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ABSTRACT
Amid the burgeoning development of generative models like

diffusion models, the task of differentiating synthesized audio from
its natural counterpart grows more daunting. Deepfake detection
offers a viable solution to combat this challenge. Yet, this defensive
measure unintentionally fuels the continued refinement of genera-
tive models. Watermarking emerges as a proactive and sustainable
tactic, preemptively regulating the creation and dissemination of
synthesized content. Thus, this paper, as a pioneer, proposes the
generative robust audio watermarking method (Groot), present-
ing a paradigm for proactively supervising the synthesized audio
and its source diffusion models. In this paradigm, the processes
of watermark generation and audio synthesis occur simultane-
ously, facilitated by parameter-fixed diffusion models equipped
with a dedicated encoder. The watermark embedded within the
audio can subsequently be retrieved by a lightweight decoder. The
experimental results highlight Groot’s outstanding performance,
particularly in terms of robustness, surpassing that of the leading
state-of-the-art methods. Beyond its impressive resilience against
individual post-processing attacks, Groot exhibits exceptional ro-
bustness when facing compound attacks, maintaining an average
watermark extraction accuracy of around 95%.

KEYWORDS
Generative audio watermarking, Proactive supervision, Text-to-
Speech synthesis, Diffusion models

1 INTRODUCTION
The advancements in generative adversarial networks (GANs)

[9, 14, 15, 47] and diffusion models (DMs) [10, 35–37] have revolu-
tionized the way of multimedia content generation. These models
have significantly reduced the gap between generated content and
authentic content, blurring the lines between what is real and what
is artificial. To cope with the confusion on distinguishing between
natural and synthesized content, deepfake detection has explored a
variety of innovative approaches to widen the distinction. Regret-
tably, this effort not only enhances deepfake detection techniques
but also drives the evolution of generative models. Generative mod-
els (GMs) learn from these distinctions and improve further.

For several decades, watermarking has served as a proactive so-
lution for protecting the intellectual property rights of multimedia
content and tracing its origins. This technique continues to be rele-
vant and effective in modern contexts, particularly for proactively
combating deepfake threats and sourcing corresponding GMs. Re-
cent research has identified post-hoc watermarking and generative
watermarking as two primary strategies for tagging AI-generated
content. Post-hoc watermarking involves embedding the water-
mark after the content’s generation, making it an asynchronous
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Figure 1: The diagram illustrates the process of supervising
generated content through generative watermarking. The
synthetic content generated via GMs by Alice will be subject
to regulation, while Bob’s may pose a high risk to society.
process. In contrast, generative watermarking integrates the water-
marking process with content synthesis, utilizing the same GM for
both tasks. Specifically, in terms of generative image watermarking,
one of the solutions incorporates watermarks into the weights or
structure of GMs [22, 43, 46]. Another explores the transferability
of watermarks [8, 23, 28, 40, 42, 45], where the watermark is applied
to the training data and consequently embedded in all generated
images, leveraging its transferable characteristics.

Generative image watermarking [8, 42, 43] has rapidly gained
prominence among researchers due to its superior fidelity and ro-
bustness. While this field flourishes within the realm of imagery,
generative audio watermarking remains underexplored and lacks
similar advancements. Chen et al. [3] and Ding et al. [7] pioneered
the exploration of generative steganography in speech using au-
toregressive models. Building on this foundation, Cho et al. [5] and
Li et al. [21] introduced generative audio steganography algorithms
based on GANs. Designed to address particular applications such
as model attribution and coverless steganography, these algorithms
operate under the assumption that the distribution of generated
content occurs through lossless channels-a condition that deviates
significantly from real-world scenarios. The inherent limitation in
robustness constrains the ability of these algorithms to proactively
regulate the utilization of generated content. Furthermore, advance-
ments of DMs have accelerated the audio synthesis, leading to their
widespread application. However, the aforementioned research has
not yet explored the potential of generative watermarking based
on DMs.

To tackle these challenges, we proposed a generative robust
audio watermarking (Groot) method tailored for diffusion-model-
based audio synthesis. By directly generating watermarked audio
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through DMs, we can regulate and trace the use conditions of the
generated audio and its originating DMs. As illustrated in Fig. 1,
Alice’s route demonstrates the conciseness but effectiveness of
our proposed Groot method in comparison to the ordinary audio
generation process, depicted as Bob’s route. Specifically, the en-
coder converts the watermark into a format recognizable by DMs.
Following joint optimization with a carefully designed loss func-
tion, the DMs can directly produce watermarked audio from the
input watermark. A precise decoder is then employed to accurately
extract the watermark from the generated audio. Our approach
marries generative watermarking with proactive supervision, with
the training overhead being exclusive to the encoder and decoder.
This eliminates the necessity for complex retraining of DMs. Such
a feature makes our method versatile and readily implementable as
a plug-and-play solution for any diffusion model.

In a nutshell, the contributions can be summarized as:
• New Paradigm. We pioneered an exploratory investiga-

tion and proposed a generative audio watermarking tech-
nique for proactively supervising generated content and
tracing its originating models. We utilized a meticulously
designed watermark encoder and decoder to directly syn-
thesize watermarked audio through the diffusion models.

• Vigorous Robustness. The robustness experiments vali-
date that Groot exhibits remarkable resilience against not
only individual post-processing attacks but compound at-
tacks formed by arbitrary combinations of single attacks.

• High Performance. We empirically validate several crite-
ria, encompassing fidelity and capacity. It illustrates Groot
maintains a superior quality in watermarked audio and can
adapt to large capacities of up to 5000 bps.

