
Under review as a conference paper at ICLR 2021

DACT-BERT: INCREASING THE EFFICIENCY AND IN-
TERPRETABILITY OF BERT BY USING ADAPTIVE COM-
PUTATION TIME.

Anonymous authors
Paper under double-blind review

ABSTRACT

Large-scale pre-trained language models have shown remarkable results in diverse
NLP applications. Unfortunately, these performance gains have been accompa-
nied by a significant increase in computation time and model size, stressing the
need to develop new or complementary strategies to increase the efficiency and
interpretability of current large language models, such as BERT. In this paper
we propose DACT-BERT, a differentiable adaptive computation time strategy for
BERT language model. DACT-BERT adds an adaptive computation mechanism
to the regular processing pipeline of BERT. This mechanism controls the number
of transformer blocks that BERT needs to execute at inference time. By doing this,
the model makes predictions based on the most appropriate intermediate represen-
tations for the task encoded by the pre-trained weights. With respect to previous
works, our method has the advantage of being fully differentiable and directly
integrated to BERT’s main processing pipeline. This enables the incorporation
of gradient-based transparency mechanisms to improve interpretability. Further-
more, by discarding useless steps, DACT-BERT facilitates the understanding of
the underlying process used by BERT to reach an inference. Our experiments
demonstrate that our approach is effective in significantly reducing computational
complexity without affecting model accuracy. Additionally, they also demonstrate
that DACT-BERT helps to improve model interpretability.

1 INTRODUCTION

Recently, the use of pre-trained language models based on large-scale transformers (Vaswani et al.,
2017) has experimented a substantial increase, mainly due to its success to support a large variety
of NLP tasks (Rogers et al., 2020). In particular, BERT (Devlin et al., 2019) has become one of the
most popular tools. The usual pipeline consists of finnetuning BERT by adapting and retraining its
classification head to meet the requirements of a specific NLP task. Unfortunately, the benefits of
using a powerful model such as BERT are also accompanied by a highly demanding computational
load. In effect, current pre-trained language models such as BERT have many layers and millions,
or even billions, of parameters, making them computationally intensive both during training and in-
ference. Furthermore, the large number of parameters makes these models hard to analyze, limiting
their interpretability.

While high accuracy is usually the ultimate goal, computational efficiency and model interpretability
are also desirable objectives. In terms of computational efficiency, the use of a demanding model not
only causes longer processing times and limits applicability to low-end devices, but it also has major
implications in terms of the environmental impact of AI technologies (Schwartz et al., 2019). As an
example, (Strubell et al., 2019) provides an estimation of the carbon footprint of several large NLP
models, including BERT, concluding that they are becoming environmentally unfriendly. In terms of
interpretability, potential biased or malicious uses of AI technologies, in particular NLP applications,
are increasing the need to provide them with the ability to explain their decisions (Gilpin et al., 2018).
As an example, (Goodman & Flaxman, 2016) analyzes the implications of a new legislation of the
European Union that enforces the right to explanation on algorithmic decision-making.

1



Under review as a conference paper at ICLR 2021

Fortunately, recent works have shown that behind the immense capacity of BERT, there is con-
siderable redundancy and over-parametrization (Kovaleva et al., 2019; Rogers et al., 2020). Con-
sequently, recent works have explored new strategies to develop efficient and compact versions
of BERT. A relevant strategy consists of distilling the knowledge from a pre-trained model into a
smaller network. This is the approach followed by works such as Sanh et al. (2020) and Jiao et al.
(2020). The main disavantage of this strategy is the inherent complexity of conducting an efficient
and effective distillation process. An alternative strategy consists of providing BERT with an adap-
tive mechanism to control its processing pipeline according to the complexity of the current query.
This is the approach followed by works such as Xin et al. (2020b), Liu et al. (2020), and Zhou et al.
(2020). As a relevant common limitation of these adaptive models, all of them depend heavily on an
external hyperparameter which must be carefully tuned for each model and task.

