as a cost function capturing the representativeness loss associated with a single DT
explainer node. Recall from Definition 2 that, in the hard case, the number of mistakes in a node S
can be described in two equivalent ways:

1. The number of mistakes in S is the number of points x ∈ S such that ∃vω /∈ S with ω = C(x).
2. The number of mistakes in S is the number of points x ∈ S such that ∀vω ∈ S, ω ̸= C(x).

6
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Translating these to the evidential setting yields two natural definitions of evidential mistakeness:

1. The evidential mistakeness in S is the sum of the costs introduced by not assigning points x in
S to metaclusters that are not in S:

MM,U (S) =
∑
x∈S

∑
vA /∈S

∑
B∈FM

U(A,B)mx(B). (4)

2. The evidential mistakeness in S is the sum, over all x in S, of the expected cost of assigning x
to some metacluster in S:

MM,U (S) =
∑
x∈S

∑
vA∈S

∑
B∈FM

(1− U(A,B))mx(B)

|{C ∈ FM : vC ∈ S}|
(5)

One can interpret Equation (4) as the satisfaction that the DM will not concretize and Equation (5) as
the unsatisfaction that the DM will concretize. WhenM induces a hard clustering and U(A,B) =
1A=B , Equation (4) equals the number of mistakes in S. Additionally, the total cost of a cautious
DT explainer induced by Equation (5) is zero if and only if the explainer is U-representative.

For IMM-like algorithms where all leaves S contain exactly one centroid, both evidential mistak-
eness forms from Equations (4) and (5) are minimized by explanations with maximal evidential
representativeness (see proof in Appendix E). The key difference between these definitions emerges
in nodes containing multiple centroids, where Equation (5) penalizes such nodes more heavily than
Equation (4). This makes Equation (4) better suited for conservative explainers, while Equation (5)
is preferable for more risk-attractive ones.

3.2 THE ALGORITHM

Algorithm 1 IEMM
Input: Observations X = [x1, . . . , xN ] ⊂ RD.
Some evidential clusteringM : X →M.
The focal sets F = {A1, . . . , A|F|}
and their centroids v = {v1, . . . , v|F|} ⊂ RD.
Parameter: The chosen evidential mistakeness M
Output: A decision tree ∆ : RD → 2Ω.

1: ∆← split_tree(X,M(X),F, v)
2: function SPLIT_TREE({xj}nj=1, {mj}nj=1, F, {vj}Aj∈F )
3: if |F | = 1 then
4: leaf.metacluster← F
5: return leaf
6: end if
7: for all i ∈ [1, . . . , D] do
8: ℓi ← minAj∈F vji
9: ri ← maxAj∈F vji

10: end for
11: i, θ ← argmini,ℓi≤θ<ri M(x,m, v, F, i, θ)

12: L← {j | (xj
i ≤ θ)}nj=1

13: R← {j | (xj
i > θ)}nj=1

14: FL ← {Aj ∈ F | vji ≤ θ}
15: FR ← {Aj ∈ F | vji > θ}
16: node.condition← ”xi ≤ θ”
17: node.lt← split_tree({xj}j∈L, {mj}j∈L, FL, v)
18: node.rt← split_tree({xj}j∈R, {mj}j∈R, FR, v)
19: return node
20: end function

Inspired by IMM, we pro-
pose the Iterative Eviden-
tial Mistakeness Minimiza-
tion (IEMM). The IEMM fits
a decision tree based on an
evidential clustering by mini-
mizing the evidential mistak-
eness function (see Algorithm
1). Each iteration of IEMM,
for a region S ⊆ X, con-
siders a subset F ⊆ FM of
the focal sets whose metaclus-
ter centroids lie within S and
finds the split that, by separat-
ing centroids, minimizes the
contribution to the evidential
mistakeness.

From a computational per-
spective, the baseline IMM al-
gorithm has complexity O(C ·
D·N ·logN) Moshkovitz et al.
(2020), where C = |Ω| rep-
resents the number of clusters,
D the dimensionality of the
feature space, and N the sam-
ple count. Our IEMM algo-
rithm extends this by incorpo-
rating utility computations at
each node, adding an O(K2)
factor where K = |F| is the

number of metaclusters. This results in a total complexity of O(K2 · D · N · logN). In practice,
explainable decision trees typically employ a modest number of metaclusters, mitigating potential
performance concerns.
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Figure 3: Obtained Uλ-evidential representativeness RM,Uλ(∆) when explaining an ECM cluster-
ing across multiple datasets. For each dataset, we run ECM Masson & Denœux (2008) to obtain an
evidential clustering functionM and compare, for various λ, the ∆IEMM learned under mistakeness
Mλ

M with ∆IMM, produced by applying the adapted baseline IMM Moshkovitz et al. (2020).

3.2.1 EXPERIMENTS

We evaluate whether IEMM produces explanations that align with a decision-maker’s (DM’s) pref-
erence for cautiousness. Preferences are modeled via a utility function family {Uλ}λ∈R∪{±∞},
introduced in Appendix F, which captures different risk attitudes: larger λ values correspond to
more cautious choices, trading conflict for non-specificity in the spirit of Denoux et al. (2018). In
practical applications, the utility should be elicited directly with the DM Kunitomo-Jacquin et al.
(2025); here we vary λ to study behavior across a spectrum of attitudes.
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Figure 4: Conflict/non-specificity analysis for IEMM and IMM
across λ values. Higher λ yields more cautious (less conflicting but
more non-specific) explanations; lower λ emphasizes specificity.
Metrics are computed following Denoux et al. (2018).

