

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ERROR AS SIGNAL: STIFFNESS-AWARE DIFFUSION SAMPLING VIA EMBEDDED RUNGE-KUTTA GUID- ANCE

006
007 **Anonymous authors**
008 Paper under double-blind review

011 ABSTRACT

013 Classifier-Free Guidance (CFG) has established the foundation for guidance
014 mechanisms in diffusion models, showing that well-designed guidance proxies
015 significantly improve conditional generation and sample quality. Autoguidance
016 (AG) has extended this idea, but it relies on an auxiliary network and leave solver-
017 induced errors unaddressed. In stiff regions, the ODE trajectory changes sharply,
018 where local truncation error (LTE) becomes a critical factor to deteriorate sample
019 quality. Our key observation is that these errors align with the dominant eigen-
020 vector, motivating us to target the solver-induced error as a guidance signal. We
021 propose **Embedded Runge–Kutta Guidance** (ERK-Guid), which exploits detected
022 stiffness to reduce LTE and stabilize sampling. We theoretically and empirically
023 analyze stiffness and eigenvector estimators with solver errors to motivate the
024 design of ERK-Guid. Our experiments on both synthetic datasets and popular
025 benchmark dataset, ImageNet, demonstrate that ERK-Guid consistently outper-
026 forms state-of-the-art methods.

028 1 INTRODUCTION

030 Generative models Kingma & Welling (2014); Rezende & Mohamed (2015); Heusel et al. (2017);
031 Lipman et al. (2023); Ho et al. (2020); Song et al. (2021b); Goodfellow et al. (2020) aim to approx-
032 imate complex data distributions and generate new samples, enabling a wide range of applications
033 in image synthesis Brock et al. (2019); Rombach et al. (2022); Zhang et al. (2023); Kawar et al.
034 (2023), editing Brooks et al. (2023), and video generation Gupta et al. (2024). Among them, diffu-
035 sion models Ho et al. (2020); Song et al. (2021b); Karras et al. (2022) have emerged as a dominant
036 paradigm, achieving strong performance across diverse generation tasks Gupta et al. (2024); Karras
037 et al. (2024a). They define a forward process that gradually perturbs data into Gaussian noise, while
038 a neural network is trained to predict the score function of each noisy distribution. This score esti-
039 mate parameterizes the reverse-time dynamics, allowing data to be reconstructed through iterative
040 denoising. Sampling is commonly formulated as solving an ordinary differential equation (ODE)
041 or stochastic differential equation (SDE), where the drift is defined by the learned network Karras
042 et al. (2022); Song et al. (2021a); Lu et al. (2022). As a result, the quality of generated samples de-
043 pends not only on model accuracy but also on the numerical solver used to approximate the reverse
044 dynamics, which can significantly influence fidelity and stability.

045 Guidance mechanisms emerged to improve both sampling fidelity and perceptual quality by intro-
046 ducing suitable proxies for steering the sampling trajectory. The de facto standard, Classifier-Free
047 Guidance (CFG) Ho & Salimans (2022), combines unconditional and conditional predictions to
048 strengthen alignment and enhance image quality. Predictor-Corrector Guidance (PCG) Bradley
049 & Nakkiran (2024) further refines this view by interpreting CFG as a predictor–corrector update
050 that extrapolates between these predictions. Autoguidance (AG) Karras et al. (2024a) follows a
051 similar principle by contrasting outputs from models of different capacities, using their discrep-
052 ancies to identify regions where model-induced errors are significant. However, subsequent meth-
053 ods Kynkäanniemi et al. (2024); Sadat et al. (2024); Zheng & Lan (2024); Zhao et al. (2025), rely
 solely on such model-based differences, overlooking the numerical errors arising from the solver
 itself as potential guidance signals. We observe that, in stiff regions of the diffusion ODE, the

054 solver’s local truncation error (LTE) aligns with the dominant eigenvector of the drift, revealing a
 055 numerically grounded proxy distinct from model-space signals and motivating our approach.
 056

057 In this work, we propose **Embedded Runge–Kutta based Guidance (ERK-Guid)**, a novel approach
 058 that mitigates solver-induced local truncation error (LTE) during diffusion sampling by estimating
 059 the dominant eigenvector in stiff regions. In diffusion ODEs, stiffness arises when drift directions
 060 change rapidly, and we observe that the resulting LTE consistently aligns with the dominant eigen-
 061 vector under such conditions. To exploit this property, we introduce two cost-free estimators derived
 062 from the Embedded Runge–Kutta (ERK) formulation: *ERK solution difference* (between Heun and
 063 Euler solutions) and *ERK drift difference* (between their corresponding drifts). The ratio of their
 064 norms serves as **a stiffness estimator** to identify regions of high stiffness, while the ERK drift differ-
 065 ence further provides **an eigenvector estimator** to approximate the dominant eigenvector direction.
 066 ERK-Guid transforms theoretical insights on stiffness and the dominant eigenvector alignment into
 067 a stable, cost-free guidance mechanism that effectively reduces solver-induced errors. Ultimately,
 068 ERK-Guid applies guidance along this estimated direction, offering a stable and effective proxy that
 069 reduces solver-induced errors without additional computational cost.

070 Our contributions are summarized as follows:
 071

- 072 • We introduce the Embedded Runge–Kutta Guidance (ERK-Guid), a stiffness-aware guid-
 073 ance method that leverages solver errors as informative signals for diffusion sampling.
- 074 • We propose cost-free estimators for stiffness detection and dominant eigenvector estima-
 075 tion, derived from ERK solution and drift differences to determine the guidance direction.
- 076 • We design a stabilized guidance scheme that bridges theoretical insights with practical
 077 robustness, ensuring robustness without additional network evaluations.
- 078 • We demonstrate through synthetic and ImageNet experiments that ERK-Guid delivers an
 079 orthogonal guidance signal and consistently improves over strong baselines.

080 2 RELATED WORKS

081 **ODE solvers in diffusion models.** A major research trend in diffusion models has been to acceler-
 082 ate sampling by improving ODE solvers that approximate the underlying probability flow dynamics
 083 more efficiently. Early work such as DDIM Song et al. (2021a) reinterprets the stochastic sam-
 084 pling process of DDPM Ho et al. (2020) as a deterministic ODE trajectory, enabling significantly
 085 fewer sampling steps **without retraining**. Building on this view, PNDM Liu et al. (2022) introduces
 086 a **pseudo-numerical multistep** method that generalizes DDIM beyond first-order updates. Subse-
 087 quent studies further leverage the structure of diffusion dynamics. DEIS Zhang & Chen (2023)
 088 employs exponential integrators to reduce discretization error, DPM-Solver Lu et al. (2022) derives
 089 high-order solvers with coefficients designed to minimize local truncation error, and UniPC Zhao
 090 et al. (2023) unifies predictor–corrector schemes under a single framework. More recently, DPM-
 091 Solver-v3 Zheng et al. (2023) incorporates empirical model statistics into solver parameterization
 092 to **jointly address discretization and model approximation errors**. Bespoke solver approaches
 093 develop customized solver designs for a fixed pre-trained model, encompassing methods that optimize
 094 time-step schedules Xue et al. (2024) and solver parameters Wang et al. (2025); Shaul et al. (2024).
 095 In contrast to these approaches, which redesign or replace the ODE solver, ERK-Guid operates in
 096 a fundamentally different regime. We keep the solver fixed and instead leverage the solver’s own
 097 error: the discrepancy between low- and high-order solver updates. By using this discrepancy as
 098 a directional correction, ERK-Guid provides solver-aware guidance without modifying the solver’s
 099 numerical structure.

100 **Adaptive guidance computation.** In diffusion models, Classifier-Free Guidance (CFG) Ho & Sal-
 101 imans (2022) has become the de facto standard for improving fidelity and condition alignment by
 102 contrasting conditional and unconditional denoisers. Despite its success, CFG often suffers from
 103 overshoot, loss of diversity, and entangled fidelity–diversity trade-offs, **limiting its flexibility across**
 104 **noise levels**. Autoguidance (AG) Karras et al. (2024a) improves robustness by replacing the un-
 105 conditional branch with a weaker model, correcting model-induced errors without sacrificing variation.
 106 Beyond these canonical approaches, several adaptive guidance strategies have been explored. Guid-
 107 ance Interval Kynkänniemi et al. (2024) activates guidance only at mid-range noise levels. Other
 108 works Sadat et al. (2024); Zheng & Lan (2024) mitigate oversaturation under strong guidance, and

108 DyDiT Zhao et al. (2025) dynamically adjusts model capacity across timesteps. These advances
 109 demonstrate how CFG has shaped a broad family of model-based guidance mechanisms. In contrast,
 110 ERK-Guid employs a solver-driven proxy derived from ERK discrepancies, yielding an orthogonal
 111 guidance signal yet complementary to model-based guidance.
 112

113 3 PRELIMINARIES

115 **Denoising Diffusion Models.** Denoising diffusion models Ho et al. (2020); Song et al. (2021b);
 116 Karras et al. (2022) generate samples by simulating the reverse-time dynamics of a predefined
 117 stochastic differential equation (SDE). The SDE gradually transforms the data distribution p_{data}
 118 into a perturbed distribution $p(\mathbf{x}; \sigma)$. Following EDM2 Karras et al. (2024b), the perturbed dis-
 119 tribution is defined as the convolution of p_{data} with Gaussian noise Kynkänniemi et al. (2024), i.e.,
 120 $p(\mathbf{x}; \sigma) = p_{\text{data}}(\mathbf{x}) * \mathcal{N}(\mathbf{x}; \mathbf{0}, \sigma^2 \mathbf{I})$, where $\sigma \in [0, \sigma_{\max}]$.

121 The reverse-time SDE can be equivalently reformulated as an ordinary differential equation
 122 (ODE) Song et al. (2021b), leading to a deterministic sampling process $\mathbf{x}_0 \sim p_{\text{data}}$, that solves
 123 the following initial value problem:
 124

$$125 \frac{d\mathbf{x}_\sigma}{d\sigma} = \mathbf{f}(\mathbf{x}_\sigma; \sigma) = -\sigma \nabla_{\mathbf{x}_\sigma} \log p(\mathbf{x}_\sigma; \sigma), \quad \mathbf{x}_0 = \mathbf{x}_{\sigma_{\max}} + \int_{\sigma_{\max}}^0 \left(\frac{d\mathbf{x}_\sigma}{d\sigma} \right) d\sigma, \quad (1)$$

127 where $\mathbf{f}(\mathbf{x}_\sigma; \sigma)$ denotes the drift function of the ODE, and \mathbf{x}_σ refers to the trajectory of the sample
 128 as a function of the noise level σ . The drift function is typically approximated by the learned model
 129 $\mathbf{f}_\theta(\mathbf{x}_\sigma; \sigma)$, which is trained via score-matching objectives Song et al. (2021b). Note that the initial
 130 state $\mathbf{x}_{\sigma_{\max}}$ can be approximately sampled from $\mathcal{N}(\mathbf{0}, \sigma_{\max}^2 \mathbf{I})$ when σ_{\max} is sufficiently large.
 131

132 In practice, the ODE cannot be solved analytically; numerical solvers are employed. To enable
 133 numerical integration, EDM2 Karras et al. (2024b) discretizes the interval into a sequence of noise
 134 levels $\{\sigma_0, \dots, \sigma_N\}$, where N is the total number of integration steps. Note that $[\sigma_i, \sigma_{i+1}]$ denotes
 135 the i -th integration interval, with $\sigma_0 = \sigma_{\max}$ and $\sigma_N = 0$. A numerical solver is then applied to each
 136 interval to approximate the following integration:
 137

$$\mathbf{x}_{\sigma_{i+1}} = \mathbf{x}_{\sigma_i} + \int_{\sigma_i}^{\sigma_{i+1}} \mathbf{f}(\mathbf{x}_\sigma; \sigma) d\sigma. \quad (2)$$

139 The Euler method Hairer et al. (1993), a widely used first-order solver, provides the following update
 140 and local truncation error (LTE):
 141

$$\mathbf{x}_{\sigma_{i+1}}^{\text{Euler}} = \mathbf{x}_{\sigma_i} - h \mathbf{f}(\mathbf{x}_{\sigma_i}; \sigma_i), \quad \text{LTE}^{\text{Euler}} = \mathbf{x}_{\sigma_{i+1}} - \mathbf{x}_{\sigma_{i+1}}^{\text{Euler}} = \mathcal{O}(h^2), lk \quad (3)$$

