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ABSTRACT

Classifier-Free Guidance (CFG) has established the foundation for guidance
mechanisms in diffusion models, showing that well-designed guidance proxies
significantly improve conditional generation and sample quality. Autoguidance
(AG) has extended this idea, but it relies on an auxiliary network and leave solver-
induced errors unaddresed. In stiff regions, the ODE trajectory changes sharply,
where local truncation error (LTE) becomes a critical factor to deteriorate sample
quality. Our key observation is that these errors align with the dominant eigen-
vector, motivating us to target the solver-induced error as a guidance signal. We
propose Embedded Runge–Kutta Guidance (ERK-Guid), which exploits detected
stiffness to reduce LTE and stabilize sampling. We theoretically and empirically
analyze stiffness and eigenvector estimators with solver errors to motivate the
design of ERK-Guid. Our experiments on both synthetic datasets and popular
benchmark dataset, ImageNet, demonstrate that ERK-Guid consistently outper-
forms state-of-the-art methods.

1 INTRODUCTION

Generative models Kingma & Welling (2014); Rezende & Mohamed (2015); Heusel et al. (2017);
Lipman et al. (2023); Ho et al. (2020); Song et al. (2021b); Goodfellow et al. (2020) aim to approx-
imate complex data distributions and generate new samples, enabling a wide range of applications
in image synthesis Brock et al. (2019); Rombach et al. (2022); Zhang et al. (2023); Kawar et al.
(2023), editing Brooks et al. (2023), and video generation Gupta et al. (2024). Among them, diffu-
sion models Ho et al. (2020); Song et al. (2021b); Karras et al. (2022) have emerged as a dominant
paradigm, achieving strong performance across diverse generation tasks Gupta et al. (2024); Karras
et al. (2024a). They define a forward process that gradually perturbs data into Gaussian noise, while
a neural network is trained to predict the score function of each noisy distribution. This score esti-
mate parameterizes the reverse-time dynamics, allowing data to be reconstructed through iterative
denoising. Sampling is commonly formulated as solving an ordinary differential equation (ODE)
or stochastic differential equation (SDE), where the drift is defined by the learned network Karras
et al. (2022); Song et al. (2021a); Lu et al. (2022). As a result, the quality of generated samples de-
pends not only on model accuracy but also on the numerical solver used to approximate the reverse
dynamics, which can significantly influence fidelity and stability.

Guidance mechanisms emerged to improve both sampling fidelity and perceptual quality by intro-
ducing suitable proxies for steering the sampling trajectory. The de facto standard, Classifier-Free
Guidance (CFG) Ho & Salimans (2022), combines unconditional and conditional predictions to
strengthen alignment and enhance image quality. Predictor-Corrector Guidance (PCG) Bradley
& Nakkiran (2024) further refines this view by interpreting CFG as a predictor–corrector update
that extrapolates between these predictions. Autoguidance (AG) Karras et al. (2024a) follows a
similar principle by contrasting outputs from models of different capacities, using their discrepan-
cies to identify regions where model-induced errors are significant. However, subsequent meth-
ods Kynkäänniemi et al. (2024); Sadat et al. (2024); Zheng & Lan (2024); Zhao et al. (2025), rely
solely on such model-based differences, overlooking the numerical errors arising from the solver
itself as potential guidance signals. We observe that, in stiff regions of the diffusion ODE, the
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solver’s local truncation error (LTE) aligns with the dominant eigenvector of the drift, revealing a
numerically grounded proxy distinct from model-space signals and motivating our approach.

In this work, we propose Embedded Runge–Kutta based Guidance (ERK-Guid), a novel approach
that mitigates solver-induced local truncation error (LTE) during diffusion sampling by estimating
the dominant eigenvector in stiff regions. In diffusion ODEs, stiffness arises when drift directions
change rapidly, and we observe that the resulting LTE consistently aligns with the dominant eigen-
vector under such conditions. To exploit this property, we introduce two cost-free estimators derived
from the Embedded Runge–Kutta (ERK) formulation: ERK solution difference (between Heun and
Euler solutions) and ERK drift difference (between their corresponding drifts). The ratio of their
norms serves as a stiffness estimator to identify regions of high stiffness, while the ERK drift differ-
ence further provides an eigenvector estimator to approximate the dominant eigenvector direction.
ERK-Guid transforms theoretical insights on stiffness and the dominant eigenvector alignment into
a stable, cost-free guidance mechanism that effectively reduces solver-induced errors. Ultimately,
ERK-Guid applies guidance along this estimated direction, offering a stable and effective proxy that
reduces solver-induced errors without additional computational cost.
Our contributions are summarized as follows:

• We introduce the Embedded Runge-Kutta Guidance (ERK-Guid), a stiffness-aware guid-
ance method that leverages solver errors as informative signals for diffusion sampling.

• We propose cost-free estimators for stiffness detection and dominant eigenvector estima-
tion, derived from ERK solution and drift differences to determine the guidance direction.

• We design a stabilized guidance scheme that bridges theoretical insights with practical
robustness, ensuring robustness without additional network evaluations.

• We demonstrate through synthetic and ImageNet experiments that ERK-Guid delivers an
orthogonal guidance signal and consistently improves over strong baselines.

2 RELATED WORKS

ODE solvers in diffusion models. A major research trend in diffusion models has been to acceler-
ate sampling by improving ODE solvers that approximate the underlying probability flow dynamics
more efficiently. Early work such as DDIM Song et al. (2021a) reinterprets the stochastic sam-
pling process of DDPM Ho et al. (2020) as a deterministic ODE trajectory, enabling significantly
fewer sampling steps without retraining. Building on this view, PNDM Liu et al. (2022) introduces
a pseudo-numerical multistep method that generalizes DDIM beyond first-order updates. Subse-
quent studies further leverage the structure of diffusion dynamics. DEIS Zhang & Chen (2023)
employs exponential integrators to reduce discretization error, DPM-Solver Lu et al. (2022) derives
high-order solvers with coefficients designed to minimize local truncation error, and UniPC Zhao
et al. (2023) unifies predictor–corrector schemes under a single framework. More recently, DPM-
Solver-v3 Zheng et al. (2023) incorporates empirical model statistics into solver parameterization
to jointly address discretization and model approximation errors. Bespoke solver approaches de-
velop customized solver designs for a fixed pre-trained model, encompassing methods that optimize
time-step schedules Xue et al. (2024) and solver parameters Wang et al. (2025); Shaul et al. (2024).
In contrast to these approaches, which redesign or replace the ODE solver, ERK-Guid operates in
a fundamentally different regime. We keep the solver fixed and instead leverage the solver’s own
error: the discrepancy between low- and high-order solver updates. By using this discrepancy as
a directional correction, ERK-Guid provides solver-aware guidance without modifying the solver’s
numerical structure.

