
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SAIL: SELF-AMPLIFIED ITERATIVE LEARNING FOR
DIFFUSION MODEL ALIGNMENT WITH MINIMAL HU-
MAN FEEDBACK

Anonymous authors
Paper under double-blind review

ABSTRACT

Aligning diffusion models with human preferences remains challenging, particu-
larly when reward models are unavailable or impractical to obtain, and collecting
large-scale preference datasets is prohibitively expensive. This raises a fundamental
question: can we achieve effective alignment using only minimal human feedback,
without auxiliary reward models, by unlocking the latent capabilities within diffu-
sion models themselves? In this paper, we propose SAIL (Self-Amplified Iterative
Learning), a novel framework that enables diffusion models to act as their own
teachers through iterative self-improvement. Starting from a minimal seed set of
human-annotated preference pairs, SAIL operates in a closed-loop manner where
the model progressively generates diverse samples, self-annotates preferences
based on its evolving understanding, and refines itself using this self-augmented
dataset. To ensure robust learning and prevent catastrophic forgetting, we intro-
duce a ranked preference mixup strategy that carefully balances exploration with
adherence to initial human priors. Extensive experiments demonstrate that SAIL
consistently outperforms state-of-the-art methods across multiple benchmarks
while using merely 6% of the preference data required by existing approaches,
revealing that diffusion models possess remarkable self-improvement capabilities
that, when properly harnessed, can effectively replace both large-scale human
annotation and external reward models.

1 INTRODUCTION

Diffusion models have revolutionized generative AI, enabling the synthesis of high-fidelity images
with remarkable diversity (Ramesh et al., 2022; Saharia et al., 2022; Rombach et al., 2022; Podell
et al., 2023; Esser et al., 2024). However, aligning these models with human preferences remains
a fundamental challenge, particularly in practical scenarios where reward models are unavailable
or impractical to obtain (Black et al., 2023b; Fan et al., 2023; Clark et al., 2023; Wallace et al.,
2024). This alignment problem becomes even more critical as diffusion models are increasingly
deployed in real-world applications requiring nuanced understanding of human aesthetic and semantic
preferences (Li et al., 2024; Hong et al., 2024).

Current approaches to preference alignment face a critical dilemma. Methods like DiffusionDPO (Wal-
lace et al., 2024) achieve strong alignment but require massive human-annotated preference
datasets—often millions of ranked pairs—making them prohibitively expensive and inflexible to
evolving preferences. Alternatively, approaches utilizing external reward models (e.g., Aesthetic-
based scorers (Black et al., 2023b; Fan et al., 2023)) introduce secondary biases and are vulnerable to
reward hacking (Fu et al., 2025; Liu et al., 2024), while struggling with distributional shifts beyond
their training data. Both paradigms create problematic dependencies—either on exhaustive human
annotation efforts or on auxiliary models that may not generalize well—fundamentally limiting their
practical applicability.

This raises a crucial question: Can we achieve effective preference alignment using only minimal
human feedback, without auxiliary reward models, by unlocking the latent alignment capabilities
within diffusion models themselves? We argue that diffusion models, once exposed to even a small
set of human preferences, possess the inherent ability to act as their own teachers—progressively
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Figure 1: Comparsion of three direct preference optimization methods. Different from Offline DPO and Online
DPO, SAIL iteratively update without large preference dataset and external reward model.

expanding their understanding through iterative self-improvement. This insight fundamentally
reimagines the alignment process: rather than treating models as passive learners requiring constant
external supervision, we can leverage their generative and discriminative capabilities in tandem. In
this paper, we propose SAIL (Self-Amplified Iterative Learning), the first implicit self-rewarding
framework that enables diffusion models to achieve strong preference alignment through autonomous
bootstrapping. As illustrated in Figure 1, SAIL operates through a closed-loop learning process:
starting from a minimal seed set of human-annotated preference pairs, the model iteratively generates
diverse samples, self-annotates preferences based on its evolving understanding, and refines itself
using this self-augmented dataset. The key innovation lies in our mathematical quantification of
relative reward values between image pairs, enabling the diffusion model to serve dual roles as both
generator and evaluator when conditioned on fixed reference parameters.

To ensure robust learning and prevent distribution collapse, we introduce a ranked preference mixup
strategy that carefully balances exploration of the preference space with adherence to initial human
guidance. This mechanism addresses the critical risk of catastrophic forgetting in self-training
scenarios, maintaining alignment with human priors while enabling the model to discover nuanced
preference patterns beyond the original annotations. Figure 2 demonstrates not only the effectiveness
of our approach but also its remarkable stability over extended iterations. Our contributions to the
community include:

• We propose SAIL, the first self-amplified iterative learning framework that enables diffusion
models to achieve effective preference alignment through autonomous bootstrapping, elimi-
nating dependencies on large-scale annotations and external reward models by developing a
mathematical framework for self-reward quantification.

• We design a ranked preference mixup strategy that prevents catastrophic forgetting and
ensures stable self-improvement, enabling the model to balance exploration of the preference
space with adherence to human priors across extended iterations.