143 where $h := \sigma_i - \sigma_{i+1} > 0$ refers the step size. To reduce the local truncation error, higher-
 144 order solvers are commonly used. Heun’s method Hairer et al. (1993), based on the trapezoidal
 145 rule Hairer et al. (1993), introduces a correction to the Euler estimate and effectively incorporates
 146 implicit integration. Its update and LTE are given as follows:
 147

$$\mathbf{x}_{\sigma_{i+1}}^{\text{Heun}} = \mathbf{x}_{\sigma_i} - \frac{h}{2} (\mathbf{f}(\mathbf{x}_{\sigma_i}; \sigma_i) + \mathbf{f}(\mathbf{x}_{\sigma_{i+1}}^{\text{Euler}}; \sigma_{i+1})), \quad \text{LTE}^{\text{Heun}} = \mathbf{x}_{\sigma_{i+1}} - \mathbf{x}_{\sigma_{i+1}}^{\text{Heun}} = \mathcal{O}(h^3). \quad (4)$$

149 This can be interpreted as a second-order Runge–Kutta method and serves as the default solver
 150 throughout our work.
 151

152 **Embedded Runge–Kutta pair.** In Heun’s method, the Euler solution is computed first and then
 153 corrected. Thus, we obtain two solutions of different orders (Euler of order 1 and Heun of order 2)
 154 within a single step. This structure is referred to as an *embedded Runge–Kutta pair*, and their
 155 solution difference $\Delta^x = \mathbf{x}_{\sigma_{i+1}}^{\text{Heun}} - \mathbf{x}_{\sigma_{i+1}}^{\text{Euler}}$ is commonly used as a proxy for the local truncation
 156 error Hairer et al. (1993). In this paper, we refer to this difference as the **ERK solution difference**.
 157 We also define the **ERK drift difference** as the difference of the drift evaluated at the two solutions,
 158 $\Delta^f := \mathbf{f}(\mathbf{x}_{\sigma_{i+1}}^{\text{Heun}}; \sigma_{i+1}) - \mathbf{f}(\mathbf{x}_{\sigma_{i+1}}^{\text{Euler}}; \sigma_{i+1})$.
 159

160 **Stiffness.** Stiffness refers to the presence of both fast and slow dynamics within an ODE sys-
 161 tem Hairer & Wanner (1996). It is commonly encountered in physical simulations such as fluid
 162 dynamics. To ensure stability, numerical solvers are forced to reduce their step sizes, leading to
 163 increased function evaluations and higher computational cost. To handle this, previous adaptive

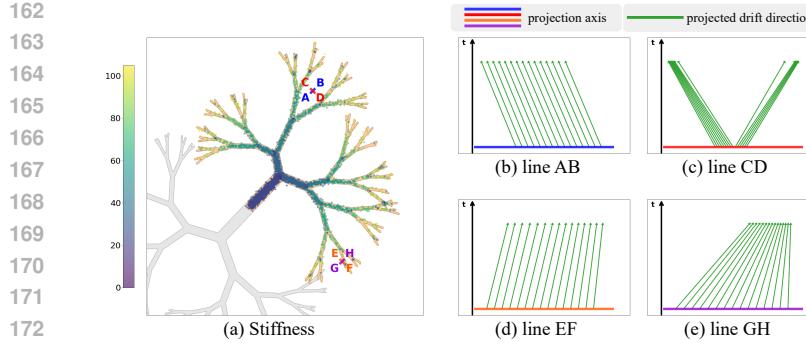


Table 1: **Quantitative comparison of local truncation error (LTE) and ERK solution difference.**

	LTE ↓	ERK solution diff ↓
AB	5.78e-06	6.18e-05
CD	7.22e-05	4.03e-04
Ratio	12.5×	6.52×

Figure 1: **Toy 2D example of stiffness and projected drift directions.** (a) We plot generated samples at the 28th step (out of 32) over the ground-truth distribution, colored by stiffness magnitude. (b, d) The projected drift directions remain nearly parallel, indicating low LTE and stable dynamics. (c, e) The drift directions spread into multiple orientations, reflecting high LTE and numerical instability. Table 1 compares (b) and (c), showing that parallel directions (AB) yield small errors, whereas divergent ones (CD) exhibit much larger LTE and ERK solution differences (12.5× and 6.52×, respectively).

solvers Petzold (1983); Shampine & Gear (1979) detect stiffness and dynamically adjust their integration behavior by refining step sizes or switching to implicit solvers.

Classically, stiffness is quantified by spectral properties of the Jacobian of the drift, such as the ratio between the largest and smallest eigenvalue magnitudes or, more simply, the maximum eigenvalue in magnitude Hairer & Wanner (1996).

$$J(\mathbf{x}_\sigma, \sigma) := \nabla_{\mathbf{x}} \mathbf{f}(\mathbf{x}_\sigma; \sigma), \quad (5)$$

$$\rho_{\text{stiff}}(\mathbf{x}_\sigma, \sigma) := \max_k |\lambda_k(J(\mathbf{x}_\sigma, \sigma))|, \quad (6)$$

where $\lambda_k(J)$ denotes the k -th eigenvalue of the matrix J . We denote by $\mathbf{v}_{\text{stiff}}(\mathbf{x}_\sigma, \sigma)$ a unit dominant-eigenvector associated with $\rho_{\text{stiff}}(\mathbf{x}_\sigma, \sigma)$.

4 METHOD

We first provide theoretical and experimental intuition that, in stiff ODEs, both the local truncation error (LTE) and the embedded Runge–Kutta (ERK) solution difference are aligned with the Jacobian’s dominant eigenvector (Section 4.1). Based on this observation, we introduce cost-free estimators for stiffness and the dominant eigenvector (Section 4.2), and incorporate them into our guidance scheme, ERK-Guid (Section 4.3).

4.1 ALIGNMENT OF LTE AND ERK SOLUTION DIFFERENCES IN STIFF ODES

Theoretical Insight. We assume that the score-based vector field of the diffusion model \mathbf{x}_{σ_i} is well approximated by its local linearization around the current state \mathbf{x}_{σ_i} when the step size $h := \sigma_i - \sigma_{i+1} > 0$ is sufficiently small:

$$\frac{d\mathbf{x}_\sigma}{d\sigma} = \mathbf{f}(\mathbf{x}_\sigma; \sigma) \approx \mathbf{f}(\mathbf{x}_{\sigma_i}; \sigma_i) + J(\mathbf{x}_{\sigma_i}; \sigma_i)(\mathbf{x}_\sigma - \mathbf{x}_{\sigma_i}). \quad (7)$$

Let $J_{\mathbf{x}_{\sigma_i}}$ and $\mathbf{f}_{\mathbf{x}_{\sigma_i}}$ denote $J(\mathbf{x}_{\sigma_i}; \sigma_i)$ and $\mathbf{f}(\mathbf{x}_{\sigma_i}; \sigma_i)$, respectively. From Eq. 1, the Jacobian is given by $J_{\mathbf{x}_{\sigma_i}} = -\sigma_i \nabla_{\mathbf{x}}^2 \log p(\mathbf{x}_{\sigma_i}; \sigma_i)$. Since $J_{\mathbf{x}_{\sigma_i}}$ is the Hessian of $\log p(\mathbf{x}_{\sigma_i}; \sigma_i)$ under C^2 -smoothness, it is symmetric and therefore admits an eigendecomposition as follows:

$$J_{\mathbf{x}_{\sigma_i}} = V \Lambda V^\top, \text{ s.t. } J_{\mathbf{x}_{\sigma_i}} \mathbf{v}_k = \lambda_k \mathbf{v}_k, \|\mathbf{v}_k\|_2 = 1, \forall k \quad (8)$$

Therefore, the single-step Euler update can be decomposed along the eigenvector basis as:

$$\mathbf{x}_{\sigma_{i+1}}^{\text{Euler}} - \mathbf{x}_{\sigma_i} = -h \mathbf{f}_{\mathbf{x}_{\sigma_i}} = -h \sum_k \langle \mathbf{f}_{\mathbf{x}_{\sigma_i}}, \mathbf{v}_k \rangle \mathbf{v}_k, \quad (9)$$

216 where $\langle \cdot, \cdot \rangle$ refers inner product. Similarly, Heun update step is given by
 217

$$\mathbf{x}_{\sigma_{i+1}}^{\text{Heun}} - \mathbf{x}_{\sigma_i} = -\frac{h}{2} (\mathbf{f}_{\mathbf{x}_{\sigma_i}} + \mathbf{f}_{\mathbf{x}_{\sigma_{i+1}}^{\text{Euler}}}) \quad (10)$$

$$\approx -\frac{h}{2} (\mathbf{f}_{\mathbf{x}_{\sigma_i}} + \mathbf{f}_{\mathbf{x}_{\sigma_i}} + J_{\mathbf{x}_{\sigma_i}}(\mathbf{x}_{\sigma_{i+1}}^{\text{Euler}} - \mathbf{x}_{\sigma_i})) \quad (11)$$

$$= -h \sum_k \left(1 + \frac{1}{2}z_k\right) \langle \mathbf{f}_{\mathbf{x}_{\sigma_i}}, \mathbf{v}_k \rangle \mathbf{v}_k, \quad (12)$$

224 where $z_k := -h\lambda_k$. The exact single-step update can be approximated as follows (See Appendix A.1
 225 for derivation):
 226

$$\mathbf{x}_{\sigma_{i+1}} - \mathbf{x}_{\sigma_i} \approx -h \sum_k \frac{e^{z_k} - 1}{z_k} \langle \mathbf{f}_{\mathbf{x}_{\sigma_i}}, \mathbf{v}_k \rangle \mathbf{v}_k. \quad (13)$$

229 Thus, the local truncation error of Heun’s method and the ERK solution difference can be written as
 230

$$\text{LTE}^{\text{Heun}} := \mathbf{x}_{\sigma_{i+1}} - \mathbf{x}_{\sigma_{i+1}}^{\text{Heun}} \approx -h \sum_k \alpha(z_k) \langle \mathbf{f}_{\mathbf{x}_{\sigma_i}}, \mathbf{v}_k \rangle \mathbf{v}_k \quad (14)$$

$$\Delta := \mathbf{x}_{\sigma_{i+1}}^{\text{Heun}} - \mathbf{x}_{\sigma_{i+1}}^{\text{Euler}} \approx -h \sum_k \left(\frac{1}{2}z_k\right) \langle \mathbf{f}_{\mathbf{x}_{\sigma_i}}, \mathbf{v}_k \rangle \mathbf{v}_k \quad (15)$$

236 where $\alpha(z) := \frac{e^z - 1}{z} - 1 - \frac{1}{2}z$. Figure 7 visualizes the behavior of $\alpha(z)$.
 237

238 As $|z_k| = |h\lambda_k|$ increases, the weights $\frac{1}{2}z_k$ and $\alpha(z_k)$ associated with each eigenvector component
 239 also grow in magnitude, so that contributions from directions with large $|\lambda_k|$ come to dominate.
 240 Consequently, both the local truncation error and the ERK solution difference tend to align with
 241 the dominant eigenvector corresponding to the largest eigenvalue magnitude, specifically in stiff
 242 regions, i.e., regions with high stiffness. Motivated by this observation, we estimate both stiffness
 243 and the dominant eigenvector from the ERK solution difference during sampling (Section 4.2), and
 244 when stiffness is high, we apply guidance with Eq. 14 (Section 4.3).

245 **Toy 2D Experiments.** To better understand the connection between ODE dynamics and stiffness,
 246 we construct a two-dimensional toy system with an analytically defined ground-truth drift, followed
 247 by the Autoguidance Karras et al. (2024a). Please refer to Appendix B for experimental details,
 248 including the computation of eigenvectors, eigenvalues, and local truncation errors. The objective
 249 of this experiment is to reveal how stiff regions induce different behaviors along the dominant and
 250 subdominant eigenvector directions. Figure 1 (a) visualizes the degree of stiffness across the image,
 251 while panels (b)–(e) show the drift field projected onto eigenvector axes in two locally stiff regions.
 252 Along the *subdominant* eigenvector axes (panels (b) and (d)), the projected drift vectors (green ar-
 253 rows) remain nearly parallel with small variation in magnitude, indicating locally stable dynamics
 254 that can be well approximated by numerical solvers. In contrast, along the *dominant* eigenvector
 255 axes (panels (c) and (e)), the projected drift exhibits pronounced variations in both orientation
 256 and magnitude, making the dynamics harder to approximate and resulting in larger local trun-
 257 cation errors (LTE). Furthermore, in such stiff dynamics, higher-order solvers yield more significant
 258 improvements along the dominant eigenvector compared to the subdominant one, which naturally
 259 manifests as a larger ERK solution difference. In Table 1, we report the local truncation error (LTE)
 260 and the ERK solution difference measured in the upper region of Figure 1 (lines AB–CD), along the
 261 eigenvector axes. The LTE along the dominant eigenvector direction (line CD, 7.22e-05) is approx-
 262 imately 12.5× larger than that along the subdominant direction (line AB, 5.78e-06). Similarly, the
 263 ERK solution difference along line CD (4.03e-04) is about 6.5× larger than that along AB (6.18e-05).
 264 These results confirm that both LTE and ERK solution difference are strongly amplified along the
 265 dominant eigenvector in stiff regions.