In this work, we present DACT-BERT, a Differentiable Adaptive Computation Time mecha-
nism (Graves, 2016) to control the complexity of the regular processing pipeline of BERT. Specif-
ically, DACT-BERT controls the number of transformer blocks that BERT needs to execute at in-
ference time. This allows DACT-BERT to make predictions using a variable number of transformer
blocks, taking advantage of the different information encoded in each intermediate representation.
In other words, the model answers each query by making a prediction based on the most appropri-
ate intermediate representation. As a major novelty, DACT-BERT integrates a totally differentiable
module (Eyzaguirre & Soto, 2020) that allows us to train a halting neuron after each transformer
block. This neuron indicates the confidence of the model at that point. Based on this, the execu-
tion can be stopped when the response predicted by the model stabilizes in a given output, making
unnecessary to continue running the processing pipeling.

With respect to previous works, our method has the advantage of being fully differentiable and
directly integrated to BERT’s main processing pipeline. This avoids complexities associated to
the calibration of external hyperparameter that are task dependent. In terms of interpretability, by
discarding useless steps, DACT-BERT facilitates the understanding of the underlying process used
by BERT to reach each inference. Furthermore, this enables the incorporation of gradient-based
transparency mechanisms (Sundararajan et al., 2017) to improve interpretability. Our experiments
using tasks from the GLUE benchmark (Wang et al., 2018) demonstrate that our approach is effective
in significantly reducing computational complexity without affecting model accuracy. Additionally,
they also demonstrate that DACT-BERT helps to improve model interpretability by explaining the
relationship between not only predictions and inputs, but also the model confidence score and inputs.

2 RELATED WORK

2.1 EFFICIENT TRANSFORMERS

2.1.1 STATIC APPROACHES

Several architectures have been designed to avoid overcomputing in transformer-based models. One
such strategy is to use lightweight architectures that are trained from scratch. As an example,
ALBERT proposes cross-layer parameter sharing as a way to improve model efficiency. Similar
methodologies have also been previously explored by Bai et al. (2019) and Dehghani et al. (2019),
demonstrating the effectiveness of weight-tied Transformers. A second strategy is to distill the
knowledge of pretrained models into a more compact “student”. Models such as PKD-BERT (Sun
et al., 2019), TinyBERT (Jiao et al., 2020), and DistilBERT (Sanh et al., 2020) compress the knowl-
edge of large models (teachers) into lighter ones (students). In this way, a more compact model
is obtained with a performance that is usually close to the original one. While these approaches
effectively reduce the total calculation needed to execute the model (measured in FLOPs or number
of parameters), they are limited in the same way as BERT, they do not take into account that some
tasks could be less complicated than others and always use the same amount of computation. Fur-
thermore, the application of a suitable distillation process is not a trivial task that introduces extra
complications.

2.1.2 DYNAMIC APPROACHES

Recently, a series of algorithms have been proposed to reduce computation in Transformer language
models based on the concept of model early exiting. Models such as DeeBERT, (Xin et al., 2020a)

2



Under review as a conference paper at ICLR 2021

FastBert (Liu et al., 2020), and PABEE (Zhou et al., 2020) employ strategies similar to those used by
Kaya et al. (2019) on convolutional neural networks. These models introduce intermediate classifiers
after each Transformer block. These classifiers are then trained independently from these blocks (not
end-to-end). After both training stages, a “halting criterion” is used to dynamically determine the
number of blocks needed to perform a specific prediction. Instead of using a brittle confidence
approach (Guo et al., 2017) to determine when to stop, recent adaptive Transformer architectures
rely on computing the Shannon’s entropy of the output probabilities (Xin et al., 2020a; Liu et al.,
2020) or patience (Zhou et al., 2020). As a relevant disadvantage, in all the previous cases, the
metric used to stop processing is fixed, resulting in a model that is not differentiable and therefore
must be trained in stages.

