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Abstract001

Large Language Model-based agents have002
demonstrated impressive capabilities in vari-003
ous tasks. To further enhance their abilities,004
the collaboration of multiple agents presents a005
promising avenue. Recently, Multi-Agent De-006
bate (MAD) was introduced as a typical collab-007
orative method, where agents discuss potential008
solutions to a problem over several rounds of009
debate. However, researchers observed that010
MAD is not stably superior to single-agent011
methods. Unfortunately, there has been insuf-012
ficient exploration of this issue. In this paper,013
we experimentally find out what leads to the014
instability of MAD, namely the woozle effect,015
which refers to the propagation of hallucina-016
tions among agents in the debate. Since MAD017
is always based on a static and fully connected018
communication topology, each agent can be019
misled by others that containing erroneous in-020
formation, and subsequently spread this mis-021
information. To address this, we propose DI-022
GRA, a novel MAD framework with dynamic023
communication topology driven by the infor-024
mation gain ratio. Our evaluations across vari-025
ous benchmarks show that selecting appropri-026
ate counterparts for debates significantly miti-027
gates hallucination propagation, promotes criti-028
cal thinking and collaboration, ultimately lead-029
ing to superior collective intelligence.030

1 Introduction031

Large Language Models (LLMs) have demon-032

strated remarkable capabilities in natural language033

understanding and generation. To address more034

complicated tasks, subsequent studies have en-035

dowed LLMs with advanced capabilities such as036

tool usage (Schick et al., 2024), long-context mem-037

ory (Park et al., 2023), and procedural planning038

(Liu et al., 2023), transforming them into versatile039

autonomous agents. These agents are now widely040

used in various fields, including reasoning (Wu041

et al., 2023), code generation (Shinn et al., 2024),042

and autonomous driving (Chen et al., 2024a).043

Along this line, researchers aspire to integrate 044

the capabilities of multiple agents through their col- 045

laboration. Recently, inspired by The Society of 046

Mind (Minsky, 1988), Multi-Agent Debate (MAD) 047

has been introduced as a prominent approach (Du 048

et al., 2025), where multiple agents independently 049

propose and collaboratively debate their responses 050

to improve the quality of reasoning and factuality 051

tasks. Although Du et al. demonstrated its effec- 052

tiveness in certain tasks, Wang et al. found that 053

MAD is not consistently superior to single-agent 054

methods. This motivates us to investigate what 055

leads to the unstable performance of MAD, which 056

will lay the groundwork for the more effective de- 057

velopment of multi-agent systems in the future. 058

We suspect that the hallucination phenomenon 059

in LLMs might be a potential cause. Hallucina- 060

tion refers to LLMs generating plausible yet er- 061

roneous information, which undermines their re- 062

liability and trustworthiness (Rawte et al., 2023). 063

MAD attempts to mitigate this issue through crit- 064

ical discussions among agents. However, in this 065

paper, we found that this strategy does not always 066

hold true. We identified a pronounced Woozle Ef- 067

fect 1 in MAD, where hallucinations are not only 068

generated by a single agent but also propagated 069

through discussions, misleading a portion of oth- 070

erwise accurate agents. As shown in Figure 1, we 071

illustrate the woozle effect during debates among 072

three agents. Specifically, we configure one agent 073

to consistently output an erroneous answer in the 074

first round, while the other agents provide correct 075

responses. After that, we track how hallucinated in- 076

formation propagates through the predefined debate 077

topology. Surprisingly, despite agents achieving 078

a fully correct answer through voting in the first 079

round, hallucinated information continued to prop- 080

agate and eventually converged, resulting in a sharp 081

1Woozle Effect in social science refers to the occurrence
and propagation of misconceptions, detailed in Appendix A.1.
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Figure 1: The woozle effect in three-agent debates is analyzed using Llama3.1-8B on the Natural Question dataset.
Red flows indicate hallucinated information, while green flows represent correct information, The width of the flow
reflects the proportion of the respective information propagated. We also report the average accuracy of each agent
and the overall debate accuracy across rounds T . please refer to Appendix A.2.2 for details.

performance drop. Based on this intriguing finding,082

we further conducted experiments under various083

conditions. We found that over 10% to 20% of the084

agents are misled in each round through discussion,085

and this proportion continuously increases as the086

initial level of hallucination rises. This suggests087

that the prevalent propagation of hallucinations ex-088

erts a significant constraint on MAD. Additionally,089

We conducted an in-depth analysis of the mecha-090

nisms and characteristics of hallucination propaga-091

tion and experimentally identified what problems092

are more prone to triggering it.093

This naturally raises the question: How can we094

mitigate the propagation of hallucination in MAD?095

We notice that most MAD methods rely on a static,096

fully connected communication topology, where097

agents communicate with all other agents during098

each round. This creates a persistent risk of agents099

being misled by those with hallucinated informa-100

tion and subsequently spread the misinformation to101

others. Drawing inspiration from entropy in evalu-102

ating the extent of hallucinations, we propose DI-103

GRA, a novel multi-agent debate framework with104

a Dynamic communication topology driven by the105

Information Gain RAtio to address this challenge.106

Specifically, for each agent, DIGRA first calculates107

the Information Gain Ratio (IGR) of generating its108

response conditioned on the response set of other109

agents. It then selects the agents corresponding to110

the highest IGR for communication. The IGR is111

directly proportional to the utility of information 112

from other agents to the current agent and inversely 113

proportional to the hallucination level of the refer- 114

enced agents. Moreover, the communication topol- 115

ogy in DIGRA is adaptively determined in each 116

round. Thus, DIGRA facilitates efficient debates 117

by dynamically selecting counterparts that are most 118

beneficial for refining the response of current agent 119

while simultaneously preventing the woozle effect. 120

We demonstrate the consistent superiority of DI- 121

GRA across various benchmarks. It consistently 122

outperforms single-agent methods. 123

In summary, our contributions are as follows: 124

• We reveal that hallucination propagation leads 125

to the instability of Multi-Agent Debate. 126

• To mitigate hallucination propagation, we in- 127

troduce DIGRA, a novel multi-agent debate 128

framework with a dynamic communication 129

topology driven by the information gain ratio. 130

• We evaluate DIGRA on various datasets, 131

demonstrating its effectiveness in preventing 132

hallucination propagation, resulting in supe- 133

rior collective intelligence. 134

2 Related Work 135

2.1 Multi-Agent Debate 136

Building on the successes of LLM-based agents 137

(Wu et al., 2023; Shinn et al., 2024; Li et al., 2025; 138
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Chen et al., 2024a), researchers seek to address139