• Extensive experiments demonstrate that SAIL consistently outperforms state-of-the-art
methods on HPSv2, Pick-a-Pic, and PartiPrompts benchmarks while using merely 6% of
typical preference data, achieving superior qualitative results in texture and textual detail
generation.

2 RELATED WORK

2.1 HUMAN PREFERENCE OPTIMIZATION

Beyond mere visual fidelity, a critical frontier in text-to-image generation is aligning outputs with
nuanced human preferences. A predominant strategy has been human-feedback–driven optimization,
inspired by RLHF. For example, ImageReward + ReFL (Xu et al., 2023a) first train a reward model

2
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Figure 2: Iterative performance improvement with generated data of SAIL on Pick-a-Pic validation
dataset in Aesthetics, ImageReward, and HPSv2. During the iterative process, SAIL demonstrates
steady improvement and ultimately surpassed DiffusionDPO (as indicated by the dashed line).

on 137K pairwise human comparisons and then fine-tune a diffusion model by backpropagating
reward gradients, yielding substantial gains in aesthetic and caption alignment. Denoising Diffusion
Policy Optimization (DDPO) (Black et al., 2023a) treat the denoising trajectory as an MDP and
apply policy gradients to directly optimize black-box rewards such as CLIP similarity or aesthetic
scores. DiffusionDPO (Wallace et al., 2024) align diffusion models to human preferences by directly
optimizing on human comparison data. Building upon this framework, several advanced variants have
emerged, MaPO (Hong et al., 2024) jointly maximizes the likelihood margin between preferred and
dispreferred image sets, and the absolute likelihood of preferred samples. SPO (Liang et al., 2024)
introduces employs a step-by-step optimization strategy, enabling finer control over localized quality
improvements. The above methods rely on either large-scale preference datasets or pre-trained reward
models. A critical yet understudied direction lies in self-alignment: leveraging the model’s inherent
generative capabilities to bootstrap preference learning without external supervision. This capability
is highly valuable in scenarios that require either a strong sense of realism or a distinct artistic
style (no reward model).

2.2 ONLINE DIRECT PREFERENCE OPTIMIZATION

The Direct Preference Optimization (DPO) framework (Rafailov et al., 2023), initially for large
language model alignment, directly refines policies with preference pairs without training an explicit
reward network. A critical challenge in aligning diffusion models with human preferences lies in
the inherent off-policy nature of conventional approaches: while the model continuously updates
during training, the preference dataset is typically collected a priori, leading to a growing divergence
between the model’s current behavior and the static training data. Online AI feedback (Guo et al.,
2024), uses an LLM as annotator: sample two responses from the current model and prompt the LLM
annotator to choose which one is preferred, thus providing online feedback. Some methods eliminate
the need for external annotators altogether by repurposing the DPO model itself as an implicit reward
model (Kim et al., 2024; Chen et al., 2024; Cui et al., 2025), enabling iterative self-improvement.
This approach is particularly appealing for diffusion models, where collecting high-quality preference
data is inherently more challenging than in language tasks, and where a single reward model often
fails to capture the nuanced, multi-dimensional aspects of image quality (e.g., composition, realism,
and aesthetic appeal).

3 PRELIMINARY

Direct preference optimization. Direct Preference Optimization (DPO) (Rafailov et al., 2023) is a
recently developed approach for aligning LLM πθ with human preferences. The key idea behind DPO
is to reparameterize the reward function in terms of the policy itself, eliminating the need for explicit
reward modeling. Specifically, the optimal reward function is derived from the RLHF objective, with
the target LLM πθ and the reference model πref.

r(y,x) = β log
πθ(x|y)
πref(x|y)

+ β logZ(y) (1)

3
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Figure 3: Illustration of the proposed SAIL framework. The SAIL framework incrementally refines
the alignment of diffusion models through iterative cycles consisting of generating new preference
data and conducting preference learning using mixup ranked preference data complemented by
self-refinement mechanisms. This closed-loop self-boosting process operates with minimal initial
data input, aiming to optimize performance by capitalizing on the intrinsic capabilities of the model,
independent of external reward systems.

Then, the preference between two responses could be measured using this reward derivation, and πθ

is optimized to maximize this preference of xw over xl using the preference dataset D.

pθ(x
w > xl|y) = σ(β log

πθ(x
w|y)

πref(xw|y)
− β log

πθ(x
l|y)

πref(xl|y)
) (2)

LDPO(πθ) = E(y,xw,xl)∈D[− log pθ(x
w > xl|y)] (3)

4 METHOD

The key insight is the development of a self-rewarding direct preference optimization framework,
which is designed to iteratively maximize alignment with human preferences via closed-loop without
any external reward model within few seed data. Specifically, we start with a seed preference dataset
Dinit = {(xw,xl,y)n}Nn=1 and a pre-trained diffusion model ϵ0θ, i.e. SD1.5 or SDXL. The initial
step involves fine-tuning ϵ0θ on Dinit using the DiffusionDPO (Wallace et al., 2024) to update ϵ0θ.
Subsequent updates to the diffusion model are performed iteratively, leveraging self-generated data
and self-rewarding mechanisms to continually improve the model’s performance. The overview
framework is demonstrate in Figure 3.