2 RELATEDWORK
2.1 Text-to-Speech Diffusion Models

Text-to-speech (TTS) is a technique that synthesizes the wave-
form from the transcriptions. Nowadays, TTS embraces its sig-
nificant performance boost by relying on the advantage of diffu-
sion models. A complete TTS synthesis process consists of two
main stages designed as deep neural networks: text-to-spectrogram
[2, 12, 27, 31] and spectrogram-to-waveform [4, 11, 18–20, 26]. The
methods employed for text-to-spectrogram leverage diffusion mod-
els to generate the mel-spectrogram from Gaussian noise, with
text input serving as the prompt. For spectrogram-to-waveform,
these approaches synthesize the waveform by utilizing the mel-
spectrogram as conditional input to the DMs. The proposed Groot
primarily leverages the spectrogram-to-waveform process for wa-
termarking. DMs generate watermarked audio directly by taking
the watermark transformed into the latent variable as input.

2.2 Audio Watermarking
Deep-Learning-based Watermarking With the gradual ad-

vancement of deep learning in the field of audio watermarking,
an increasing number of deep-learning-based audio watermarking
techniques have emerged [1, 24, 25, 30, 33]. Concretely, Chen et al.
[1] utilized invertible neural networks (INNs) for embedding the
watermark into audio to boost robustness. Liu et al. [24] pioneered
a watermarking framework to withstand audio re-recording. To

detect speech generated by AI, Roman et al. [33] devised a localized
watermarking technique. In addition, Liu et al. [25] proposed timbre
watermarking, aiming to defeat the voice cloning attacks.

Generative Watermarking Diverging from post-hoc water-
marking techniques, generative audio watermarking (or steganog-
raphy) [3, 5, 7, 21] roots the watermark (or secret message) into
GMs, facilitating the direct synthesis of watermarked (or stego)
audio. Both [3] and [7] leverage autoregressive models to generate
realistic cover speech samples. Specifically, [3] utilizes adaptive
arithmetic decoding (AAD), whereas [7] employs the distribution
copy method for embedding the secret message. Utilizing GANs,
[21] directly generated stego audio from secret audio. For model
attribution, [5] also employs GANs, which are trained to synthesize
watermarked speech by incorporating a specific key and constraints.
While these methods are constrained by transmission channels and
limitations in model and practical application, the proposed Groot
stands out as a plug-and-play generative watermarking method,
enabling supervision through extracted watermarks. Moreover, it
is capable of adapting to more robust scenarios.

3 PRELIMINARIES
The proposed Groot leverages vocoders based on DDPM [10]

to generate the watermarked audio. The blurb of diffusion-model-
based vocoders about generation is described as follows.

In the forward diffusion process, the normally distributed input
s𝑇 is produced by gradually adding Gaussian noise to the original
audio s0 ∼ 𝑞𝑑𝑎𝑡𝑎 (s0). It follows a discrete Markov chain {s𝑡 }𝑇𝑡=0,
which is also Gaussian distributed, that is

𝑞(s𝑡 |s𝑡−1) = N(s𝑡 ;
√︁
1 − 𝛽𝑡 s𝑡−1, 𝛽𝑡 I), (1)

where 𝛽𝑡 ∈ (0, 1) is the variance scheduled at time step 𝑡 , and
I is an identity matrix. Let 𝛼𝑡 = 1 − 𝛽𝑡 , 𝛼𝑡 =

∏𝑡
𝑖=1 𝛼𝑖 and 𝜖 ∼

N(0, I). For any time step of 𝑡 , by re-parameterization, one has
s𝑡 =
√
𝛼𝑡 s0 +

√
1 − 𝛼𝑡𝜖 .

The reverse denoising process generates an estimate of the au-
dio waveform from the input s𝑇 through a UNet-like network 𝜖𝜃 .
Given that the denoising process 𝑞(s𝑡−1 |s𝑡 ) follows a Gaussian
distribution, according to Bayes’ theorem, we can derive 𝑞(s𝑡−1 |s𝑡 )
as follows:

𝑞(s𝑡−1 |s𝑡 ) =
𝑞(s𝑡 |s𝑡−1)𝑞(s𝑡−1 |s0)

𝑞(s𝑡 |s0)
. (2)

Unfold this equation with Eq. 1 and combine like terms, we get

𝑞(s𝑡−1 |s𝑡 ) = N
(
s𝑡−1;

1
√
𝛼𝑡
(s𝑡 −

1 − 𝛼𝑡√
1 − 𝛼𝑡

𝜖), ( 1 − 𝛼𝑡−1
1 − 𝛼𝑡

𝛽𝑡 )I). (3)

The network 𝜖𝜃 is trained to estimate the noise 𝜖 . Once it has been
trained well, the estimated audio can be obtained by 𝜖𝜃 with re-
parameterization:

s𝑡−1 =
1
√
𝛼𝑡

(
s𝑡 −

1 − 𝛼𝑡√
1 − 𝛼𝑡

𝜖𝜃 (s𝑡 , 𝑡, 𝑐)
)
+ 𝛿𝑡 z, (4)

where 𝛿2𝑡 =
1−𝛼𝑡−1
1−𝛼𝑡

𝛽𝑡 I, z ∼ N(0, I), and 𝑐 is the mel-spectrogram.