266 Inspired by these observations in Figure 1 and Table 1, where the LTE and the ERK solution dif-
 267 ference exhibit substantially larger amplitudes along the dominant eigenvector axes, we further an-
 268alyze their alignment across varying stiffness levels. Specifically, we compute the cosine similarity
 269 between the dominant eigenvector and both the LTE and ERK solution difference. As shown in
 Figure 2 (a), the alignment between LTE and dominant eigenvector steadily increases with stiff-
 ness, indicating that the eigenvector reliably serves as a proxy for the LTE direction in stiff regions.
 Additionally, Figure 2 (b) shows that the ERK solution difference is also strongly aligned with

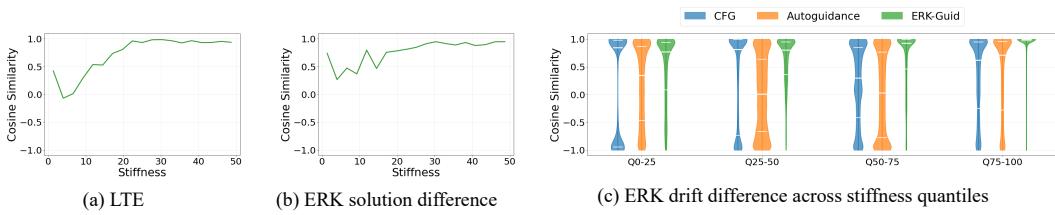


Figure 2: **Eigenvector alignment across stiffness.** (a) Cosine similarity between the dominant eigenvector and the local truncation error (LTE) increases with stiffness. (b) The ERK solution difference exhibits a similar trend to LTE, suggesting it can serve as a reliable proxy for the LTE direction in high stiffness regions. (c) Our ERK-Guid consistently achieves higher cosine similarity with the dominant eigenvector, highlighting its strong alignment in stiff regions. CFG and Autoguidance exhibit weaker or mixed alignment with the dominant eigenvector in stiff regions, supporting the complementarity of our method.

the dominant eigenvector in stiff regions. This motivates our novel guidance strategy, ERK-Guid, which leverages the dominant eigenvector estimated from the embedded Runge–Kutta (ERK) pair as its guiding signal.

We compare ERK-Guid against two widely used baselines: CFG Ho & Salimans (2022)(conditional–unconditional score difference) and Autoguidance Karras et al. (2024a)(main–weak model difference). Figure 2 (c) shows that ERK-Guid consistently exhibits strong alignment with the dominant eigenvector across stiffness quantiles. In particular, the gap widens in the high-stiffness bin (Q75–100), where CFG and Autoguidance exhibit weak or inconsistent alignment. These results suggest that ERK-Guid provides an orthogonal guidance signal that complements rather than overlaps with CFG and Autoguidance.

4.2 STIFFNESS AND DOMINANT EIGENVECTOR ESTIMATOR

The key intuition from the previous section is that, once stiffness is high, the dominant eigenvector provides a reliable proxy for reducing LTE. In practice, however, direct access to the Jacobian is infeasible, making stiffness estimation challenging. A common alternative is to use Jacobian–vector product (JVP) based power iterations, which are supported in frameworks such as PyTorch but remain prohibitively expensive for diffusion sampling, where each step already requires costly network evaluations. To overcome this, we propose cost-free estimators of stiffness and the dominant eigenvector, exploiting the ERK drift/solution difference without any additional evaluations.

Let \mathbf{x}_{σ_i} denote the current state at σ_i (for $i > 0$), and $\mathbf{x}_{\sigma_i}^{\text{Euler}}$ the intermediate Euler prediction when advancing from σ_{i-1} to σ_i . We define the stiffness estimator as

$$\hat{\rho}_{\text{stiff}}(\mathbf{x}_{\sigma_i}, \sigma_i) := \frac{\|\mathbf{f}(\mathbf{x}_{\sigma_i}; \sigma_i) - \mathbf{f}(\mathbf{x}_{\sigma_i}^{\text{Euler}}; \sigma_i)\|_2}{\|\mathbf{x}_{\sigma_i} - \mathbf{x}_{\sigma_i}^{\text{Euler}}\|_2}. \quad (16)$$

Here, $\mathbf{x}_{\sigma_i} - \mathbf{x}_{\sigma_i}^{\text{Euler}}$ corresponds exactly to the ERK solution difference and $\mathbf{f}(\mathbf{x}_{\sigma_i}; \sigma_i) - \mathbf{f}(\mathbf{x}_{\sigma_i}^{\text{Euler}}; \sigma_i)$ corresponds to the ERK drift difference under the Heun sampler.

Proposition 1 Let J be the Jacobian matrix of the drift function $\mathbf{f}(\mathbf{x}_{\sigma_i}; \sigma_i)$ at \mathbf{x}_{σ_i} . Assume that the ERK solution difference $\mathbf{x}_{\sigma_i} - \mathbf{x}_{\sigma_i}^{\text{Euler}}$ is sufficiently small and aligned with the eigenvector associated with the dominant eigenvalue λ of J in magnitude, in the sense that

$$\|J(\mathbf{x}_{\sigma_i} - \mathbf{x}_{\sigma_i}^{\text{Euler}})\| = |\lambda| \|\mathbf{x}_{\sigma_i} - \mathbf{x}_{\sigma_i}^{\text{Euler}}\| + \mathcal{O}(\|\mathbf{x}_{\sigma_i} - \mathbf{x}_{\sigma_i}^{\text{Euler}}\|^2).$$

Then the dominant eigenvalue λ admits the approximation

$$|\lambda| = \frac{\|\mathbf{f}(\mathbf{x}_{\sigma_i}; \sigma_i) - \mathbf{f}(\mathbf{x}_{\sigma_i}^{\text{Euler}}; \sigma_i)\|_2}{\|\mathbf{x}_{\sigma_i} - \mathbf{x}_{\sigma_i}^{\text{Euler}}\|_2} + \mathcal{O}(\|\mathbf{x}_{\sigma_i} - \mathbf{x}_{\sigma_i}^{\text{Euler}}\|).$$

Proposition 1 establishes that the proposed stiffness estimator accurately recovers the true stiffness under the assumption. We provide the proof of Proposition 1 in Appendix A.2. Since our estimator relies on the alignment between the ERK solution difference and the dominant eigenvector, it

324 is reliable only when the estimated stiffness is sufficiently high. This requirement is explicitly incorporated into our guidance design (see Section 4.3). Notably, the stiffness estimator requires no additional network evaluations: \mathbf{x}_{σ_i} , $\mathbf{x}_{\sigma_i}^{\text{Euler}}$, and $\mathbf{f}(\mathbf{x}_{\sigma_i}^{\text{Euler}}; \sigma_i)$ are already obtained during the Heun correction, while $\mathbf{f}(\mathbf{x}_{\sigma_i}; \sigma_i)$ is reused in the subsequent Euler update step.

325
326
327
328 As shown in Section 4.1, the ERK solution difference provides a useful proxy for the dominant
329 eigenvector in stiff regions. To improve robustness, we propose the *ERK drift difference*, which
330 tracks the dominant eigenvector more accurately:

$$332 \hat{\mathbf{v}}_{\text{stiff}}(\mathbf{x}_{\sigma_i}, \sigma_i) := \frac{\mathbf{f}(\mathbf{x}_{\sigma_i}; \sigma_i) - \mathbf{f}(\mathbf{x}_{\sigma_i}^{\text{Euler}}; \sigma_i)}{\|\mathbf{f}(\mathbf{x}_{\sigma_i}; \sigma_i) - \mathbf{f}(\mathbf{x}_{\sigma_i}^{\text{Euler}}; \sigma_i)\|_2}. \quad (17)$$

333 Under a local linearization, this difference approximates the Jacobian applied to the ERK solution
334 difference:

$$335 \mathbf{f}(\mathbf{x}_{\sigma_i}; \sigma_i) - \mathbf{f}(\mathbf{x}_{\sigma_i}^{\text{Euler}}; \sigma_i) \approx J(\mathbf{x}_{\sigma_i}; \sigma_i) (\mathbf{x}_{\sigma_i} - \mathbf{x}_{\sigma_i}^{\text{Euler}}),$$

336 which corresponds to a single-step JVP power iteration. In the eigenbasis of J , components associated
337 with larger eigenvalues are amplified, whereas those with smaller eigenvalues are suppressed,
338 thereby steering the estimated direction toward the dominant eigenvector. We demonstrate this effect
339 in Section 5.1.

340 4.3 EMBEDDED RUNGE–KUTTA GUIDANCE

341 Directly applying the cost-free estimators from Section 4.2 into Eq. 14 is unreliable: (i)
342 LTE–eigenvector alignment weakens at low stiffness, (ii) the stiffness proxy suffers from a scale
343 mismatch, and (iii) inaccurate eigenvalue estimates over-amplify the update. To address these
344 issues, we introduce stabilizers that turn Eq. 14 into a practical and robust guidance scheme.

345 With the proposed cost-free estimators, let

$$346 \mathbf{f}_{\mathbf{x}_{\sigma_i}} := \mathbf{f}_{\theta}(\mathbf{x}_{\sigma_i}; \sigma_i), \hat{\rho}_{\mathbf{x}_{\sigma_i}} := \hat{\rho}_{\text{stiff}}(\mathbf{x}_{\sigma_i}, \sigma_i), \hat{\mathbf{v}}_{\mathbf{x}_{\sigma_i}} := \hat{\mathbf{v}}_{\text{stiff}}(\mathbf{x}_{\sigma_i}, \sigma_i). \quad (18)$$

347 We then define the ERK-Guid update as:

$$348 \beta := 1_{\{\hat{\rho}_{\mathbf{x}_{\sigma_i}} > w_{\text{con}}\}}, \quad (19)$$

$$349 z := w_{\text{stiff}} h \hat{\rho}_{\mathbf{x}_{\sigma_i}}, \quad (20)$$

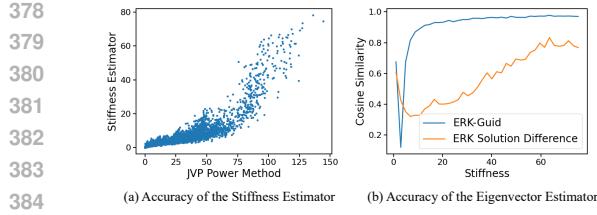
$$350 \hat{\mathbf{x}}_{\sigma_{i+1}}^{\text{Heun}} = \mathbf{x}_{\sigma_{i+1}}^{\text{Heun}} - h \beta z^2 \langle \mathbf{f}_{\mathbf{x}_{\sigma_i}}, \hat{\mathbf{v}}_{\mathbf{x}_{\sigma_i}} \rangle \hat{\mathbf{v}}_{\mathbf{x}_{\sigma_i}}, \quad (21)$$

351 where $h := \sigma_i - \sigma_{i+1} > 0$. Here $\langle \cdot, \cdot \rangle$ denotes the Euclidean inner product, and w_{stiff} , w_{con} are
352 hyperparameters. This construction is motivated by Eq. 14, which characterizes the exact local trun-
353 cation error under the linearization assumption. A complete derivation is provided in Appendix A.3.

354 Compared to the exact LTE expression, we introduce three practical modifications: (i) a confidence
355 gate β with hyperparameter w_{con} , which suppresses the update in low-stiffness regions and activates
356 it only when $\hat{\rho} > w_{\text{con}}$, ensuring that guidance is applied where eigenvector alignment is reliable;
357 (ii) a scale parameter w_{stiff} to correct for the consistent mismatch in absolute scale observed in our
358 stiffness proxy and controls the overall guidance strength (no guidance when $w_{\text{stiff}} = 0$); and (iii)
359 a quadratic form z^2 in place of $\alpha(z)$, which avoids exponential growth under inaccurate estimates
360 while behaves similarly near zero (See Appendix B.3) and stabilizes the update by depending on
361 eigenvalue magnitude rather than sign. The effects of β and z^2 are analyzed through ablations in
362 Section 5.3.

363 The first sampling step does not admit this construction because it requires an ERK pair from the
364 previous iteration. We simply skip guidance at this step, noting that stiffness at initialization is typi-
365 cally very small in practice, so that $\beta \approx 0$. The complete procedure is summarized in Algorithm 1.

366 **Computation cost.** ERK-Guid incurs no additional network evaluations: all required quantities
367 are already computed during the Heun update. Thus, unlike CFG or Autoguidance, our approach
368 imposes no extra evaluation overhead and relies solely on the discrepancy between two solver orders.