The λ-evidential mistakeness
function Mλ

M (as described in
Appendix F) is designed to
be consistent with this utility
family. At λ = 0, all errors are
weighted equally, recovering
the original IMM mistakeness
in the hard-clustering case.

Because IEMM is, to our
knowledge, the first algo-
rithm able to explain cau-
tious partitions, we compare
it against a careful adapta-
tion of IMM Moshkovitz et al.
(2020). Given an eviden-
tial clustering functionM, we
derive a categorical partition
by applying the strong domi-
nance criterion pointwise (Ap-
pendix A), and then run IMM
while treating each metaclus-
ter as an ordinary cluster.

Experimental protocol:
For each dataset (Iris Fisher
(1936), Wine Aeberhard et al.
(1991), and Diabetes Efron
et al. (2004) from sklearn
Pedregosa et al. (2011)), we
first run ECM Masson &
Denœux (2008) to obtain M.
For a grid of λ values, we

learn ∆IEMM by minimizing Mλ
M and obtain ∆IMM from the induced categorical partition. We then

measure Uλ-evidential representativeness RM,Uλ(∆) for both explainers. Results are summarized
in Figure 3.
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Main findings: IEMM consistently achieves higher Uλ-evidential representativeness than IMM,
with the difference vanishing at λ = 0. This indicates that IEMM better preserves the cautiousness
inherent in the evidential clustering, while remaining competitive when cautiousness is not empha-
sized. This highlights the IEMM’s ability to adapt explanations to the DM’s risk attitude, effectively
balancing specificity and cautiousness as desired, while IMM lacks this flexibility.

Trade-off analysis: Conflict and non-specificity define antagonistic objectives in evidential cluster-
ing Denoux et al. (2018). Varying λ smoothly navigates this frontier: increasing λ promotes cautious
(lower-conflict, higher non-specificity) explanations, whereas decreasing λ prioritizes specificity.
Figure 4 illustrates how IEMM move along this trade-off as λ changes, while IMM remains a static
reference, as it does not adapt to the DM’s utility function.

Additional experimental details and further tests on synthetic and real-world datasets are provided
in Appendix G.

4 CONCLUSION

In this paper, we presented a novel approach to explainable evidential clustering using decision trees
as explainers. Through the introduction of utility functions, we extended the concept of representa-
tivity, a both necessary and sufficient condition for decision trees to function as abductive explainers,
to imprecise settings. This allows for the accommodation of "tolerable" mistakes in explanations,
making it particularly suitable for evidential contexts. Building on these theoretical foundations,
we proposed the evidential mistakeness measure and developed the Iterative Evidential Mistakeness
Minimization (IEMM) algorithm. Our approach produces decision trees that effectively explain
evidential clustering, advancing the development of both cautious and explainable AI systems.

An important consideration regards the expected audience of the explanations our algorithm cre-
ates. Our work implicitly assumes that decision-makers possess domain expertise, an understanding
of the implications of their choices, and knowledge about their risk tolerance preferences. The
explanations we generate are designed for these informed stakeholders—individuals familiar with
the feature space and its relationships. For example, in clinical applications, our explanations tar-
get medical professionals who can appropriately interpret physiological measurements, rather than
patients without specialized knowledge.

A notable property of IEMM is the generation of inherently shallow decision trees. Following
the IMM design principle, IEMM produces exactly one leaf per cluster, limiting tree depth to at
most |F| − 1. This structural constraint enhances interpretability—a primary goal of explainable
AI—though it may occasionally result in explanations that cannot fully capture complex data pat-
terns, potentially creating overly rigid explainers for certain applications.

Our research inaugurates perspectives for future investigation, particularly in two key directions:

• Elicitation of Utilities in Imprecise Contexts: While we have proposed a family of natural
constructions for utility functions, domain-specific adaptations warrant further exploration in or-
der to better capture the preferences of decision-makers. Future work could focus on developing
systematic methods for characterizing and eliciting these utilities.

• Advanced interpretable evidential classifiers: Developing more sophisticated interpretable
evidential classifiers that exceed the performance of standard decision trees represents a signif-
icant opportunity. Potential approaches include incorporating other DT-based explainers into
the evidential case Lawless & Gunluk (2022); Fleissner et al. (2024) and constructing Belief
Rule-Based Jiao et al. (2015) Explainers, which can incorporate the "non-categoricalness" of the
original evidential partition into the explanation. Additionally, extending these methods to better
account for the open-world hypothesis could enhance their robustness in real-world applications.

In conclusion, by advancing methods for cautious and explainable clustering, our work contributes
to the broader goal of developing AI systems that effectively handle uncertainty while remaining
interpretable to human experts. The IEMM algorithm and its theoretical foundations represent a
step toward AI systems that acknowledge imperfect information, incorporate domain expertise, and
communicate their reasoning in an accessible manner—all key requirements for responsible AI de-
ployment in high-stakes decision-making contexts.
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A EVIDENTIAL THEORY AND CLUSTERING

A.1 EVIDENTIAL THEORY

From a mass function, one can derive two key set functions—belief and plausibility:

Belm(A) =
∑
B⊆A

m(B) and Plm(A) =
∑

B∩A ̸=∅
m(B).

The belief function Belm(A) for A ⊆ Ω represents the degree of confidence that ’the correct hypoth-
esis ω belongs to A’. In contrast, the plausibility function Plm(A) captures the degree of confidence
that ’it is not impossible for the correct hypothesis ω to belong to A’. Mass functions generalize
probability mass functions by distributing belief across all subsets of Ω, rather than only its individ-
ual elements.