4 METHODOLOGY
Our proposed method, Groot, aims to seamlessly connect the

input latent variables of DMs with the generation of watermarked
audio content. To achieve this, we are confronted with three pri-
mary challenges: first, designing an architecture to incorporate the
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Figure 2: The pipeline of Groot. a) Training Process, where the watermark w is encoded into a latent variable 𝜎 using the
encoder E(·). A Gaussian latent variable s𝑇 is sampled from a standard distribution. Watermarked audio is then generated
from the final latent variable by adding s𝑇 and 𝜎 via diffusion models, employing the mel-spectrogram as a condition. The
extracting stage employs the watermark decoder D(·) to recover the watermark ŵ from the watermarked audio. b) Inference
Process, where the watermark from the encoder is directly used by the diffusion model to synthesize the watermarked audio,
eliminating the need for additional Gaussian latent variables.

watermark into the input of DMs; second, developing a training
approach that encourages DMs to naturally generate watermarked
content; and third, devising a reliable architecture for extracting
the watermark from the generated audio.

To solve the question above, solutions encompassing three main
phases-watermarking, generating, and extracting-are illustrated in
Fig. 2. Firstly, an encoder E(·) is contrived to transform the water-
mark w into a latent variable. This transformed watermark is then
combined with the origin latent variable s𝑇 , serving as the input of
DMs. The diffusion model employed is a pre-trained architecture,
fixed and solely dedicated to generating audio content embedded
with the watermark. Subsequently, an advanced decoder D(·) is
developed to accurately extract the watermark from the synthetic
audio. To ensure DMs incorporate the watermark into the audio
content, we define a loss function that facilitates a joint training
process. Consequently, the encoder E(·), a diffusion model(with its
parameters fixed), and the decoder D(·) are simultaneously trained,
guided by the criteria set forth by the loss function.

Building upon the three main phases previously outlined, the
subsequent section will detail the specific architectures of both
the watermark encoder and decoder. Additionally, the methodolo-
gies for embedding and extracting watermarks, the approach to
joint training, and the theory for watermark verification will be
meticulously described, each in their respective segments.

4.1 Watermark Encoder and Decoder
The watermark encoder aims to convert the watermark w to

a latent variable 𝜎 , which satisfies the distribution of DMs’ input.

The purpose of the watermark decoder is to distinguish features
between the audio and the watermark, extracting the watermark
ŵ from the watermarked audio x0.

The watermark encoder is mainly composed of linear layers and
Rectified Linear Unit (ReLU) activation functions. As depicted in
Fig. 3, outputs of Fully Connected (FC) layers need to thoroughly
get through the ReLU activation function. The input size of the
first FC layer, namely the length of w is configurable, while the
output of the last FC layer needs to adapt for the input size of
DMs. Under the specific layout of the encoder, the watermark is
converted to a latent variable 𝜎 with Gaussian distribution, which
can be recognized as an input for diffusion models.

The watermark decoder is designed with a combination of a
convolutional block (ConvBlock) and a Dense Block as illustrated in
Fig. 3. The ConvBlock consists of sevenmodified gated convolutional
neural networks (MGCNN), each intricately designed to enhance
the model’s feature extraction capabilities. The architecture then
transitions into a Dense Block, which is meticulously structured
beginning with a FC layer, followed by a ReLU activation for non-
linear transformation. This sequence is succeeded by another FC
layer, setting the stage for the final component of the model. The
culmination of the process is marked by the application of a Sigmoid
activation function, strategically chosen to predict the output with
precision. This comprehensive configuration ensures a robust and
efficient process, optimized for high-performance on robustness.

The designed MGCNN represents an advanced iteration of the
gated convolution neural networks (GCNN) [6]. This model is struc-
tured into two distinct branches: The first process data through

3
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Figure 3: Architecture of the Encoder and Decoder.

a singular convolutional layer, ensuring direct feature extraction.
In parallel, the second branch initially passes through a convolu-
tional layer to extract features, which is immediately followed by
batch normalization to ensure data standardization and improve
network stability. The sequence culminates with the application
of a sigmoid activation function, a strategic choice that enables
the implementation of an effective gating mechanism. The gating
mechanism stands as a cornerstone within the model, functioning
to meticulously regulate the flow of vital information to subsequent
layers. This strategic regulation is pivotal in effectively addressing
and mitigating the vanishing gradient problem.

4.2 Watermark Embedding and Extracting
Watermark embedding: During the embedding process, the

Gaussian latent variable s𝑇 , sampled from the standard Gaussian
distribution, continues to serve as the input for DMs. To root the
watermark into DMs, the watermark encoder E(·) is utilized to
transform the watermark w into the latent variable 𝜎 before gener-
ation process:

𝜎 = E(w) ∈ R𝑣, (5)

where 𝑣 = 𝑏 × 𝑙𝑠 , 𝑏 is the batch size and 𝑙𝑠 represents the length of
the Gaussian latent variable s𝑇 . Subsequently, the latent variable
𝜎 is superposed to s𝑇 to acquire the final latent variable x𝑇 for
generating watermarked audio:

x𝑇 = s𝑇 + 𝜎. (6)
The generation process for watermarked audio x0 is completed

through the denoising process, directly derived from the final latent
variable x𝑇 . The denoising distribution of this generation process
adheres to the same format of Eq. (3), with the input being replaced
by x𝑇 . In a consequence, the estimated audio can be obtained by

x𝑡−1 =
1
√
𝛼𝑡

(
x𝑡 −

1 − 𝛼𝑡√
1 − 𝛼𝑡

𝜖𝜃 (x𝑡 , 𝑡, 𝑐)
)
+ 𝛿𝑡 z, (7)

where the pretrained noise prediction network 𝜖𝜃 (x𝑡 , 𝑡, 𝑐) is utilized
to approximate the denoising distribution. Here, 𝑐 represents the
mel-spectrogram, acting as a conditional input to assist in gener-
ating watermarked audio. And 𝛿𝑡 z represents the random noise,
introduced to enhance randomness in the generation process and
augment the diversity of the audio. Finally, a traditional sampler is
employed to generate watermarked audio step by step. The intact
watermarking and generating stage are formalized in Algorithm 1.