385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 3: Accuracy of proposed estimators. (a) Our estimated stiffness values highly correlate with JVP-based one. (b) ERK drift difference (blue) maintains higher alignment with the dominant eigenvector than the ERK solution difference (orange), especially at high stiffness.

Table 2: Quantitative results on ImageNet-512.

#step	w_{stiff}	FD-DINOv2 \downarrow	FID \downarrow	Precision \uparrow	Recall \uparrow	IS \uparrow
32	0.0	90.1	2.58	0.630	0.673	244
32	0.5	88.8	2.57	0.632	0.673	245
32	1.0	86.2	2.56	0.635	0.674	247
32	1.5	83.7	2.58	0.635	0.674	249
32	2.0	82.8	2.74	0.633	0.675	247
32	2.5	84.9	3.03	0.625	0.668	241
16	0.0	97.5	2.79	0.628	0.653	238
16	0.5	90.5	2.66	0.644	0.657	242
8	0.0	161.2	7.06	0.445	0.615	183
8	0.5	148.3	5.31	0.553	0.590	191

5 EXPERIMENTS

We evaluate ERK-Guid across both toy and real-world datasets. On synthetic data, we validate our stiffness estimator against Jacobian Vector Product (JVP) references and compare ERK solution and drift differences for eigenvector estimation in Section 5.1. In Section 5.2, we present quantitative results on real-world datasets, comparing our method against unguided sampling. We then provide ablation studies on two stabilizers—the confidence gate β and the scaling function of z —to assess their impact in Section 5.3. In Section 5.4, we examine ERK-Guid’s compatibility with existing guidance methods and its plug-and-play adaptability to solver methods to demonstrate its versatility. Please refer to the Appendix E for qualitative results.

Experimental setup. We conduct experiments on ImageNet (ILSVRC2012) Deng et al. (2009) at resolutions 512×512 and 64×64 , as well as on the FFHQ Karras et al. (2019) at 64×64 . We use the pre-trained EDM Karras et al. (2022) and EDM2 Karras et al. (2024a) models. Heun’s method is used as the base solver, and other solvers are incorporated through our plug-and-play module.

Evaluation metrics follow prior work: *fidelity* via FD-DINOv2 Stein et al. (2023), FID Heusel et al. (2017), and Precision Kynkänniemi et al. (2019); *diversity* via Recall Kynkänniemi et al. (2019); and *condition alignment* using Inception Score (IS) Salimans et al. (2016). For additional implementation details, hyperparameters, and the reference estimator in Figure 3(a) are provided in Appendix B.

5.1 ACCURACY OF THE ESTIMATORS

In Figure 3, we validate the accuracy of our estimators. Figure 3(a) illustrates that the stiffness estimator shows strong correlation with the JVP reference, increasing consistently with the reference values. Also, Figure 3(b) demonstrates that the eigenvector estimator based on ERK drift differences exhibits higher alignment with the dominant eigenvector than the ERK solution difference, particularly in stiff regions. These results confirm the reliability of our estimators for identifying the dominant eigenvector direction as guidance.

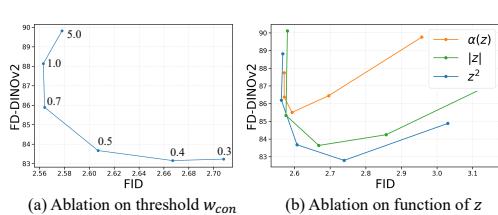


Figure 4: Ablations on our ERK-Guid design. (a) FD-DINOv2–FID trade-off curve according to confidence threshold w_{con} . (b) Comparison of scaling functions for FD-DINOv2–FID trade-off curve.

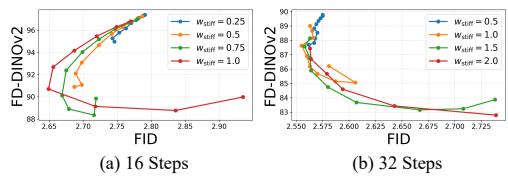


Figure 5: Grid search of hyperparameters. Quantitative trends of varying w_{con} at fixed w_{stiff} for (a) 16-step and (b) 32-step sampling.

432
433
434
Table 3: **Quantitative results of adaptation to
guidance methods.**

#step	Method	FD-DINOv2 ↓	FID ↓	Precision ↑	Recall ↑	IS ↑
32	CFG	88.5	2.27	0.608	0.708	271
	+ERK-Guid	83.8	2.27	0.610	0.706	275
32	Autoguidance	50.5	1.36	0.698	0.642	262
	+ERK-Guid	47.7	1.35	0.692	0.630	267
	+ERK-Proj	44.9	1.36	0.710	0.605	274
16	CFG	133.89	3.60	0.593	0.673	210
	+ERK-Guid	125.57	3.20	0.605	0.673	215
16	Autoguidance	82.13	2.31	0.652	0.640	230
	+ERK-Guid	75.16	1.92	0.669	0.643	236

442
5.2 EFFECTIVENESS OF THE GUIDANCE

443
444 Table 2 summarizes quantitative results on ImageNet 512×512 with EDM2 and the Heun sampler.
445 We take $w_{\text{stiff}} = 0$ as the baseline without guidance. As the guidance scale increases, FD-DINOv2
446 consistently decreases and reaches its best at $w_{\text{stiff}} = 2.0$, yielding 82.8 compared to the baseline
447 90.1. Importantly, this fidelity gain is achieved while keeping FID competitive and consistently
448 improving Precision, Recall, and Inception Score, indicating that our update strengthens fidelity
449 without sacrificing diversity or alignment. The advantage becomes more pronounced under fewer
450 sampling steps, where truncation errors dominate. With 16 steps, FD-DINOv2 improves from 97.5
451 to 90.5 and FID from 2.79 to 2.66, accompanied by gains in Precision and Inception Score. At 8
452 steps, the effect is even stronger: FD-DINOv2 drops from 161.2 to 148.3, FID from 7.06 to 5.31,
453 with substantial boosts in Precision, Recall, and Inception Score. Overall, these results demonstrate
454 that ERK-Guid effectively mitigates error accumulation in stiff regions, delivering consistent im-
455 provements across settings and providing particular advantages in low-step regimes, all without any
456 additional training or model evaluations.

456
5.3 ABLATION ON GUIDANCE DESIGN

457 We conduct an ablation study on two design choices from Eq. 21: the confidence gate β (controlled
458 by threshold w_{con}) and the scaling form applied to z . When the estimated stiffness is below w_{con} ,
459 the confidence gate suppresses our guidance update, while the scaling function regulates the update
460 magnitude for stability.

461 **Confidence gate β .** Figure 4(a) investigates the effect of varying w_{con} . A higher threshold activates
462 guidance only in very stiff regions, leading to infrequent corrections and limited improvements in
463 FD-DINOv2. As the threshold decreases, guidance is applied more often and FD-DINOv2 steadily
464 improves, but excessively small thresholds eventually degrade FID. These results indicate that a
465 moderate threshold provides the best trade-off between fidelity gains and stable FID. **Moreover, Figure 5**
466 **provides a grid-search analysis over w_{stiff} and threshold w_{con} , illustrating robust trends across**
467 **hyperparameter choices and confirming that ERK-Guid maintains stable improvements over a wide**
468 **range of settings.**

469 **Scaling function for z .** Figure 4(b) compares the exponential-like scaling $\alpha(z)$ with two alterna-
470 tives, $|z|$ and z^2 . Among them, z^2 consistently attains lower FD-DINOv2 at comparable or better
471 FID, achieving the best trade-off by avoiding excessive growth under estimation errors. In contrast,
472 $\alpha(z)$ introduces instability and degrades FD-DINOv2, while $|z|$ ensures stability but yields limited
473 gains. These results demonstrate that the quadratic form z^2 provides a robust scaling that preserves
474 stability while improving fidelity.

475
5.4 GUIDANCE COMPATIBILITY AND SOLVER PLUG-AND-PLAY SOLVER ADAPTATION

476 In this section, we highlight two key properties of ERK-Guid: (i) its compatibility with existing
477 model-based guidance methods, and (ii) its plug-and-play adaptability to various solvers.

478 **Guidance compatibility.** We examine whether ERK-Guid can be combined with existing guidance
479 schemes. Under the predictor–corrector view Bradley & Nakkiran (2024), guidance methods act
480 as correctors. Diffusion sampling errors arise from two sources: solver error (LTE) and model er-
481 ror. ERK-Guid targets LTE, whereas CFG and Autoguidance target model error. Motivated by this
482 complementarity, we combine CFG and Autoguidance with ERK-Guid and ERK-Proj. ERK-Proj
483 is a light extension that simply interpolates between model-error-based and LTE-based corrections,
484 aiming to reduce both simultaneously. Additional details are provided in Appendix B.2. In Table 3,
485 we show that our correction consistently strengthens model-based guidances, indicating strong ex-
486 tensibility to other guidance methods.

432
433
434
Table 4: **Quantitative results for plug-and-
play solver adaptation on ImageNet-64 and
FFHQ-64.**

Dataset NFEs	ImageNet 64×64			FFHQ 64×64		
	6	8	10	6	8	10
Heun	89.63	37.65	16.46	142.4	57.21	29.54
+ ERK-Guid	85.19	35.92	13.85	132.8	54.73	23.38
DPM-Solver	44.83	12.42	6.84	83.17	22.84	9.46
+ ERK-Guid	31.59	10.58	6.54	49.0	10.44	4.64
DEIS	12.57	6.84	5.34	12.25	7.59	5.56
+ ERK-Guid	9.56	6.25	4.89	9.96	6.04	4.47

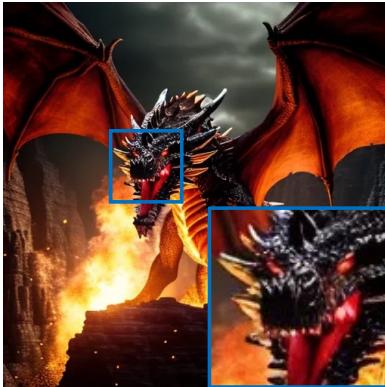
486
487
488
489
490
491
492
493
494
495
496
497
498
499

DPM-Solver

DPM-Solver + ERK-Guid (Ours)

500
501
A hyper-realistic Iron Man suit with crisp metallic reflections and
glowing arc reactor in a dark hangar.

502
503
504
505
506
507
508
509
510
511
512
513



514
515
A massive dragon breathing a stream of bright fire in a dark canyon,
glowing scales and sharp wing edges, cinematic lighting.

516

517 **Figure 6: Qualitative comparison on PixArt- α Chen et al. (2023)** We perform text-to-image generation to compare DPM-Solver with our ERK-Guid. As shown in the blue zoomed-in regions, ERK-Guid captures fine semantic details more accurately.

520
521
522
523
524
525
526
527
528
529
530

Plug-and-play adaptation. Similar to other guidance methods, ERK-Guid can be applied to various solvers as a plug-and-play correction module. To demonstrate its effectiveness and broad applicability, we evaluate ERK-Guid on higher-order solvers, including Heun’s method Hairer et al. (1993), DPM-Solver Lu et al. (2022), and DEIS Zhang & Chen (2023) on ImageNet Deng et al. (2009) and FFHQ Karras et al. (2019) at 64×64 resolution. Table 4 demonstrates that combining ERK-Guid with solver methods consistently improves performance across all NFEs on both datasets. These results highlight the robust plug-and-play capability of ERK-Guid and its effectiveness even when paired with higher-order ODE solvers. Additional details are provided in Appendix B.4 and Table 7. Moreover, Figure 6 demonstrates that ERK-Guid delivers strong qualitative improvements on PixArt- α Chen et al. (2023), built upon a Diffusion Transformer (DiT) Peebles & Xie (2023) backbone, further highlighting its architectural generalization capability.

531
532

6 CONCLUSION

533
534
535
536
537
538
539

In this work, we propose ERK-Guid, a stiffness-aware diffusion sampling scheme based on Embedded Runge–Kutta guidance. Motivated by the observation that local truncation error aligns with the dominant eigenvector in stiff regions, we introduce cost-free estimators for both stiffness and eigenvectors using ERK solution and drift discrepancies. Building on these estimators, we design a stabilized guidance framework that balances theoretical insight with practical robustness. Experiments on synthetic data and ImageNet demonstrate that ERK-Guid delivers an orthogonal guidance signal without additional neural evaluations, establishing an efficient paradigm for improving diffusion model sampling.

540 REPRODUCIBILITY STATEMENT

541

542 In Section 4.3, we describe our pipeline design, and the Appendix C provides algorithmic details
 543 and full pseudocode. Appendix B documents experimental settings and hyperparameters. Together,
 544 we offer sufficient information for reproducibility of ERK-Guid.