more sophisticated tasks through their collabora-140

tion (Guo et al., 2024). Recently, MAD was intro-141

duced as a prominent method for facilitating multi-142

agent collaboration (Du et al., 2025). Specifically,143

in MAD, each agent generates a response to the144

question, which is incorporated into the prompts145

of other agents in the subsequent round through a146

predefined communication topology. Additionally,147

due to the high cost of fully connected communi-148

cation topology, Li et al. proposed sparse topology149

and achieved improved performance. In fact, this150

counterintuitive phenomenon can be interpreted151

through the woozle effect. Liang et al. further152

designed a judge for debates, aiming to arbitrate153

the final answer through the judge. Nonetheless,154

judge might be prone to biases or hallucinations155

(Wang et al., 2024), favoring responses closer to156

their initial preferences. Hence, we do not delve157

into the discussion of the judge.158

Most studies currently suggest that MAD can159

generate more reliable responses, owing to the di-160

vergent thinking of multiple agents and their criti-161

cal synthesis of responses (Liang et al., 2024; Sun162

et al., 2024; Liu et al., 2024; Hegazy, 2024). How-163

ever, Wang et al. found that this claim is not en-164

tirely validated, as MAD performs similarly to or165

even worse than single agent with strong prompts.166

We investigate this issue and identify hallucination167

propagation in discussions as a key contributor.168

2.2 Hallucinations and Misdirection in LLMs169

LLMs are prone to generating factually incorrect170

information, referred to as hallucination, which171

significantly undermines their reliability and trust-172

worthiness across various tasks (Zheng et al., 2023;173

Tonmoy et al., 2024; Huang et al., 2025). Exist-174

ing efforts primarily focus on the detection (Man-175

akul et al., 2023; Chen et al., 2024b), evaluation176

(Li et al., 2023; Jiang et al., 2024), and mitigation177

(Varshney et al., 2023; Zhang et al., 2024) of hallu-178

cination. In Addition, some studies attempted to de-179

tect hallucinations through MAD (Sun et al., 2024;180

Feng et al., 2024). Another line of work focuses181

on persuading and misleading LLMs. Through tai-182

lored persuasion strategies, adversarial users can183

successfully mislead LLMs, causing alignment jail-184

breaks (Zeng et al., 2024) and factual knowledge185

errors (Xu et al., 2024). Research has revealed186

that LLMs are susceptible to deception, severely187

compromising their security and effectiveness.188

Distinct from the studies mentioned above, our189

research centers on hallucination propagation in 190

multi-agent discussions. This phenomenon is more 191

intricate than in single LLMs, as agents can both 192

generate hallucinations and be misled by others 193

with erroneous information, subsequently amplify- 194

ing it through collaborative discussions. 195

3 Exploring Hallucination Propagation in 196

Multi-Agent Debate 197

Although the emerging paradigm of multi-agent 198

collaboration through discussion has initially 199

demonstrated the potential for collective intelli- 200

gence, researchers have found that the performance 201

of MAD does not consistently outperform that of 202

single-agent (Wang et al., 2024). This motivated us 203

to investigate the underlying mechanism. 204

We suspect that the hallucination phenomenon 205

in LLMs could be a contributing factor. Halluci- 206

nation occurs when LLMs generate plausible yet 207

erroneous information, compromising their reliabil- 208

ity and trustworthiness (Rawte et al., 2023). This 209

issue becomes more complex in MAD, because 210

it exhibits a propagative nature. Agents not only 211

generate erroneous responses but also propagate 212

to other agents as the discussion progresses, ulti- 213

mately leading to performance degradation. 214

To perform a fine-grained tracking and evalu- 215

ation of this issue, we control the degree of hal- 216

lucination in the agents’ initial responses and ob- 217

serve how hallucinations propagate throughout the 218

debate. Specifically, we first pre-collect several 219

correct and incorrect responses for each question. 220

Then, in the first round, we assign the agents’ out- 221

puts to the pre-collected samples, setting different 222

error rates for each question. Finally, we quan- 223

tify hallucination propagation by monitoring the 224

misleading behaviors of the agents in each round. 225

3.1 Experimental Setups 226

Models. We examine hallucination propagation 227

across two models: Mistral-7B (Jiang et al., 2023) 228

and Llama 3.1-8B (AI@Meta, 2024). Each model 229

is run across four random seeds, and we report the 230

mean results along with the standard deviation. 231

Dataset for Measuring Hallucination Propaga- 232

tion. To track hallucinations and their propaga- 233

tion, we use the FARM dataset (Xu et al., 2024), 234

which measures how easily models are misin- 235

formed. FARM consists of questions from popular 236

QA benchmarks: Natural Questions (Kwiatkowski 237

et al., 2019), BoolQ (Clark et al., 2019), and Truth- 238
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Model Setup NQ TruthfulQA

MA1 MA2 MA3 MR2 MR3 MA1 MA2 MA3 MR2 MR3

Llama

3× 0 7.4±0.7 13.5±0.6 0 35.0±4.6 0 7.4±0.5 13.8±1.0 0 48.7±4.3

2× 1
√

33.3 58.6±1.0 51.8±1.5 88.0±1.6 57.0±2.2 33.3 60.1±0.8 51.4±0.8 87.4±1.4 59.1±1.9

1× 2
√

66.7 62.6±1.0 57.0±0.5 52.9±1.3 36.2±1.1 66.7 63.6±0.9 55.3±1.2 51.6±1.3 39.8±1.4

3
√

100 91.1±0.8 92.9±1.0 8.9±0.8 5.4±0.7 100 91.2±0.2 90.9±0.5 8.8±0.2 7.5±0.6

Standard 73.6±0.8 75.2±0.6 77.7±0.3 15.6±0.8 11.2±1.0 56.7±1.0 58.7±1.1 61.2±1.5 21.7±1.2 16.3±0.9

Mistral

3× 0 1.0±0.2 1.5±0.3 0 65.0±18.2 0 2.7±0.3 4.0±0.2 0 58.0±5.4

2× 1
√

33.3 38.8±0.8 41.7±1.7 49.8±1.3 36.3±2.4 33.3 48.3±1.3 48.6±0.7 48.0±2.1 35.0±0.6

1× 2
√

66.7 81.6±0.6 83.6±1.0 12.7±0.9 11.3±1.0 66.7 83.8±0.9 85.9±0.9 13.9±0.6 9.9±0.6

3
√

100 96.0±0.2 93.6±0.5 7.4±0.7 4.2±0.4 100 94.6±1.0 95.9±0.5 5.4±1.0 2.6±0.3

Standard 63.2±0.6 67.6±0.4 68.0±0.3 12.0±0.4 9.9±0.9 53.0±0.5 59.1±0.5 61.1±0.5 10.5±0.8 8.4±1.0

Table 1: The hallucination propagation results of MAD with three agents for different models. Setup refers to setting
different error responses in the first round, and "normal" indicates the results under a standard MAD. The setup 3×
and 3

√
can be seen as the lower and upper bounds, respectively. The results of BQ are shown in Table 7.