Watermark extraction: The watermark extraction process is an
independent process that does not necessitate the use of diffusion
and denoising process. The watermark decoder D(·) is designed to
disentangle features between audios and watermarks for recovering

the watermark ŵ:
ŵ = D(x0) ∈ R𝑢 , (8)

where 𝑢 = 𝑏 × 𝑙 , 𝑏 denotes the batch size, 𝑙 denotes the length of the
watermark. Our approach enables precise supervision of generated
content and corresponding DMs by ensuring that the extracted
watermark ŵ aligns with the embedded watermark. Essentially,
through this innovative watermarking and extracting progress, the
watermark becomes seamlessly integrated into the audio, maintain-
ing its perceptual quality while ensuring content authenticity and
traceability.

During the inference process, the process of embedding water-
marks is streamlined compared to the training process. Unlike the
training procedure, where the latent variable 𝜎 , derived from the
watermark encoder, is added to the Gaussian latent variable s𝑇 ,
for inference, 𝜎 is directly fed into the diffusion model. Thus, as a
coverless watermarking technique, our method allows for direct use
of the watermark w as input to the pretrained DMs, as illustrated
in Fig. 2. This can be formulated as:

x0 = G(E(w)), (9)
where G(·) symbolizes the generative progress employed by DMs.
Ultimately, the pretrained watermark decoder skillfully extracts the
watermark ŵ from the watermarked audio.
Algorithm 1:Watermarking and Generating Stage.
Input:Watermark w, Mel-spectrogram 𝑐 .
Output:Watermarked audio x0

1 s𝑇 ← s𝑇 ∼ N(0, I);
2 𝜎 ← E(w); ⊲ w = {(w𝑖 ),w𝑖 ∈ {0, 1}}𝑙𝑖=1
3 x𝑇 ← s𝑇 + 𝜎 ; ⊲ Watermarking
4 for 𝑡 ← 𝑇𝑖𝑛𝑓 𝑒𝑟 , ..., 1 do
5 if 𝑡 < 2 then z← 0 else z ∼ N(0, I);
6 x𝑡−1 ← 1√

𝛼𝑡

(
x𝑡 − 1−𝛼𝑡√

1−𝛼𝑡

𝜖𝜃 (x𝑡 , 𝑡, 𝑐)
)
+ 𝛿𝑡 z;

7 end
8 return x0

4.3 Jointly Optimization of Training Process
Our Groot method places a paramount emphasis on the dual

objectives of maintaining high-quality watermarked audio and
achieving precise extraction of watermarks. To adeptly balance
these critical aspects, we have implemented a joint optimization
strategy. This approach focuses on conducting gradient updates
for both the watermark encoder and decoder, while strategically
keeping the parameters of DMs unchanged. Regarding the quality
of watermarked audio, we employ the logarithm Short-Time Fourier
Transform (STFT) magnitude loss L𝑚𝑎𝑔 (s0, x0) as in [41]. It utilizes
an 𝐿1 norm to constrain the log-magnitude, as defined by:

L𝑚𝑎𝑔 = | | log(STFT(s0)) − log(STFT(x0)) | |1, (10)

where | | · | |1 denotes the 𝐿1 norm, STFT(·) represents the STFTmag-
nitudes, s0 and x0 represent the original audio and watermarked
audio respectively. Furthermore, drawing upon [17], we integrate
the mel-spectrogram loss L𝑚𝑒𝑙 (s0, x0), which measures the dis-
tance between the original and watermarked audio using the 𝐿1
norm. It is expressed as:

L𝑚𝑒𝑙 = E(s0,x0 )
[
| |𝜙 (s0) − 𝜙 (x0) | |1

]
, (11)
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where𝜙 (·) denotes the function of mel-spectrogram transformation.
The total loss that constrains watermarked audio quality can be
computed as:

L𝐴𝑢𝑑 = 𝜆𝑚𝑎𝑔L𝑚𝑎𝑔 + 𝜆𝑚𝑒𝑙L𝑚𝑒𝑙 , (12)
where 𝜆𝑚𝑎𝑔 and 𝜆𝑚𝑒𝑙 are hyper-parameters for the log STFT mag-
nitude loss and mel-spectrogram loss, respectively. Their target is
to strike a balance between these loss terms.

To guarantee successful watermark recovery, binary cross-entropy
stand as the indispensable choice:

L𝑊𝑀 = −
𝑘∑︁
𝑖=1

𝑤𝑖 log �̂�𝑖 + (1 −𝑤𝑖 ) log(1 − �̂�𝑖 ). (13)

Our final training loss is structured as follows, with both the
watermark encoder and decoder optimized synchronously,

L = 𝜏L𝐴𝑢𝑑 + L𝑊𝑀 , (14)
where 𝜏 is the hyper-parameters for the total audio quality loss
L𝐴𝑢𝑑𝑖𝑜 , used to control the trade-off between audio quality and
watermark extraction accuracy.

4.4 Watermark Verification
Regulating generated contents and tracing associated DMs are

achieved by verifying the existence of the watermark within the
generated audio through test hypothesis [23, 43]. By assuming
the watermark bit errors are independent to each other, with the
previously defined watermark bits length 𝑙 , the number of matching
watermark bits 𝜅 follow the binomial distribution:

𝑃𝑟 (𝑋 = 𝜅) =
𝑙∑︁

𝑖=𝜅

(
𝑙

𝑖

)
𝜉𝑖 (1 − 𝜉)𝑙−𝑖 , (15)

where 𝜉 is the probability that needs to be tested under hypotheses.
In the common use of the binomial test, the null hypothesis 𝐻0
states the variable𝑋 is observed with a random guess of probability
𝜉 = 0.5, whereby the model is not watermarked. The alternative
hypothesis 𝐻1 states the watermark is produced by the owner.