545

546 ETHICS STATEMENT

547

548 Our method relies on pretrained generative models, which may produce harmful or biased outputs
 549 depending on the conditioning input. This risk is inherent to the underlying pretrained models, and
 550 we emphasize the need for responsibility.

551

552 REFERENCES

553

Arwen Bradley and Preetum Nakkiran. Classifier-free guidance is a predictor-corrector. In *NeurIPS Workshop*, 2024.

554

555

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN training for high fidelity
 natural image synthesis. In *International Conference on Learning Representations, ICLR*, 2019.

556

557

Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image
 editing instructions. In *Conference on Computer Vision and Pattern Recognition, CVPR*, 2023.

558

559

560

Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James
 Kwok, Ping Luo, Huchuan Lu, et al. Pixart- α : Fast training of diffusion transformer for photorealistic
 text-to-image synthesis. In *International Conference on Learning Representations, ICLR*, 2023.

561

562

563

564

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
 hierarchical image database. In *Conference on Computer Vision and Pattern Recognition, CVPR*,
 2009.

565

566

567

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
 Aaron Courville, and Yoshua Bengio. Generative adversarial networks. In *Communications of
 the ACM*, 2020.

568

569

570

571

Agrim Gupta, Lijun Yu, Kihyuk Sohn, Xiuye Gu, Meera Hahn, Fei-Fei Li, Irfan Essa, Lu Jiang, and
 José Lezama. Photorealistic video generation with diffusion models. In *European Conference on
 Computer Vision, ECCV*, 2024.

572

573

574

Ernst Hairer and Gerhard Wanner. *Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems*, volume 14 of *Springer Series in Computational Mathematics*. Springer, 2nd revised edition, 1996. ISBN 978-3-540-60452-5.

575

576

577

Ernst Hairer, Syvert P. Nørsett, and Gerhard Wanner. *Solving Ordinary Differential Equations I: Nonstiff Problems*, volume 8 of *Springer Series in Computational Mathematics*. Springer, 2nd edition, 1993. ISBN 978-3-540-56670-0.

578

579

580

581

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
 Gans trained by a two time-scale update rule converge to a local nash equilibrium. In *Advances
 in Neural Information Processing Systems, NeurIPS*, 2017.

582

583

584

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In *Advances in Neural Information
 Processing Systems, NeurIPS Workshop*, 2022.

585

586

587

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *Advances
 in Neural Information Processing Systems, NeurIPS*, 2020.

588

589

590

591

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
 adversarial networks. In *Conference on Computer Vision and Pattern Recognition, CVPR*, 2019.

592

593

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
 based generative models. In *Advances in Neural Information Processing Systems, NeurIPS*, 2022.

- 594 Tero Karras, Miika Aittala, Tuomas Kynkäänniemi, Jaakko Lehtinen, Timo Aila, and Samuli Laine.
 595 Guiding a diffusion model with a bad version of itself. In *Advances in Neural Information Pro-*
 596 *cessing Systems, NeurIPS*, 2024a.
- 597 Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyz-
 598 ing and improving the training dynamics of diffusion models. In *Conference on Computer Vision*
 599 *and Pattern Recognition, CVPR*, 2024b.
- 600 Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel, Inbar Mosseri, and
 601 Michal Irani. Imagic: Text-based real image editing with diffusion models. In *Conference on*
 602 *Computer Vision and Pattern Recognition, CVPR*, 2023.
- 603 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In *International Conference*
 604 *on Learning Representations, ICLR*, 2014.
- 605 Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
 606 precision and recall metric for assessing generative models. In *Advances in Neural Information*
 607 *Processing Systems, NeurIPS*, 2019.
- 608 Tuomas Kynkäänniemi, Miika Aittala, Tero Karras, Samuli Laine, Timo Aila, and Jaakko Lehtinen.
 609 Applying guidance in a limited interval improves sample and distribution quality in diffusion
 610 models. In *Advances in Neural Information Processing Systems, NeurIPS*, 2024.
- 611 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 612 for generative modeling. In *International Conference on Learning Representations, ICLR*, 2023.
- 613 Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models on
 614 manifolds. In *International Conference on Learning Representations, ICLR*, 2022.
- 615 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
 616 ode solver for diffusion probabilistic model sampling in around 10 steps. In *Advances in Neural*
 617 *Information Processing Systems, NeurIPS*, 2022.
- 618 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *International*
 619 *Conference on Computer Vision, ICCV*, pp. 4195–4205, 2023.
- 620 Linda Petzold. Automatic selection of methods for solving stiff and nonstiff systems of ordinary
 621 differential equations. *SIAM journal on scientific and statistical computing*, 4(1):136–148, 1983.
- 622 Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In *Interna-*
 623 *tional Conference on Learning Representations, ICLR*, 2015.
- 624 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 625 resolution image synthesis with latent diffusion models. In *Conference on Computer Vision and*
 626 *Pattern Recognition, CVPR*, 2022.
- 627 Seyedmorteza Sadat, Otmar Hilliges, and Romann M Weber. Eliminating oversaturation and ar-
 628 tifacts of high guidance scales in diffusion models. In *International Conference on Learning*
 629 *Representations, ICLR*, 2024.
- 630 Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
 631 Improved techniques for training gans. In *Advances in Neural Information Processing Systems*,
 632 *NeurIPS*, 2016.
- 633 Lawrence F Shampine and Charles William Gear. A user’s view of solving stiff ordinary differential
 634 equations. *SIAM review*, 21(1):1–17, 1979.
- 635 Neta Shaul, Juan Perez, Ricky TQ Chen, Ali Thabet, Albert Pumarola, and Yaron Lipman. Bespoke
 636 solvers for generative flow models. In *International Conference on Learning Representations,*
 637 *ICLR*, 2024.
- 638 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *Interna-*
 639 *tional Conference on Learning Representations, ICLR*, 2021a.

- 648 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
649 Poole. Score-based generative modeling through stochastic differential equations. In *Interna-*
650 *tional Conference on Learning Representations, ICLR*, 2021b.
- 651
- 652 George Stein, Jesse Cresswell, Rasa Hosseinzadeh, Yi Sui, Brendan Ross, Valentin Villegas,
653 Zhaoyan Liu, Anthony L Caterini, Eric Taylor, and Gabriel Loaiza-Ganem. Exposing flaws of
654 generative model evaluation metrics and their unfair treatment of diffusion models. In *Advances*
655 *in Neural Information Processing Systems, NeurIPS*, 2023.
- 656 Shuai Wang, Zexian Li, Tianhui Song, Xubin Li, Tiezheng Ge, Bo Zheng, Limin Wang, et al.
657 Differentiable solver search for fast diffusion sampling. In *International Conference on Machine*
658 *Learning, ICML*, 2025.
- 659 Shuchen Xue, Zhaoqiang Liu, Fei Chen, Shifeng Zhang, Tianyang Hu, Enze Xie, and Zhenguo Li.
660 Accelerating diffusion sampling with optimized time steps. In *Conference on Computer Vision*
661 *and Pattern Recognition, CVPR*, 2024.
- 662
- 663 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
664 diffusion models. In *Conference on Computer Vision and Pattern Recognition, CVPR*, 2023.
- 665 Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential integrator.
666 In *International Conference on Learning Representations, ICLR*, 2023.
- 667
- 668 Wangbo Zhao, Yizeng Han, Jiasheng Tang, Kai Wang, Yibing Song, Gao Huang, Fan Wang, and
669 Yang You. Dynamic diffusion transformer. In *International Conference on Learning Representa-*
670 *tions, ICLR*, 2025.
- 671 Wenliang Zhao, Lujia Bai, Yongming Rao, Jie Zhou, and Jiwen Lu. Unipc: A unified predictor-
672 corrector framework for fast sampling of diffusion models. In *Advances in Neural Information*
673 *Processing Systems, NeurIPS*, 2023.
- 674
- 675 Candi Zheng and Yuan Lan. Characteristic guidance: Non-linear correction for diffusion model at
676 large guidance scale. In *International Conference on Machine Learning, ICML*, 2024.
- 677 Kaiwen Zheng, Cheng Lu, Jianfei Chen, and Jun Zhu. Dpm-solver-v3: Improved diffusion ode
678 solver with empirical model statistics. In *Advances in Neural Information Processing Systems,*
679 *NeurIPS*, 2023.
- 680
- 681
- 682
- 683
- 684
- 685
- 686
- 687
- 688
- 689
- 690
- 691
- 692
- 693
- 694
- 695
- 696
- 697
- 698
- 699
- 700
- 701

702 **A DERIVATION**
 703

704 **A.1 DERIVATION OF THE EXACT ONE STEP INCREMENT**
 705

706 We provide a detailed derivation of Eq. 13, i.e., the exact one step increment under the local lin-
 707 earization. Recall that around \mathbf{x}_{σ_i} , the score-based vector field is approximated as
 708

$$\frac{d\mathbf{x}_\sigma}{d\sigma} \approx \mathbf{f}_{\mathbf{x}_{\sigma_i}} + J_{\mathbf{x}_{\sigma_i}}(\mathbf{x}_\sigma - \mathbf{x}_{\sigma_i}), \quad (22)$$

711 where we denote $J_{\mathbf{x}_{\sigma_i}} = J(\mathbf{x}_{\sigma_i}; \sigma_i)$ and $\mathbf{f}_{\mathbf{x}_{\sigma_i}} = \mathbf{f}(\mathbf{x}_{\sigma_i}; \sigma_i)$. This yields a linear ODE of the form
 712

$$\frac{dy}{d\sigma} = J_{\mathbf{x}_{\sigma_i}} \mathbf{y} + \mathbf{f}_{\mathbf{x}_{\sigma_i}}, \quad \mathbf{y}(\sigma_i) = \mathbf{0}, \quad (23)$$

715 where we introduced the shifted variable $\mathbf{y}(\sigma) := \mathbf{x}_\sigma - \mathbf{x}_{\sigma_i}$. Let $h := \sigma_i - \sigma_{i+1} > 0$ denotes the
 716 step size. Our goal is to compute $\mathbf{y}(\sigma_i - h) = \mathbf{x}_{\sigma_{i+1}} - \mathbf{x}_{\sigma_i}$.
 717

718 Since $J_{\mathbf{x}_{\sigma_i}}$ is the Hessian of $\log p(\mathbf{x}_{\sigma_i}; \sigma_i)$ under C^2 smoothness, it is symmetric and hence admits
 719 the eigendecomposition
 720

$$J_{\mathbf{x}_{\sigma_i}} = V \Lambda V^\top, \quad J_{\mathbf{x}_{\sigma_i}} \mathbf{v}_k = \lambda_k \mathbf{v}_k, \quad \|\mathbf{v}_k\|_2 = 1, \quad (24)$$

723 where $V = [\mathbf{v}_1, \dots, \mathbf{v}_d]$ is orthogonal and $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_d)$.
 724

725 Let define the state which projected to the eigenbasis space:
 726

$$\mathbf{u}(\sigma) := V^\top \mathbf{y}(\sigma), \quad \mathbf{g} := V^\top \mathbf{f}_{\mathbf{x}_{\sigma_i}}, \quad g_k = \mathbf{g}^\top \mathbf{e}_k = \langle \mathbf{f}_{\mathbf{x}_{\sigma_i}}, \mathbf{v}_k \rangle. \quad (25)$$

728 where $\langle \cdot, \cdot \rangle$ refers inner product. Since V is constant on this interval (by the local linearization
 729 assumption):
 730

$$\frac{du}{d\sigma} = \frac{d}{d\sigma}(V^\top \mathbf{y}(\sigma)) = V^\top \frac{dy}{d\sigma} \quad (26)$$

$$= V^\top (J_{\mathbf{x}_{\sigma_i}} \mathbf{y} + \mathbf{f}_{\mathbf{x}_{\sigma_i}}) \quad (27)$$

$$= V^\top (V \Lambda V^\top) \mathbf{y} + V^\top \mathbf{f}_{\mathbf{x}_{\sigma_i}} \quad (28)$$

$$= (V^\top V) \Lambda (V^\top \mathbf{y}) + \mathbf{g} \quad (29)$$

$$= \Lambda \mathbf{u} + \mathbf{g}. \quad (30)$$

738 Therefore the system *decouples* into d independent scalar ODEs because Λ is diagonal.
 739

740 Writing the k -th coordinate explicitly,
 741

$$\frac{du_k}{d\sigma} = \lambda_k u_k + g_k, \quad u_k(\sigma_i) = 0. \quad (31)$$

743 It has the closed-form solution:
 744

$$u_k(\sigma) = \frac{e^{\lambda_k(\sigma - \sigma_i)} - 1}{\lambda_k} g_k, \quad \text{if } \lambda_k \neq 0, \quad (32)$$

747 and
 748

$$u_k(\sigma) = (\sigma - \sigma_i) g_k, \quad \text{if } \lambda_k = 0. \quad (33)$$

751 Both cases can be compactly written as
 752

$$u_k(\sigma) = \frac{e^{\lambda_k(\sigma - \sigma_i)} - 1}{\lambda_k} g_k, \quad (34)$$

753 interpreting the fraction as its limit when $\lambda_k \rightarrow 0$.
 754

756 Let $z_k := \lambda_k(\sigma_{i+1} - \sigma_i) = -h\lambda_k$. Since $\mathbf{y} = V\mathbf{u}$, we obtain
 757

$$\mathbf{x}_{\sigma_{i+1}} - \mathbf{x}_{\sigma_i} = \mathbf{y}(\sigma_i - h) = V\mathbf{u}(\sigma_i - h) \quad (35)$$

$$= -hV \sum_{k=1}^d \frac{e^{z_k} - 1}{z_k} g_k \mathbf{e}_k \quad (36)$$

$$= -h \sum_{k=1}^d \frac{e^{z_k} - 1}{z_k} g_k V \mathbf{e}_k \quad (37)$$

$$= -h \sum_{k=1}^d \frac{e^{z_k} - 1}{z_k} \langle \mathbf{f}_{\mathbf{x}_{\sigma_i}}, \mathbf{v}_k \rangle \mathbf{v}_k, \quad (38)$$

768 which is the desired expression in Eq. 13.
 769

770 A.2 DERIVATION OF PROPOSITION 1

773 In Section 4.2 of the main paper, we introduce a cost-free stiffness estimator that exploit the ERK
 774 difference without additional evaluations. We provide the proof of Proposition 1, which shows that
 775 proposed estimator can approximate the magnitude of the dominant eigenvalue.