Another useful measure is the pignistic probability Smets (1990), which transforms a mass function
into a probability distribution over Ω:

BetPm(ω) =
∑

{ω}⊆A⊆Ω

m(A)

|A|
.

The pignistic probability BetPm can be interpreted as providing the best Bayesian approximation
to the mass function m.

Similarly, there are several techniques to derive the categorical mass closest to a given evidential
clustering function Imoussaten (2025). A prominent method relies on the strong dominance crite-
rion: for any ω, ω′ ∈ Ω, ω strongly dominates ω′ if and only if Belm({ω}) > Plm({ω′}). Mapping
m to the set of non-strongly dominated clusters yields a categorical mass function.

A.2 CLUSTERING FUNCTIONS

Figure 5 illustrates various clustering methods for Ω = {ω1, ω2}. While hard clustering assigns
each point to exactly one cluster, evidential clustering offers a more sophisticated representation
by capturing uncertainty and imprecision. It identifies points that may plausibly belong to multiple
clusters (represented in the figure by those primarily associated with ω1∪ω2) and accounts for points
not clearly associated with any cluster (shown as those predominantly linked to ∅).

Hard Clustering Bayesian Evidential Clustering Categorical Evidential Clustering Evidential Clustering

meta-clusters ( = 2 )
1 2 1 2

Figure 5: A representation of different clustering functions over a synthetic dataset. In this case,
X = R2 and |Ω| = 2. Dataset was constructed by sampling 100 points from two normal distribu-
tions with centers at (3, 5) and (5, 3) and σ of 1. Two outliers were added, at (2, 2) and (6, 6). The
evclust package Soubeiga & Antoine (2025) was used to perform clustering. Hard clustering as-
signs each point to a single cluster. Bayesian evidential clustering gives a membership level for each
observation. Categorical evidential clustering introduces the information about in-between points
(ω1 ∪ω2) and outliers (∅). Finally, evidential clustering combines all the previous information. The
gradient of colors for each point visually represents the mass.

B ON SIMPLIFICATION EXPLANATION TECHNIQUES

Simplification techniques typically rely on rule extraction methods, encompassing both global and
local approaches. Studies have been conducted to assess the quality of these explanations Amgoud &
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Ben-Naim (2022). Below, we introduce definitions that characterize effective explanations produced
by simplification techniques.

A feature literal is a pair ⟨A, v⟩ where A ∈ D and v ∈ A. Let L be the set of all feature literals for
all attributtes. A consistent subset of feature literals is L ⊂ L such that ⟨A, v⟩, ⟨A, v′⟩ ∈ L ⇒ v =
v′. Let C ⊆ 2L be the set of all consistent subsets of feature literals. Each D ⊂ C induces a map
DNF : X→ {True,False} with

DNFD(x) =
∨
L∈D

 ∧
⟨A,v⟩∈L

(xA = v)

 (6)

which is a Disjunctive Normal Form (DNF) Su et al. (2015). A DNF can serve as a human-
interpretable classification model. When a DNF matches the behavior of a black-box classifier,
we achieve a particularly desirable outcome known as an abductive explanation.

A Concrete Example: Consider a philosopher studying living beings who observes two key char-
acteristics: their appearance and their mode of locomotion. To formalize this classification problem,
the philosopher defines the feature space of conceivable living beings as X = App× Move, where

App = {feathered,featherless} and Move = {biped,non-biped}.
From these features, we can construct the set of feature literals:

L = {⟨App,feathered⟩, ⟨App,featherless⟩, ⟨Move,biped⟩, ⟨Move,non-biped⟩}.

The set of all consistent subsets of feature literals encompasses all possible combinations that do not
contain contradictory values for the same attribute:

C = {∅,

{⟨App,feathered⟩}, {⟨App,featherless⟩}, {⟨Move,biped⟩}, {⟨Move,non-biped⟩},
{⟨App,feathered⟩, ⟨Move,biped⟩}, {⟨App,feathered⟩, ⟨Move,non-biped⟩},
{⟨App,featherless⟩, ⟨Move,biped⟩}, {⟨App,featherless⟩, ⟨Move,non-biped⟩}
}.

An example of a DNF is given by D = {{⟨App,featherless⟩, ⟨Move,biped⟩}}, which corre-
sponds to featherless bipedal beings. That is, for any living being x, we have DNFD(x) = (xApp =
featherless) ∧ (xMove = biped). DNFD(x) is true whenever x is a human being.
Conversely, D′ = {{⟨App,feathered⟩}, {⟨Move,non-biped⟩}} corresponds to beings that
are either feathered or non-bipedal. In this case, the induced DNF is DNFD′(x) = (xApp =
feathered) ∨ (xMove = non-biped) and DNFD′(x) is false whenever x is a human being.

Definition 6. An abductive explanation of the label ω ∈ Ω is a L ∈ C such that, ∀x ∈ X, ∧
⟨A,v⟩∈L

(xA = v)

⇒ Γ(x) = ω

Abductive explanations were introduced to address the question: "Why is Γ(x) = ω?", providing
a sufficient reason for characterizing the label ω, where Γ is a supervised classifier Ignatiev et al.
(2019). In the context of explainability, an ideal construction would be a system that can provide
satisfactory explanations4 for a classifier’s outputs.

Definition 7. An explainer of a classifier Γ : X→ Ω is a map χΓ : Ω→ 2C.

That is, to each class ω, a classifier associates a DNF. If the DNF issued from χΓ matches Γ, the
classifier provides abductive explanations.