Model: Llama

Dataset :NQ

Model: Mistral

Dataset: NQ

Model: Llama

Dataset: TruthfulQA

Model: Mistral

Dataset: TruthfulQA

Figure 2: Comparison of five agent debate’s Mean Accuracy with different models when setting various initial
response hallucination rates. The red dashed line represents the model’s average accuracy on this dataset.

fulQA (Lin et al., 2022). In addition to the origi-239

nal questions, FARM provides multiple incorrect240

responses as each question’s false answer. The in-241

correct responses in FARM are constructed using242

different strategies. Since hallucinations in rea-243

soning often arise from flawed logic, We adopt the244

"logical" strategy, which provides logical rationales245

for the misinformation. We assigned these incor-246

rect responses as the agent’s output for the first247

round, treating them as hallucinations generated248

by the model for that question. Besides incorrect249

responses, we obtain correct responses by provid-250

ing the model with the correct options in advance251

and performing multiple sampling (details in Ap-252

pendix A.2.3). By controlling the ratio of correct253

and incorrect information, we can track the illusion254

propagation of the model in different contexts.255

Evaluation Metrics. To quantitatively evaluate256

hallucinations and their propagation, we use two257

metrics: Mean Accuracy (MA) and Misleading258

Rate (MR) per round (Xu et al., 2024; Men et al.,259

2024). The key symbols are introduced as follows:260

We use t = 1, 2, 3... to denote the rounds of the261

debate, Aq
i,t represents the answer of the i-th agent262

to question q in the t-th round. The correct answer263

of q is denoted as aq, and the complete response264

is represented by Rq
i,t. There are a total of Nq265

questions and Na agents in debate. The Accuracy266

of each Agent at round t defined as: 267

Accqi,t = I(Aq
i,t = aq) (1) 268

and the mean accuracy at round t is defined as: 269

MAt =

∑Nq
q

∑Na
i Accqi,t

Nq ×Na
(2) 270

Compared to using the final result from voting to 271

represent accuracy, MAt offers a more granular 272

view of the hallucination levels of the agents. 273

To evaluate hallucination propagation, we also 274

recorded the misdirection rate for each round: 275

MR(t) =

∑Nq
q

∑Na
i Qq√

,i,t−1 ·Q
q
×,i,t∑Nq

q

∑Na
i Qq√

,i,t−1

(3) 276

where Qq√
,i,t = I(Accqi,t = 1) and Qq

×,i,t = 277

I(Accqi,t = 0) represent whether the agent’s answer 278

is correct in round t. MRt indicates how many 279

originally correct agents in the previous round were 280

misled into generating incorrect answers, which 281

reflects the misguiding effect induced by hallucina- 282

tion propagation. 283

Implementation Details. We use three or five 284

agents for debate. Since the hallucinations propa- 285

gation typically occurs within the first three rounds 286

(Figure 1), we set the debate to three rounds. For 287

more experimental details and evaluation results of 288

other metrics, please refer to the Appendix B.2. 289
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3.2 Main Results290

In this section, we will provide detailed results and291

explanations of the hallucination propagation phe-292

nomenon in MAD. First, we explore the detrimen-293

tal effects of hallucination propagation on debates.294

Then, we analyze the mechanism and characteris-295

tics of hallucination propagation. Finally, we reveal296

which problems are more prone to hallucination297

propagation through fine-grained experiments.298

3.2.1 Hallucination Propagation limits MAD299

As shown in Table 1 and Figure 2, we present the300

results of debates involving 3 and 5 agents. The re-301

sults of standard debates show that the MA contin-302

uously increases as the debate progresses, confirm-303

ing the viability of the multi-agent debate frame-304

work and its potential to enhance performance.305

However, despite its effectiveness, there remains306

a serious issue of hallucination propagation in de-307

bates. Llama’s MR per round is over 10% on308

both datasets, with MR2 exceeding 20% on Truth-309

fulQA. This indicates that a substantial number of310

agents who initially held accurate beliefs, are mis-311

led through discussions with other agents. While312

Mistral exhibits a comparatively lower misleading313

rate, hallucination propagation persists and exerts314

a detrimental effect. This is consistent with our315

assumption that hallucinations spread through dis-316

cussions, leading other agents astray, and constitute317

a considerable proportion. This behavior resem-318

bles our humans. Through repeated citations and319

reiterations, people may unknowingly adopt mis-320

information, thereby perpetuating its spread. This321

process ultimately leads to the societal spread of322

misinformation, a phenomenon known as the Woo-323

zle Effect (Navin and Kuppili, 2020). Next, we will324

discuss its mechanisms and characteristics.325

3.2.2 The Mechanism and Characteristics of326

Hallucination Propagation327

As depicted in Figure 1, we present the transmis-328

sion process of hallucinated information. During329

the second round, agents exhibiting hallucinations330

introduce this erroneous information into other ini-331

tially accurate agents through discussions, causing332

them to be misled. Notably, a hallucinated agent is333

not a stubborn troublemaker that persistently gen-334

erates erroneous information (Men et al., 2024).335

When it communicates with accurate agents, it has336

the potential to rectify its errors and generate ac-337

curate responses. As the debates progress, the ini-338

tial hallucinated information spreads incrementally,339

Figure 3: Test results categorized by question difficulty
with 3 Llama agents on the NQ dataset. (a) and (b)
represent the test results for data above and below a
certain difficulty level, respectively. The results and
analysis of Mistral are shown in the Figure 5.

leading to a decline in overall performance. 340

(i) In the upper-bound configuration, the per- 341

formance exhibits a gradual decline, suggesting 342

that hallucinations are not confined to the initial 343

response but also arise during the debate and sub- 344

sequently spread. Similarly, in the lower-bound 345

settings, agents demonstrate the ability to deviate 346

from erroneous responses and produce accurate 347

replies. This suggests that the model adheres to the 348

distribution of its original response to the question, 349

enabling it to generate accurate replies even when 350

confronted with extremely incorrect answers. It is 351

worth noting that this phenomenon is considered 352

as faithfulness hallucination (Maynez et al., 2020). 353

If the model remains faithful to its initial distribu- 354

tion and fails to adapt during the debate, it may 355

reject accurate information inputs. As shown in 356

Figure 2, the Llama exhibits this issue, as it tends 357

to converge toward its initial accuracy in most de- 358

bates. The spread of this faithfulness hallucination 359

results in its performance regressing to the model’s 360

original distribution. 361

(ii) As the degree of hallucination in the initial 362

response increases, the misleading rate gradually 363

rises, indicating that the severity of the initial hallu- 364

cination further amplifies its propagation effect. Al- 365

though the misleading rate increases in certain set- 366

tings, the agents can still improve its performance 367

through debate, indicating that both hallucinated 368

and accurate information are propagated simulta- 369

neously. If the spread of hallucinated information 370

can be interrupted, this issue could be mitigated, 371

promoting the effective dissemination of accurate 372

information. 373

(iii) The consistent trends in the distribution 374

of test results across diverse datasets suggest that 375

hallucination propagation is a fundamental issue 376

within the MAD framework, with only a weak cor- 377

relation to specific tasks. Additionally, the extent 378
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of hallucination propagation varies across different379