776 **Proposition 1** *Let J be the Jacobian matrix of the drift function $\mathbf{f}(\mathbf{x}_{\sigma_i}; \sigma_i)$ at \mathbf{x}_{σ_i} . Assume that the
 777 ERK solution difference $\mathbf{x}_{\sigma_i} - \mathbf{x}_{\sigma_i}^{\text{Euler}}$ is sufficiently small and aligned with the eigenvector associated
 778 with the dominant eigenvalue λ of J in magnitude, in the sense that*

$$780 \quad \|J(\mathbf{x}_{\sigma_i} - \mathbf{x}_{\sigma_i}^{\text{Euler}})\| = |\lambda| \|\mathbf{x}_{\sigma_i} - \mathbf{x}_{\sigma_i}^{\text{Euler}}\| + \mathcal{O}(\|\mathbf{x}_{\sigma_i} - \mathbf{x}_{\sigma_i}^{\text{Euler}}\|^2). \\ 781$$

782 Then the dominant eigenvalue λ admits the approximation

$$784 \quad |\lambda| = \frac{\|\mathbf{f}(\mathbf{x}_{\sigma_i}; \sigma_i) - \mathbf{f}(\mathbf{x}_{\sigma_i}^{\text{Euler}}; \sigma_i)\|_2}{\|\mathbf{x}_{\sigma_i} - \mathbf{x}_{\sigma_i}^{\text{Euler}}\|_2} + \mathcal{O}(\|\mathbf{x}_{\sigma_i} - \mathbf{x}_{\sigma_i}^{\text{Euler}}\|). \\ 785 \\ 786$$

787 **Proof 1** Let $\delta := \mathbf{x}_{\sigma_i} - \mathbf{x}_{\sigma_i}^{\text{Euler}} \neq \mathbf{0}$ and define the Jacobian
 788

$$789 \quad J := \frac{\partial \mathbf{f}}{\partial \mathbf{x}}(\mathbf{x}_{\sigma_i}; \sigma_i).$$

790 A first-order Taylor expansion of $\mathbf{f}(\mathbf{x}; \sigma_i)$ about \mathbf{x}_{σ_i} gives
 791

$$793 \quad \mathbf{f}(\mathbf{x}_{\sigma_i}^{\text{Euler}}; \sigma_i) = \mathbf{f}(\mathbf{x}_{\sigma_i}; \sigma_i) - J\delta + \mathcal{O}(\|\delta\|^2), \quad (39)$$

795 where the remainder is understood in the chosen vector norm. Rearranging Eq. 39 and taking norms
 796 on both sides yields
 797

$$798 \quad \|J\delta\| = \|\mathbf{f}(\mathbf{x}_{\sigma_i}; \sigma_i) - \mathbf{f}(\mathbf{x}_{\sigma_i}^{\text{Euler}}; \sigma_i)\| + \mathcal{O}(\|\delta\|^2). \quad (40)$$

800 By the alignment hypothesis,

$$801 \quad \|J\delta\| = |\lambda| \|\delta\| + \mathcal{O}(\|\delta\|^2), \quad (41)$$

803 where λ is the dominant eigenvalue of J . Substituting Eq. 41 into Eq. 40 and dividing by $\|\delta\| \neq 0$
 804 gives

$$805 \quad |\lambda| = \frac{\|\mathbf{f}(\mathbf{x}_{\sigma_i}; \sigma_i) - \mathbf{f}(\mathbf{x}_{\sigma_i}^{\text{Euler}}; \sigma_i)\|}{\|\mathbf{x}_{\sigma_i} - \mathbf{x}_{\sigma_i}^{\text{Euler}}\|} + \mathcal{O}(\|\delta\|), \quad (42)$$

808 establishing the claimed approximation of the dominant eigenvalue.
 809

810 A.3 DERIVATION OF THE ERK-GUID FROM EQ. 14
811

812 We present a detailed derivation showing how the ERK-Guid (Eq. 21) can be obtained from the local
813 truncation error of Heun’s method (Eq. 14). Let assume v_1 refers ground truth dominant eigenvector
814 in Eq. 8. As discussed in Section 4.1, when the dominant eigenvector v_1 governs local dynamics,
815 the LTE of Heun’s method is dominated along the direction of v_1 :

$$816 \text{LTE}^{\text{Heun}} := \mathbf{x}_{\sigma_{i+1}} - \mathbf{x}_{\sigma_{i+1}}^{\text{Heun}} \approx -h \alpha(z_1) \langle \mathbf{f}_{\mathbf{x}_{\sigma_i}}, \mathbf{v}_1 \rangle \mathbf{v}_1. \quad (43)$$

817 Rearranging terms gives

$$818 \mathbf{x}_{\sigma_{i+1}} \approx \mathbf{x}_{\sigma_{i+1}}^{\text{Heun}} - h \alpha(z_1) \langle \mathbf{f}_{\mathbf{x}_{\sigma_i}}, \mathbf{v}_1 \rangle \mathbf{v}_1 \quad (44)$$

820 Because $\alpha(z) = \frac{e^z - 1}{z} - 1 - \frac{1}{2}z$, its Taylor expansion at $z = 0$ yields

$$821 \alpha(z_1) = \frac{1}{6}z_1^2 + O(z_1^3), \quad (45)$$

823 and substituting this Taylor approximation into Eq. 44 gives

$$825 \mathbf{x}_{\sigma_{i+1}} \approx \mathbf{x}_{\sigma_{i+1}}^{\text{Heun}} - \frac{1}{6}h z_1^2 \langle \mathbf{f}_{\mathbf{x}_{\sigma_i}}, \mathbf{v}_1 \rangle \mathbf{v}_1. \quad (46)$$

826 We interpret this additive term as a guidance correction and introduce a tunable scale w_{stiff} as follows

$$828 \hat{\mathbf{x}}_{\sigma_{i+1}}^{\text{Heun}} = \mathbf{x}_{\sigma_{i+1}}^{\text{Heun}} - h z^2 \langle \mathbf{f}_{\mathbf{x}_{\sigma_i}}, \mathbf{v}_1 \rangle \mathbf{v}_1, \quad z := w_{\text{stiff}} z_1, \quad (47)$$

829 where constant $\frac{1}{6}$ is absorbed into w_{stiff} .

830 Since neither the dominant eigenvector v_1 nor the eigenvalue λ is available in practice, we replace
831 them with our cost-free estimators \hat{v}_1 and stiffness $\hat{\rho} \approx |\lambda_1|$. This yields the practical ERK-Guid
832 update:

$$833 \hat{\mathbf{x}}_{\sigma_{i+1}}^{\text{Heun}} = \mathbf{x}_{\sigma_{i+1}}^{\text{Heun}} - h z^2 \langle \mathbf{f}_{\mathbf{x}_{\sigma_i}}, \hat{\mathbf{v}}_{\mathbf{x}_{\sigma_i}} \rangle \hat{\mathbf{v}}_{\mathbf{x}_{\sigma_i}}, \quad z \approx w_{\text{stiff}} h \hat{\rho}. \quad (48)$$

835 Since the derivation assumes operation within stiff regions, we introduce a step function β that
836 activates the guidance only when the estimated stiffness exceeds a threshold, i.e., $\hat{\rho} > w_{\text{con}}$.

$$837 \hat{\mathbf{x}}_{\sigma_{i+1}}^{\text{Heun}} = \mathbf{x}_{\sigma_{i+1}}^{\text{Heun}} - h \beta z^2 \langle \mathbf{f}_{\mathbf{x}_{\sigma_i}}, \hat{\mathbf{v}}_{\mathbf{x}_{\sigma_i}} \rangle \hat{\mathbf{v}}_{\mathbf{x}_{\sigma_i}}, \quad z \approx w_{\text{stiff}} h \hat{\rho}. \quad (49)$$

841 A.4 RESEMBLANCE BETWEEN OUR ERK-GUID AND OTHER GUIDANCES
842

843 We provide the alternative (but equivalent) formulation of our proposed method as a common form
844 of guidance schemes. In Eq. 21, the ERK-Guid updates the Huen prediction as

$$846 \hat{\mathbf{x}}_{\sigma_{i+1}}^{\text{Heun}} = \mathbf{x}_{\sigma_{i+1}}^{\text{Heun}} - h \beta z^2 \langle \mathbf{f}_{\mathbf{x}_{\sigma_i}}, \hat{\mathbf{v}}_{\mathbf{x}_{\sigma_i}} \rangle \hat{\mathbf{v}}_{\mathbf{x}_{\sigma_i}},$$

847 where $h = \sigma_i - \sigma_{i+1}$, $\beta := 1_{\{\hat{\rho}_{\mathbf{x}_{\sigma_i}} > w_{\text{con}}\}}$, and $z = w_{\text{stiff}} h \hat{\rho}_{\mathbf{x}_{\sigma_i}}$. We abbreviate the drift as $\mathbf{f}_{\mathbf{x}_{\sigma_i}}$ and
848 eigenvector estimator $\hat{\mathbf{v}}_{\mathbf{x}_{\sigma_i}}$, where the latter is defined by Eq. 17 as following:

$$850 \hat{\mathbf{v}}_{\text{stiff}}(\mathbf{x}_{\sigma_i}, \sigma_i) := \frac{\mathbf{f}(\mathbf{x}_{\sigma_i}; \sigma_i) - \mathbf{f}(\mathbf{x}_{\sigma_i}^{\text{Euler}}; \sigma_i)}{\|\mathbf{f}(\mathbf{x}_{\sigma_i}; \sigma_i) - \mathbf{f}(\mathbf{x}_{\sigma_i}^{\text{Euler}}; \sigma_i)\|_2}.$$

852 Substituting this expression into ERK-Guid in Eq. 21 yields

$$853 \hat{\mathbf{x}}_{\sigma_{i+1}}^{\text{Heun}} = \mathbf{x}_{\sigma_{i+1}}^{\text{Heun}} - \frac{h \beta z^2 \langle \mathbf{f}_{\mathbf{x}_{\sigma_i}}, \hat{\mathbf{v}}_{\mathbf{x}_{\sigma_i}} \rangle}{\|\mathbf{f}(\mathbf{x}_{\sigma_i}; \sigma_i) - \mathbf{f}(\mathbf{x}_{\sigma_i}^{\text{Euler}}; \sigma_i)\|_2} \left(\mathbf{f}(\mathbf{x}_{\sigma_i}; \sigma_i) - \mathbf{f}(\mathbf{x}_{\sigma_i}^{\text{Euler}}; \sigma_i) \right). \quad (50)$$

855 For simplicity, we introduce an adaptive scaling function

$$857 \gamma(\mathbf{x}_{\sigma_i}, \mathbf{x}_{\sigma_i}^{\text{Euler}}, \sigma_i) = \frac{-h \beta z^2 \langle \mathbf{f}_{\mathbf{x}_{\sigma_i}}, \hat{\mathbf{v}}_{\mathbf{x}_{\sigma_i}} \rangle}{\|\mathbf{f}(\mathbf{x}_{\sigma_i}; \sigma_i) - \mathbf{f}(\mathbf{x}_{\sigma_i}^{\text{Euler}}; \sigma_i)\|_2}. \quad (51)$$