4.1 SELF-REWARDING PERFERENCE RANKING WITH SELF-GENERATED DATA

Given the candidate images xA and xB , the reward difference between two images is shown as
Equation 2. The Equation 2 can be derive as:

pθ(x
A > xB |y) = σ(r(y,xA)− r(y,xB)) (4)

In diffusion models, the optimal reward function can be derived as:

r(y,x) = β log
pθ(x0|y, t, qt(x0))

pref(x0|y, t, qt(x0))
+ β logZ(y, t, qt(x0)) (5)

where t is the timestep and qt(x0) =
√
αtx0 +

√
1− αtϵ is the combination of x0 and ϵ ∼ N (0, I),

αt is noise scheduler. With the noise prediction ϵθ of diffusion models, we can derive and simplify
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Algorithm 1

Input: Diffusion Model ϵ0θ, seed preference dataset Dinit, number of improving iterations T , new
prompt sets {Yi}Ti=1,

Obatin Human preference model ϵ0θ using Diffusion-DPO with ϵ1θ and Dinit

for i = 1 to T do
Candidate Generation. Sample N candidate images (x(1), ...,x(N)) from the model ϵiθ.
Self-Rewarding Ranking. Rank the candidate images and choose the best image and the

worst image in N images to construct paired preference data Di with ϵiθ and ϵ0θ.
Mixup Ranked Preference Data. Mix the generated data with seed preference dataset.

Di = αDi + (1− α)Dinit

Closed-loop Boosting Preference Optimization. Update the current model with Eq. 3 and
obtain ϵi+1

θ .
end for
return ϵT+1

θ

the term pθ(x0|y, t, qt(x0)):

pθ(x0|y, t, qt(x0)) = N (x0;
qt(x0)−

√
1− αtϵθ√

αt
, δtI) (6)

≈ e
−

δ2t+1

2δ2t
||ϵ−ϵθ||2

(7)

Since logZ(y, t, qt(x0)) is the same for a fixed prompt y. The reward function for image xA can be
formulated:

r(y,xA) ≈ −β

2
(||ϵA − ϵθ(x

A
t ,y, t)||22 − ||ϵA − ϵref(x

A
t ,y, t)||22)) (8)

Finally, we can apply the Equation 8 in Equation 4 and obtain the following term to judge the relative
reward value of images xA and xB :

pθ(x
A > xB |y) = σ(−β

2
((||ϵA − ϵθ(x

A
t ,y, t)||22 − ||ϵA − ϵref(x

A
t ,y, t)||22)−

(||ϵB − ϵθ(x
B
t ,y, t)||22 − ||ϵB − ϵref(x

B
t ,y, t)||22)))

(9)

In enhancing the precision of estimates, it proves beneficial to average across multiple samples,
denoted as (t, qt(x0). We compute estimates based on 10 random draws of (t, qt(x0)). Consequently,
the assignment of preference labels to the tuple (xA,xB) is governed by the following formulation:

(xw,xl) = (xA,xB) if pθ(xA > xB | y) > 0.5 else (xB ,xA) (10)

We choose the best image and the worst image in N images to construct paired preference data.
Following the construction of the dataset Di, the i-th iteration of preference learning is executed
by fine-tuning the diffusion model ϵiθ. This training on the self-generated dataset Di is aimed at
enhancing alignment by propagating the human preference priors encapsulated in D0 through the
capabilities of the diffusion model. More details are in Appendix A.

4.2 CLOSED-LOOP BOOSTING DIFFUSION MODEL WITH MIXUP RANKED PREFERENCE DATA

Despite these advantages, there exists the risk of distributional collapse and overfitting to synthetic
data during iterative self-improvement. To address these challenges, we propose an enhancement
to the preference learning methodology by integrating an mixup ranked preference data strategy
inspired by experience replay (Zhang & Sutton, 2017) in reinforcement learning, designed to stabilize
the learning process against such perturbations and ensure robust preference alignment.

Especially, for the i-th iteration (i = 1, . . .), we assume that the new prompt set Yi = {y} is available,
i.e., Yi ∩ Yj = ∅ for all j = 0, . . . , i− 1. As summarized in Algorithm 1. During each iteration i,
For each prompt y ∈ Yi, we sample N candidate images (x(1), ...,x(N)) by utilizing the intrinsic
generation and reward modeling capabilities of the diffusion models ϵiθ, where ϵiθ is the resulting
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Table 1: Comparison with other methods on SD1.5 and SDXL. For HPSv2, we report the score in
Anime, Concept-Art, Painting and Photo. For Pick-a-Pic v2, we apply PickScore, ImageReward,
Aesthetics and HPSv2 metrics to evaluate all methods. The best results are highlighted in red and the
performance gain are highlighted in boldface.