Adaptive guidance computation. In diffusion models, Classifier-Free Guidance (CFG) Ho & Sal-
imans (2022) has become the de facto standard for improving fidelity and condition alignment by
contrasting conditional and unconditional denoisers. Despite its success, CFG often suffers from
overshoot, loss of diversity, and entangled fidelity–diversity trade-offs, limiting its flexibility across
noise levels. Autoguidance (AG) Karras et al. (2024a) improves robustness by replacing the uncon-
ditional branch with a weaker model, correcting model-induced errors without sacrificing variation.
Beyond these canonical approaches, several adaptive guidance strategies have been explored. Guid-
ance Interval Kynkäänniemi et al. (2024) activates guidance only at mid-range noise levels. Other
works Sadat et al. (2024); Zheng & Lan (2024) mitigate oversaturation under strong guidance, and
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DyDiT Zhao et al. (2025) dynamically adjusts model capacity across timesteps. These advances
demonstrate how CFG has shaped a broad family of model-based guidance mechanisms. In contrast,
ERK-Guid employs a solver-driven proxy derived from ERK discrepancies, yielding an orthogonal
guidance signal yet complementary to model-based guidance.

3 PRELIMINARIES

Denoising Diffusion Models. Denoising diffusion models Ho et al. (2020); Song et al. (2021b);
Karras et al. (2022) generate samples by simulating the reverse-time dynamics of a predefined
stochastic differential equation (SDE). The SDE gradually transforms the data distribution pdata
into a perturbed distribution p(x;σ). Following EDM2 Karras et al. (2024b), the perturbed dis-
tribution is defined as the convolution of pdata with Gaussian noise Kynkäänniemi et al. (2024), i.e.,
p(x;σ) = pdata(x) ∗ N (x;0, σ2I), where σ ∈ [0, σmax].

The reverse-time SDE can be equivalently reformulated as an ordinary differential equation
(ODE) Song et al. (2021b), leading to a deterministic sampling process x0 ∼ pdata, that solves
the following initial value problem:

dxσ

dσ
= f(xσ;σ) = −σ∇xσ log p(xσ;σ), x0 = xσmax +

∫ 0

σmax

(
dxσ

dσ

)
dσ, (1)

where f(xσ;σ) denotes the drift function of the ODE, and xσ refers to the trajectory of the sample
as a function of the noise level σ. The drift function is typically approximated by the learned model
fθ(xσ;σ), which is trained via score-matching objectives Song et al. (2021b). Note that the initial
state xσmax can be approximately sampled from N (0, σ2

maxI) when σmax is sufficiently large.

In practice, the ODE cannot be solved analytically; numerical solvers are employed. To enable
numerical integration, EDM2 Karras et al. (2024b) discretizes the interval into a sequence of noise
levels {σ0, . . . , σN}, where N is the total number of integration steps. Note that [σi, σi+1] denotes
the i-th integration interval, with σ0 = σmax and σN = 0. A numerical solver is then applied to each
interval to approximate the following integration:

xσi+1
= xσi

+

∫ σi+1

σi

f(xσ;σ)dσ. (2)

The Euler method Hairer et al. (1993), a widely used first-order solver, provides the following update
and local truncation error (LTE):

xEuler
σi+1

= xσi
− hf(xσi

;σi), LTEEuler = xσi+1
− xEuler

σi+1
= O(h2), lk (3)

where h := σi − σi+1 > 0 refers the step size. To reduce the local truncation error, higher-
order solvers are commonly used. Heun’s method Hairer et al. (1993), based on the trapezoidal
rule Hairer et al. (1993), introduces a correction to the Euler estimate and effectively incorporates
implicit integration. Its update and LTE are given as follows:

xHeun
σi+1

= xσi
− h

2

(
f(xσi

;σi) + f(xEuler
σi+1

;σi+1)
)
, LTEHeun = xσi+1

− xHeun
σi+1

= O(h3). (4)

This can be interpreted as a second-order Runge–Kutta method and serves as the default solver
throughout our work.

Embedded Runge–Kutta pair. In Heun’s method, the Euler solution is computed first and then
corrected. Thus, we obtain two solutions of different orders (Euler of order 1 and Heun of order 2)
within a single step. This structure is referred to as an embedded Runge–Kutta pair, and their
solution difference ∆x = xHeun

σi+1
− xEuler

σi+1
is commonly used as a proxy for the local truncation

error Hairer et al. (1993). In this paper, we refer to this difference as the ERK solution difference.
We also define the ERK drift difference as the difference of the drift evaluated at the two solutions,
∆f := f(xHeun

σi+1
; σi+1)− f(xEuler

σi+1
; σi+1).

Stiffness. Stiffness refers to the presence of both fast and slow dynamics within an ODE sys-
tem Hairer & Wanner (1996). It is commonly encountered in physical simulations such as fluid
dynamics. To ensure stability, numerical solvers are forced to reduce their step sizes, leading to
increased function evaluations and higher computational cost. To handle this, previous adaptive
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(a) Stiffness

(b) line AB (c) line CD

(d) line EF (e) line GH

projected drift directionprojection axis

Table 1: Quantitative com-
parison of local truncation
error (LTE) and ERK solu-
tion difference.

LTE ↓ ERK solution diff ↓
AB 5.78e-06 6.18e-05

CD 7.22e-05 4.03e-04

Ratio 12.5× 6.52×

Figure 1: Toy 2D example of stiffness and projected drift directions. (a) We plot generated sam-
ples at the 28th step (out of 32) over the ground-truth distribution, colored by stiffness magnitude.
(b, d) The projected drift directions remain nearly parallel, indicating low LTE and stable dynam-
ics. (c, e) The drift directions spread into multiple orientations, reflecting high LTE and numerical
instability. Table 1 compares (b) and (c), showing that parallel directions (AB) yield small errors,
whereas divergent ones (CD) exhibit much larger LTE and ERK solution differences (12.5× and
6.52×, respectively).

solvers Petzold (1983); Shampine & Gear (1979) detect stiffness and dynamically adjust their inte-
gration behavior by refining step sizes or switching to implicit solvers.

Classically, stiffness is quantified by spectral properties of the Jacobian of the drift, such as the ratio
between the largest and smallest eigenvalue magnitudes or, more simply, the maximum eigenvalue
in magnitude Hairer & Wanner (1996).

J(xσ, σ) := ∇x f(xσ; σ) , (5)

ρstiff(xσ, σ) := max
k

∣∣λk

(
J(xσ, σ)

)∣∣, (6)

where λk(J) denotes the k-th eigenvalue of the matrix J . We denote by vstiff(xσ, σ) a unit
dominant-eigenvector associated with ρstiff(xσ, σ).

4 METHOD

We first provide theoretical and experimental intuition that, in stiff ODEs, both the local trunca-
tion error (LTE) and the embedded Runge–Kutta (ERK) solution difference are aligned with the
Jacobian’s dominant eigenvector (Section 4.1). Based on this observation, we introduce cost-free
estimators for stiffness and the dominant eigenvector (Section 4.2), and incorporate them into our
guidance scheme, ERK-Guid (Section 4.3).