models. From the debate results, Llama exhibits380

stronger reasoning capabilities compared to Mistral.381

However, Llama faces more severe hallucination382

propagation issues, while Mistral demonstrates con-383

sistent performance improvements across various384

settings. This suggests that a model with stronger385

capabilities is not inherently a more effective de-386

bater. This offers valuable insights for selecting a387

base model for multi-agent collaboration, empha-388

sizing the need to consider the model’s capacity to389

resist misinformation.390

3.2.3 Locate Hallucination Propagation391

We further investigate what questions are more sus-392

ceptible to hallucination propagation. Specifically,393

we sample multiple responses for each question and394

evaluate the model’s average accuracy. This metric395

reflects the difficulty of answering a given question,396

i.e., if a question consistently yields low accuracy397

across multiple samples, it indicates a high level398

of difficulty. We categorize questions into those399

with accuracy above and below a predefined thresh-400

old, enabling us to identify the scenarios where401

hallucination propagation is most likely to occur.402

As shown in Figure 3(a), for relatively easy403

questions, performance declines as the debate pro-404

gresses. Conversely, Figure 3(b) illustrates that405

for more complex questions, the debate process406

tends to improve performance while demonstrating407

a reduced level of hallucination propagation. This408

finding suggests that MAD is generally more ef-409

fective at addressing complex problems, whereas410

simpler problems are more prone to inducing and411

propagating hallucinations.412

4 Mitigating Hallucination Propagation413

in Multi-Agent Debate414

We note that most communication forms of MAD415

rely on predefined fully connected topologies,416

which pose the risk of one agent’s hallucinated417

information misleading other originally correct418

agents along the same topology (Figure 6).419

We aim to dynamically select the most beneficial420

counterparts for agents to engage in discussions,421

enabling the flow of accurate information to hal-422

lucinating agents while preventing the spread of423

hallucinated information to accurate agents. This424

approach can resist the propagation of hallucina-425

tions while facilitating effective discussion. In-426

spired by research that uses entropy to quantify hal-427

lucinations in LLMs (Fadeeva et al., 2023), which428

suggests that higher entropy in responses gener- 429

ally reflects higher uncertainty in the LLMs, we 430

introduce DIGRA, a novel MAD framework with 431

a dynamic communication topology based on the 432

information gain ratio. Next, we will provide a 433

detailed introduction to DIGRA. 434

4.1 Methodology 435

We first elaborate the calculations of entropy and 436

information gain. Next, we introduce the informa- 437

tion gain ratio in DIGRA, followed by a detailed 438

explanation of how DIGRA utilizes this ratio to 439

enable dynamic communication. 440

Mean Token Entropy (Fomicheva et al., 2020) 441

is the average entropy across all generated tokens, 442

with the entropy of a single token X defined as: 443

H(X) = −
∑
x∈V

p(x) log p(x) (4) 444

where V denotes the vocabulary of the LLM and 445

p(x) represents the probability distribution over the 446

vocabulary during token generation. 447

Information Gain (IG) quantifies the reduction 448

in uncertainty after the value of the conditional 449

variable is provided. In DIGRA, we define it as the 450

reduction in the entropy of the original response 451

after the agent considers the replies of other agents: 452

IGq
i,t(J ) = H(Rq

i,t)−H(Rq
i,t|f(q,R

q
J ,t)) (5) 453

where H is the mean token entropy of the response, 454

i represents the current agent, and J = j1, j2, ... ⊂ 455

∪j ̸=ij indicates the set of agents communicating 456

with agent i. The agents in J are arranged in de- 457

scending order of their entropy. f(·) is a prompt 458

template that transforms the responses of the agents 459

in J and the question q into a prompt (Appendix 460

B.3). While IG can serve as a criterion for select- 461

ing communication partners by maximizing it, it 462

ignores the entropy of the agents involved in com- 463

munication. Agents with high entropy, often due to 464

hallucinations, may lead to the propagation of hal- 465

lucinations after being referenced. Therefore, we 466

introduce the information gain ratio (IGR), which 467

extends IG by normalizing it with the average en- 468

tropy of the agents’ responses in J . 469

Information Gain Ratio is defined as : 470

IGRq
i,t(J ) =

α+ IGq
i,t(J )

1
|J |

∑
j∈J H(Rq

j,t)
(6) 471

As a more comprehensive criterion, IGR facilitates 472

communication with counterparts that are advanta- 473

geous to the current agent, while mitigating the risk 474
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Model Methods NQ BQ TruthfulQA GSM8K MMLU Avg.

Llama

CoT 73.2±0.8 67.8±1.0 57.0±1.3 77.8±1.5 62.5±1.1 67.7
CoT-SC 78.4±1.0 71.9±1.2 60.5±0.5 82.0±1.2 66.2±2.4 71.8

MAD(D = 1) 78.3±0.9 70.4±1.8 62.4±1.5 77.8±3.1 66.5±3.2 71.1
MAD(D = 1

2 ) 80.2±0.4 73.2±1.7 61.2±0.7 78.2±2.2 65.5±3.0 71.7
MAD(random) 79.0±1.4 71.8±0.9 60.8±0.2 77.0±3.0 63.5±2.6 70.4

DIG 83.4±0.7 77.9±1.0 65.7±0.7 80.5±1.1 71.5±3.2 75.8

DIGRA 85.0±0.4 78.7±0.4 66.5±1.1 84.2±1.5 71.8±3.0 77.2

Table 2: Comparison of accuracy of DIGRA against baseline methods. The optimal performance is highlighted in
bold, and the second-best performance is underlined. DIGRA is significantly better than CoT-SC and MAD with
pvalue < 0.005. The results of Mistral are presented in the appendix.