HPSv2 Pick-a-Pic V2
Model Method Data Ani. Con. Paint. Photo P.S. I.R. Aes. HPSv2

SD1.5

- - 27.23 26.65 26.52 27.41 20.62 -0.0130 5.38 26.21
DiffusionDPO 0.8M 27.64 26.97 26.90 27.56 21.07 0.2056 5.48 26.57
DiffusionSPO 0.8M 28.05 27.49 27.61 27.55 21.20 0.1577 5.68 26.75
SAIL (Iter0) 0.05M 27.41 26.75 26.72 27.50 20.80 0.0715 5.42 26.38
SAIL (Iter1) 0.05M 27.56 26.88 26.83 27.59 20.89 0.1137 5.46 26.49
SAIL (Iter2) 0.05M 27.75 27.06 27.03 27.74 20.95 0.1729 5.47 26.65
SAIL (Iter3) 0.05M 27.88 27.16 27.15 27.79 21.00 0.2329 5.49 26.75

+0.65 +0.51 +0.63 +0.38 +0.38 +0.2459 +0.11 +0.54

SDXL

- - 28.03 27.17 27.22 27.50 22.13 0.6891 6.04 26.80
DiffusionDPO 0.8M 28.71 27.75 27.82 27.89 22.59 0.9336 6.02 27.27

MaPO 0.8M 28.39 27.60 27.58 27.74 22.24 0.8227 6.16 27.05
SAIL (Iter0) 0.05M 28.41 27.50 27.49 27.76 22.40 0.8705 6.04 27.08
SAIL (Iter1) 0.05M 28.59 27.62 27.59 27.90 22.53 0.9355 6.08 27.21
SAIL (Iter2) 0.05M 28.74 27.80 27.78 28.09 22.51 0.9844 6.16 27.32

+0.71 +0.63 +0.56 +0.59 +0.38 +0.2953 +0.12 +0.52

model from the previous iteration. Then, using the reward captured with ϵiθ and ϵ0θ (Eq. 5), we
measure the relative preference between x(1) and x(N) and construct generated preference dataset
Di. After that, we construct the mixed dataset Di by sampling α proportion of data from Di and
(1− α) proportion of data from Dinit. Finally, DPO training is conducted on Di using ϵiθ as both the
initial policy and the reference policy, resulting in the updated model ϵi+1

θ .

5 EXPERIMENTAL RESULTS

5.1 EXPERIMENT SETTINGS

Implementation Details. We demonstrate the effectiveness of SAIL across a range of experi-
ments. We apply Stable Diffusion 1.5 (SD1.5) (Rombach et al., 2022) and Stable Diffusion XL-1.0
(SDXL) (Podell et al., 2023) as our base model. For preference learning dataset, we utilize Pick-a-Pic
dataset (Kirstain et al., 2023), following the previous work. We use the larger Pick-a-Pic v2 dataset.
After excluding the 12% of pairs with ties, we end up with 851,293 pairs, with 58,960 unique
prompts. We first randomly select 50K preference data from the larger Pick-a-Pic v2 dataset, and then
choose the remaining prompts from the remaining prompts for self improvement. We apply SAIL
three iterations on SD1.5 and two iterations on SDXL, each iteration with 10K, 20K, 20K prompts.
Morever, we set the mix ratio of human preference data and generated preference data as 0.25 in each
iteration.

Hyperparameters. Following DiffusionDPO, We use AdamW for SD1.5 experiments, and Adafac-
tor for SDXL to save memory. An effective batch size of 128 (pairs) is used. For image generation,
we set N = 8 for quickly sampling. Morever, we apply DDPM with 50 steps for SD1.5 and DDIM
with 20 steps in SDXL for quickly sampling in training and testing. All test images are generated
classifier free guidance scale of 5 (SDXL) or 7.5 (SD1.5) during inference. For DPO training, we
present the main SD1.5 and SDXL results with β = 5000.

Evaluation. We evaluate the proposed SAIL on three popular benchmarks: Pick-a-Pic, PartiPrompts
and HPSv2. For Pick-a-Pic, We evaluate quantitative results based on the 500 validation prompts, i.e.,
validation unique. PartiPrompts contains 1,632 prompts encompassing various categories. Meanwhile,
HPSv2 comprises 3,200 prompts. covering four styles of image descriptions: animation, concept
art, paintings and photo. For metrics, we use multiple evaluation metrics, indluding PickScore
(general huamn preference) (Kirstain et al., 2023), Aesthetics (no-text-based visual appeal) (Meyer
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& Verrips, 2008), HPSv2 (prompt alignment) (Wu et al., 2023) and ImageReward (general human
preference) (Xu et al., 2023b). For all metrics, higher values indicate better performance.