We determine a threshold𝑇𝑆 with a given false positive rate (FPR)
which is calculated from the probability density function under 𝐻0.
Alternatively, if 𝜉 is sufficiently large under 𝐻1, the false negative
rate (FNR) will be low, and FNR can be used to assess whether the
chosen threshold provides a satisfactory trade-off in distinguishing
between false positive cases and missed detection cases.

To exemplify the hypothesis test, a successful verification in our
experiments is given. In our case, the total number of samples is 768
and the length of the watermark is 𝑙=100. Then, we set an accepted
FPR≤0.0037. From the experimental result, we have 𝜉=0.5442 and
𝜉=0.9969 under 𝐻0 and 𝐻1, and the corresponding distributions
are plotted in Fig. 4. From the false cases in the figure, we find the
threshold 𝑇𝑆 ∈ [0.61, 0.99]. With the threshold, FNR≤0.012. Such
a small FNR indicates that the detected cases with 𝜉=0.9963 are
worth trusted. In simpler terms, when the watermark is 100 bits
long, the extraction accuracy of 99.63% can be utilized to confirm
the existence of the watermark.

5 EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we conduct comprehensive experiments to rigor-

ously evaluate our Groot method across several dimensions: fidelity
and capacity, robustness. Moreover, we undertake a comparative

Figure 4: A test result for binomial distribution under hypoth-
esis 𝐻0 and 𝐻1 for 𝜉 =0.5442 and 𝜉 = 0.9969. Given the total
number of samples is 768, an FPR≤0.0037 and the threshold
will be 𝑇𝑆 ∈ [0.61, 0.99]. With the threshold, FNR≤0.012.

analysis of Groot against the current state-of-the-art (SOTA) meth-
ods. The details of these experiments and their respective analyses
are detailed below.

5.1 Experimental Setup
5.1.1 Dataset and Baseline. Our experiments were carried out
on LJSpeech [13], LibriTTS [44], and LibriSpeech [29] datasets.
LJSpeech is a single-speaker English speech dataset featuring ap-
proximately 24 hours of audio data with a sample rate of 22.05 kHz.
LibriTTS and LibriSpeech both are multi-speaker English datasets
comprising around 584 hours of audio data recorded at a sample
rate of 24kHz and approximately 1000 hours of audio recordings
with a sample rate of 16kHz, respectively. In addition, we conducted
a comprehensive comparative evaluation of proposed Groot against
existing SOTA methods, including WavMark [1], DeAR [24], Au-
dioSeal [33], and TimbreWM [25].

5.1.2 Evaluation Metrics. We evaluated the performance of our
method with different objective evaluation metrics. Short-Time
Objective Intelligibility (STOI) [38] predicts the intelligibility of
audio. Mean Opinion Score of Listening Quality Objective (MOSL)
assesses audio quality based on the Perceptual Evaluation of Speech
Quality [32]. We also conducted evaluation metrics using Structural
Similarity Index Measure (SSIM) [39]. Moreover, Bit-wise Accuracy
(ACC) is employed to evaluate watermark extraction accuracy.

5.1.3 Implementation Details. 1) Model settings. We conducted val-
idation on Groot utilizing DiffWave [18], WaveGrad [4], and Pri-
orGrad [20]. DiffWave [18] and WaveGrad [4] both are vocoders
that utilize accelerated sampling and employ a gradient-based sam-
pler akin to Langevin dynamics for audio synthesis, respectively.
To boost the computational efficiency of vocoders, PriorGrad [20]
leverages an adaptive prior derived from data statistics, which are
conditioned on the provided conditional information. 2) Training
settings. During the training process, the Adam optimizer [16] was
utilized to update the parameters, and the learning rate was set to
2e-4. Regarding the hyper-parameters of audio quality loss in Eq.
(12), we empirical set 𝜆𝑚𝑎𝑔 = 0.7 and 𝜆𝑚𝑒𝑙 = 0.3. All experiments
were performed on the platform with Intel(R) Xeon Gold 5218R
CPU and NVIDIA GeForce RTX 3090 GPU.
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Figure 5: The Analysis of Capacity Under Various Datasets.
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Figure 6: Ablation Study. Comparison of accuracy employing
different architecture of watermark decoder.

Table 1: Fidelity of Groot. Benchmark represents generated
audio. ↑ indicates a higher value is more desirable.

Dataset Benchmark Capacity (bps)
100 500 1000 2000

LJSpeech

STOI↑ 0.9655 0.9605 0.9624 0.9568 0.9578
MOSL↑ 3.5120 3.3871 3.4300 3.3432 3.3663
SSIM↑ 0.8453 0.9088 0.9100 0.9075 0.9082
ACC↑ N/A 0.9969 0.9910 0.9979 0.9929

LibriTTS

STOI↑ 0.9337 0.9175 0.9166 0.9175 0.9179
MOSL↑ 2.8159 2.7267 2.7241 2.7335 2.7353
SSIM↑ 0.8025 0.8742 0.8740 0.8743 0.8743
ACC↑ N/A 0.9957 0.9958 0.9979 0.9961

LibriSpeech

STOI↑ 0.9176 0.9276 0.9145 0.9140 0.9136
MOSL↑ 2.7788 2.7775 2.9271 2.7799 2.7722
SSIM↑ 0.6699 0.8243 0.8280 0.8244 0.8244
ACC↑ N/A 0.9945 0.9898 0.9952 0.9832