of referencing hallucinated agents. α is a hyperpa-475

rameter used to balance entropy and information476

gain, and we set it to 0.2 (a detailed analysis is477

provided in Appendix B.2).478

The Detailed Process of DIGRA. DIGRA is479

composed of two main steps. Firstly, DIGRA pre-480

computes the IGR for all potential communication481

sets of each agent. Secondly, DIGRA selects the482

set of agents J ∗ that maximize the IGR as the483

communication partners for agent i:484

J q
i,t

∗
= argmax

J⊂∪j ̸=ij
IGRq

i,t(J ) (7)485

Furthermore, we draw on and use the early stop-486

ping mechanism from Yin et al., where the debate487

is terminated when all agents provide consistent488

responses, or when an agent’s response remains489

unchanged for two consecutive rounds.490

4.2 Experimental Setups491

Dataset and Evaluation Metric. We employ492

various benchmarks to evaluate the DIGRA’s capa-493

bilities, including MMLU (Hendrycks et al., 2021),494

GSM8K (Cobbe et al., 2021), Natural Questions495

(Kwiatkowski et al., 2019), BoolQ (Clark et al.,496

2019), and TruthfulQA (Lin et al., 2022). We497

consider the answer with the most votes from re-498

sponses of all agents as the final result of the debate,499

and calculate accuracy accordingly.500

Baselines. We compare DIGRA against the fol-501

lowing baselines: (i) Chain-of-Thought (CoT):502

CoT prompting enhances the reasoning capabilities503

of LLMs through explicit intermediate reasoning504

steps. This can be viewed as a single-agent method.505

(ii) Self consistency (CoT-SC): CoT-SC samples506

various reasoning paths and selects the most consis-507

tent answer, thereby aggregating results from mul-508

tiple independent reasoning chains. (iii) Standard509

and Sparse MAD: Standard MAD employs a static 510

fully connected topology for communication which 511

confronts the challenge of hallucination propaga- 512

tion. Sparse MAD reduces communication costs by 513

sparsifying the communication topology of MAD. 514

We denote the degree of sparsity by D = d
Na−1 , 515

where d represents the number of communicating 516

agents. (iv) Random topology: The random topol- 517

ogy approach randomly chooses both the commu- 518

nication partners and the number of counterparts in 519

each debate round, thereby introducing randomness 520

compared to a predefined topology. (v) Dynamic 521

communication topology driven by the information 522

gain (DIG): DIG implements a dynamic topology 523

by maximizing information gain, which involves 524

selecting the reference agents that are most benefi- 525

cial to the current agent. However, it overlooks the 526

entropy of the reference agents. 527

Implementation Details. Most of the experimen- 528

tal setup is consistent with Section 3. We use three 529

agents for debate and the detailed experimental 530

setup of MAD follows that of Du et al.. To mitigate 531

the effect of sampling randomness when t = 1, the 532

initial responses of all debate variants are assigned 533

to MAD’s first-round output. 534

4.3 Main Results 535

In this section, we will explore the performance 536

of dynamic topology. DIGRA dynamically select 537

appropriate communication partners for each agent, 538

alleviating the propagation of hallucinations and 539

facilitating the progression of the debate. 540

Performance of DIGRA. Table 2 presents a com- 541

parison of performance between DIGRA and the 542

baseline methods. The results demonstrate that 543

MAD does not consistently surpass single-agent 544

methods, particularly CoT-SC, which aligns with 545

the conclusions of Wang et al.. This underscores 546
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Methods NQ BQ TruthfulQA MMLU GSM8K
MAD(D = 1

2
) 0.5 0.5 0.5 0.5 0.5

DIG 0.642 0.718 0.726 0.718 0.706
DIGRA 0.610 0.680 0.672 0.655 0.626

Table 3: Comparison of the degree of sparsification of
communication topologies across different methods.

the adverse effects of hallucination propagation.547

By sparsifying the communication topology, the548

performance of the debate improved. We attribute549

this improvement primarily to the reduced risk of550

hallucination propagation, as hallucinating agents551

are no longer able to disseminate hallucinated in-552

formation to all other agents. The performance of553

the random communication topology occasionally554

surpasses that of standard MAD, highlighting the555

importance of selecting appropriate communica-556

tion partners for the debate.557

DIGRA demonstrates consistent performance558

improvements over MAD across multiple datasets,559

owing to its dynamic topology based on the infor-560

mation gain ratio, which enables the selection of the561

most beneficial agents for communication, thereby562

blocking hallucination propagation and facilitat-563

ing the effective debate. Compared to single-agent564

methods, DIGRA consistently outperforms CoT-565

SC by 5.2%. Given that DIGRA solely modifies the566

agents’ communication topology, this highlights567

the potential of multi-agent approaches. Through568

collaboration among multiple agents and the mit-569

igation of hallucination propagation, superior col-570

lective intelligence can be achieved. Notably, DIG571

demonstrated excellent performance across several572

datasets as well. However, due to its failure to573

account for hallucination levels in the reference574

set, it may select suboptimal topologies, particu-575

larly in the GSM8K task, where its performance576

declines significantly. In contrast to DIG, DIGRA577

simultaneously considers both information gain578

and hallucination levels, enabling agents to select a579

more optimal communication topology and thereby580

mitigating the propagation of hallucinations.581

The reasonable sparsification of DIGRA. As582

shown in Table 3, both DIGRA and DIG imple-583

ment a certain degree of sparsification in the com-584

munication topology, resulting in reduced token585

costs during execution. It is evident that DIG ex-586

hibits a lower degree of sparsification, yet its per-587

formance is suboptimal. This arises from its failure588

to incorporate the hallucination levels of the agents589

themselves, leading to the inclusion of unnecessary590

agents in communication and subsequent propaga-591

Figure 4: Comparison of the correct and hallucinated
information flow ratios across different baselines.

tion of hallucinations. In contrast, DIGRA delivers 592

superior performance with lower communication 593

costs, demonstrating its exceptional performance. 594

Dynamic topology regulation of information 595

flow. As shown in Figure 4, we illustrate the rela- 596

tive proportions of erroneous information flowing 597

into initially correct agents and correct informa- 598

tion flowing into initially incorrect agents. In com- 599

parison to standard MAD, DIGRA and DIG both 600

facilitate the influx of correct information into hal- 601

lucinating agents and mitigate the spread of halluci- 602

nations. This finding confirms that the introduction 603

of dynamic communication topology to select com- 604

munication partners beneficial to the agents has 605

the potential to enhance collaborative interactions 606

among multiple agents, leading to superior collec- 607

tive intelligence. 608

5 Conclusion 609

In this paper, we focus on exploring what leads to 610

the unstable performance of MAD. Through de- 611

tailed experiments, we found that this issue can 612

primarily be attributed to the woozle effect, which 613

refers to the propagation of hallucinations. During 614

debates, the hallucinations are not only generated 615

by agents but also propagated through repeated 616

discussions, misleading other originally correct 617

agents. To mitigate this issue, we introduce DI- 618

GRA, a novel MAD framework with a dynamic 619

topology driven by information gain ratio. DIGRA 620

dynamically selects the most advantageous commu- 621

nication partners for each agent, thereby correcting 622

hallucinating agents and mitigating the spread of 623

hallucinations. We demonstrate the effectiveness 624

of DIGRA, which consistently outperforms base- 625

line methods across various datasets. Our findings 626

address the challenges hindering multi-agent per- 627

formance, paving the way for future multi-agent 628

development. 629
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6 Limitation630

In this work, due to limitations in computational631

resources, we did not select excessively LLMs or a632

high number of agents for Debate. In the future, we633

plan to develop toolkits and acceleration algorithms634

to run simulations with a larger number of agents.635

The impact of roles on the debate process has636

not been considered. Preliminary observations sug-637

gest that dynamic topology can assist in identifying638

more advantageous roles for communication re-639

lated to the current question. In future work, the640

role factor will be incorporated and the benefits of641

dynamic topologies will be further investigated.642

Additionally, we have only considered mean to-643

ken entropy as the metric to validate the effective-644

ness of the dynamic topology selection. In the645

future, we will investigate more applicable met-646

rics to help achieve better dynamic topologies and647

superior collective intelligence.648

7 Ethical Statement649

In the future, with the continuous advancement650

of LLMs and agent technologies, we foresee the651

emergence of more sophisticated collective intelli-652

gence, which requires multiple powerful agents to653

be reliably trusted and capable of efficient interac-654

tion. However, the instability exhibited by current655

multi-agent debate has raised concerns about the656

future development of collective intelligence. In657

this work, we have made a significant step forward658

by identifying that the limitation of MAD stems659

from the propagation of hallucinations and further660

mitigating this issue through the use of dynamic661

topology.662
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A The Woozle Effect: Hallucination886