5.2 PRIMARY RESULTS: ALIGNING DIFFUSION MODELS

Qualitative Comparison Given the effectiveness and implementation efficiency of Direct Preference
Optimization (DPO) (Rafailov et al., 2023), we adopt DPO as the foundational framework for iterative
alignment. We compare SAIL with the base diffusion model (e.g., SD1.5, SDXL), vanilla DPO,
and its variants (DiffusionSPO (Li et al., 2024), MaPO (Hong et al., 2024)) for fair comparison.
DiffusionDPO and MaPO are training on Pick-a-Pic v2 dataset. Specically, SPO is different from the
above method, which considering step-wise perference optimization not image-wise. Morever, SPO
apply Pick-a-Pic to train a step-wise reward model. We demonstrate the quantitative result in Table 1.
In HPSv2, experimental results demonstrate consistent performance improvement with increasing
iterations, ultimately achieving a 0.71% (Anime), 0.63% (Concept Art), 0.56% (Painting), 0.59%
(Photo) gain over the base model SDXL. Compared to DiffusionDPO with equivalent preference
data, our method yields 0.33% (Anime), 0.30% (Concept Art), 0.29% (Painting), 0.33% (Photo)
improvement in SDXL.

Table 2: The performance of each iterations of SAIL in Par-
tiprompts, Stable Diffusion 1.5. We report PickScore, Aes-
thetics, ImageReward and HPSv2 to evaluate the effective-
ness of our method. The performance gain are highlighted in
boldface.

Model P.S. Aes. I.R. HPSv2

SD1.5 21.37 5.26 0.1177 26.82

SAIL (Iter0) 21.48 5.28 0.1951 26.94
SAIL (Iter2) 21.54 5.31 0.2661 27.04
SAIL (Iter3) 21.62 5.34 0.3198 27.19
SAIL (Iter4) 21.61 5.36 0.3072 27.26

+0.24 +0.10 +0.1895 +0.44

Remarkably, using only 6% human
preference data (0.05M vs 0.8M sam-
ples), our approach surpasses the full-
data DiffusionDPO baseline. Com-
prehensive evaluation on Pick-a-Pic
dataset (measuring human prefer-
ence, aesthetic quality, and text-image
alignment) shows significant improve-
ments across all four key metrics
(0.38% in PickScore, 0.2953% in Im-
ageReward, 0.12% Aesthetics, 0.52%
HPSV2) in SDXL. Meanwhile, as il-
lustrated in Table 1, our method ro-
bustly adapts to varying model scales
(SD1.5 and SDXL), also achieving
0.38% in PickScore, 0.2459% in Im-
ageReward, 0.11% Aesthetics, 0.54%
HPSV2 in SD1.5, confirming its generalizability. In SD1.5, SAIL achieves similar performance with
the DiffusionSPO, which uses a specific reward model and step-wise to align human preference.
Table 1 further verifies that fully exploiting the model’s intrinsic potential can achieve impressive
human alignment without external data expansion.

Meanwhile, we also evaluate SAIL in Partiprompts. Partiprompts can be used to measure model
capabilities across various categories and challenge aspects. Partiprompts can be simple and can also
be complex, which brings challenge in model evaluation. We conduct SAIL in SD1.5 and present
the result in Table 2. Table 2 introduces the consistent performance gain in each score, 0.24% in
PickScore, 0.1895% in ImageReward, 0.10% Aes, 0.44% HPSV2 improvement.

Quantitative Comparison As shown in Figure 4, SAIL demonstrates significant qualitative improve-
ments over the base SDXL model. Quantitative results demonstrate generated data and self-rewarding
can also achieve effective human preference alignment. SAIL achieves consistent visual improve-
ment with the iteration increase. Quantitative experiments demonstrate our method’s significant
improvements across structural coherence and aesthetic quality.

5.3 INITIAL ON LARGE SEED DATA

We conducted experiments to explore initializing the model with more data. Specifically, we used
the entire Pick-a-Pic v2 training dataset for initialization and selected prompts from JournyDB (Sun
et al., 2023) as our subsequent prompt pool. Since our iter0 model is essentially DiffusionDPO, we
directly continue training from this baseline. The experimental results are presented in the Table 3.
We apply SAIL∗ for two iterations and each iterations with 10K, 20K prompts. Table 3 demonstrates
the result of SAIL∗ compared with SD1.5, DiffusionDPO and DiffusionSPO (Liang et al., 2024). On
the Pick-a-Pic validation set, SAIL∗ outperforms DiffusionSPO across three metrics, most notably on
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SDXL SAIL-Iter0 SAIL-Iter1 SAIL-Iter2

ice dragon, castle, medieval fantasy, winter, digital 
illustration, 8k

griffon with a seagull head and lion body

Art illustration, strong bautiful woman sit down relaxing 
on green fancy couch, ww2 we can do it poster, black 

short hair, …

SDXL SAIL-Iter2

An aircraft carrier perfectly 
encased within a glass bottl

old sailor with beard sitting on..

Two cats watering roses in a 
greenhouse

Figure 4: The qualitative results demonstrate the effectiveness of our method.

Table 3: Comparison with other methods on SD1.5. We build our SAIL on DiffusionDPO and mark
as SAIL∗. For HPSv2, we report the score in Anime, Concept-Art, Painting and Photo. For Pick-a-Pic
v2, we apply PickScore, ImageReward, Aesthetics and HPSv2 metrics to evaluate all methods. The
best results are highlighted in red.