In contrast to previous works, we propose a fully differentiable alternative to achieve adaptive com-
putation in Transformers based architectures. Our method takes inspiration from DACT (Eyzaguirre
& Soto, 2020), a technique proposed for visual reasoning tasks that is capable of adapting the num-
ber of reasoning steps in a recurrent model. Unlike previous works, instead of relying on heuristics
of knowledge from outside experts, during training DACT-BERT learns directly when to halt. This
feature allows it to tailor the computation used based on the complexity of the input. Furthermore,
as all this is differentiable, we can train the complete model, adapting the weights of the transformer
blocks in the process.

2.2 INTERPRETABLE TRANSFORMERS

Due to the current widespread use of Transformers, attempting to understand the factors that lead
to a prediction is currently an active area of research. Traditionally, attention weights have been
used as a naive way to generate explanations, but this is usually only possible in the context of
small Transformer models (Stahlberg et al., 2018; Villa et al., 2020). In the case of large scale
models, several studies have shown that many of the heads of attention are redundant (Michel et al.,
2019; Clark et al., 2019; Kovaleva et al., 2019). Furthermore, not all predictions require the same
number of Transformer layers (Lee et al., 2019). In general, the overparameterization of models
makes it difficult to identify meaningful relationships between the input tokens and the predictions.
This complexity is the source of the intuition that deeper models are harder to explain, an idea that
recently received theoretical support (Barceló et al., 2020).

Following the previous intuition, DACT-BERT improves the transparency of BERT models by adap-
tively reducing the sequence of blocks needed to output a prediction. Furthermore, DACT-BERT
improves interpretability by exposing a learned confidence score after each unit of computation
(Transformer blocks). This also enables to access the causes for the confidence itself through the in-
clusion of methods such as Integrated gradients (Sundararajan et al., 2017) and Layer Conductance
(Dhamdhere et al., 2018) thanks to its differentiable nature.

3 DACT-BERT: DIFFERENTIABLE ADAPTIVE COMPUTATION TIME FOR
BERT

Adaptive methods work by signaling the amount of computation necessary to complete a given task.
In this work, our signaling module, DACT, produces a prediction based on intermediate results and
the confidence it has on them. This mechanism can then be used to stop an execution when stable
results are obtained, reducing the total number of steps necessary for a given prediction. The original
formulation of DACT (Eyzaguirre & Soto, 2020) applies this module to recurrent models. In our
case, we adapt the formulation to the case of Transformer based architectures, namely BERT.

As shown in Figure 1, DACT-BERT introduces additional linear layers after each computational
unit, similar to the off-ramps in (Xin et al., 2020b) or the student classifiers in the work of Liu et al.
(2020). As in both these cases, we define the discrete unit of computation to be a single BERT
Transformer block.

As Figure 1 shows, the n-th DACT module computes both an output vector yn with the predicted
class probabilities, as well as an accompanying scalar confidence score (or halting value) hn. Fol-
lowing Devlin et al. (2019), both, yn and hn, are estimated by using the classification token ([CLS])
that is included in BERT as part of the output representation of each layer. During training all the
output vectors and halting values are combined to obtain the final predicted probabilities following

3



Under review as a conference paper at ICLR 2021

Figure 1: DACT-BERT adds an additional classification layer after each Transformer block, along
with a sigmoidal confidence function. DACT-BERT combines the Transformer hidden state and the
outputs and confidences of all earlier layers into an accumulated answer an. Later, during inference,
the model is halted once an ≈ aN .

an expression that can be rewritten as the weighted average of all intermediate outputs yn multiplied
by a function of the confidences of earlier blocks. Then, during inference, the confidence scores can
be used to reduce computation.

Auxiliary accumulator variables an are used to build the full output of the model (aN with N = 12
for BERT-base and RoBERTA-base). This is performed by accumulating the intermediate outputs
yn:

an =

{−→
0 if n = 0

ynpn−1 + an−1 (1− pn−1) otherwise
(1)

where pn is a monotonically decreasing function of the confidence scores defined as follows:

pn =

n∏
i=1

hi = hnpn−1 (2)

The model is trained to reduce the classification loss of the final output along with a regularizer that
induces a bias towards reduced computation. In contrast to the regularizer used in Eyzaguirre &
Soto (2020), we use the following:

L̂(x,y) = L(x,y) + τ

n∑
i=1

hi (3)

where τ is a hyper-parameter used to moderate the trade-off between complexity and error. We
find empirically that this regularizer helps training convergence and further binarizes the halting
probabilities.