4In this work, we consider satisfactory explanations to be "abductive" or "as abductive as possible." How-
ever, this might not always be the case. As highlighted in multiple works Barredo Arrieta et al. (2020), the best
type of explanation depends on the audience for which this explanation is intended. We develop this discussion
further in the conclusion.
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C DECISION TREES AS EXPLAINERS

In this section, we provide a brief overview of decision trees (DTs) and their role as explainers. We
also establish the relationship between representativity and abductivity in the context of DTs. We
adapt the following definition of univariate decision trees from Izza et al. (2022a).

Definition 8. The graph of a decision tree T = (V,E) is a directed acyclic graph in which there
is at most one path between any two vertices. The vertex set V is divided into non-terminal vertices
N and terminal vertices T , such that V = N ∪ T . Additionally, T has a unique root vertex,
root(T ) ∈ V , which has no incoming edges, while every other vertex has exactly one incoming
edge.

To each graph of a DT, there are two important associated functions:

• A split is a map ϕ : N → D that assigns an attribute to each non-terminal vertex.

• Let children(r) = {s ∈ V | (r, s) ∈ E} be the set of children of a vertex r. A decision
is a map ε : E → L such that, for every non-terminal vertex r ∈ N , there exists a bijection
εr : children(r)→ ϕ(r) satisfying ε(r, s) = ⟨ϕ(r), εr(s)⟩.

It is well known that any binary decision tree can be transformed in linear time into an equivalent
disjunctive normal form (DNF) expression Audemard et al. (2022). This property is often referenced
when DTs are described as "interpretable" Guidotti et al. (2018). With this in mind, we associate
each vertex with a path, which serves as the foundation for interpreting a decision tree as an ex-
plainer.

For a fixed graph of a DT T , let DNF(r) be the set of literals associated with the edges that link the
root to vertex r. All literals in DNF(r) are consistent Izza et al. (2022a). That is, DNF : V → 2C.
Let D = DNF(T ) be the set of all DNFs associated with terminal vertices.

Definition 9. A path is a map Υ : X→ D such that, for all x ∈ X,∧
⟨A,v⟩∈Υ(x)

(xA = v).

The partitioning nature of decision trees ensures that each path is well-defined, meaning every pos-
sible observation follows a unique path. This characteristic allows us to interpret vertices as subsets
of the feature space Hoarau et al. (2023a).

Definition 10. A node is a nonempty subset S ⊆ X.

Every achievable vertex can be trivially associated with a unique node by its DNF. We call leaves
the nodes associated with terminal vertices. The set D can be understood as the explanation for each
leaf. Associating leaves with explanations allows us to define the DT as a classifier.

Definition 11. A decision tree is a map ∆ : X → Ω to which a path Υ∆ provides an abductive
explanation. That is, ∀x ∈ X, ∧

⟨A,v⟩∈Υ(x)

(xA = v)⇒ ∆(x) = ω.

Let, ∀ω ∈ Ω, L∆
ω = {Υ−1({L}) : L ∈ Υ(∆−1({ω}))} be the set of all leaves associated with

the explanation of ω. The DT explainer χ∆
Γ associated with ∆ is an explainer that, for any label,

returns all paths explaining it. That is, χ∆
Γ (ω) = Υ∆[L∆

ω ] = {Υ∆(x) : x ∈ L∆
ω }.

Our investigation focuses on the quality of explanations when, in the context of model simplifica-
tion, the original classifier diverges from the decision tree explaining it. We borrow the concept of
representative explainer from Amgoud & Ben-Naim (2022). A representative explainer is one that,
for all observations x with label ω = Γ(x), can provide an explanation L that holds at x. That is,
there exists a set of literals L ∈ χΓ(ω) such that ⟨A, v⟩ ∈ L⇒ xA = v.

Definition 12. A representative explainer is an explainer χΓ such that, ∀ω ∈ Ω, ∀x ∈ Γ−1({ω}),
∃L ∈ χΓ(ω) such that, ∀⟨A, v⟩ ∈ L, xA = v.
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The work in Amgoud & Ben-Naim (2022) proves that every explainer providing abductive expla-
nations is representative. We complement this result by proving that every representative DT ex-
plainer provides abductive explanations. Thus, for DT explainers, representativity and abductivity
are equivalent.
Theorem 1. If the χ∆

Γ explainer is representative, it provides abductive explanations.

Proof. We proceed by contradiction. Assume the DT explainer does not provide abductive explana-
tions.

From definition 11, this implies that Γ ̸= ∆. That is, there exists x ∈ X such that ωΓ = Γ(x) ̸=
∆(x) = ω∆. Since the leaves form a partition of the feature space and x ∈ L∆

ω∆
, we have Υ∆(x) /∈

Υ∆[L∆
ωΓ

], and the explainer is not representative.

D ON EXPLANATION COSTS

In the context of a categorical evidential partitionMc, we want to characterize the cost of explaining
a point x with a cautious explainer induced by some interpretable classifier ∆ : X → 2Ω.

The utility U(A,Mc(x)) quantifies the satisfaction of assigning metacluster A to observation x and,
therefore, equals the cost of not assigning A to x.