HPSv2 Pick-a-Pic V2
Model Method Data Ani. Con. Paint. Photo P.S. I.R. Aes. HPSv2

SD1.5

- - 27.23 26.65 26.52 27.41 20.62 -0.0130 5.38 26.21
DiffusionDPO 0.8M 27.64 26.97 26.90 27.56 21.07 0.2056 5.48 26.57
DiffusionSPO 0.8M 28.05 27.49 27.61 27.55 21.20 0.1577 5.68 26.75
SAIL∗ (Iter1) 0.8M 27.86 27.15 27.08 27.65 21.16 0.2761 5.56 26.68
SAIL∗ (Iter2) 0.8M 28.08 27.37 27.31 27.72 21.27 0.4303 5.60 26.81

ImageReward, where we achieve a performance of 0.4303%. Furthermore, on the HPSv2 dataset, our
method also surpasses DiffusionSPO in two subclasses, Anime and Photo.

5.4 COMPARSION WITH ONLINE DPO

As illustrated in Figure 1, in LLM, existing approaches employ external models for online DPO
optimization, but their core limitation lies in heavy reliance on extensive annotated data to train robust
reward models. Taking DDPO (Black et al., 2023b) as an example, this method requires concurrently
training four separate model (Aesthetic/Compressibility/Incompressibility/Prompt-Image Alignment)
to comprehensively evaluate human preferences. Our experiments follow the setting in DDPO’s
framework (using only Aesthetic as the single reward model). Table 4 presents the comparsion be-
tween Online DPO and SAIL. While OnlineDPO-Aes achieves remarkable improvement in aesthetic
metrics, which surpass SAIL by 0.07%. But its gains in human preference and text-image alignment
remain limited. This confirms that single reward model struggle with comprehensive enhancement,
including human preference, aesthetic quality, and text-image alignment — though the ideal solution
may be introducing multi reward models, how to balance their weight presents new research
challenges. In contrast, our method demonstrates dual advantages: Eliminates dependency on ex-
ternal annotations through self-rewarding based closed-loop optimization; Balanced Performance:
Achieves consistent improvements across all metrics. Morever, Pure aesthetic optimization may cause
aesthetic overfitting (e.g., oversaturated colors), SAIL outputs better align with composite human
preferences.
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Table 4: Comparsion with Online DPO in
Iter1. Base on the Iter0 model, we apply self-
rewarding and Aesthetics rewarding to rank
preference pairs given the generated data.

Model I.R. Aes. HPSv2

SD1.5 -0.0130 5.38 26.21
Iter0 0.0715 5.42 26.38

Self Rewarding & Aesthetics Rewarding
SAIL 0.1137 5.46 26.49
OnlineDPO 0.0936 5.53 26.35

Table 5: Comparsion of different selection strat-
egy in constructing preference data of Iter1.
Base on the Iter0 model, we apply Best-worst
and random to choose win-lose pairs.

Model I.R. Aes. HPSv2

SD1.5 -0.0130 5.38 26.21
Iter0 0.0715 5.42 26.38

Select Strategy
best-worst 0.1137 5.46 26.49
random 0.1055 5.44 26.40

5.5 ABLATION STUDY

Pair Selection Strategy. We compare two pair-selection methods for constructing preference data
from N candidates: (1) Best-worst Selection: select the best and the worst sample to construct
preference data; (2) Randomized Selection: randomly select two samples and construct preference
data. We conduct experiments and present the result in Table 5. Table 5 shows that SAIL achieves the
best performance when using Best-worst Selection, 0.1137% in ImageReward, 5.46% in Aesthetic
and 26.49% in HPSv2.

Table 6: The influence of Mixup Ranked Prefer-
ence Data.

Model P.S. I.R. HPSv2

Base 20.62 -0.0130 26.21
SAIL (Iter0) 20.80 0.0715 26.38
SAIL (Iter1) 20.89 0.1137 26.49

Iter2 20.95 0.1729 26.65
Iter2 w/o mix 20.86 0.1564 26.55

The role of Mixup Ranked Preference Data.
We reveal the critical role of mixing gener-
ated and human preference data in maintaining
model stability. As shown in Table 6 , SAIL
without mixed data suffers from a significant
performance drop in the second iteration, at-
tributed to two key factors: (1) Overfitting to
High-Confidence Pairs: The model overfits to
high-reward sample pairs during training phrase,
drastically reducing generation diversity. For
instance, images generated from different seeds
become similar, while reward scores artificially
inflate (e.g., exceeding 90%). (2) Catastrophic
Forgetting: The absence of human preference data leads to progressive degradation of the model’s
discriminative ability. Compared to the first iteration, the reward model’s accuracy declines measur-
ably, which incurs the generated preference pairs is not accuracy. More discussion about the role of
Mixup Ranked Preference Data is in Appendix.