4.1 ALIGNMENT OF LTE AND ERK SOLUTION DIFFERENCES IN STIFF ODES

Theoretical Insight. We assume that the score-based vector field of the diffusion model xσi
is

well approximated by its local linearization around the current state xσi when the step size h :=
σi − σi+1 > 0 is sufficiently small:

dxσ

dσ
= f(xσ;σ) ≈ f(xσi

;σi) + J(xσi
;σi) (xσ − xσi

). (7)

Let Jxσi
and fxσi

denote J(xσi ;σi) and f(xσi ;σi), respectively. From Eq. 1, the Jacobian is given
by Jxσi

= −σi∇2
x log p(xσi

;σi). Since Jxσi
is the Hessian of log p(xσi

;σi) under C2-smoothness,
it is symmetric and therefore admits an eigendecomposition as follows:

Jxσi
= V ΛV ⊤, s.t. Jxσi

vk = λkvk, ∥vk∥2 = 1,∀k (8)

Therefore, the single-step Euler update can be decomposed along the eigenvector basis as:

xEuler
σi+1
− xσi

= −hfxσi
= −h

∑
k

〈
fxσi

, vk

〉
vk, (9)
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where ⟨·, ·⟩ refers inner product. Similarly, Heun update step is given by

xHeun
σi+1

− xσi
= −h

2

(
fxσi

+ fxEuler
σi+1

)
(10)

≈ −h

2

(
fxσi

+ fxσi
+ Jxσi

(xEuler
σi+1
− xσi

)
)

(11)

= −h
∑
k

(
1 + 1

2zk

) 〈
fxσi

, vk

〉
vk, (12)

where zk := −hλk. The exact single-step update can be approximated as follows (See Appendix A.1
for derivation):

xσi+1
− xσi

≈ −h
∑
k

ezk − 1

zk

〈
fxσi

, vk

〉
vk. (13)

Thus, the local truncation error of Heun’s method and the ERK solution difference can be written as

LTEHeun := xσi+1 − xHeun
σi+1
≈ −h

∑
k

α(zk)
〈
fxσi

, vk

〉
vk (14)

∆ := xHeun
σi+1
− xEuler

σi+1
≈ −h

∑
k

( 12zk)
〈
fxσi

, vk

〉
vk (15)

where α(z) := ez−1
z − 1− 1

2z. Figure 7 visualizes the behavior of α(z).

As |zk| = |hλk| increases, the weights 1
2zk and α(zk) associated with each eigenvector component

also grow in magnitude, so that contributions from directions with large |λk| come to dominate.
Consequently, both the local truncation error and the ERK solution difference tend to align with
the dominant eigenvector corresponding to the largest eigenvalue magnitude, specifically in stiff
regions, i.e., regions with high stiffness. Motivated by this observation, we estimate both stiffness
and the dominant eigenvector from the ERK solution difference during sampling (Section 4.2), and
when stiffness is high, we apply guidance with Eq. 14 (Section 4.3).

Toy 2D Experiments. To better understand the connection between ODE dynamics and stiffness,
we construct a two-dimensional toy system with an analytically defined ground-truth drift, followed
by the Autoguidance Karras et al. (2024a). Please refer to Appendix B for experimental details,
including the computation of eigenvectors, eigenvalues, and local truncation errors. The objective
of this experiment is to reveal how stiff regions induce different behaviors along the dominant and
subdominant eigenvector directions. Figure 1 (a) visualizes the degree of stiffness across the image,
while panels (b)–(e) show the drift field projected onto eigenvector axes in two locally stiff regions.
Along the subdominant eigenvector axes (panels (b) and (d)), the projected drift vectors (green ar-
rows) remain nearly parallel with small variation in magnitude, indicating locally stable dynamics
that can be well approximated by numerical solvers. In contrast, along the dominant eigenvec-
tor axes (panels (c) and (e)), the projected drift exhibits pronounced variations in both orientation
and magnitude, making the dynamics harder to approximate and resulting in larger local trunca-
tion errors (LTE). Furthermore, in such stiff dynamics, higher-order solvers yield more significant
improvements along the dominant eigenvector compared to the subdominant one, which naturally
manifests as a larger ERK solution difference. In Table 1, we report the local truncation error (LTE)
and the ERK solution difference measured in the upper region of Figure 1 (lines AB–CD), along the
eigenvector axes. The LTE along the dominant eigenvector direction (line CD, 7.22e-05) is approx-
imately 12.5× larger than that along the subdominant direction (line AB, 5.78e-06). Similarly, the
ERK solution difference along line CD (4.03-04) is about 6.5× larger than that along AB (6.18e-05).
These results confirm that both LTE and ERK solution difference are strongly amplified along the
dominant eigenvector in stiff regions.

Inspired by these observations in Figure 1 and Table 1, where the LTE and the ERK solution dif-
ference exhibit substantially larger amplitudes along the dominant eigenvector axes, we further an-
alyze their alignment across varying stiffness levels. Specifically, we compute the cosine similarity
between the dominant eigenvector and both the LTE and ERK solution difference. As shown in
Figure 2 (a), the alignment between LTE and dominant eigenvector steadily increases with stiff-
ness, indicating that the eigenvector reliably serves as a proxy for the LTE direction in stiff regions.
Additionally, Figure 2 (b) shows that the ERK solution difference is also strongly aligned with
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(a) LTE (b) ERK solution difference (c) ERK drift difference across stiffness quantiles

Figure 2: Eigenvector alignment across stiffness. (a) Cosine similarity between the dominant
eigenvector and the local truncation error (LTE) increases with stiffness. (b) The ERK solution
difference exhibits a similar trend to LTE, suggesting it can serve as a reliable proxy for the LTE
direction in high stiffness regions. (c) Our ERK-Guid consistently achieves higher cosine similarity
with the eigenvector, highlighting its strong alignment in stiff regions. CFG and Autoguidance
exhibit weaker or mixed alignment with the dominant eigenvector in stiff regions, supporting the
complementarity of our method.

the dominant eigenvector in stiff regions. This motivates our novel guidance strategy, ERK-Guid,
which leverages the dominant eigenvector estimated from the embedded Runge–Kutta (ERK) pair
as its guiding signal.

We compare ERK-Guid against two widely used baselines: CFG Ho & Salimans (2022)(condi-
tional–unconditional score difference) and Autoguidance Karras et al. (2024a)(main–weak model
difference). Figure 2 (c) shows that ERK-Guid consistently exhibits strong alignment with the dom-
inant eigenvector across stiffness quantiles. In particular, the gap widens in the high-stiffness bin
(Q75–100), where CFG and Autoguidance exhibit weak or inconsistent alignment. These results
suggest that ERK-Guid provides an orthogonal guidance signal that complements rather than over-
laps with CFG and Autoguidance.

4.2 STIFFNESS AND DOMINANT EIGENVECTOR ESTIMATOR

The key intuition from the previous section is that, once stiffness is high, the dominant eigenvector
provides a reliable proxy for reducing LTE. In practice, however, direct access to the Jacobian is
infeasible, making stiffness estimation challenging. A common alternative is to use Jacobian–vector
product (JVP) based power iterations, which are supported in frameworks such as PyTorch but
remain prohibitively expensive for diffusion sampling, where each step already requires costly net-
work evaluations. To overcome this, we propose cost-free estimators of stiffness and the dominant
eigenvector, exploiting the ERK drift/solution difference without any additional evaluations.

Let xσi
denote the current state at σi (for i > 0), and xEuler

σi
the intermediate Euler prediction when

advancing from σi−1 to σi. We define the stiffness estimator as

ρ̂stiff(xσi , σi) :=

∥∥f(xσi
; σi)− f

(
xEuler
σi

; σi

) ∥∥
2∥∥xσi

− xEuler
σi

∥∥
2

. (16)

Here, xσi − xEuler
σi

corresponds exactly to the ERK solution difference and f(xσi ; σi) −
f
(
xEuler
σi

; σi

)
corresponds to the ERK drift difference under the Heun sampler.