Thus, the total cost can be understood as the function CostMc,∆ : X → [0, |F| − 1], that maps x to
the sum of costs from not assigning x to all metaclusters A ̸= ∆(x),

CostMc,∆(x) =
∑

A̸=∆(x)

U(A,Mc(x)). (7)

Conversely, 1−U(A,Mc(x)) represents the cost of assigning A to x, leading to CostMc,∆ : X →
[0, 1], an alternative expression for total cost:

CostMc,∆(x) = 1− U(∆(x),Mc(x)). (8)

It always holds that CostMc,∆(x) ≤ CostMc,∆(x). When U(A,B) = 1A=B , the equality holds.
Furthermore, if Mc induces a hard clustering and ∆ is IMM-like (with exactly one centroid per
leaf), both equal one (and not zero) if and only if x is a mistake as stated in Definition 2.

D.1 A SIMPLE EXAMPLE

Figure 6 and Table 1 illustrate the utility concept through a concrete example. The value
U({ω1, ω2}, {ω1}) quantifies how tolerable the mistake at x1 is. When U({ω1, ω2}, {ω1}) = 0,
this mistake becomes as intolerable as the one at x2. Conversely, when U({ω1, ω2}, {ω1}) = 1, it
becomes as tolerable as the correct assignment at x0. In this latter scenario, removing x2 from the
dataset would yield an optimal assignment.

x2

x1

x0

1 1 2 2

Figure 6: Illustration of a categorical evidential
classifier and space partition in X = R2. The
partition ∆ separates x1 and x2 from their re-
spective metaclusters, while correctly assigning
all other observations.

x x0 x1 x2

∆(x) {ω1} {ω1, ω2} {ω2}
CostMc,∆(x) 0 1− U({ω1, ω2}, {ω1}) 1

2Ω \∆(x) {{ω2}, {ω1, ω2}} {{ω1}, {ω2}} {{ω1}, {ω1, ω2}}
CostMc,∆(x) U({ω1, ω2}, {ω1}) 1 1 + U({ω1, ω2}, {ω1})

Table 1: For each point highlighted in Figure 6,
we present the point x, the metacluster assigned
by classifier ∆, the cost of assigning x to the meta-
cluster designated by ∆, the set of metaclusters
not assigned by ∆, and the cost of not assign-
ing x to them. Note thatMc(x0) = Mc(x1) =
Mc(x2) = {ω1}.
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E RELATING MISTAKENESS AND REPRESENTATIVENESS

In this section, we show that the evidential representativeness and the total evidential mistakeness
(the sum of the evidential mistakeness of each leaf) are equivalent in terms of measuring the quality
of a IMM-like decision tree.
Theorem 2. Let ∆,∆′ : X→ 2Ω be two IMM-like decision trees. Then, for any evidential partition
M and utility U ,

RM,U (∆) ≥ RM,U (∆
′)

⇐⇒
∑
A⊂Ω

MM,U (L∆
A) ≤

∑
A⊂Ω

MM,U (L∆′

A )

⇐⇒
∑
A⊂Ω

MM,U (L∆
A) ≤

∑
A⊂Ω

MM,U (L∆′

A )

where vA ∈ L∆
A which is the leaf associated with the cluster A in the decision tree ∆.

Proof. We start by establishing the relation between the two mistakenness functions. By definition,
x ∈ L∆

A ⇐⇒ ∆(x) = A. From equations (4) and (5),

MM,U (L∆
A) =

∑
x∈L∆

A

∑
∆(x)̸=C

∑
B∈FM

U(C,B)mx(B),

MM,U (L∆
A) =

∑
x∈L∆

A

∑
B∈FM

(1− U(A,B))mx(B).

Then, ∑
A⊂Ω

MM,U (L∆
A)−

∑
A⊂Ω

MM,U (L∆
A)

=
∑
A⊂Ω

∑
x∈L∆

A

∑
B∈FM

mx(B)

(1− U(A,B))−
∑
A̸=C

U(C,B)


=
∑
x∈X

∑
B∈FM

mx(B)

(
1−

∑
C⊂Ω

U(C,B)

)

= |X| −
∑
x∈X

∑
B∈FM

mx(B)

(∑
C⊂Ω

U(C,B)

)
= |X| − κM,U .

where κM,U is a constant that depends only on the evidential partitionM and utility U , but not on
the specific decision tree ∆.

Also, from equation (3),

|X|RM,U (∆) =
∑
A⊂Ω

∑
x∈L∆

A

∑
B∈FM

U(∆(x), B)mx(B).

Similarly,

|X|RM,U (∆) +
∑
A⊂Ω

MM,U (L∆
A) =

∑
A⊂Ω

∑
x∈L∆

A

∑
B∈FM

mx(B)

U(A,B) +
∑
A̸=C

U(C,B)

 = κM,U .

Since all three measures are related by affine transformations with the same constant terms, they
preserve the same ordering relationships between different decision trees. Therefore, comparing two
trees ∆ and ∆′ using any of these measures yields equivalent results, proving the stated equivalences.
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F CHOOSING A UTILITY FUNCTION

When an explainer yields a metacluster A, while the original classifier assigns B, two types of errors
can occur. The first is insufficient coverage, measured by |AC ∩ B| - where the explainer fails to
include all elements of the true metacluster. The second is excessive coverage, measured by |A∩BC |
- where the explainer includes elements not in the true metacluster. Penalizing insufficient coverage
indicates the explainer is not cautious enough, while penalizing excessive coverage suggests it is too
cautious.

To address both error types, we introduce two families of utility functions with a positive parameter
λ controlling their behavior:

Uλ
(A,B) =

(
|A ∩B|
|A ∪B|

1B⊂A

)1/λ

and Uλ(A,B) =

(
|A ∩B|
|A ∪B|

1A⊂B

)1/λ

.