Notably, the whole formulation is end-to-end differentiable. This allows us to fine-tune the weights
of the underlying backbone (i.e. the Transformer blocks and embedding layers) using a joint op-
timization with the process that trains the intermediate classifiers. This stands in contrast to all
existing methods for dynamic Transformers, where training is done in two stages first pre-training
the backbone (and not the intermediate classifiers) and later freezing the backbone and only modi-
fying the weights of the classifiers.

3.1 GENERALITY

Note that the formulation of DACT is highly general and any differentiable function of the interme-
diate hidden representations can be used to obtain the confidence scores. In particular, in this work

4



Under review as a conference paper at ICLR 2021

we choose to learn the confidence function and therefore use a perceptron as a universal function
approximator, followed by a sigmoid activation function.

We highlight that both DeeBERT and FastBERT can be expressed and trained with our model. For
DeeBERT this can be achieved by hamstringing DACT and training it in three stages. The first two
stages consist of the same training regime as DeeBERT, first training only the transformer blocks
and the final classification layer, and subsequently freezing the transformer blocks and training the
intermediate classifiers independently. An appropriate confidence function to force the model to
adapt based on entropy is a simple logistic regression that receives the output entropy and consists
only of a bias to encode the entropy threshold, and a single weight to scale the layer response.
Training at this point will yield different learnt entropy thresholds for each layer (which is positive)
but, in order to fully represent DeeBERT, we need to further handicap the model by tying the biases
in all the confidence functions. FastBERT can be obtained similarly by simply replacing the second
training stage with the distillation process described by Liu et al. (2020).

In consequence, DACT-BERT can be seen as a generalization of existing dynamic Transformer
architectures, allowing us to train these in an end-to-end fashion while eliminating the need for
manual tuning of the entropy hyperparameter. In this sense, in our experiments, we note that the
training of only the confidence functions results in a optimization problem that produces highly
stable solutions, suggesting that SGD is able to find suitable optimum entropy thresholds 1.

3.2 DYNAMIC COMPUTATION AT INFERENCE

By construction the DACT algorithm allows us to calculate upper and lower bounds for each of the
output classes after any computation step (ie. transformer block). During inference, execution halts
once the predicted probabilities for the topmost class are shown to remain higher than that of the
runner-up class (and by extension, of any other class). That is, the model is stopped from running
additional blocks once it is found that doing so will not change the class with maximum probability
in the final output because the difference between the top class and the rest is insurmountable.

Mathematically, we prove that the difference is insurmountable by comparing the lower bound for
the probability of the top class predicted after n blocks (Pr(c∗, n)) with the upper bound of the
probability of the runner-up class (Pr(cru, n)). Therefore, the halting condition remains the same
as in the original DACT formulation (Eyzaguirre & Soto, 2020):

Pr(c∗, n)(1− pn)d ≥ Pr(cru, n) + pnd (4)

3.3 TRAINING

S MRPC QNLI RTE
F1 Saved Acc Saved Acc Saved

BERT-base
Base - 88.2% 0.0% 91.0% 0.0% 69.9% 0.0%

DeeBERT
0.25 87.3% 30.8% 89.1% 40.5% 69.8% 5.3%
0.50 85.2% 49.1% 85.5% 58.2% 68.1% 21.2%
0.75 79.9% 91.7% 59.6% 91.7% 52.0% 91.7%

DACT BERT - 85.4% 48.9% 87.5% 46.7% 62.7% 50.0%
RoBERTa-base

Base - 90.4% 0.0% 92.4% 0.0% 67.5% 0.0%

DeeBERT
0.25 73.4% 0.0% 90.2% 33.3% 66.9% 36.1%
0.50 73.4% 0.0% 88.0% 42.8% 66.0% 39.6%
0.75 0.0% 91.7% 59.5% 91.7% 49.8% 91.7%

DACT BERT - 88.9% 51.7% 91.9% 44.1% 54.5% 63.1%

Table 1: Results of the performance comparison between DACT-BERT and DeeBERT methods in
different tasks of the GLUE benchmark. BERT and RoBERTa vanilla were included as base models.
The column S indicates the entropy value used to reduce the computation on the DeeBERT model.
The column Saved indicates the percentage of blocks saved by using the corresponding method.