Propagation in Multi-Agent Debate887

A.1 Term definition888

The Woozle Effect is named after a concept in psy-889

chology and research methodology, particularly in890

the context of misinformation and the propagation891

of unverified claims. In this bias, the initial source892

of information may be questionable, but as it is893

cited by others, it gains credibility. The repetition894

of a claim, without proper verification or critical895

scrutiny, leads to a situation where a concept or896

finding is believed to be true simply due to its fre-897

quency of appearance in literature or media.898

The term Woozle Effect originates from A.A. 899

Milne’s 1926 children’s book Winnie-the-Pooh, in 900

which Pooh and Piglet embark on a hunt for an 901

imaginary creature called a "Woozle." In Chapter 902

3, titled "In which Pooh and Piglet Go Hunting and 903

Nearly Catch a Woozle", the two characters start 904

following what they believe are the tracks of a Woo- 905

zle in the snow. However, as they continue their 906

pursuit, the tracks mysteriously multiply, leading 907

them in circles. It is only when Christopher Robin 908

intervenes that they realize they have been follow- 909

ing their own tracks all along, believing them to 910

belong to the elusive Woozle. This scenario is an al- 911

legory for how people can be misled into following 912

faulty reasoning or unsubstantiated claims, much 913

like how Pooh and Piglet followed the erroneous 914

tracks. A contemporary example of the Woozle Ef- 915

fect can be observed in the field of medical research, 916

where unverified claims regarding the efficacy of 917

certain treatments or interventions are often cited 918

in multiple studies or articles. For instance, if a 919

non-peer-reviewed study suggests that a particular 920

herbal remedy can cure a common cold, this claim 921

might be referenced by other researchers and me- 922

dia outlets. Even though the original study might 923

have been flawed or inconclusive, its repeated men- 924

tion in various sources can create the illusion that 925

there is robust scientific support for the claim, thus 926

misleading the public into believing the remedy is 927

effective. 928

In the context of multi-agent debates, the Woozle 929

effect can be considered as the propagation of hal- 930

lucinations. The erroneous responses generated by 931

the agents are referenced and partially accepted by 932

other agents, and the hallucinations spread through 933

the predefined topology as a result of the discus- 934

sions. 935

A.2 Experiments Details 936

A.2.1 Supplementary settings 937

To improve experimental efficiency, we utilized the 938

VLLM library for inference acceleration, and the 939

parameters are set as shown in Table 4. 940

A.2.2 The Flow of Hallucinated and correct 941

information 942

In Figure 1, we illustrate the flow of hallucinations 943

and accurate information. In this section, we ex- 944

plain the experimental details. We assume that the 945

hallucinations in R(q, i, t) are caused by referenc- 946

ing the output of previous agents. If a referenced 947

agent j exhibits hallucinations in round t− 1 and 948
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Parameters 3-Agents 5-Agents
Batch_size 8 6
Max_Tokens 1024 1024
Temperature 1.0 1.0
Top-p 1.0 1.0
Top-k 50 50

Table 4: Generation parameters settings.

Agent i also exhibits hallucinations at round t, we949

consider it as the propagation of hallucinated in-950

formation. The flow of accurate information is951

calculated in the same way. The accuracy of the952

agent at each node is represented by its color and953

is independent of its size.954

A.2.3 Correct Data Sampling955

We track the woozle effect in MAD through assign-956

ing initial responses with varying levels of halluci-957

nations. For hallucination responses, we employed958

the answer from the logical strategy in FARM. To959

obtain accurate responses, we devised the follow-960

ing collection strategy:961

Assume that we need to obtain Nall (set to 5)962

accurate responses to each question q .963

step 1: We sample each question 50 times, assum-964

ing the number of accurate responses is n1.965

step 2: If n1 ≥ Nall, we randomly retain Nall966

accurate responses. Otherwise, we proceed to step967

3 to generate Nall − n1 samples.968

step 3: We provide the correct answers to the model969

in advance and leverage the responses generated in970

step 1 to form n1-shot examples to guide the model971

in generating accurate responses.972

To better align with the model’s output style, we973

sample the accurate responses generated by Llama974

and Mistral separately. As shown in Table 5, we975

illustrate the process of generating a correct sample976

by Mistral.977

Additionally, We use the proportion of correct978

responses during the sampling process (step 1) to979

represent the average accuracy of responses to the980

question. This metric is used for analysis in Section981

3.2.3.982

A.3 Supplementary Experiments and983

Analysis984

A.3.1 Evaluation Metric985

In Section 3.1, we used the average accuracy and986

misguidance rate metrics to investigate the phe-987

nomenon of hallucination propagation. Here, we988

employ additional metrics for analysis. 989

Initial Misleading Rate (IMR). The misleading 990

rate primarily reflects the misguidance in the cur- 991

rent round of the debate. Here, we introduce the 992

IMR to observe the proportion of initially correct 993

responses that are misled as the debate progresses: 994

IMRt =

∑Nq
q

∑Na
i Qq√

,i,1 ·Q
q
×,i,t∑Nq

q

∑Na
i Qq√

,i,1

(8) 995

Here, IMR2 equals MR2. 996

Correction Rate (CR). Considering that correct 997

information is also propagating, we use the correc- 998

tion rate,e to observe the propagation of correct 999

information: 1000

CRt =

∑Nq
q

∑Na
i Qq

×,i,t−1 ·Q
q√
,i,t∑Nq

q

∑Na
i Qq

×,i,t−1

(9) 1001

A.3.2 Full Results 1002

In this section, we present all the results on the 1003

FARM dataset with comprehensive evaluation met- 1004

rics. We present the results of NQ in Table 6, the 1005

results of BQ in Table 7, and the results of Truth- 1006

fulQA in Table 8. Based on additional results, we 1007

have derived the following supplementary conclu- 1008

sions: 1009

(i) IMR3 is generally lower than MR3, which 1010

suggests that a significant portion of the subsequent 1011

misguidance stems from agents corrected in the 1012

second round. This underscores the agents’ vacilla- 1013

tion. 1014

(ii) The correction rat reflects the spread of accu- 1015

rate information in MAD. However, under certain 1016

settings, the CR can be lower than the MR, indi- 1017

cating that some challenging hallucination propa- 1018

gation is difficult to correct and the spread of hallu- 1019

cinations limits the performance of MAD. 1020

(iii) On the BQ dataset, Llama exhibited more 1021

severe hallucination propagation, with the average 1022

accuracy even decreasing as the debate progressed. 1023

This is due to the fact that BQ consists of boolean 1024

questions, which are more prone to misleading the 1025

agents. 1026

A.3.3 Locate Hallucination Propagation 1027

In Section 3.2.3, we only discussed Llama’s re- 1028

sponses to questions of varying difficulty. in 1029

this section, we present and discuss Mistral’s re- 1030

sults. Similar with Llama, hallucination propaga- 1031

tion tends to occur in simpler questions, whereas 1032

more difficult questions often show consistent im- 1033

provements. In contrast, Mistral demonstrates 1034
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Question when did michael jordan come to the nba?
Option A) 1982 B) 1984 C) 1986 D) 1988
Prompt Your task is to provide a detailed reasoning process for why the Answer: B) 1984 is the

correct to the following multiple-choice questions.
{question, option}
Here are the examples:
{examples generated in step 1}
Please assume that you do not know the premise and provide the reason for it to be the
correct answer. It means you need to get Answer: B) through your reasoning.
The last line of your response should be of the following format: ’Answer: B)’,
Think step by step before answering.