These utility functions exhibit complementary tolerance behaviors. The function Uλ
(A,B) assigns

zero utility when AC ∩ B ̸= ∅, making it completely intolerant to insufficient coverage while
allowing parameter λ to modulate tolerance to excessive coverage. Higher λ values reduce penalties
for excessive coverage, embodying a more cautious approach. In contrast, Uλ(A,B) assigns zero
utility when A ∩ BC ̸= ∅, showing complete intolerance to excessive coverage while λ controls
the degree of tolerance to insufficient coverage—higher λ values reducing penalties for insufficient
coverage and representing a more risk-attractive approach.

These combine into a comprehensive family of utility functions for λ ∈ R∗:

Uλ(A,B) =

{
U |λ|(A,B) if λ < 0

U |λ|
(A,B) if λ > 0

.

We also define special cases as limits when λ approaches 0 and ±∞. That gives U0(A,B) =
1A=B , U−∞(A,B) = 1A⊂B and U∞(A,B) = 1B⊂A.

Finally, based on these, we define the λ-evidential mistakeness as:

Mλ
M =

{
MM,Uλ if λ ≥ 0

MM,Uλ if λ < 0
(9)

for any λ ∈ R∪ {±∞}. The higher the λ, the more the mistakeness function represents a conserva-
tive approach. When the underlying clustering function is hard and λ = 0 is chosen, the algorithm
1 operates identically to IMM because evidential mistakeness equals the number of mistakes. For
cautious partitions as input, varying λ controls the "level of cautiousness" of the resulting explainer.
Figure 7 illustrates how different λ values influence the partitioning of the feature space by IEMM.

original clustering = = 1 = 0 = 1 =

meta-clusters (F = 2 )
1 2 1 2

Figure 7: An example, based on a given two-features clustering (column 1), of IEMM partitioning
the feature space. The stars represent the centroid of each metacluster. The utility function strongly
influences the resulting explanations. The higher the λ, the more the explainer assigns larger portions
of the space to metaclusters representing doubt. At the limit, λ = −∞ (column 2), the obtained
explanations give the maximum possible space to the singleton metaclusters. Conversely, λ = ∞
(column 6) assigns the maximum possible space to the metaclusters representing doubt.
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G EXPERIMENTS

This section presents additional experimental results that validate the IEMM algorithm. We have
implemented IEMM using Python 3.13.6. All code is available at OMMITED TO AVOID IDEN-
TIFICATION. The implementation of a decision tree accepting evidential labels was based on the
code made available by Hoarau et al. (2023a).

G.1 TESTS ON SYNTHETIC DATASETS

easy M
easy

M 1
easy

M0
easy

M1
easy

M
easy

meta-clusters (F = 2 )
1 2 1 2

quasi bayesian M
quasi bayesian

M 1
quasi bayesian

M0
quasi bayesian

M1
quasi bayesian

M
quasi bayesian

full M
full

M 1
full

M0
full

M1
full

M
full

meta-clusters (F = 2 )
1 2 1 2 3 1 3 2 3 1 2 3

Figure 8: The results of the IEMM on the synthetic dataset for the evidential clustering functions
Measy,Mfull,Mquasi-bayesian and different utility functions. The star represents the centroid of each
metacluster. The utility function strongly influences the resulting explanations. The higher the λ,
the more the λ-evidential mistakeness function assigns larger portions of the space to metaclusters
representing doubt. At the limit, λ = −∞ (column 2), the obtained explanations give the maximum
possible space to the singleton metaclusters. Conversely, λ = ∞ (column 6) assigns the maximum
possible space to the metaclusters representing doubt.

Using the evclust library Soubeiga & Antoine (2025), we generated three evidential partitions
over synthetic datasets of 2 features (x and y). Those were:

• A dataset of 200 entries over which we definedMeasy, with Ω = {ω1, ω2} and FMeasy = 2Ω \∅.

• A dataset of 300 samples and, for Ω = {ω1, ω2, ω3}, we generated two types of evidential
clustering functions:

– Mfull, an evidential clustering with FMfull = 2Ω \∅.
– Mquasi-bayesian, an evidential clustering that is a quasi-bayesian clustering function. This

means that the focal sets are the singletons and the whole space. That is, FMquasi-bayesian =
{{ω1}, {ω2}, {ω3}, {ω1, ω2, ω3}}.

Then, for each evidential clustering function, we constructed a decision tree using IEMM and the
λ-evidential mistakeness for different values of λ. A compact overview of results across utilities
and λ is provided in Figure 9, while the conflict/non-specificity trends are summarized in Figure 10.
The partition of the space induced by these explanations is illustrated in Figure 8. The decision
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tree explainer forMfull and λ = 0 is shown in Figure 11. The resulting explanations for the quasi-
bayesian clustering function are in Table 2.

Table 3 presents the representativeness achieved in each scenario. Notably, the decision tree gen-
erated by fixing λ = ∞ over the Measy dataset achieves the highest representativeness observed,
surpassing 93%. This can be interpreted as the expected explanation accuracy.