859 The ERK-Guid update can then be rewritten as

$$861 \hat{\mathbf{x}}_{\sigma_{i+1}}^{\text{Heun}} = \mathbf{x}_{\sigma_{i+1}}^{\text{Heun}} + \gamma(\mathbf{x}_{\sigma_i}, \mathbf{x}_{\sigma_i}^{\text{Euler}}, \sigma_i) \left(\mathbf{f}(\mathbf{x}_{\sigma_i}; \sigma_i) - \mathbf{f}(\mathbf{x}_{\sigma_i}^{\text{Euler}}; \sigma_i) \right). \quad (52)$$

863 The above equation clearly shows that our method is a guidance with an adaptive guidance scaling
864 γ .

864 **B EXPERIMENTAL DETAILS**
865866 **B.1 2D TOY EXPERIMENT**
867

868 For the toy experiments 4.1, we explicitly construct the Jacobian by applying Jacobian–vector products (JVPs) to one-hot basis vectors, and compute its eigenvalues and eigenvectors directly. Since
869 eigenvectors are sign-ambiguous, we orient them to point in the same half-space as the drift at each
870 state, following Eq. 14. Sampling is performed without any additional guidance and always with
871 the ground-truth score function. Because the exact ground-truth solution is not available, we ap-
872 proximate it by subdividing each original step into 30 smaller substeps with a much finer step size.
873 The local truncation error (LTE) is defined relative to the Heun method under this reference. Fig-
874 ures 2(a,b) are obtained by partitioning into stiffness bins and plotting the median cosine similarity
875 within each bin.
876

877 **B.2 MAIN EXPERIMENTS**
878

879 We estimate the dominant eigenvector and the stiffness using JVP-based power iteration with a ran-
880 dom initialization and 300 iterations per timestep. Figure 8 visualizes the per-timestep convergence
881 and indicates that 300 iterations are sufficient. As in the toy setup, we fix the eigenvector orientation
882 via Eq. 14 so that it points toward the local drift; Figure 3(b) reports the median cosine similarity
883 under this convention. For Table 2, we use the confidence threshold $w_{\text{con}}=0.5$. Figure 4(a) uses
884 $w_{\text{stiff}}=1.5$, and Figure 4(b) uses $w_{\text{con}}=0.5$. In Figure 6, we conduct 15 sampling steps for text-to-
885 image generation on PixArt- α Chen et al. (2023) which adopts Diffusion Transformer (DiT) Peebles
886 & Xie (2023) architecture.

887 **Guidance Integration with CFG and Autoguidance.** In Section 5.4, we introduce guidance com-
888 patibility of ERK-Guid and ERK-Proj. We define the standard model-based guidance term, which
889 applies to methods such as CFG and Autoguidance as follows

$$890 \quad \mathbf{g} := \mathbf{f}_{\text{main}}(\mathbf{x}_{\sigma_i}; \sigma_i) - \mathbf{f}_{\text{guiding}}(\mathbf{x}_{\sigma_i}; \sigma_i). \quad (53)$$

892 **Model-based Guidance with ERK-Guid.** Let the combined guidance method be expressed by
893 Eq. 53. To incorporate ERK-Guid, we simply replace the original drift \mathbf{f} with the guided drift as
894 follows

$$895 \quad \mathbf{f}^w(\mathbf{x}_{\sigma_i}; \sigma_i) := \mathbf{f}_{\text{main}}(\mathbf{x}_{\sigma_i}; \sigma_i) + (w - 1)\mathbf{g}, \quad (54)$$

897 where w is scaling hyperparameters. Then, we compute the eigenvector estimator and stiffness
898 estimator as following:

$$900 \quad \hat{\mathbf{v}}_{\text{stiff}}^w(\mathbf{x}_{\sigma_i}, \sigma_i) := \frac{\mathbf{f}^w(\mathbf{x}_{\sigma_i}; \sigma_i) - \mathbf{f}^w(\mathbf{x}_{\sigma_i}^{\text{Euler}}; \sigma_i)}{\|\mathbf{f}^w(\mathbf{x}_{\sigma_i}; \sigma_i) - \mathbf{f}^w(\mathbf{x}_{\sigma_i}^{\text{Euler}}; \sigma_i)\|_2}, \quad (55)$$

$$902 \quad \hat{\rho}_{\text{stiff}}^w(\mathbf{x}_{\sigma_i}, \sigma_i) := \frac{\|\mathbf{f}^w(\mathbf{x}_{\sigma_i}; \sigma_i) - \mathbf{f}^w(\mathbf{x}_{\sigma_i}^{\text{Euler}}; \sigma_i)\|_2}{\|\mathbf{x}_{\sigma_i} - \mathbf{x}_{\sigma_i}^{\text{Euler}}\|_2}. \quad (56)$$

905 Finally, we constitute our ERK-Guid as follows

$$907 \quad \hat{\mathbf{x}}_{\sigma_{i+1}}^{\text{Heun}} = \mathbf{x}_{\sigma_{i+1}}^{\text{Heun}} - h \beta z^2 \langle \mathbf{f}_{\mathbf{x}_{\sigma_i}}^w, \hat{\mathbf{v}}_{\mathbf{x}_{\sigma_i}}^w \rangle \hat{\mathbf{v}}_{\mathbf{x}_{\sigma_i}}^w. \quad (57)$$

909 **Model-based Guidance with ERK-Proj.** ERK-Proj interpolates between model-error-based and
910 LTE-based corrections, aiming to reduce both simultaneously. ERK-Proj is a light extension that
911 simply interpolates between these two correction signals, aiming to reduce both errors simultane-
912 ously. ERK-Proj is defined as follows

$$913 \quad \eta := e^{-w_{\text{stiff}}\hat{\rho}_{\text{stiff}}}, \quad (58)$$

$$915 \quad \hat{\mathbf{g}} := \eta \mathbf{g} + (1 - \eta) \langle \mathbf{g}, \hat{\mathbf{v}}_{\text{stiff}} \rangle \hat{\mathbf{v}}_{\text{stiff}}, \quad (59)$$

$$916 \quad \mathbf{f}^w(\mathbf{x}_{\sigma_i}; \sigma_i) := \mathbf{f}_{\text{main}}(\mathbf{x}_{\sigma_i}; \sigma_i) + (w - 1)\hat{\mathbf{g}}, \quad (60)$$

917 where η adjusts the guidance scaling by stiffness estimator to interpolate the two guidance signals.

918
919
920
Table 5: **Wall-clock time (seconds per im-
age) on a single RTX 3090 GPU.**

Method	Avg	Min	Max
Heun	2.777	2.775	2.782
ERK-Guid (Ours)	2.794	2.785	2.811

925
926
927
928
929
930
Table 6: **Memory consumption for generating
a single image.**

Method	Avg (MB)
Heun	1906.82
ERK-Guid (Ours)	1906.82

926 **Computational cost.** All main experiments were run on $8 \times$ NVIDIA RTX 3090 GPUs. In Table 5
927 and Table 6, we evaluate the wall-clock time and memory overhead on the ImageNet 512×512
928 dataset using a single RTX 3090 GPU with batch size 1, comparing ERK-Guid against Heun’s
929 method. ERK-Guid incurs only a slight increase in wall-clock time, and its memory consumption
930 remains identical to that of Heun’s method.

931
932

B.3 CHOICE OF ABLATION FUNCTIONS

933 We were concerned about excessive amplification from the original factor $\alpha(z)$, whose exponential
934 growth makes it sensitive to estimation errors. Therefore, we replaced it with the lowest-order term
935 of its Taylor expansion around $z=0$, i.e., a *quadratic* scaling z^2 (See Figure 7). As an ablation, we
936 also tested an even lower-growth alternative, $|z|$, which is symmetric and linear in the magnitude
937 of z . This pair (z^2 vs. $|z|$) lets us check whether stability comes simply from curbing amplification
938 (linear) or from staying close to the local behavior of $\alpha(z)$ (quadratic).

939
940 Table 7: **Guidance configuration for Heun, DPM-Solver, and DEIS.**

Solver	Pair of states	h	β
Heun	$\mathbf{x}_{\sigma_i}, \mathbf{x}_{\sigma_i}^{\text{Euler}}$	$\sigma_i - \sigma_{i+1}$	$\{0, 1\}$
DPM-Solver (2S)	$\mathbf{x}_{\sigma_i+\delta}, \mathbf{x}_{\sigma_i}$	$\sigma_i - \sigma_{i+1}$	$\{0, 1\}$
DEIS	$\mathbf{x}_{\sigma_i}, \mathbf{x}_{\sigma_{i-1}}$	$\sigma_{i-1} - \sigma_i$	$\{0, -1\}$

948
949

B.4 PLUG-AND-PLAY MODULE FOR ADVANCED SOLVERS

950 In main paper Section 5.4, we present additional experimental results that confirm the effectiveness
951 of our method combined with various solvers as a guidance/corrector.

$$\mathbf{x}_{\sigma_{i+1}}^{\text{solver}} = \text{solver}(\mathbf{x}_{\sigma_i}, \sigma_i, \mathbf{f}) \quad (61)$$

$$\hat{\mathbf{x}}_{\sigma_{i+1}}^{\text{solver}} = \mathbf{x}_{\sigma_{i+1}}^{\text{solver}} - h\beta z^2 \langle \mathbf{f}(\mathbf{x}_{\sigma_i}, \sigma_i), \hat{\mathbf{v}} \rangle \hat{\mathbf{v}} \quad (62)$$

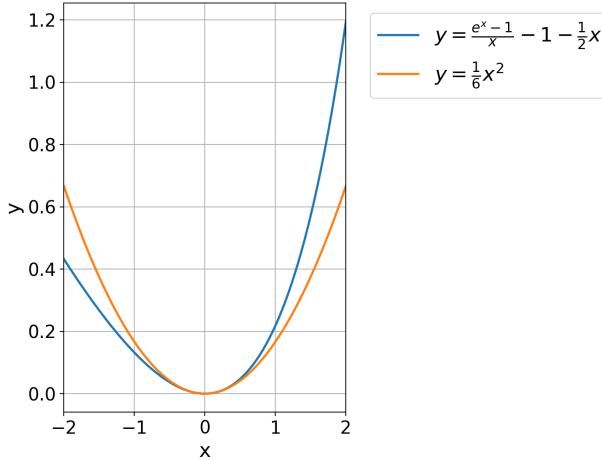
952 DPM-Solver (2S) Lu et al. (2022) computes an intermediate state during its two-stage update. We
953 denote this intermediate state as $\mathbf{x}_{\sigma_i+\delta}$, and construct the pair as $\{\mathbf{x}_{\sigma_i+\delta}, \mathbf{x}_{\sigma_i}\}$. DEIS Zhang &
954 Chen (2023) computes its update using previous states in a multi-step formulation. We use the most
955 recent previous state $\mathbf{x}_{\sigma_{i-1}}$ to construct the pair as $\{\mathbf{x}_{\sigma_i}, \mathbf{x}_{\sigma_{i-1}}\}$.

956
957
958
959
960
961
962
Table 8: **Evaluation of adaptive step-size control under different stiffness thresholds.** (A) ERK-
963 Guid and (B) Heun are not adopt adaptive step-size. (C-G) adapt step-size using thresholds $\tau =$
964 $0.5, 1, 2, 5, 10$.

	Adaptive step-size	Threshold	NFE (Avg.) \downarrow	FD-DINOv2 \downarrow	FID \downarrow
(A) ERK-Guid (Ours)	✗	—	63	86.2	2.56
(B) Heun	✗	—	63	90.1	2.58
(C)	✓	$\tau = 0.5$	90.7	88.9	2.57
(D)	✓	$\tau = 1.0$	85.5	89.4	2.57
(E)	✓	$\tau = 2.0$	79.5	90.0	2.58
(F)	✓	$\tau = 5.0$	67.6	90.1	2.58
(G)	✓	$\tau = 10.0$	64.5	90.1	2.58

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
Table 9: **Quantitative results of predictor-corrector and ERK-Guid (Ours).**

Method	Stochasticity	r	NFE	FID	FD-DINOv2
Predictor-Corrector Song et al. (2021b)	✓	0.05	64	2.65	91.5
	✓	0.10	64	2.66	93.0
	✓	0.15	64	2.90	98.9
	✗	0.01	64	2.61	90.6
	✗	0.02	64	2.73	87.4
	✗	0.03	64	3.33	88.6
ERK-Guid (Ours)	✗	-	63	2.58	83.7

Figure 7: **The behavior of the function $y = \alpha(x)$ and $y = \frac{1}{6}x^2$** 1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
B.5 COMPARISON WITH ADAPTIVE STEP SIZE

In Table 8, we analyze our proposed method with a classical adoption of stiffness during diffusion sampling. For experimental setting, we utilize a pre-trained EDM2 network on ImagNet-512. We use the same EDM discretization, and halved the step size whenever the stiffness estimator exceeded thresholds of 0.5, 1, 2, 5, or 10. Although a small threshold (e.g., $\tau = 0.5$) produced modest gains in FID and FD-DINOv2, it requires 1.44 \times more NFEs than ERK-Guid, making it substantially less efficient. Our method still achieved the best performance and efficiency compared to the baseline with various adaptive step-size.