Proposition 1 Let J be the Jacobian matrix of the drift function f(xσi
;σi) at xσi

. Assume that the
ERK solution difference xσi

−xEuler
σi

is sufficiently small and aligned with the eigenvector associated
with the dominant eigenvalue λ of J in magnitude, in the sense that∥∥J(xσi

− xEuler
σi

)
∥∥ = |λ|

∥∥xσi
− xEuler

σi

∥∥+O(
∥∥xσi

− xEuler
σi

∥∥2).
Then the dominant eigenvalue λ admits the approximation

|λ| =
∥∥f(xσi

; σi)− f
(
xEuler
σi

; σi

) ∥∥
2∥∥xσi − xEuler

σi

∥∥
2

+O(
∥∥xσi

− xEuler
σi

∥∥).
Proposition 1 establishes that the proposed stiffness estimator accurately recovers the true stiffness
under the assumption. We provide the proof of Proposition 1 in Appendix A.2. Since our estima-
tor relies on the alignment between the ERK solution difference and the dominant eigenvector, it
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is reliable only when the estimated stiffness is sufficiently high. This requirement is explicitly in-
corporated into our guidance design (see Section 4.3). Notably, the stiffness estimator requires no
additional network evaluations: xσi

, xEuler
σi

, and f(xEuler
σi

;σi) are already obtained during the Heun
correction, while f(xσi

;σi) is reused in the subsequent Euler update step.

As shown in Section 4.1, the ERK solution difference provides a useful proxy for the dominant
eigenvector in stiff regions. To improve robustness, we propose the ERK drift difference, which
tracks the dominant eigenvector more accurately:

v̂stiff(xσi
, σi) :=

f(xσi
; σi)− f

(
xEuler
σi

; σi

)∥∥f(xσi ; σi)− f
(
xEuler
σi

; σi

) ∥∥
2

. (17)

Under a local linearization, this difference approximates the Jacobian applied to the ERK solution
difference:

f(xσi
; σi)− f

(
xEuler
σi

; σi

)
≈ J(xσi

; σi)
(
xσi
− xEuler

σi

)
,

which corresponds to a single-step JVP power iteration. In the eigenbasis of J , components associ-
ated with larger eigenvalues are amplified, whereas those with smaller eigenvalues are suppressed,
thereby steering the estimated direction toward the dominant eigenvector. We demonstrate this effect
in Section 5.1.

4.3 EMBEDDED RUNGE–KUTTA GUIDANCE

Directly applying the cost-free estimators from Section 4.2 into Eq. 14 is unreliable: (i)
LTE–eigenvector alignment weakens at low stiffness, (ii) the stiffness proxy suffers from a scale
mismatch, and (iii) inaccurate eigenvalue estimates over-amplify the update. To address these
issues, we introduce stabilizers that turn Eq. 14 into a practical and robust guidance scheme.

With the proposed cost-free estimators, let

fxσi
:= fθ(xσi

;σi), ρ̂xσi
:= ρ̂stiff(xσi

, σi), v̂xσi
:= v̂stiff(xσi

, σi). (18)

We then define the ERK-Guid update as:

β := 1{ρ̂xσi
>wcon}, (19)

z := wstiff h ρ̂xσi
, (20)

x̂Heun
σi+1

= xHeun
σi+1

− hβ z2
〈
fxσi

, v̂xσi

〉
v̂xσi

, (21)

where h := σi − σi+1 > 0. Here ⟨·, ·⟩ denotes the Euclidean inner product, and wstiff , wcon are
hyperparameters. This construction is motivated by Eq. 14, which characterizes the exact local trun-
cation error under the linearization assumption. A complete derivation is provided in Appendix A.3.

Compared to the exact LTE expression, we introduce three practical modifications: (i) a confidence
gate β with hyperparameter wcon, which suppresses the update in low-stiffness regions and activates
it only when ρ̂ > wcon, ensuring that guidance is applied where eigenvector alignment is reliable;
(ii) a scale parameter wstiff to correct for the consistent mismatch in absolute scale observed in our
stiffness proxy and controls the overall guidance strength (no guidance when wstiff = 0); and (iii)
a quadratic form z2 in place of α(z), which avoids exponential growth under inaccurate estimates
while behaves similarly near zero (See Appendix B.3) and stabilizes the update by depending on
eigenvalue magnitude rather than sign. The effects of β and z2 are analyzed through ablations in
Section 5.3.

The first sampling step does not admit this construction because it requires an ERK pair from the
previous iteration. We simply skip guidance at this step, noting that stiffness at initialization is typi-
cally very small in practice, so that β ≈ 0. The complete procedure is summarized in Algorithm 1.

Computation cost. ERK-Guid incurs no additional network evaluations: all required quantities
are already computed during the Heun update. Thus, unlike CFG or Autoguidance, our approach
imposes no extra evaluation overhead and relies solely on the discrepancy between two solver orders.
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(a) Accuracy of the Stiffness Estimator (b) Accuracy of the Eigenvector Estimator

Figure 3: Accuracy of proposed estimators.
(a) Our estimated stiffness values highly cor-
relate with JVP-based one. (b) ERK drift dif-
ference (blue) maintains higher alignment with
the dominant eigenvector than the ERK solution
difference (orange), especially at high stiffness.

(a) Ablation on threshold 𝑤!"# (b) Ablation on function of 𝑧

0.30.4
0.5

0.7

1.0

5.0

Figure 4: Ablations on our ERK-Guid design.
(a) FD-DINOv2–FID trade-off curve according
to confidence threshold wcon. (b) Comparison of
scaling functions for FD-DINOv2–FID trade-off
curve.

Table 2: Quantitative results on ImageNet-512.

#step wstiff FD-DINOv2 ↓ FID ↓ Precision ↑ Recall ↑ IS ↑
32 0.0 90.1 2.58 0.630 0.673 244
32 0.5 88.8 2.57 0.632 0.673 245
32 1.0 86.2 2.56 0.635 0.674 247
32 1.5 83.7 2.58 0.635 0.674 249
32 2.0 82.8 2.74 0.633 0.675 247
32 2.5 84.9 3.03 0.625 0.668 241

16 0.0 97.5 2.79 0.628 0.653 238
16 0.5 90.5 2.66 0.644 0.657 242
8 0.0 161.2 7.06 0.445 0.615 183
8 0.5 148.3 5.31 0.553 0.590 191

(a) 16 Steps (b) 32 Steps

Figure 5: Grid search of hyperparameters.
Quantitative trends of varying wcon at fixed
wstiff for (a) 16-step and (b) 32-step sampling.

5 EXPERIMENTS

We evaluate ERK-Guid across both toy and real-world datasets. On synthetic data, we validate our
stiffness estimator against Jacobian Vector Product (JVP) references and compare ERK solution and
drift differences for eigenvector estimation in Section 5.1. In Section 5.2, we present quantitative
results on real-world datasets, comparing our method against unguided sampling. We then provide
ablation studies on two stabilizers—the confidence gate β and the scaling function of z—to assess
their impact in Section 5.3. In Section 5.4, we examine ERK-Guid’s compatibility with existing
guidance methods and its plug-and-play adaptability to solver methods to demonstrate its versatility.
Please refer to the Appendix E for qualitative results.
Experimental setup. We conduct experiments on ImageNet (ILSVRC2012) Deng et al. (2009) at
resolutions 512×512 and 64×64, as well as on the FFHQ Karras et al. (2019) at 64×64. We use
the pre-trained EDM Karras et al. (2022) and EDM2 Karras et al. (2024a) models. Heun’s method
is used as the base solver, and other solvers are incorporated through our plug-and-play module.