5.2 Ablation Study
To assess the efficacy of MGCNN as the foundational architec-

ture of the watermark decoder, as detailed in Section 4.1, we con-
ducted an ablation study with LJSpeech dataset by substituting all
MGCNNs with conventional CNNs as a baseline. This investigation
explored a range of capacities, specifically 100, 500, 1000, 2000 bits
per second (bps). Fig. 6 showcases the watermark recovery accu-
racy employing different decoder structures, presented through a
nested bar chart. The results indicate that MGCNNs outperform
traditional CNNs significantly, showcasing a substantial enhance-
ment in recovery accuracy as depicted in the bar chart. Across
various capacities, the average accuracy attained with MGCNNs is
an impressive 99.47%. Conversely, employing standard CNNs in the
watermark decoder leads to amarked reduction to an average of just
89.31%. Specifically, at the 100 bps capacity, the accuracy of CNNs’
is 11.14% lower compared to the performance with MGCNNs.

Table 2: Fidelity of Groot under various diffusion models.
Benchmark represents generated audio. ↑ indicates a higher
value is more desirable.

Diffusion Model Benchmark Capacity (bps)
100 500 1000 2000

WaveGrad [4]
STOI↑ 0.9363 0.8932 0.8947 0.8936 0.8938
MOSL↑ 2.2339 2.1631 2.1355 2.1586 2.1251
SSIM↑ 0.7448 0.7368 0.7300 0.7329 0.7288
ACC↑ N/A 0.9981 0.9971 0.9956 0.9925

PriorGrad [20]
STOI↑ 0.9722 0.9580 0.9579 0.9582 0.9573
MOSL↑ 3.8875 2.6207 2.4198 2.5737 2.4665
SSIM↑ 0.9032 0.8528 0.8328 0.8478 0.8392
ACC↑ N/A 0.9996 0.9987 0.9973 0.9962

Table 3: Comparison of fidelity. "D-" presents the difference
values. ↑/↓ indicates a higher/lower value is more desirable.
Capacity Method D-STOI↓ D-MOSL↓ D-SSIM↓ ACC↑

16 bps AudioSeal [33] 0.0015 0.0546 0.0189 0.9214
Groot(DiffWave) 0.0042 0.0928 -0.0643 0.9945

32 bps WavMark [1] 0.0003 0.1811 0.0310 1.0000
Groot(DiffWave) 0.0023 0.0632 -0.0649 0.9974

100 bps
DeAR [24] 0.2563 0.3904 0.2780 1.0000

TimbreWM [25] 0.0147 0.6086 0.0612 0.9998
Groot(DiffWave) 0.0005 0.1249 -0.0635 0.9969

DeAR [24] 0.1497 1.4560 0.1999 0.5007
TimbreWM [25] 0.2415 3.1842 0.3254 0.4995

2500 bps Groot(DiffWave) 0.0043 0.0861 -0.0643 0.9904
Groot(WaveGrad) 0.0438 0.0785 -0.0765 0.9970
Groot(PriorGrad) 0.0142 1.3182 0.0556 0.9981

5.3 Fidelity and Capacity
5.3.1 The Performance of Proposed Groot on Fidelity and Capac-
ity. Fidelity gauges the extent to which watermarking minimally
impacts the perceptibility of the original generation. We validated
the fidelity of watermarked audio with the evaluation metrics ex-
hibited in Section 5.1.2. Table 1 elaborate the experimental results
on fidelity across different datasets employing DiffWave. In this con-
text, Benchmark refers to the generated audio, whose results are
compared to the Ground Truth. In scenarios involving watermarked
audio, the results are presented in comparison to the Benchmark.
The experimental results demonstrate that the quality of water-
marked audio remains impressively high across various datasets
For LJSpeech, the STOI metric consistently holds at 0.96, and the
lowest MOSL surpasses 3.3326 with only minimal reduction. While
a slight numerical decline is observed in the multi-speaker LibriTTS
and LibriSpeech datasets, attributed to resampling, this decrease
does not materially affect the overall quality of the watermarked
audio. Importantly, there is no discernible downward trend in au-
dio quality as the capacity increases, even at a capacity of 2000
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Table 4: Comparison of Robustness Under Individual Attacks.

Method
Noise LP-F BP-F Stretch Cropping Echo

5 dB 10 dB 20 dB 3k 0.3-8k 2 front behind default

WavMark [1]
STOI↑ 0.8128 0.9997 0.9733 0.9996 0.9149 0.9987 0.4185 0.5135 0.6122
MOSL↑ 1.1016 4.4625 2.1236 2.8870 1.1815 1.8689 1.7090 1.7466 1.3716
ACC↑ 0.5121 0.5295 0.6523 0.9999 0.9995 0.9926 0.9797 0.9713 0.8668

DeAR [24]
STOI↑ 0.7528 0.7577 0.7551 0.7425 0.7516 0.7361 0.7511 0.7417 0.7580
MOSL↑ 4.3118 4.3069 4.3015 4.2523 4.2923 4.2133 4.2766 4.1764 4.2655
ACC↑ 0.7546 0.9076 1.0000 0.5203 1.0000 1.0000 0.7167 0.7184 0.9654

AudioSeal [33]
STOI↑ 0.8411 0.9110 0.9789 0.9978 0.8575 0.9986 0.4150 0.5348 0.7563
MOSL↑ 1.0415 1.0995 1.5987 4.4728 3.7994 3.1729 1.0916 1.1661 1.1845
ACC↑ 0.6048 0.6086 0.6600 0.7498 0.9164 0.8958 0.7226 0.8925 0.7277