6 CONCLUSION

In this work, we propose SAIL, a novel self-rewarding framework for aligning diffusion models with
human preferences without relying on large-scale annotated datasets or external reward models. By
leveraging iterative self-improvement through closed-loop generation and preference learning, SAIL
effectively expands limited human seed annotations into robust alignment signals. Our approach
addresses key limitations of existing methods—costly data dependency and bias propagation—while
introducing mixup-ranked preference data to mitigate catastrophic forgetting and stabilize training.
Experiments demonstrate that SAIL outperforms state-of-the-art methods even with only 6% of
human preference data, highlighting its efficiency and scalability.

Limitations. We primarily focus on leveraging a small amount of human preference data and model-
generated data for human preference alignment. However, compared to the image domain, preference
data in video generation is significantly harder to collect. We therefore foresee a promising future
for exploiting SAIL in video human preference alignment and investigating intermediate reward
mechanisms that can provide step-wise guidance throughout the denoising process.

Use of LLMs. We utilize LLMs to assist with experimental design and writing refinement.
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A MORE DETAILS ABOUT SELF-REWARDING STRATEGY

According to the Equation 5 in the main paper, which is derived in the DiffusionDPO Wallace et al.
(2024). We have the reward function for images x as follows:

r(y,x) = β log
pθ(x0|y, t, qt(x0))

pref(x0|y, t, qt(x0))
+ β logZ(y, t, qt(x0)) (11)

where t is the timestep and qt(x0) =
√
αtx0 +

√
1− αtϵ is the combination of x0 and ϵ ∼ N (0, I),

αt is noise scheduler. Following DDIM Song et al. (2020), The pθ(x0|y, t, qt(x0)) can be dirve as:

pθ(x0|y, t, qt(x0)) = N (x0;x
pred
0 , δtI)

= N (x0;
qt(x0)−

√
1− αtϵθ√

αt
, δtI)

= N (x0;x0 +

√
1− αtϵ−

√
1− αtϵθ√

αt
, δtI)

=
1

(2πδ2t )
(d/2)

e
− 1

2δ2t
(x0−(x0+

√
1−αt√
αt

(ϵ−ϵθ)))
2

=
1

(2πδ2t )
(d/2)

e
− 1

2δ2t
(

√
1−αt√
αt

)2||ϵ−ϵθ||2

=
1

(2πδ2t )
(d/2)

e
− 1−αt

2αtδ
2
t
||ϵ−ϵθ||2

=
1

(2πδ2t )
(d/2)

e
−

δ2t+1

2δ2t
||ϵ−ϵθ||2

(12)
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Figure 5: Comparsion of five reward mod-
els.

In Equation 12, δ2t+1

δ2t
≈ 1. To evaluate the effective-

ness of SAIL, we demonstrate the accuracy of several
reward methods (PickScore Kirstain et al. (2023), Aesthet-
ics Meyer & Verrips (2008), Clip Radford et al. (2021) and
Self-rewarding). We choose 1,000 preference data from
Pick-a-Pic v2 validation set and take the human preference
as the ground truth. Figure 5 shows the results. SR1, SR2,
SR3 represent different versions of self-rewarding method
in Iter0. The main difference between the above methods
is the number of (t, qt), SR1, SR2, SR3 base on 10, 20, 30
draws, respectively. It demonstrates the only with 0.05M
data, the self-rewarding of iter0 surpasses the Clip and
Aesthetics.

B VISUALIZATION OF SAIL∗

we present visualizations comparing outputs from SD1.5,
DiffusionDPO, and our model after SAIL∗ iterations.
These visualizations demonstrate that after SAIL∗ iter-
ations in Figure 6, the generated images exhibit higher quality, improved text-image alignment,
enhanced aesthetics, and better overall texture.

C THE NUMBER OF CANDIDATES N
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SD1.5 DiffusionDPO SAIL*-Iter1 SAIL*-Iter2

Cute and adorable cartoon rabbit baby rhea facing the camera, 
fantasy, dreamlike, surrealism, super cute, trending on artstationm 

volumetric light, cinematic, post processing, 8K

A small purple duck

A Minecraft character named Herobrine standing on a grass block

A landscape featuring a unique digital painting-style building

Figure 6: Qualitative visual results for several methods.

Table 7: The influence of Candidates N .

Model P.S. I.R. HPSv2

Base 20.62 -0.0130 26.21

Candidates N
2 20.70 0.0536 26.35
4 20.78 0.0879 26.40
8 20.89 0.1137 26.49
16 20.96 0.1356 26.54

We conducted experiments to deter-
mine the optimal number of candi-
date images per iteration. The results,
shown in Table 7, illustrate the impact
of varying candidate image counts on
the outcome of the first iteration. It
is evident that increasing the num-
ber of candidate images significantly
improves the results. However, con-
sidering both image generation effi-
ciency and performance, we opted to
use N = 8 in our study.
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Table 8: The performance of SAIL with different seed preference dataset on SD1.5.