1for a small enough learning rate.

5



Under review as a conference paper at ICLR 2021

(a) MRPC (b) QNLI

(c) RTE

Figure 2: Attention entropy distribution per layer in the backbone for DACT-BERT (blue) and Dee-
BERT (red) for three different GLUE tasks. Each point represent the entropy for one attention head
in each layer and the line shows the mean entropy for all the attentions in a given layer.

The training of the module follows a two step process. First the underlying Transformer model must
be tuned to the relevant task. This ensures a good starting point onto which the DACT module can
then be adapted to and speeds up convergence.

This is followed by a second fine-tuning phase where both the DACT module as well as the under-
lying Transformer are jointly trained for the relevant task. This latter training phase, not only makes
it possible to use the module to work adaptatively, but also modifies the Transformer layers making
them more suited to work together, while also generating new representations in the Transformer
which are useful for the new lower computation scenario.

4 RESULTS

4.1 EXPERIMENTAL SETUP

We tested our method using BERT and RoBERTa, evaluating both models on three different tasks
from the GLUE benchmark (Wang et al., 2018). Our model was developed using PyTorch (Paszke
et al., 2017) on top of the implementation released by Xin et al. (2020a) as well as the HuggingFace
Transformers library (Wolf et al., 2019) 2.

In our experiments, we fine-tune the backbone model for the GLUE tasks using the default values
of the hyper-parameters. For the second stage we use τ = 5 · 10−3 for the regularizer to balance
computation time with precision. Other values for this parameter result in different tradeoffs between
computation and accuracy.

2Code will be released upon publication.

6



Under review as a conference paper at ICLR 2021

To analyze the results, DeeBERT (Xin et al., 2020b) was chosen as the representative baseline for
entropy-based dynamic Transformers since the trained weights were published in the HuggingFace
model hub3. Three entropy thresholds S were selected to test this model for a fair quality-efficiency
comparison. The same results are also computed for both BERT and RoBERTa models for compar-
ison purpose.

4.2 COMPUTATIONAL EFFICIENCY

We first tested our method to understand its accuracy to computation characteristics. We show both
metrics for both values as the efficiency value almost always comes at the expense of a performance
drop on the task in question. For these experiments, efficiency was measured as the percentage of
Transformer layers saved out of the total number of layers executed without an efficiency mecha-
nism (equivalent to the total number of layers in their static counterparts). The specific metrics for
performance are those suggested in the GLUE paper (Wang et al., 2018) for each task.

The results of this evaluation can be seen in Table 1. Both results for the original BERT and
RoBERTa performance were included. Both results for the original BERT and RoBERTa perfor-
mance were included. It can be observed that both DACT-BERT and DeeBERT models perform
similarly when using comparable amounts of computation. We interpret this result as an informal
proof of the efficacy of using entropy to quantify model uncertainty, and as validation of out learnt
confidence function and the training process that produced it.

Importantly, because our model learns to regulate itself, it shows a remarkable stability in the amount
of computation saved. By contrast, DeeBERT proves to be extremely sensible to the chosen value for
the entropy hyperparameter, exhibiting important fluctuations in both computation and performance
indicators for small changes in its value (see RTE column in Table 1). Additionally, we observe
that the amount of computation saved by DACT remains close to 50% regardless of the task, which
again contrasts with DeeBERT, as entropy-based models require a painstaking calibration process
in order to find the entropy threshold that will lead to a particular efficiency level. This robustness
seems to come from training the efficiency mechanism instead of relying on a somewhat arbitrary
quantity for its control.