TimbreWM [25]
STOI↑ 0.8797 0.9136 0.9812 0.9997 0.8579 0.9999 0.4135 0.5331 0.7559
MOSL↑ 1.1871 1.3347 2.7424 4.5496 1.5119 2.5169 1.8149 1.8155 1.4720
ACC↑ 0.5627 0.6335 0.8154 0.9934 0.9883 0.9448 0.9888 0.9814 0.9471
STOI↑ 0.7789 0.8754 0.9672 0.9984 0.8515 0.9986 0.9420 0.9753 0.9166

Groot(Diffwave) MOSL↑ 1.0353 1.0773 1.4905 4.6186 3.7499 3.3032 1.0979 1.1771 1.1880
ACC↑ 0.9913 0.9929 0.9953 0.9870 0.9947 0.9912 0.9736 0.9718 0.9833
STOI↑ 0.8261 0.8984 0.9759 0.9984 0.8587 0.9986 0.4585 0.4933 0.7534

Groot(WaveGrad) MOSL↑ 1.0449 1.1056 1.6318 4.5873 3.7324 3.1568 1.1034 1.1407 1.1665
ACC↑ 0.9914 0.9951 0.9980 0.9806 0.9955 0.9905 0.9525 0.9795 0.9875
STOI↑ 0.8119 0.8867 0.9698 0.9997 0.8624 0.9999 0.4339 0.5238 0.7597

Groot(PriorGrad) MOSL↑ 1.0275 1.0591 1.4196 4.5581 3.5954 2.9838 1.0859 1.1358 1.1326
ACC↑ 0.9952 0.9976 0.9977 0.8970 0.9373 0.9367 0.9847 0.9806 0.9868

bps, the evaluation metrics show only a marginal decrease. We
also expanded the functionality of Groot to encompass Aishell-3
Chinese datasets [34], undertaking experiments to assess its cross-
lingual fidelity and capacity. Detailed specifics are provided in the
Appendix.

The fidelity experiments conducted with different DMs on LJSpeech
datasets are presented in Table 2. These results reveal only a minor
degradation in audio quality when employing WaveGrad across
four different capacities, with the average STOI and SSIM scores
remaining approximately 0.89 and 0.73, respectively. Moreover,
recovery accuracy remains consistently high at 99%. In the case
of PriorGrad, the average STOI and SSIM scores are 0.95 and 0.84,
respectively. It sustains an exceptional accuracy rate across all
capacities, averaging at 99.80%.

Capacity refers to the number of watermark bits that can be em-
bedded. To evaluate the scalability of Groot in terms of watermark
capacity, experiments were performed over a range of bps: 2500,
3000, 3500, 4000, 4500, and 5000 bps. Fig. 5 visualizes the impact
on extracting accuracy as the watermark capacity increases. As
observed, while LibriTTS exhibits minimal accuracy decline even
at 5000 bps, the other two datasets experience noticeable decreases,
albeit within an acceptable margin. Notably, from 2500 to 4500 bps,
the proposed approach achieves an accuracy of approximately 99%
with negligible impact on audio quality.

5.3.2 The ComparisonWith SOTAMethods on Fidelity and Capacity.
Our evaluation commenced with a fidelity comparison between
the proposed Groot and existing SOTA methods. The results are
detailed in Table 3, with the capacity settings (16, 32, and 100 bps)
conforming to the capacities reported in these SOTA methods. To
effectively highlight the comparative outcomes, we introduce the
prefix "D-" to denote the difference value between the watermarked
audio and the original audio without watermark.

The analysis of the experimental results indicates that despite
AudioSeal showing marginally smaller discrepancies in evaluation
metrics, Groot consistently matches its audio quality. While Wav-
Mark and Groot are nearly indistinguishable in terms of STOI, Groot
presents smaller variations across other metrics. In comparison
with DeAR and TimbreWM, Groot showcases superior audio qual-
ity. To further affirm the superior capacity performance of Groot,
we compared with DeAR and TimbreWM at 2500 bps. The results
distinctly show that the watermark extraction accuracy for both
DeAR and TimbreWm drastically falls to 50%, highlighting their
limitation in adapting to high-capacity conditions. In stark contrast,
Groot, achieves high recovery accuracies of 99.04%, 99.70%, and
99.81% across different diffusion models, all the while preserving
considerably good audio quality.

5.4 Robustness
5.4.1 The Robustness of Proposed Groot and The Comparison With
SOTA Methods Under Individual Attacks. To ensure the integrity
and resilience of our watermark against potential attacks during dis-
semination, we undertook comprehensive robustness experiments.
It is essential to emphasize that our DMs, alongside our watermark
encoder and decoder, are proprietary technologies and remain con-
fidential. Consequently, attacks are constrained to execute under
a black-box assumption, focusing primarily on post-processing
manipulations of the content. In light of this, we assessed the ro-
bustness of the watermarked audio against various disturbances,
including random Gaussian noise, low-pass and band-pass filtering,
stretch, cropping, and echo. These specific attacks are elaborately
detailed in the Appendix. Table 4 summarizes the results of robust-
ness for Groot and four SOTA methods against individual attacks.

The experimental results validate the excellent robustness of
the proposed Groot against individual attacks. Groot demonstrates
superior robustness against Gaussian noise and echo compared to
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Table 5: Comparison of Robustness Under Compound Attacks.