Pick-a-Pic V2
Method P.S. I.R. Aes. HPSv2

- 20.62 -0.0130 5.38 26.21
SAIL (seed1) 21.00 0.2329 5.49 26.75
SAIL (seed2) 21.05 0.2381 5.50 26.79
SAIL (seed3) 21.02 0.2253 5.49 26.76

D THEORETICAL ANALYSIS

Theoretically, SAIL shares the same global objective as standard DPO: finding the policy π∗ that
maximizes the reward (the underlying human preference) subject to a KL-divergence constraint.
SAIL (Iterative/Semi-Supervised) can be viewed as a Self-Training process. The model explores
the latent space to generate new samples and uses its current implicit reward function to estimate
rankings (pseudo-labels). This propagates the reward signal into previously unexplored regions.

Therefore, SAIL converges to a distribution that is consistent with human preferences over a much
broader support set than standard DPO. It approximates the optimal solution of DPO over the full
data distribution, rather than just the limited set.

E SAIL ON DIFFERENT INITIAL DATASET

Table 8 indicates that SAIL is reasonably robust to seed selection. The Ranked Preference Mixup
strategy plays a crucial role here. By mixing generated preferences with the high-quality seed data,
SAIL prevents the model from drifting too far if the self-generated signals are noisy in the early
stages.

F SAIL WITH MORE ITERATIONS

We perform SAIL with more iterations on SD1.5, as shown in Table 9. In iter 1-3, there are rapid
improvements. The model effectively learns to align with the seed preferences and generalizes to
the unlabelled set. While in iter 4-5, we observed that the probability in Equation 4 exceeds 0.8,
indicating that the model has approached a saturation state.

Table 9: The performance of SAIL with more iterations on SD1.5.

Pick-a-Pic V2
Method P.S. I.R. Aes. HPSv2

- 20.62 -0.0130 5.38 26.21
SAIL (Iter0) 20.80 0.0715 5.42 26.38
SAIL (Iter1) 20.89 0.1137 5.46 26.49
SAIL (Iter2) 20.95 0.1729 5.47 26.65
SAIL (Iter3) 21.00 0.2329 5.49 26.75
SAIL (Iter4) 21.04 0.2803 5.51 26.77
SAIL (Iter5) 21.06 0.2971 5.51 26.78

G VISUALIZATION

We present visual comparisons showcasing the effectiveness of SAIL across different base models.
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SDXL SAIL-Iter2 SDXL SAIL-Iter2

Figure 7: Qualitative visual analysis results for several methods. The images are presented row by row (top to
bottom), and within each row, from left to right. The respective prompts are: (1) “A rich, ruthless and courageous
warrior king from Africa”, (2) “A robotic bull, full body shot, standing, athletic, steel and hard rubber, glowing
eyes, humanoid, looking at camera, arms crossed”, (3) “A girl with silver hair in a post apocalyptic setting
portrayed in a cinematic illustration by Yoji Shinkawa and Krenz Cushart”, (4) “beautiful goddess, detailed face,
focus on eyes, masterpiece, realistic”, (5) “A painting depicting a wuxia character standing on a roof under a
moonlit night”, (6) “Clone Trooper”, (7) “A teddy bear inspired by Vincent van Gogh”, (8) “The image is a
stunning illustration of a knight warrior wearing Nordic armor and a Skyrim mask, with intricate details and
dynamic lighting that make it perfect for RPG portraits and cosplay”.
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SDXL
DiffusionDPO

SDXL
SAIL
Iter0

SAIL
Iter1

SAIL
Iter2

Figure 8: Qualitative visual analysis results for different methods. The prompts used for each row (from top
to bottom) are as follows: (1) “An old man with a bird on his head”, (2) “A lemon character with sunglasses
on the beach”, (3) “Cat wearing cowboy hat rides on corgi during sunset in the Wild West”, (4) “There is an
anthropomorphic male wizard in the image wearing 3D cinema glasses”, (5) “An elderly man is sitting on a
couch”, (6) “A man standing in front of a bunch of doughnuts”, (7) “A man and two dogs are riding a scooter”.
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SDXL
DiffusionDPO

SDXL
SAIL
Iter0

SAIL
Iter1

SAIL
Iter2

Figure 9: Qualitative visual analysis results for different methods. The prompts used for each row (from top to
bottom) are as follows: (1) “A portrait of a character in a scenic environment”, (2) “’A stylized portrait featuring
sliced coconut, electronics, and AI in a cartoonish cute setting with a dramatic atmosphere”, (3) “A side profile
portrait of Maya Ali as a mage with intricate details, neon and sweat drops in a highly detailed digital painting”,
(4) “The image depicts a beautiful goddess of spring wearing a wreath and flowy green skirt, created by artist
wlop”, (5) “A kinetic sculpture of a colorful bird with a long tail surrounded by swirling lines and shapes”, (6)
“A concept art digital CG painting of a place in Bali, trending on ArtStation and created using Unreal Engine”,
(7) “The image portrays a surreal scene of a hybrid creature consisting of a great leviathan, cybernetic turtle, and
cephalopod terrapin in a magical universe surrounded by a cozy hot springs, cave, forest, and lush plants amidst
a luminous stellar sky”, (8) “A realistic digital art depicting a dwarven automobile”.
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