Evaluation metrics follow prior work: fidelity via FD-DINOv2 Stein et al. (2023), FID Heusel
et al. (2017), and Precision Kynkäänniemi et al. (2019); diversity via Recall Kynkäänniemi et al.
(2019); and condition alignment using Inception Score (IS) Salimans et al. (2016). For additional
implementation details, hyperparameters, and the reference estimator in Figure 3(a) are provided in
Appendix B.

5.1 ACCURACY OF THE ESTIMATORS

In Figure 3, we validate the accuracy of our estimators. Figure 3(a) illustrates that the stiffness es-
timator shows strong correlation with the JVP reference, increasing consistently with the reference
values. Also, Figure 3(b) demonstrates that the eigenvector estimator based on ERK drift differ-
ences exhibits higher alignment with the dominant eigenvector than the ERK solution difference,
particularly in stiff regions. These results confirm the reliability of our estimators for identifying the
dominant eigenvector direction as guidance.
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Table 3: Quantitative results of adaptation to
guidance methods.

#step Method FD-DINOv2 ↓ FID ↓ Precision ↑ Recall ↑ IS ↑

32 CFG 88.5 2.27 0.608 0.708 271
+ERK-Guid 83.8 2.27 0.610 0.706 275

32 Autoguidance 50.5 1.36 0.698 0.642 262
+ERK-Guid 47.7 1.35 0.692 0.630 267
+ERK-Proj 44.9 1.36 0.710 0.605 274

16 CFG 133.89 3.60 0.593 0.673 210
+ERK-Guid 125.57 3.20 0.605 0.673 215

16 Autoguidance 82.13 2.31 0.652 0.640 230
+ERK-Guid 75.16 1.92 0.669 0.643 236

Table 4: Quantitative results for plug-and-
play solver adaptation on ImageNet-64 and
FFHQ-64.

Dataset ImageNet 64×64 FFHQ 64×64
NFEs 6 8 10 6 8 10

Heun 89.63 37.65 16.46 142.4 57.21 29.54
+ ERK-Guid 85.19 35.92 13.85 132.8 54.73 23.38

DPM-Solver 44.83 12.42 6.84 83.17 22.84 9.46
+ ERK-Guid 31.59 10.58 6.54 49.0 10.44 4.64

DEIS 12.57 6.84 5.34 12.25 7.59 5.56
+ ERK-Guid 9.56 6.25 4.89 9.96 6.04 4.47

5.2 EFFECTIVENESS OF THE GUIDANCE

Table 2 summarizes quantitative results on ImageNet 512×512 with EDM2 and the Heun sampler.
We take wstiff = 0 as the baseline without guidance. As the guidance scale increases, FD-DINOv2
consistently decreases and reaches its best at wstiff = 2.0, yielding 82.8 compared to the baseline
90.1. Importantly, this fidelity gain is achieved while keeping FID competitive and consistently
improving Precision, Recall, and Inception Score, indicating that our update strengthens fidelity
without sacrificing diversity or alignment. The advantage becomes more pronounced under fewer
sampling steps, where truncation errors dominate. With 16 steps, FD-DINOv2 improves from 97.5
to 90.5 and FID from 2.79 to 2.66, accompanied by gains in Precision and Inception Score. At 8
steps, the effect is even stronger: FD-DINOv2 drops from 161.2 to 148.3, FID from 7.06 to 5.31,
with substantial boosts in Precision, Recall, and Inception Score. Overall, these results demonstrate
that ERK-Guid effectively mitigates error accumulation in stiff regions, delivering consistent im-
provements across settings and providing particular advantages in low-step regimes, all without any
additional training or model evaluations.

5.3 ABLATION ON GUIDANCE DESIGN

We conduct an ablation study on two design choices from Eq. 21: the confidence gate β (controlled
by threshold wcon) and the scaling form applied to z. When the estimated stiffness is below wcon,
the confidence gate suppresses our guidance update, while the scaling function regulates the update
magnitude for stability.
Confidence gate β. Figure 4(a) investigates the effect of varying wcon. A higher threshold activates
guidance only in very stiff regions, leading to infrequent corrections and limited improvements in
FD-DINOv2. As the threshold decreases, guidance is applied more often and FD-DINOv2 steadily
improves, but excessively small thresholds eventually degrade FID. These results indicate that a
moderate threshold provides the best trade-off between fidelity gains and stable FID. Moreover, Fig-
ure 5 provides a grid-search analysis over wstiff and threshold wcon, illustrating robust trends across
hyperparameter choices and confirming that ERK-Guid maintains stable improvements over a wide
range of settings.
Scaling function for z. Figure 4(b) compares the exponential-like scaling α(z) with two alterna-
tives, |z| and z2. Among them, z2 consistently attains lower FD-DINOv2 at comparable or better
FID, achieving the best trade-off by avoiding excessive growth under estimation errors. In contrast,
α(z) introduces instability and degrades FD-DINOv2, while |z| ensures stability but yields limited
gains. These results demonstrate that the quadratic form z2 provides a robust scaling that preserves
stability while improving fidelity.

5.4 GUIDANCE COMPATIBILITY AND SOLVER PLUG-AND-PLAY SOLVER ADAPTATION

In this section, we highlight two key properties of ERK-Guid: (i) its compatibility with existing
model-based guidance methods, and (ii) its plug-and-play adaptability to various solvers.
Guidance compatibility. We examine whether ERK-Guid can be combined with existing guidance
schemes. Under the predictor–corrector view Bradley & Nakkiran (2024), guidance methods act
as correctors. Diffusion sampling errors arise from two sources: solver error (LTE) and model er-
ror. ERK-Guid targets LTE, whereas CFG and Autoguidance target model error. Motivated by this
complementarity, we combine CFG and Autoguidance with ERK-Guid and ERK-Proj. ERK-Proj
is a light extension that simply interpolates between model-error–based and LTE-based corrections,
aiming to reduce both simultaneously. Additional details are provided in Appendix B.2. In Table 3,
we show that our correction consistently strengthens model-based guidances, indicating strong ex-
tensibility to other guidance methods.
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A massive dragon breathing a stream of bright fire in a dark canyon, 
glowing scales and sharp wing edges, cinematic lighting.

A hyper-realistic Iron Man suit with crisp metallic reflections and 
glowing arc reactor in a dark hangar.

DPM-Solver DPM-Solver + ERK-Guid (Ours)

Figure 6: Qualitative comparison on PixArt-α Chen et al. (2023) We perform text-to-image gen-
eration to compare DPM-Solver with our ERK-Guid. As shown in the blue zoomed-in regions,
ERK-Guid captures fine semantic details more accurately.

Plug-and-play adaptation. Similar to other guidance methods, ERK-Guid can be applied to various
solvers as a plug-and-play correction module. To demonstrate its effectiveness and broad applicabil-
ity, we evaluate ERK-Guid on higher-order solvers, including Heun’s method Hairer et al. (1993),
DPM-Solver Lu et al. (2022), and DEIS Zhang & Chen (2023) on ImageNet Deng et al. (2009) and
FFHQ Karras et al. (2019) at 64 × 64 resolution. Table 4 demonstrates that combining ERK-Guid
with solver methods consistently improves performance across all NFEs on both datasets. These
results highlight the robust plug-and-play capability of ERK-Guid and its effectiveness even when
paired with higher-order ODE solvers. Additional details are provided in Appendix B.4 and Ta-
ble 7. Moreover, Figure 6 demonstrates that ERK-Guid delivers strong qualitative improvements
on PixArt-α Chen et al. (2023), built upon a Diffusion Transformer (DiT) Peebles & Xie (2023)
backbone, further highlighting its architectural generalization capability.