Additional advantages of our model can be observed in Figure 2 which shows the average entropy
of each head’s attention distribution for DACT-BERT and DeeBERT (as sugested by Rogers et al.
(2020)). First, it can be easily seen that our approach uses less layers (exact frequencies are shown
in Figure 5). That is, even when using on average the same number of layers (as is the case in
Figure 2a), DACT-BERT completely disregards the outputs from the last blocks, enabling us to
prune whole layers without changing the model accuracy for reduced model size. On the one hand,
we explain this difference by noting that the entropy will remain high throughout the whole model
for the case of difficult questions as it will be uncertain about the answer. On the other hand, any
layer in DACT-BERT is capable of quitting computation if it believes future layers cannot answer
with more certainty than its own (regardless of how certain the model actually is). Figure 2c support
this hypothesis, showing that difficult tasks, where the model performs worse, final layers are used
more frequently.

4.3 INTERPRETABILITY

Our model shows an increased interpretability when compared to both baselines in two different
ways. First, we increase interpretability by reducing the number of layers and therefore parameters
that contribute to an answer. We hypothesize that this will lead to a more transparent model, as
Barceló et al. (2020) proved that interpretability decreases with the number of layers.

To test this hypothesis, we take advantage of the Integrated Gradients technique (Sundararajan et al.,
2017) to explore the attributions the input tokens have over the final prediction both for our model
as well as our baseline. Two samples from the MRPC dataset explored in this way are shown in
Figure 3. Here, it can be seen that DACT-BERT shows a greater amount of attribution towards
entities which are key to infer that both phrases are semantically equal, while the baseline shows
more uninformative flatter attributions.

3https://huggingface.co/ji-xin

7

https://huggingface.co/ji-xin


Under review as a conference paper at ICLR 2021

Figure 3: Output prediction attribution to each input token. Two samples from the MRPC task are
shown with their attributions obtained both for DeeBERT and DACT-BERT. The color intensity
shows the degree on how much each token contributes to the final output. Green is used for tokens
that have positive attribution to the output, while red means tokens with negative attribution to the
output.

A second source of interpretability provided by DACT-BERT comes from adding a fully differen-
tiable module which manages the number of steps to be taken. In doing this, there is an additional
source of insight that can be explored to understand the inner working of the model. In particular to
understand which layers and neurons are important for the halting prediction. This gives us further
insights on what is the model looking at in order to make the prediction decision. Figure 4 illustrates
this idea by showing an example of each layer’s halting value, with the corresponding attributions
of each token to its value. The closest analogue is to calculate the attributions of the entropy in
DeeBERT which appeared to be meaningless in our experiments.

5 CONCLUSIONS AND FUTURE WORK

This work introduced DACT-BERT, a model capable of both leveraging modern pre-trained Trans-
former architectures and differentiable adaptive computation. By using this mechanism to allow
the model to adapt the number of blocks needs to execute at inference time, we find that the model
makes predictions that are more computationally efficient and interpretable than the base architec-
ture. Moreover, we proved that this approach is competitive with current state-of-the-art dynamic
Transformers when using comparable amounts of computation, while also retaining a series of other
advantages such as being more robust, end-to-end trainable, more compressible (by eliminating un-
used blocks) and interpretable.

Furthermore, we expect future work will benefit from the proposed architecture. While this model
laid the groundwork in making BERT more interpretable, we foresee upcoming investigations in
both understanding BERT and modifying BERT to make it more transparent will benefit from the
techniques presented here. Additionally, there is still a lot of performance to be gained by using
DACT-BERT, either by tuning hyperparameters for the GLUE tasks shown here (instead of using
the same for every task), or training on other datasets that will benefit more from its end-to-end
differentiability and the possibility of fine-tuning Transformer weights.

Finally, we hope that approaching DACT-BERT as a generalization and extension of other dynamic
Transformer algorithms will lead to further research on alternative training regimes and confidence
functions that will continue to increase interpretability and reduce computation.