Methods
Lowpass+Noise Bandpass+Echo Cropping+Stretch

STOI↑ MOSL↑ ACC↑ STOI↑ MOSL↑ ACC↑ STOI↑ MOSL↑ ACC↑

WavMark [1] 0.9997 4.4625 0.5290 0.5653 1.1178 0.8315 0.4179 1.4192 0.8863
DeAR [24] 0.7562 4.2551 0.5067 0.7509 4.2743 0.9735 0.7617 4.3198 0.6950

AudioSeal [33] 0.8992 1.0808 0.5969 0.6570 1.1926 0.7135 0.4149 1.0878 0.6951
TimbreWM [25] 0.9022 1.1694 0.6058 0.6559 1.1876 0.8989 0.4135 1.5843 0.8983

Groot(DiffWave) 0.8540 1.0649 0.9803 0.7852 1.1991 0.9810 0.9366 1.0957 0.9615
Groot(WaveGrad) 0.8995 1.0929 0.9765 0.6552 1.1749 0.9821 0.4581 1.0964 0.9249
Groot(PriorGrad) 0.8858 1.0579 0.8434 0.6626 1.1410 0.9203 0.5393 1.0965 0.9166

Methods
Noise+Echo Noise+Bandpass Noise+Bandpass+Echo

STOI↑ MOSL↑ ACC↑ STOI↑ MOSL↑ ACC↑ STOI↑ MOSL↑ ACC↑

WavMark [1] 0.9997 4.4625 0.5300 0.9997 4.4625 0.5304 0.4967 1.0776 0.4907
DeAR [24] 0.7520 4.2693 0.9130 0.7503 4.2868 0.9257 0.7491 4.2860 0.9131

AudioSeal [33] 0.6875 1.0530 0.5886 0.7911 1.1084 0.6060 0.5999 1.0585 0.5904
TimbreWM [25] 0.6878 1.1927 0.5964 0.7934 1.0829 0.6281 0.5990 1.0881 0.5931

Groot(DiffWave) 0.7554 1.0864 0.9922 0.7154 1.0927 0.9924 0.7196 1.0526 0.9823
Groot(WaveGrad) 0.6777 1.0581 0.9826 0.7771 1.1136 0.9932 0.5892 1.0537 0.9760
Groot(PriorGrad) 0.6772 1.0358 0.9837 0.7719 1.0617 0.9332 0.5918 1.0387 0.9151

SOTA methods, particularly at noise levels of 5 dB and 10 dB. Here,
it achieves watermark extraction accuracy exceeding 99% with
negligible degradation. Even undergoing echo effect, its recovery
precision maintains an impressive rate above 98%. Although DeAR
method attains perfect accuracy against band-pass filtering and
stretching, its accuracy markedly declines after cropping and at a
noise level of 5dB, barely surpassing 70%. Despite Groot does not
always secure the highest recovery accuracy for certain attacks,
it maintains high average accuracies across different DMs-98.68%,
98.56%, and 96.82%, respectively. This solid performance of Groot
further confirms its strong robustness against individual attacks.

5.4.2 The Comparison With SOTA Methods Under Compound At-
tacks. With unpredictable transmission environments and the pos-
sibility of malicious interventions during dissemination, content is
likely to encounter complex, combined attacks in real-world sce-
narios. To delve deeper into the robustness of Groot with increased
rigor, we evaluated its performance under five composite attacks,
each integrating two distinct types of individual attacks, along-
side one composite attack that combines three single attacks. The
specific attack combinations are detailed as follows. 1) low-pass
filtering succeeded by Gaussian noise, 2) band-pass filtering fol-
lowed by an echo attack, 3) cropping and subsequently stretching,
4) Gaussian noise followed by echo, 5) Gaussian noise coupled with
band-pass filtering and, 6) Gaussian noise succeeded by band-pass
filtering coupled with echo.

The results of the robustness experiments against compound
attacks are presented in Table 5. Concretely, Groot illustrates ex-
ceptionally superior robustness against compound attacks 1 and
4, with watermark extraction accuracy far surpassing other SOTA
methods. Despite facing multifaceted challenges of compound at-
tacks 4 and 5, the recovery accuracy maintains at 99.22% and 99.24%,
respectively. Even when confronted with compound attack 6, which
amalgamates three separate attacks, Groot sustains an accuracy
level of over 90%, peaking at 98.23%. Although DeAR exhibits rea-
sonable robustness against compound attack 2, it fails to maintain
the anticipated robustness against compound attacks 1 and 3. In
contrast, Groot consistently delivers commendable accuracy across

Lp+Noise

Crop+Stretch

Noise+Bp+Echo

Bp+Echo

Noise+Bp

Noise+Echo

0.2

0.4

0.6

0.8

1.0

WavMark
DeAR
AudioSeal
TimbreWM
Groot

Figure 7: Visualization for Robustness Against Compound
Attacks of Groot Compared to SOTA Methods.
all composite attacks, underscoring its well-balanced and depend-
able robustness. Furthermore, Fig. 7 utilizes a radar chart to visually
represent the robustness of various SOTA methods in countering
compound attacks. A more extensive area within the radar chart
signifies enhanced robustness. The radar chart for Groot distinctly
reveals a larger coverage area, highlighting its superiority over
SOTA methods.

6 CONCLUSION
In this paper, we propose Groot, a novel generative audio water-

marking method, aimed at effectively addressing the challenge of
proactively regulating the generated audio via DMs. Groot instills
the watermark into DMs, enabling the watermarked audio can be
generated from the watermark via DMs. Leveraging our designed
watermark encoder and decoder, there is no requirement for retrain-
ing the DMs. Robustness has been enhanced precisely due to the
meticulous watermark decoder and jointly optimized strategy. The
experimental results and comparisons to SOTA methods further
illustrate that Groot exhibits potent and well-balanced robustness
capable of countering individual and even compound attacks while
ensuring superior fidelity and capacity. Regarding future work, we
will introduce the noise layer and incorporate the more suitable
watermark encoder and decoder to boost the fidelity and robustness
of the generative watermarking method.
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