6 CONCLUSION

In this work, we propose ERK-Guid, a stiffness-aware diffusion sampling scheme based on Em-
bedded Runge–Kutta guidance. Motivated by the observation that local truncation error aligns with
the dominant eigenvector in stiff regions, we introduce cost-free estimators for both stiffness and
eigenvectors using ERK solution and drift discrepancies. Building on these estimators, we design
a stabilized guidance framework that balances theoretical insight with practical robustness. Experi-
ments on synthetic data and ImageNet demonstrate that ERK-Guid delivers an orthogonal guidance
signal without additional neural evaluations, establishing an efficient paradigm for improving diffu-
sion model sampling.
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REPRODUCIBILITY STATEMENT

In Section 4.3, we describe our pipeline design, and the Appendix C provides algorithmic details
and full pseudocode. Appendix B documents experimental settings and hyperparameters. Together,
we offer sufficient information for reproducibility of ERK-Guid.

ETHICS STATEMENT

Our method relies on pretrained generative models, which may produce harmful or biased outputs
depending on the conditioning input. This risk is inherent to the underlying pretrained models, and
we emphasize the need for responsibility.
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A DERIVATION

A.1 DERIVATION OF THE EXACT ONE STEP INCREMENT

We provide a detailed derivation of Eq. 13, i.e., the exact one step increment under the local lin-
earization. Recall that around xσi

, the score-based vector field is approximated as

dxσ

dσ
≈ fxσi

+ Jxσi
(xσ − xσi

), (22)

where we denote Jxσi
= J(xσi

;σi) and fxσi
= f(xσi

;σi). This yields a linear ODE of the form

dy

dσ
= Jxσi

y + fxσi
, y(σi) = 0, (23)

where we introduced the shifted variable y(σ) := xσ − xσi . Let h := σi − σi+1 > 0 denotes the
step size. Our goal is to compute y(σi − h) = xσi+1 − xσi .

Since Jxσi
is the Hessian of log p(xσi

;σi) under C2 smoothness, it is symmetric and hence admits
the eigendecomposition

Jxσi
= V ΛV ⊤, Jxσi

vk = λkvk, ∥vk∥2 = 1, (24)

where V = [v1, . . . ,vd] is orthogonal and Λ = diag(λ1, . . . , λd).

Let define the state which projected to the eigenbasis space:

u(σ) := V ⊤y(σ), g := V ⊤fxσi
, gk = g⊤ek = ⟨fxσi

,vk⟩. (25)

where ⟨·, ·⟩ refers inner product. Since V is constant on this interval (by the local linearization
assumption):

du

dσ
=

d

dσ

(
V ⊤y(σ)

)
= V ⊤ dy

dσ
(26)

= V ⊤(Jxσi
y + fxσi

)
(27)

= V ⊤(V ΛV ⊤)y + V ⊤fxσi
(28)

= (V ⊤V ) Λ (V ⊤y) + g (29)
= Λu+ g. (30)

Therefore the system decouples into d independent scalar ODEs because Λ is diagonal.

Writing the k-th coordinate explicitly,

duk

dσ
= λkuk + gk, uk(σi) = 0. (31)

It has the closed-form solution:

uk(σ) =
eλk(σ−σi) − 1

λk
gk, if λk ̸= 0, (32)

and

uk(σ) = (σ − σi) gk, if λk = 0. (33)

Both cases can be compactly written as

uk(σ) =
eλk(σ−σi) − 1

λk
gk, (34)

interpreting the fraction as its limit when λk → 0.
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Let zk := λk(σi+1 − σi) = −hλk. Since y = V u, we obtain

xσi+1
− xσi

= y(σi − h) = V u(σi − h) (35)

= −hV
d∑

k=1

ezk − 1

zk
gkek (36)

= −h
d∑

k=1

ezk − 1

zk
gkV ek (37)

= −h
d∑

k=1

ezk − 1

zk
⟨fxσi

,vk⟩vk, (38)

which is the desired expression in Eq. 13.

A.2 DERIVATION OF PROPOSITION 1

In Section 4.2 of the main paper, we introduce a cost-free stiffness estimator that exploit the ERK
difference without additional evaluations. We provide the proof of Proposition 1, which shows that
proposed estimator can approximate the magnitude of the dominant eigenvalue.

Proposition 1 Let J be the Jacobian matrix of the drift function f(xσi ;σi) at xσi
. Assume that the

ERK solution difference xσi
−xEuler

σi
is sufficiently small and aligned with the eigenvector associated

with the dominant eigenvalue λ of J in magnitude, in the sense that∥∥J(xσi
− xEuler

σi
)
∥∥ = |λ|

∥∥xσi
− xEuler

σi

∥∥+O(
∥∥xσi

− xEuler
σi

∥∥2).
Then the dominant eigenvalue λ admits the approximation

|λ| =
∥∥f(xσi

; σi)− f
(
xEuler
σi

; σi

) ∥∥
2∥∥xσi

− xEuler
σi

∥∥
2

+O(
∥∥xσi

− xEuler
σi

∥∥).
Proof 1 Let δ := xσi

− xEuler
σi

̸= 0 and define the Jacobian

J :=
∂f

∂x

(
xσi

; σi

)
.

A first-order Taylor expansion of f(x;σi) about xσi
gives

f
(
xEuler
σi

; σi

)
= f

(
xσi

; σi

)
− Jδ +O

(
∥δ∥2

)
, (39)

where the remainder is understood in the chosen vector norm. Rearranging Eq. 39 and taking norms
on both sides yields

∥Jδ∥ =
∥∥f(xσi

; σi)− f(xEuler
σi

; σi)
∥∥+O

(
∥δ∥2

)
. (40)

By the alignment hypothesis,
∥Jδ∥ = |λ| ∥δ∥+O

(
∥δ∥2

)
, (41)

where λ is the dominant eigenvalue of J . Substituting Eq. 41 into Eq. 40 and dividing by ∥δ∥ ̸= 0
gives

|λ| =
∥∥f(xσi

; σi)− f(xEuler
σi

; σi)
∥∥∥∥xσi

− xEuler
σi

∥∥ +O
(
∥δ∥

)
, (42)

establishing the claimed approximation of the dominant eigenvalue.
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A.3 DERIVATION OF THE ERK-GUID FROM EQ. 14

We present a detailed derivation showing how the ERK-Guid (Eq. 21) can be obtained from the local
truncation error of Heun’s method (Eq. 14). Let assume v1 refers ground truth dominant eigenvector
in Eq. 8. As discussed in Section 4.1, when the dominant eigenvector v1 governs local dynamics,
the LTE of Heun’s method is dominated along the direction of v1:

LTEHeun := xσi+1
− xHeun

σi+1
≈ −hα(z1)

〈
fxσi

, v1

〉
v1. (43)

Rearranging terms gives
xσi+1

≈ xHeun
σi+1
− hα(z1)

〈
fxσi

, v1

〉
v1 (44)

Because α(z) = ez−1
z − 1− 1

2z, its Taylor expansion at z = 0 yields

α(z1) =
1

6
z21 +O(z31), (45)

and substituting this Taylor approximation into Eq. 44 gives

xσi+1
≈ xHeun

σi+1
− 1

6
h z21

〈
fxσi

, v1

〉
v

1
. (46)

We interpret this additive term as a guidance correction and introduce a tunable scale wstiff as follows

x̂Heun
σi+1

= xHeun
σi+1

− h z2
〈
fxσi

, v1

〉
v1 , z := wstiff z1, (47)

where constant 1
6 is absorbed into wstiff.