8



Under review as a conference paper at ICLR 2021

REFERENCES

Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. Deep equilibrium models. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. dÁlché-Buc, E. Fox, and R. Garnett (eds.), Advances in
Neural Information Processing Systems 32, pp. 690–701. Curran Associates, Inc., 2019. URL
http://papers.nips.cc/paper/8358-deep-equilibrium-models.pdf.

Pablo Barceló, Mikael Monet, Jorge Pérez, and Bernardo Subercaseaux. Model interpretability
through the lens of computational complexity. In Advances in Neural Information Processing
Systems 33. Curran Associates, Inc., 2020.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning. What does BERT look
at? An analysis of BERT’s attention. CoRR, abs/1906.04341, 2019.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
transformers. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=HyzdRiR9Y7.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https:
//www.aclweb.org/anthology/N19-1423.

Kedar Dhamdhere, Mukund Sundararajan, and Qiqi Yan. How important is a neuron? arXiv preprint
arXiv:1805.12233, 2018.

Cristobal Eyzaguirre and Alvaro Soto. Differentiable adaptive computation time for visual reason-
ing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 12817–12825, 2020.

L.H. Gilpin, D. Bau, B. Yuan, A. Bajwa, M. Specter, and L. Kagal. Explaining explanations: An
overview of interpretability of machine learning. In Int. Conf. on Data Science and Advanced
Analytics (DSAA), 2018.

B. Goodman and S. Flaxman. EU regulations on algorithmic decision-making and a ”right to expla-
nation”. ArXiv, abs/1606.08813, 2016.

A. Graves. Adaptive computation time for recurrent neural networks. ArXiv, abs/1603.08983, 2016.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
networks, 2017.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun
Liu. Tiny{bert}: Distilling {bert} for natural language understanding, 2020. URL https:
//openreview.net/forum?id=rJx0Q6EFPB.

Yigitcan Kaya, Sanghyun Hong, and Tudor Dumitras. Shallow-deep networks: Understanding and
mitigating network overthinking. In International Conference on Machine Learning, pp. 3301–
3310. PMLR, 2019.

Olga Kovaleva, Alexey Romanov, Anna Rogers, and Anna Rumshisky. Revealing the dark secrets
of BERT. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pp. 4365–4374, Hong Kong, China, November 2019. Association for Computational
Linguistics. doi: 10.18653/v1/D19-1445. URL https://www.aclweb.org/anthology/
D19-1445.

Jaejun Lee, Raphael Tang, and Jimmy Lin. What would elsa do? freezing layers during transformer
fine-tuning, 2019.

9

http://papers.nips.cc/paper/8358-deep-equilibrium-models.pdf
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=HyzdRiR9Y7
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://openreview.net/forum?id=rJx0Q6EFPB
https://openreview.net/forum?id=rJx0Q6EFPB
https://www.aclweb.org/anthology/D19-1445
https://www.aclweb.org/anthology/D19-1445


Under review as a conference paper at ICLR 2021

Weijie Liu, Peng Zhou, Zhiruo Wang, Zhe Zhao, Haotang Deng, and Qi Ju. FastBERT: a self-
distilling BERT with adaptive inference time. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pp. 6035–6044, Online, July 2020. Association
for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.537. URL https://www.
aclweb.org/anthology/2020.acl-main.537.

Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than
one? In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp. 14014–
14024. Curran Associates, Inc., 2019. URL http://papers.nips.cc/paper/
9551-are-sixteen-heads-really-better-than-one.pdf.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

A. Rogers, O. Kovaleva, and A. Rumshisky. A primer in BERTology: What we know about how
BERT works. ArXiv, abs/2002.12327, 2020.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter, 2020.

R. Schwartz, J. Dodge, N.A. Smith, and O. Etzioni. Green ai. ArXiv, abs/1907.10597, 2019.

Felix Stahlberg, Danielle Saunders, and Bill Byrne. An operation sequence model for explainable
neural machine translation. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: An-
alyzing and Interpreting Neural Networks for NLP, pp. 175–186, Brussels, Belgium, Novem-
ber 2018. Association for Computational Linguistics. doi: 10.18653/v1/W18-5420. URL
https://www.aclweb.org/anthology/W18-5420.