Example Michael Jordan is widely recognized as one of the greatest basketball players in NBA
history. To determine the year when he joined the NBA, let’s consider some clues and
eliminate the incorrect answer choices.
A) 1982: Michael Jordan did not join the NBA in 1982. The 1981-1982 NBA season
marked Jordan’s last year playing college basketball for the University of North Carolina
at Chapel Hill.
Answer: Not Correct
C) 1986: Michael Jordan did not join the NBA in 1986. In 1985, Jordan led the Chicago
Bulls to their first playoff appearance and made the NBA All-Star team for the first time.
The following year, in 1986, Jordan reached his full potential and established himself as a
dominant player in the league.
Answer: Not Correct
D) 1988: Michael Jordan did not join the NBA in 1988. By this point, Jordan had already
been an NBA All-Star and an NBA champion (with the Bulls in 1985 and 1986). He was
considered one of the best players in the league, and there’s no reason to believe he would
join then.
Answer: Not Correct
B) 1984: The strongest evidence for Michael Jordan joining the NBA in this year comes
from the fact that he was drafted 3rd overall by the Chicago Bulls in the 1984 NBA draft,
which took place on June 27, 1984.
Answer: B.

Table 5: A correct response of question in Nq generated by Mistral. Green text represents the correct answer, while
red text represents the incorrect option.

Model Setup MA1 MA2 MA3 MR2|IMR2 MR3 IMR3 CR2 CR3

Llama

3× 0 7.4±0.7 13.5±0.7 0 35.0±4.6 0 7.4±0.7 9.4±.0.3

2× 1
√

33.3 58.6±1.0 51.8±1.5 88.0±1.6 57.0±2.2 16.6±0.8 81.9±0.8 64.1±1.1

1× 2
√

66.7 62.6±1.0 57.0±0.5 52.9±1.3 36.2±1.1 41.8±0.7 93.6±1.1 45.7±1.8

3
√

100.0 91.1±0.8 92.9±1.0 8.9±0.8 5.4±0.7 7.1±1.0 0.0±0.0 75.5±4.3

Standard 73.6±0.8 75.2±0.6 77.7±0.3 15.6±0.8 11.2±1.0 8.9±0.3 49.3±1.9 44.1±3.0

Mistral

3× 0 1.0±0.2 1.5±0.3 0 65.0±18.2 0 1.0±0.2 1.2±0.2

2× 1
√

33.3 38.8±0.8 41.7±1.7 49.8±1.3 36.3±2.4 55.2±2.0 33.2±1.4 27.7±1.6

1× 2
√

66.7 81.6±0.6 83.6±1.0 12.7±0.9 11.3±1.0 15.9±1.4 70.1±1.6 60.9±2.5

3
√

100.0 96.0±0.2 93.6±0.5 7.4±0.7 4.2±0.4 6.4±0.5 0 66.0±3.5

Standard 63.2±0.6 67.6±0.4 68.0±0.3 12.0±0.4 9.9±0.9 11.9±0.9 32.6±0.9 21.8±1.2

Table 6: The hallucination propagation results of NQ. Setup refers to setting different error responses in the first
round, and "normal" indicates the results under a standard MAD. The setup 3× and 3

√
can be seen as the lower

and upper bounds, respectively.
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Model Setup MA1 MA2 MA3 MR2|IMR2 MR3 IMR3 CR2 CR3

Llama

3× 0 15.3±0.2 30.9±0.4 0 35.9±1.5 0 15.3±0.2 24.9±0.4

2× 1
√

33.3 58.5±0.5 55.4±1.4 92.2±0.2 52.8±1.7 19.2±1.6 83.8±0.9 67.0±3.3

1× 2
√

66.7 56.1±0.4 49.6±1.5 63.1±0.4 44.7±2.9 48.6±1.1 94.5±1.1 42.3±3.0

3
√

100.0 84.3±0.4 76.2±0.7 15.7±0.4 17.9±1.4 23.8±0.7 0 44.9±4.0

Standard 68.1±1.0 70.1±0.8 68.9±0.8 23.3±1.4 21.7±0.4 18.9±0.5 56.0±1.1 46.8±3.1

Mistral

3× 0 5.5±0.6 9.1±0.9 0 43.3±3.9 0 5.5±0.6 6.3±0.7

2× 1
√

33.3 55.6±0.6 56.9±1.4 35.3±0.8 24.9±0.8 41.1±2.6 51.1±0.5 34.0±2.3

1× 2
√

66.7 85.4±1.1 86.5±1.4 8.5±1.0 8.3±0.8 12.8±1.6 73.3±1.4 55.7±4.0

3
√

100.0 98.4±0.4 96.7±0.2 2.9±0.3 2.2±0.2 3.4±0.3 0.0±0.0 54.9±4.4

Standard 68.5±1.0 70.3±0.7 70.6±0.8 5.4±0.6 4.2±0.3 4.8±0.7 17.4±1.2 10.9±0.9

Table 7: The hallucination propagation results of BQ. Setup refers to setting different error responses in the first
round, and "normal" indicates the results under a standard MAD. The setup 3× and 3

√
can be seen as the lower

and upper bounds, respectively.

Model Setup MA1 MA2 MA3 MR2|IMR2 MR3 IMR3 CR2 CR3

Llama

3× 0 7.4±0.5 13.8±1.0 0 48.7±4.3 0 7.4±0.5 10.8±1.1

2× 1
√

33.3 60.1±0.8 51.4±0.8 87.4±1.4 59.1±1.9 16.1±0.5 83.9±0.6 67.3±0.5

1× 2
√

66.7 65.4±1.0 57.3±1.6 49.3±1.4 36.0±0.3 41.3±1.9 94.6±0.5 44.8±3.8

3
√

100.0 91.2±0.2 90.9±0.5 8.8±0.2 7.5±0.6 9.1±0.5 0 73.6±1.6

Standard 56.7±1.0 58.7±1.1 61.2±1.5 21.7±1.2 16.3±0.9 12.5±1.0 33.1±0.9 29.4±1.5

Mistral

3× 0 2.7±0.3 4.0±0.2 0 58.0±5.4 0 2.7±0.3 3.0±0.2

2× 1
√

33.3 48.3±1.3 48.6±0.7 48.0±2.1 35.0±0.6 45.8±1.4 46.5±1.8 33.3±1.1

1× 2
√

66.7 83.8±0.9 85.9±0.9 13.9±0.6 9.9±0.6 14.2±0.8 79.1±2.4 64.3±2.2

3
√

100.0 94.6±1.0 95.9±0.5 5.4±1.0 2.6±0.3 4.1±0.5 0 67.9±2.3

Standard 53.0±0.5 59.1±0.5 61.1±0.5 10.5±0.8 8.4±1.0 9.4±0.6 24.7±1.1 17.0±0.8

Table 8: The hallucination propagation results of TruthfulQA. Setup refers to setting different error responses in
the first round, and "normal" indicates the results under a standard MAD. The setup 3× and 3

√
can be seen as the

lower and upper bounds, respectively.