Across both synthetic and real-world datasets, decision trees obtained using the λ-evidential mistak-
eness function consistently achieve the best performance in terms of Uλ-evidential representative-
ness. The gap between the Uλ-evidential representativeness and 1 quantifies the loss of accuracy or
cost of the explanation.
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Figure 9: Overview of evidential representativeness across utilities and λ on synthetic datasets
(Measy, Mfull, and Mquasi-bayesian). The λ-evidential mistakeness typically yields the best Uλ-
representativeness for its corresponding utility.
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Figure 10: Conflict/non-specificity analysis for the synthetic experiments across λ and utilities. As
λ increases, explanations become more cautious (lower conflict, higher non-specificity), in line with
the trade-off in Denoux et al. (2018).
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300 samples
mistakeness of cut: 0.71

213 samples
mistakeness of cut: 0.64

y  5.03

74 samples
label: 3

x  3.52

139 samples
mistakeness of cut: 0.61

x > 3.52

79 samples
mistakeness of cut: 0.57

x  5.57

49 samples
label: 1 3

y  3.60

30 samples
mistakeness of cut: 0.46

y > 3.60
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label: 1 2 3

y 
 4.26

14 samples
mistakeness of cut: 0.33

y > 4.26
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x 
 4.

50

6 samples
label: 1 2

x > 4.50
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x > 5.57
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Figure 11: Decision tree obtained with IEMM for the evidential clustering functionMfull and λ = 0.
The decision trees generated by IEMM are shallow by construction, having at most |F| − 1 levels.
Each non-terminal node indicates the mistakeness of the corresponding split.
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ω2 ω1 ∪ ω2 ∪ ω3 ω3 ω1

M−∞
Mq−bay

(y ≤ 4.54) ∧ (x ≤ 4.43) (y ≤ 4.54) ∧ (x > 4.43) ∧ (x ≤ 4.48) (y ≤ 4.54) ∧ (x > 4.48) (y > 4.54)

M−1
Mq−bay

(y ≤ 4.54) ∧ (x ≤ 4.08) (y ≤ 4.54) ∧ (x > 4.08) ∧ (x ≤ 4.98) (y ≤ 4.54) ∧ (x > 4.98) (y > 4.54)

M0
Mq−bay

(y ≤ 4.69) ∧ (x ≤ 3.85) (y ≤ 4.69) ∧ (x > 3.85) ∧ (x ≤ 5.09) (y ≤ 4.69) ∧ (x > 5.09) (y > 4.69)

M1
Mq−bay

(y ≤ 5.39) ∧ (x ≤ 3.68) (y ≤ 5.39) ∧ (x ≤ 5.28) ∧ (x > 3.68) (y ≤ 5.39) ∧ (x > 5.28) (y > 5.39)
M∞

Mq−bay
(y ≤ 5.82) ∧ (x ≤ 2.95) (y ≤ 5.82) ∧ (x ≤ 5.95) ∧ (x > 2.95) (y ≤ 5.82) ∧ (x > 5.95) (y > 5.82)

Table 2: Abductive explanations generated by IEMM for all clusters of the quasi-bayesian evidential
clustering function. Higher λ values result in larger portions of the feature space being attributed to
the cautious metacluster ω1 ∪ ω2 ∪ ω3.

RMeasy,U−∞ RMeasy,U−1 RMeasy,U0 RMeasy,U1 RMeasy,U∞

M−∞
Measy

0.915796 0.808588 0.701380 0.701452 0.701524
M−1

Measy
0.901122 0.819012 0.736903 0.749377 0.761850

M0
Measy

0.876733 0.813867 0.751002 0.781731 0.812461
M1

Measy
0.781247 0.751198 0.721149 0.811562 0.901975

M∞
Measy

0.689432 0.669249 0.649067 0.789613 0.930160

RMfull,U−∞ RMfull,U−1 RMfull,U0 RMfull,U1 RMfull,U∞

M−∞
Mfull

0.882009 0.731303 0.575128 0.593766 0.612354
M−1

Mfull
0.881689 0.738726 0.598038 0.618498 0.638218

M0
Mfull

0.867413 0.745508 0.625343 0.656206 0.683719
M1

Mfull
0.642447 0.596290 0.542490 0.681838 0.809441

M∞
Mfull

0.621851 0.577133 0.526137 0.679054 0.818054

RMq−bay,U−∞ RMq−bay,U−1 RMq−bay,U0 RMq−bay,U1 RMq−bay,U∞

M−∞
Mq−bay

0.887444 0.781227 0.728118 0.728120 0.728125
M−1

Mq−bay
0.872286 0.799687 0.763387 0.772136 0.789634

M0
Mq−bay

0.866938 0.804483 0.773256 0.785821 0.810953
M1

Mq−bay
0.802770 0.761888 0.741446 0.778781 0.853452

M∞
Mq−bay

0.638852 0.617576 0.606938 0.708914 0.912866

Table 3: Evaluation of the resulting explanations for each metacluster of the synthetic datasets. Each
line corresponds to a decision tree trained with one specific mistakeness. Each column corresponds
to the U-evidential representativeness of the decision tree. In bold, the best decision tree for each
representativeness. We can see that decision trees trained with λ-evidential mistakeness function
tend to be the best in terms of Uλ-evidential representativeness.