Since neither the dominant eigenvector v1 nor the eigenvalue λ is available in practice, we replace
them with our cost-free estimators v̂1 and stiffness ρ̂ ≈ |λ1|. This yields the practical ERK-Guid
update:

x̂Heun
σi+1

= xHeun
σi+1

− h z2
〈
fxσi

, v̂xσi

〉
v̂xσi

, z ≈ wstiff hρ̂. (48)

Since the derivation assumes operation within stiff regions, we introduce a step function β that
activates the guidance only when the estimated stiffness exceeds a threshold, i.e., ρ̂ > wcon.

x̂Heun
σi+1

= xHeun
σi+1

− hβ z2
〈
fxσi

, v̂xσi

〉
v̂xσi

, z ≈ wstiff hρ̂. (49)

A.4 RESEMBLANCE BETWEEN OUR ERK-GUID AND OTHER GUIDANCES

We provide the alternative (but equivalent) formulation of our proposed method as a common form
of guidance schemes. In Eq. 21, the ERK-Guid updates the Huen prediction as

x̂Heun
σi+1

= xHeun
σi+1

− hβ z2
〈
fxσi

, v̂xσi

〉
v̂xσi

,

where h = σi− σi+1, β := 1{ρ̂xσi
>wcon}, and z = wstiff h ρ̂xσi

. We abbreviate the drift as fxσi
and

eigenvector estimator v̂xσi
, where the latter is defined by Eq. 17 as following:

v̂stiff(xσi , σi) :=
f(xσi

; σi)− f
(
xEuler
σi

; σi

)∥∥f(xσi ; σi)− f
(
xEuler
σi

; σi

) ∥∥
2

.

Substituting this expression into ERK-Guid in Eq. 21 yields

x̂Heun
σi+1

= xHeun
σi+1

−
hβ z2

〈
fxσi

, v̂xσi

〉∥∥f(xσi
; σi)− f

(
xEuler
σi

; σi

) ∥∥
2

(
f(xσi

; σi)− f
(
xEuler
σi

; σi

))
. (50)

For simplicity, we introduce an adaptive scaling function

γ(xσi ,x
Euler
σi

, σi) =
−h β z2

〈
fxσi

, v̂xσi

〉∥∥f(xσi
; σi)− f

(
xEuler
σi

; σi

) ∥∥
2

. (51)

The ERK-Guid update can then be rewritten as

x̂Heun
σi+1

= xHeun
σi+1

+ γ(xσi
,xEuler

σi
, σi)

(
f(xσi

; σi)− f
(
xEuler
σi

; σi

))
. (52)

The above equation clearly shows that our method is a guidance with an adaptive guidance scaling
γ.
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B EXPERIMENTAL DETAILS

B.1 2D TOY EXPERIMENT

For the toy experiments 4.1, we explicitly construct the Jacobian by applying Jacobian–vector prod-
ucts (JVPs) to one-hot basis vectors, and compute its eigenvalues and eigenvectors directly. Since
eigenvectors are sign-ambiguous, we orient them to point in the same half-space as the drift at each
state, following Eq. 14. Sampling is performed without any additional guidance and always with
the ground-truth score function. Because the exact ground-truth solution is not available, we ap-
proximate it by subdividing each original step into 30 smaller substeps with a much finer step size.
The local truncation error (LTE) is defined relative to the Heun method under this reference. Fig-
ures 2(a,b) are obtained by partitioning into stiffness bins and plotting the median cosine similarity
within each bin.

B.2 MAIN EXPERIMENTS

We estimate the dominant eigenvector and the stiffness using JVP-based power iteration with a ran-
dom initialization and 300 iterations per timestep. Figure 8 visualizes the per-timestep convergence
and indicates that 300 iterations are sufficient. As in the toy setup, we fix the eigenvector orientation
via Eq. 14 so that it points toward the local drift; Figure 3(b) reports the median cosine similarity
under this convention. For Table 2, we use the confidence threshold wcon=0.5. Figure 4(a) uses
wstiff=1.5, and Figure 4(b) uses wcon=0.5. In Figure 6, we conduct 15 sampling steps for text-to-
image generation on PixArt-α Chen et al. (2023) which adopts Diffusion Transformer (DiT) Peebles
& Xie (2023) architecture.

Guidance Integration with CFG and Autoguidance. In Section 5.4, we introduce guidance com-
patibility of ERK-Guid and ERK-Proj. We define the standard model-based guidance term, which
applies to methods such as CFG and Autoguidance as follows

g := fmain(xσi ; σi)− fguiding(xσi ; σi) . (53)

Model-based Guidance with ERK-Guid. Let the combined guidance method be expressed by
Eq. 53. To incorporate ERK-Guid, we simply replace the original drift f with the guided drift as
follows

fw(xσi
; σi) : = fmain(xσi

; σi) + (w − 1)g, (54)

where w is scaling hyperparameters. Then, we compute the eigenvector estimator and stiffness
estimator as following:

v̂w
stiff(xσi

, σi) : =
fw(xσi

; σi)− fw
(
xEuler
σi

; σi

)∥∥fw(xσi ; σi)− fw
(
xEuler
σi

; σi

) ∥∥
2

, (55)

ρ̂wstiff(xσi , σi) : =

∥∥fw(xσi
; σi)− fw

(
xEuler
σi

; σi

) ∥∥
2∥∥xσi

− xEuler
σi

∥∥
2

. (56)

Finally, we constitute our ERK-Guid as follows

x̂Heun
σi+1

= xHeun
σi+1

− hβ z2
〈
fwxσi

, v̂w
xσi

〉
v̂w
xσi

. (57)

Model-based Guidance with ERK-Proj. ERK-Proj interpolates between model-error–based and
LTE-based corrections, aiming to reduce both simultaneously. ERK-Proj is a light extension that
simply interpolates between these two correction signals, aiming to reduce both errors simultane-
ously. ERK-Proj is defined as follows

η : = e−wstiff ρ̂stiff , (58)

ĝ : = ηg +
(
1− η

)
⟨g, v̂stiff⟩ v̂stiff , (59)

fw(xσi ; σi) : = fmain(xσi ; σi) + (w − 1)ĝ, (60)

where η adjusts the guidance scaling by stiffness estimator to interpolate the two guidance signals.
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Table 5: Wall-clock time (seconds per im-
age) on a single RTX 3090 GPU.

Method Avg Min Max
Heun 2.777 2.775 2.782
ERK-Guid (Ours) 2.794 2.785 2.811

Table 6: Memory consumption for generating
a single image.