E. Strubell, A. Ganesh, and A. McCallum. Energy and policy considerations for deep learning in
NLP. ArXiv, abs/1906.02243, 2019.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. Patient knowledge distillation for BERT model
compression. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pp. 4323–4332, Hong Kong, China, November 2019. Association for Computational
Linguistics. doi: 10.18653/v1/D19-1441. URL https://www.aclweb.org/anthology/
D19-1441.

M. Sundararajan, A. Taly, and Q. Yan. Axiomatic attribution for deep networks. In ICML, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Andrés Villa, Vladimir Araujo, Francisca Cattan, and Denis Parra. Interpretable contextual team-
aware item recommendation: Application in multiplayer online battle arena games. In Fourteenth
ACM Conference on Recommender Systems, RecSys ’20, pp. 503–508, New York, NY, USA,
2020. Association for Computing Machinery. ISBN 9781450375832. doi: 10.1145/3383313.
3412211. URL https://doi.org/10.1145/3383313.3412211.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE:
A multi-task benchmark and analysis platform for natural language understanding. In Proceed-
ings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks
for NLP, pp. 353–355, Brussels, Belgium, November 2018. Association for Computational Lin-
guistics. doi: 10.18653/v1/W18-5446. URL https://www.aclweb.org/anthology/
W18-5446.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Huggingface’s transformers: State-
of-the-art natural language processing. ArXiv, abs/1910.03771, 2019.

10

https://www.aclweb.org/anthology/2020.acl-main.537
https://www.aclweb.org/anthology/2020.acl-main.537
http://papers.nips.cc/paper/9551-are-sixteen-heads-really-better-than-one.pdf
http://papers.nips.cc/paper/9551-are-sixteen-heads-really-better-than-one.pdf
https://www.aclweb.org/anthology/W18-5420
https://www.aclweb.org/anthology/D19-1441
https://www.aclweb.org/anthology/D19-1441
https://doi.org/10.1145/3383313.3412211
https://www.aclweb.org/anthology/W18-5446
https://www.aclweb.org/anthology/W18-5446


Under review as a conference paper at ICLR 2021

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy Lin. DeeBERT: Dynamic early exiting
for accelerating BERT inference. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pp. 2246–2251, Online, July 2020a. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2020.acl-main.204. URL https://www.aclweb.org/
anthology/2020.acl-main.204.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy Lin. DeeBERT: Dynamic early exiting
for accelerating BERT inference. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pp. 2246–2251, Online, July 2020b. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2020.acl-main.204. URL https://www.aclweb.org/
anthology/2020.acl-main.204.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian McAuley, Ke Xu, and Furu Wei. Bert loses pa-
tience: Fast and robust inference with early exit, 2020.

11

https://www.aclweb.org/anthology/2020.acl-main.204
https://www.aclweb.org/anthology/2020.acl-main.204
https://www.aclweb.org/anthology/2020.acl-main.204
https://www.aclweb.org/anthology/2020.acl-main.204


Under review as a conference paper at ICLR 2021

A HALTING AND OUTPUT ATTRIBUTIONS

Figure 4: Halting (top) and output (bottom) attribution to each input token. For one sample from
the MRPC task. The tokens attributions towards the halting value are computed for every halting
neuron, after each transformer block. For both, the color intensity shows the degree on how much
each token contributes to the final output. Green is used for tokens that have positive attribution to
the output, while red means on tokens with negative attribution to the halt or output.

12



Under review as a conference paper at ICLR 2021

B LAYER FREQUENCY

Figure 5: The number of times DACT-BERT (blue) and DeeBERT (red) quit computation at a
specific layer in the MRPC task.

13


	Introduction
	Related Work
	Efficient Transformers
	Static Approaches
	Dynamic Approaches

	Interpretable transformers

	DACT-BERT: Differentiable Adaptive Computation Time for BERT
	Generality
	Dynamic computation at inference
	Training

	Results
	Experimental Setup
	Computational efficiency
	Interpretability

	Conclusions and Future Work
	Halting and output attributions
	Layer Frequency