G.2 TESTING IEMM AS A CLASSIFIER ON REAL-WORLD DATASETS

To further validate our approach, we also assess IEMM as a stand-alone evidential classifier on
larger datasets from the credal-datasets-master repository Hoarau et al. (2023b). Unlike
explaining a given clustering, this setting requires fitting an evidential model directly from fea-
tures—learning both decision boundaries and mass assignments—making the task more challeng-
ing. We report representativeness in Table 4, provide an overview of per-λ behavior in Figure 12,
and analyze the conflict/non-specificity trade-off in Figure 13.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

4 2 0 2 4

0.72

0.74

0.76

0.78

0.80

0.82

0.84

re
pr

es
en

ta
tiv

en
es

s

dataset iris
IEMM
IMM

4 2 0 2 4

0.960

0.965

0.970

0.975

0.980

0.985

0.990

re
pr

es
en

ta
tiv

en
es

s

dataset wine
IEMM
IMM

4 2 0 2 4

0.60

0.65

0.70

0.75

0.80

re
pr

es
en

ta
tiv

en
es

s

dataset diabetes
IEMM
IMM

4 2 0 2 4

0.65

0.70

0.75

0.80

0.85

re
pr

es
en

ta
tiv

en
es

s

dataset Credal_Dog-2
IEMM
IMM

4 2 0 2 4

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

re
pr

es
en

ta
tiv

en
es

s

dataset Credal_Dog-4
IEMM
IMM

4 2 0 2 4

0.60

0.65

0.70

0.75

0.80

re
pr

es
en

ta
tiv

en
es

s

dataset Credal_Bird-2

IEMM
IMM

Figure 12: Overview of IEMM classification results across utilities and λ on credal datasets. Higher
λ values lead to more cautious decisions, while lower values favor specificity.
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Figure 13: Conflict and non-specificity for IEMM classification across λ on credal datasets. The
λ knob shifts the operating point along the conflict/non-specificity frontier, echoing the behavior
observed in clustering.

G.3 EXTRA RESULTS ON EXPLAINING THE CLUSTERING IN REAL-WORLD DATASETS

Table 5 reports the corresponding representativeness scores on Iris, Wine, and Diabetes.
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RMCB−2,U−∞ RMCB−2,U−1 RMCB−2,U0 RMCB−2,U1 RMCB−2,U∞

M−∞
MCB−2

0.864286 0.658929 0.453571 0.458929 0.464286
M−1

MCB−2
0.864286 0.667857 0.471429 0.480357 0.489286

M0
MCB−2

0.750000 0.669643 0.589286 0.694643 0.800000
M1

MCB−2
0.714286 0.651786 0.589286 0.726786 0.864286

M∞
MCB−2

0.714286 0.651786 0.589286 0.726786 0.864286

RMCD−2,U−∞ RMCD−2,U−1 RMCD−2,U0 RMCD−2,U1 RMCD−2,U∞

M−∞
MCD−2

0.913571 0.780357 0.647143 0.647857 0.648571
M−1

MCD−2
0.913571 0.783571 0.653571 0.656071 0.658571

M0
MCD−2

0.913571 0.783571 0.653571 0.656071 0.658571
M1

MCD−2
0.775714 0.682500 0.589286 0.677500 0.765714

M∞
MCD−2

0.661429 0.575000 0.488571 0.632500 0.776429

RMCD−4,U−∞ RMCD−4,U−1 RMCD−4,U0 RMCD−4,U1 RMCD−4,U∞

M−∞
MCD−4

0.696531 0.523750 0.416378 0.441318 0.470153
M−1

MCD−4
0.694184 0.526565 0.422959 0.454137 0.498980

M0
MCD−4

0.653622 0.503031 0.414898 0.458236 0.537194
M1

MCD−4
0.467959 0.345948 0.242449 0.378104 0.543163

M∞
MCD−4

0.421224 0.320476 0.236990 0.388116 0.601071

Table 4: Evaluation of the resulting explanations for each metacluster of the real-world datasets.
Each line corresponds to a decision tree trained with one specific mistakeness. We implemented the
IEMM algorithm over the datasets Credal_Bird-2 (MCB−2 with 2 classes), Credal_Dog-2
(MCD−2 with 2 classes) and Credal_Dog-4 (MCD−4 with 4 classes). Each column corresponds
to the U-evidential representativeness of the decision tree. In bold, the best decision tree for each
representativeness. We can see that decision trees trained with λ-evidential mistakeness function
tend to be the best in terms of Uλ-evidential representativeness.

RMiris,U−∞ RMiris,U−1 RMiris,U0 RMiris,U1 RMiris,U∞

M−∞
Miris

0.872336 0.746751 0.619907 0.633296 0.646797
M−1

Miris
0.847368 0.776900 0.707914 0.742323 0.777439

M0
Miris

0.846415 0.778853 0.712790 0.745366 0.777935
M1

Miris
0.773996 0.725864 0.671799 0.749179 0.838243

M∞
Miris

0.647244 0.595757 0.538105 0.678586 0.830750

RMwine,U−∞ RMwine,U−1 RMwine,U0 RMwine,U1 RMwine,U∞

M−∞
Mwine

0.999079 0.906952 0.814824 0.814824 0.814824
M−1

Mwine
0.994454 0.973001 0.951548 0.953907 0.956266

M0
Mwine

0.986110 0.971693 0.957276 0.963835 0.970394
M1

Mwine
0.971606 0.963952 0.956299 0.970139 0.983980

M∞
Mwine

0.623439 0.621431 0.619423 0.807394 0.995364

RMdiabetes,U−∞ RMdiabetes,U−1 RMdiabetes,U0 RMdiabetes,U1 RMdiabetes,U∞

M−∞
Mdiabetes

0.854390 0.698233 0.542076 0.542663 0.543251
M−1

Mdiabetes
0.816186 0.701698 0.587211 0.642283 0.697355

M0
Mdiabetes

0.783105 0.689771 0.596438 0.675605 0.754772
M1

Mdiabetes
0.767454 0.680228 0.593003 0.681899 0.770795

M∞
Mdiabetes

0.687602 0.614695 0.541787 0.674057 0.806328

Table 5: Representativeness of IEMM explanations on Iris, Wine, and Diabetes across λ values.
Higher is better. Best scores per representativeness are highlighted in the tables.
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