Method Avg (MB)

Heun 1906.82
ERK-Guid (Ours) 1906.82

Computational cost. All main experiments were run on 8× NVIDIA RTX 3090 GPUs. In Table 5
and Table 6, we evaluate the wall-clock time and memory overhead on the ImageNet 512×512
dataset using a single RTX 3090 GPU with batch size 1, comparing ERK-Guid against Heun’s
method. ERK-Guid incurs only a slight increase in wall-clock time, and its memory consumption
remains identical to that of Heun’s method.

B.3 CHOICE OF ABLATION FUNCTIONS

We were concerned about excessive amplification from the original factor α(z), whose exponential
growth makes it sensitive to estimation errors. Therefore, we replaced it with the lowest-order term
of its Taylor expansion around z=0, i.e., a quadratic scaling z2 (See Figure 7). As an ablation, we
also tested an even lower-growth alternative, |z|, which is symmetric and linear in the magnitude
of z. This pair (z2 vs. |z|) lets us check whether stability comes simply from curbing amplification
(linear) or from staying close to the local behavior of α(z) (quadratic).

Table 7: Guidance configuration for Heun, DPM-Solver, and DEIS.

Solver Pair of states h β
Heun xσi

, xEuler
σi

σi − σi+1 {0, 1}
DPM-Solver (2S) xσi+δ, xσi σi − σi+1 {0, 1}
DEIS xσi , xσi−1 σi−1 − σi {0,−1}

B.4 PLUG-AND-PLAY MODULE FOR ADVANCED SOLVERS

In main paper Section 5.4, we present additional experimental results that confirm the effectiveness
of our method combined with various solvers as a guidance/corrector.

xsolver
σi+1

= solver(xσi
, σi, f) (61)

x̂solver
σi+1

= xsolver
σi+1
− hβz2

〈
f(xσi

, σi), v̂
〉
v̂ (62)

DPM-Solver (2S) Lu et al. (2022) computes an intermediate state during its two-stage update. We
denote this intermediate state as xσi+δ , and construct the pair as {xσi+δ, xσi

}. DEIS Zhang &
Chen (2023) computes its update using previous states in a multi-step formulation. We use the most
recent previous state xσi−1

to construct the pair as {xσi
, xσi−1

}.

Table 8: Evaluation of adaptive step-size control under different stiffness thresholds. (A) ERK-
Guid and (B) Heun are not adpot adaptive step-size. (C–G) adapt step-size using thresholds τ =
0.5, 1, 2, 5, 10.

Adaptive step-size Threshold NFE (Avg.) ↓ FD-DINOv2↓ FID ↓
(A) ERK-Guid (Ours) ✗ – 63 86.2 2.56

(B) Heun ✗ – 63 90.1 2.58
(C) ✓ τ = 0.5 90.7 88.9 2.57
(D) ✓ τ = 1.0 85.5 89.4 2.57
(E) ✓ τ = 2.0 79.5 90.0 2.58
(F) ✓ τ = 5.0 67.6 90.1 2.58
(G) ✓ τ = 10.0 64.5 90.1 2.58
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Table 9: Quantitative results of predictor-corrector and ERK-Guid (Ours).

Method Stochasticity r NFE FID FD-DINOv2
✓ 0.05 64 2.65 91.5
✓ 0.10 64 2.66 93.0

Predictor-Corector ✓ 0.15 64 2.90 98.9
Song et al. (2021b) ✗ 0.01 64 2.61 90.6

✗ 0.02 64 2.73 87.4
✗ 0.03 64 3.33 88.6

ERK-Guid (Ours) ✗ - 63 2.58 83.7

Figure 7: The behavior of the funcition y = α(x) and y = 1
6x

2

B.5 COMPARISON WITH ADAPTIVE STEP SIZE

In Table 8, we analyze our proposed method with a classical adoption of stiffness during diffusion
sampling. For experimental setting, we utilze a pre-trained EDM2 network on ImagNet-512. We
use the same EDM discretization, and halved the step size whenever the stiffness estimator exceeded
thresholds of 0.5, 1, 2, 5, or 10. Although a small threshold (e.g., τ = 0.5) produced modest gains
in FID and FD-DINOv2, it requires 1.44× more NFEs than ERK-Guid, making it substantially less
efficient. Our method still achieved the best performance and efficiency compared to the baseline
with various adaptive step-size.

B.6 COMPARISON WITH THE PREDICTOR–CORRECTOR SAMPLER

We evaluate the predictor–corrector (PC) sampler from Song et al. (2021b) by applying its corrector
step after each Heun update. Since the corrector in Song et al. (2021b) is designed for the reverse
SDE rather than an ODE, we also consider a deterministic variant obtained by removing its noise
term. We vary the hyperparameter r and measure FID and FD-DINOv2 under a comparable NFE.
In Table 9, ERK-Guid achieves strong performance compared to both variants of the PC sampler.
The stochastic PC sampler consistently degrades performance across both metrics. In contrast, the
deterministic PC sampler of Song et al. (2021b) exhibits a clear trade-off: as the correction scale r
increases, FD-DINOv2 increases while FID decreases.

C ALGORITHM

In main paper Section 4.3, we introduce our ERK-Guid framework. For clarify our method, we
provide Algorithm 1 in this part.
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Algorithm 1 Sampling procedure with ERK-Guid
1: procedure OURS(fθ(x;σ), {σi}i=0,...,N , wstiff, wcon, ϵ)
2: sample x0 ∼ N (0, σ2

0I) ∈ RH×W×C

3: for i← 0 to N − 1 do
4: fi ← fθ(xi;σi)
5: h← σi − σi+1

6: if i ̸= 0 then
7: ∆fi ← fi − fEuler

i

8: ∆xi ← xi − xEuler
i

9: vi, ρ̂ ← ∆fi
||∆fi|| ,

||∆fi||
||∆xi||

10: β, z ← (ρ̂ > wcon) , wstiff hρ̂
11: gi ← β z2 (f 1

i · vi) vi

12: else
13: gi ← 0
14: end if
15: xEuler

i+1 ← xi − hfi
16: if i ̸= N then
17: fEuler

i+1 ← fθ(x
Euler
i+1 ;σi+1)

18: xHeun
i+1 ← xi − h

(
1
2 fi +

1
2 f

Euler
i+1

)
19: xi+1 ← xHeun

i+1 − hgi

20: Q buffer←−−− xEuler
i+1 , f

Euler
i+1

21: else
22: xi+1 ← xEuler

i+1
23: end if
24: end for
25: return xN

26: end procedure

Figure 8: Convergence of stiffness estimation under JVP power iteration. The plot shows the
absolute error between the estimated stiffness at iteration k and the final converged value. The solid
line denotes the median across all seeds and timesteps, while the dashed lines indicate the 25th and
75th percentiles. Errors decrease rapidly and stabilize, demonstrating reliable convergence of the
iteration procedure.
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Figure 9: Qualitative results of ERK-Guid across adjusting guidance scale.

D LLM USAGE

We only used a large language model as a writing assistant to refine phrasing, grammar, and clarity.
It was not used for technical content, experiments, analyses, or results.

E QUALITATIVE RESULTS

In this section, we present qualitative results of ERK-Guid on ImageNet 512×512. Figures 9 and 10
show that applying ERK-Guid enhances image fidelity when sufficient guidance is applied. These
results demonstrate that our method effectively mitigates solver-induced errors during conditional
updates along the sampling trajectory.
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Figure 10: Qualitative results of ERK-Guid across guidance scales.
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