Figure 5: Test results categorized by question difficulty with 3 Mistral agents on the NQ dataset. (a) and (b) represent
the test results for data above and below a certain difficulty level, respectively.
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(a) (b) (c)

Figure 6: Different Communication Topology. (a) Topology of Multi-Agent Debate, (b) Topology of Sparse MAD
(D = 1

2 ), (c) Topology of DIGRA. The red nodes represent agents exhibiting hallucinations, while the dashed nodes
indicate agents at risk of being misled by the propagation of hallucinations.

higher stability and is able to achieve performance1035

improvements over a broader range through Debate1036

(Figure 5).1037

B DIGRA: Mitigating the hallucination1038

propagation in Multi-Agent Debate1039

B.1 Communication Topology in MAD1040

We present different communication topologies in1041

Figure 6. From the figure, we observe that when1042

a single agent exhibits hallucinations, the risk of1043

hallucination propagation is highest with the pre-1044

defined static topology. Sparse communication re-1045

duces the hallucination propagation to some extent,1046

but it cannot fully resolve the issue. As shown1047

in Figure 6 (c), by leveraging dynamic topologies1048

to select the most advantageous communication1049

partners, the propagation of hallucinations can be1050

mitigated.1051

B.2 Parameter analysis1052

In the formula of IGR, we introduce the hyperpa-1053

rameter α to balance the entropy of the reference1054

agents and the information gain. In this section,1055

we analyze the impact of different values for this1056

parameter. As shown in Table 9, the performance1057

exhibits a trend of first increasing and then decreas-1058

ing as the α increases. When α is too small, the1059

importance of entropy is overlooked, leading to the1060

selection of agents with high hallucination levels1061

for communication. When α is too large, the in- 1062

formation gain is ignored, and the selected agents 1063

may lack significant reference value for the current 1064

agent. When α is set to 0.5, DIGRA achieved sig- 1065

nificant improvement, suggesting that an optimal 1066

balance between information gain and entropy of 1067

agents yields enhanced performance. In our experi- 1068

ment, we pre-set this value without further tuning 1069

α , indicating that DIGRA holds greater potential 1070

for achieving even better performance. 1071

B.3 The Details of DIGRA 1072

B.3.1 Calculation of information gain ratio 1073

In this section, we will explain how information 1074

gain ratio is computed using the specific prompt 1075

template. As shown in Table 10, we first concate- 1076

nate the responses of agents in J with the prompt 1077

of the original question into the predefined tem- 1078

plate. Then, we set the output of the current agent 1079

and perform forced decoding to compute the en- 1080

tropy. 1081

B.3.2 Early stoping in DIGRA 1082

Since hallucinations exhibit diffusion characteris- 1083

tics, the early stopping mechanism we designed 1084

helps mitigate this issue. Specifically, our early 1085

stopping mechanism is based on the following prin- 1086

ciples: 1087

(i) All agents reach a consensus and provide an 1088
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α 0.01 0.05 0.1 0.2 0.3 0.5 1.0

Accuracy 68.5±4.5 70.0±4.1 69.8±4.7 71.8±3.0 70.8±3.5 74.0±4.2 70.8±3.6

Table 9: Accuracy (%) of DIGRA with different α on MMLU benchmark.

Response Rq
1,t Rq

2,t Rq
3,t

entropy order Rq
3,t > Rq

2,t > Rq
1,t

current agent agent 1

potential agents J {Rq
2,t} {Rq

3,t} {Rq
3,t, R

q
2,t}

Prompt {Original prompt of q}

f(q,Rq
J ,t)|J={3,2} These are the solutions to the problem from other agents:

One agent solution: “‘ Rq
3,t “‘

One agent solution: “‘ Rq
2,t “‘

Using the reasoning from other agents as additional advice, can you
give an answer?
The last line of your response should be of the following format:
’Answer: $LETTER’ (without quotes) where LETTER is one of ABCD.
Think step by step before answering.

IG(Rq
1,t|R

q
J ,t) H(Rq

1,t)−H(IG(Rq
1,t|R

q
J={2},t)

H(Rq
1,t)−H(IG(Rq

1,t|R
q
J={3},t)

H(Rq
1,t)−H(IG(Rq

1,t|R
q
J={3,2},t)

IGR(Rq
1,t|R

q
J ,t)

α+H(Rq
1,t)−H(IG(Rq

1,t|R
q
J={2},t)

H(Rq
2,t)

= 0.69

α+H(Rq
1,t)−H(IG(Rq

1,t|R
q
J={3},t)

H(Rq
3,t)

= 1.37

α+H(Rq
1,t)−H(IG(Rq

1,t|R
q
J={2,3},t)

1
2
(H(Rq

2,t)+H(Rq
3,t))

= 0.91

final communication agents agent 3

Table 10: Examples of DIGRA and details of the prompt template function.

Model Methods NQ BQ TruthfulQA GSM8K MMLU Avg.

Mistral

CoT 62.4±0.7 64.0±1.7 59.8±1.0 38.5±3.5 54.8±3.0 55.9

CoT-SC 67.9±0.7 64.7±0.7 60.1±0.6 42.8±4.2 56.2±0.8 58.3

MAD(D = 1) 69.9±0.3 67.9±0.7 61.5±0.7 45.2±1.3 56.4±1.3 60.2

MAD(D = 1
2 ) 65.8±2.1 67.7±0.5 61.9±0.4 38.8±3.7 55.0±1.2 57.8

MAD(random) 69.1±0.6 67.9±0.6 61.2±0.5 41.5±2.7 53.8±1.8 58.7

DIG 70.9±0.6 68.6±0.8 61.4±0.1 44.5±3.8 56.2±0.8 60.3

DIGRA 72.2±1.1 68.7±0.6 61.6±0.3 47.0±2.4 57.0±1.6 61.3

Table 11: Comparison of accuracy of DIGRA with Mistral against baseline methods. The optimal performance is
highlighted in bold, and the second-best performance is underlined.
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answer (i.e., the answer is not None).1089

(ii) One agent’s opinion is consistent for two1090

consecutive rounds and the answer is not None.1091

(iii) For terminated agents, we assume tha1092

tRq
i,t+1 = Rq

i,t.1093

B.4 Results of Mistral1094

Table 11 shows the results of Mistral. From prior1095

experiments, we found that although Mistral is less1096

capable than Llama 3.1, it exhibits better debat-1097

ing characteristics. Similarly, Mistral consistently1098

outperforms CoT-SC in MAD, indicating that the1099

model demonstrates strong resistance to hallucina-1100

tion propagation, thus showing effective collective1101

intelligence. Moreover, we discovered that the in-1102

troduction of DIGRA further boosts its debating1103

ability, leading to consistent improvements across1104

multiple datasets.1105
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