1011
1012
B.6 COMPARISON WITH THE PREDICTOR-CORRECTOR SAMPLER

We evaluate the predictor-corrector (PC) sampler from Song et al. (2021b) by applying its corrector step after each Heun update. Since the corrector in Song et al. (2021b) is designed for the reverse SDE rather than an ODE, we also consider a deterministic variant obtained by removing its noise term. We vary the hyperparameter r and measure FID and FD-DINOv2 under a comparable NFE. In Table 9, ERK-Guid achieves strong performance compared to both variants of the PC sampler. The stochastic PC sampler consistently degrades performance across both metrics. In contrast, the deterministic PC sampler of Song et al. (2021b) exhibits a clear trade-off: as the correction scale r increases, FD-DINOv2 increases while FID decreases.

1021
1022
1023
C ALGORITHM

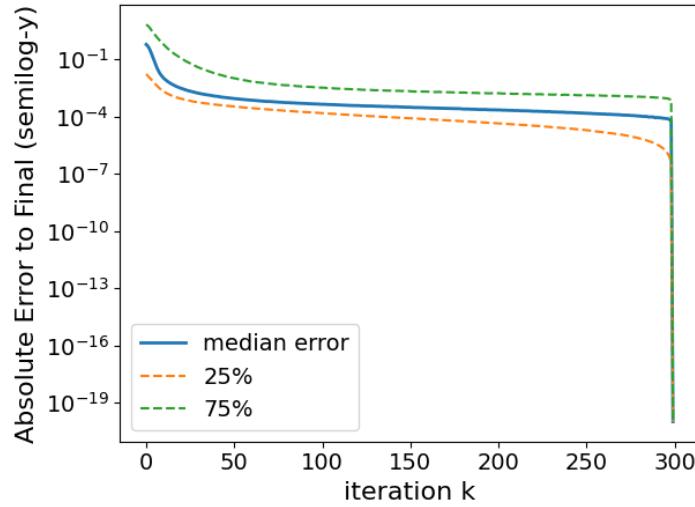
In main paper Section 4.3, we introduce our ERK-Guid framework. For clarify our method, we provide Algorithm 1 in this part.

1026 **Algorithm 1** Sampling procedure with **ERK-Guid**

```

1027 1: procedure OURS( $\mathbf{f}_\theta(\mathbf{x}; \sigma)$ ,  $\{\sigma_i\}_{i=0, \dots, N}$ ,  $w_{\text{stiff}}$ ,  $w_{\text{con}}$ ,  $\epsilon$ )
1028 2:   sample  $\mathbf{x}_0 \sim \mathcal{N}(\mathbf{0}, \sigma_0^2 \mathbf{I}) \in \mathbb{R}^{H \times W \times C}$ 
1029 3:   for  $i \leftarrow 0$  to  $N - 1$  do
1030 4:      $\mathbf{f}_i \leftarrow \mathbf{f}_\theta(\mathbf{x}_i; \sigma_i)$ 
1031 5:      $h \leftarrow \sigma_i - \sigma_{i+1}$ 
1032 6:     if  $i \neq 0$  then
1033 7:        $\Delta\mathbf{f}_i \leftarrow \mathbf{f}_i - \mathbf{f}_i^{\text{Euler}}$ 
1034 8:        $\Delta\mathbf{x}_i \leftarrow \mathbf{x}_i - \mathbf{x}_i^{\text{Euler}}$ 
1035 9:        $\mathbf{v}_i, \hat{\rho} \leftarrow \frac{\Delta\mathbf{f}_i}{\|\Delta\mathbf{f}_i\|}, \frac{\|\Delta\mathbf{f}_i\|}{\|\Delta\mathbf{x}_i\|}$ 
1036 10:        $\beta, z \leftarrow (\hat{\rho} > w_{\text{con}}), w_{\text{stiff}} h \hat{\rho}$ 
1037 11:        $\mathbf{g}_i \leftarrow \beta z^2 (\mathbf{f}_i^1 \cdot \mathbf{v}_i) \mathbf{v}_i$ 
1038 12:     else
1039 13:        $\mathbf{g}_i \leftarrow \mathbf{0}$ 
1040 14:     end if
1041 15:      $\mathbf{x}_{i+1}^{\text{Euler}} \leftarrow \mathbf{x}_i - h\mathbf{f}_i$ 
1042 16:     if  $i \neq N$  then
1043 17:        $\mathbf{f}_{i+1}^{\text{Euler}} \leftarrow \mathbf{f}_\theta(\mathbf{x}_{i+1}^{\text{Euler}}; \sigma_{i+1})$ 
1044 18:        $\mathbf{x}_{i+1}^{\text{Heun}} \leftarrow \mathbf{x}_i - h \left( \frac{1}{2} \mathbf{f}_i + \frac{1}{2} \mathbf{f}_{i+1}^{\text{Euler}} \right)$ 
1045 19:        $\mathbf{x}_{i+1} \leftarrow \mathbf{x}_{i+1}^{\text{Heun}} - h\mathbf{g}_i$ 
1046 20:        $\mathbf{Q}^{\text{buffer}} \leftarrow \mathbf{x}_{i+1}^{\text{Euler}}, \mathbf{f}_{i+1}^{\text{Euler}}$ 
1047 21:     else
1048 22:        $\mathbf{x}_{i+1} \leftarrow \mathbf{x}_{i+1}^{\text{Euler}}$ 
1049 23:     end if
1050 24:   end for
1051 25:   return  $\mathbf{x}_N$ 
1052 26: end procedure

```



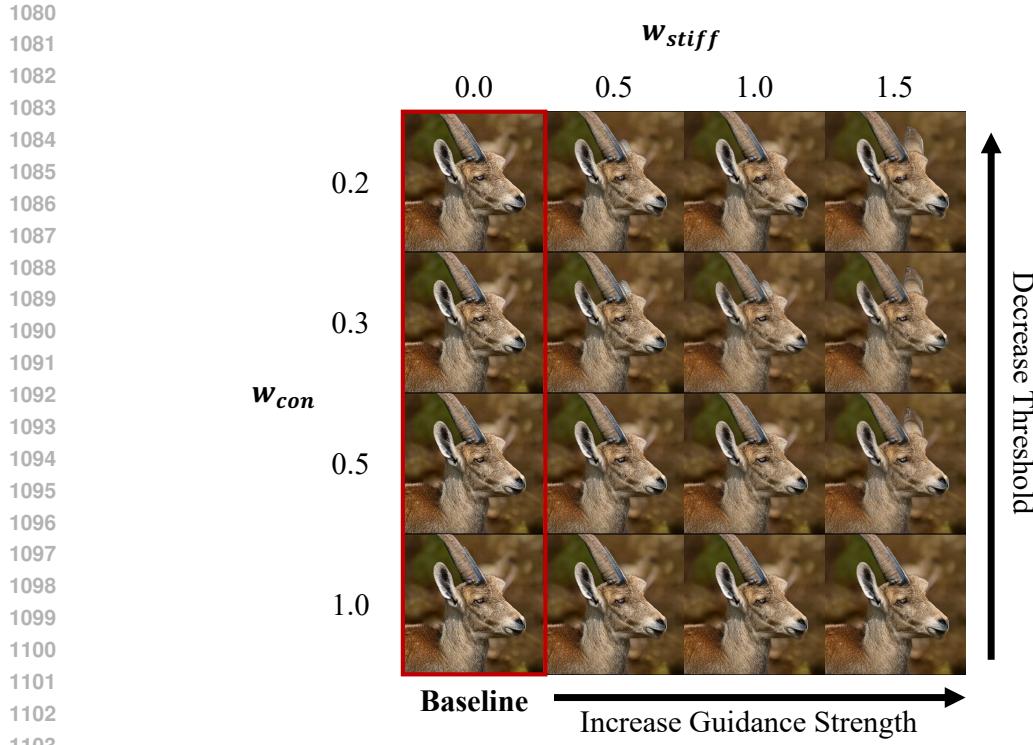


Figure 9: Qualitative results of ERK-Guid across adjusting guidance scale.

D LLM USAGE

We only used a large language model as a writing assistant to refine phrasing, grammar, and clarity. It was not used for technical content, experiments, analyses, or results.

E QUALITATIVE RESULTS

In this section, we present qualitative results of ERK-Guid on ImageNet 512×512. Figures 9 and 10 show that applying ERK-Guid enhances image fidelity when sufficient guidance is applied. These results demonstrate that our method effectively mitigates solver-induced errors during conditional updates along the sampling trajectory.

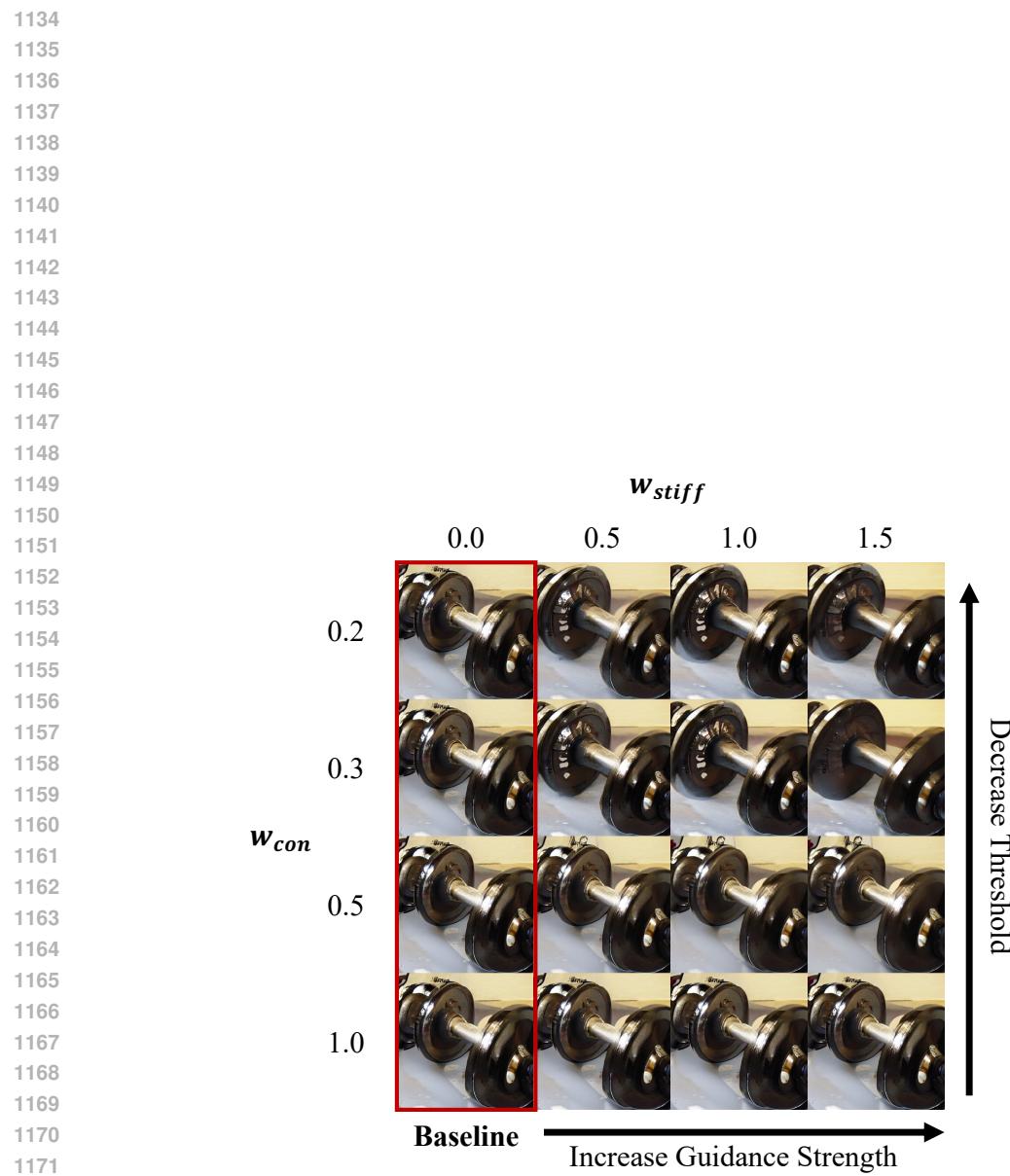


Figure 10: Qualitative results of ERK-Guid across guidance scales.