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Abstract001

Contemporary machine translation systems ex-002
cel at preserving semantic content but inade-003
quately address discourse-level argumentative004
structures critical for specialized communica-005
tions. We introduce the Argumentation Preser-006
vation Assessment Framework (APAF), a novel007
evaluation approach that quantifies how effec-008
tively translations maintain the logical archi-009
tecture of arguments across languages. APAF010
identifies and categorizes argumentative ele-011
ments (claims, premises, examples) in source012
and target texts, employs neural embeddings for013
cross-lingual comparison, and calculates com-014
prehensive preservation metrics. Through eval-015
uation on Chinese-English legal translations,016
we demonstrate that argumentation preserva-017
tion represents a distinct quality dimension018
not captured by conventional metrics. Re-019
sults reveal that while commercial systems and020
large language models perform reasonably well021
(CAPS scores 0.66-0.73), they achieve only 72-022
80% of human-level performance (0.91), with023
relationship preservation consistently lagging024
behind component preservation. Our frame-025
work enables systematic assessment of a crit-026
ical but previously unmeasured dimension of027
translation quality, particularly valuable for do-028
mains where argumentative integrity directly029
impacts functional efficacy.030

1 Introduction031

The assessment of machine translation quality has032

traditionally relied on surface-level metrics that033

quantify lexical and syntactic correspondences be-034

tween source and reference texts (Papineni et al.,035

2002; Banerjee and Lavie, 2005). While these met-036

rics provide valuable insights into translation fi-037

delity at the sentence level, they frequently fail to038

capture higher-order discourse structures essential039

for preserving the communicative function of spe-040

cialized texts. This limitation becomes particularly041

pronounced in texts where complex argumentative042

patterns, such as premise-conclusion relationships, 043

counterfactual reasoning, and concessive structures 044

form the central communicative mechanism. The 045

inadequate preservation of these structures can fun- 046

damentally alter the logical coherence, rhetorical 047

force, and functional equivalence of translated con- 048

tent, even when surface-level semantic accuracy 049

appears high. 050

The translation of argumentative discourse 051

presents unique challenges that transcend lexical 052

and syntactic considerations. Argumentation pat- 053

terns exhibit substantial cross-cultural variation in 054

logical organization, rhetorical devices, and evi- 055

dence presentation. Legal argumentation in par- 056

ticular serves as a compelling exemplar of this 057

phenomenon, as different jurisdictions and legal 058

traditions often employ culturally-specific reason- 059

ing patterns and specialized rhetorical frameworks. 060

Research by Voita et al. (2019) has empirically 061

demonstrated that context-agnostic neural machine 062

translation systems exhibit significant deficiencies 063

in preserving discourse-level phenomena across 064

languages, with approximately 46.5% failure rate 065

in maintaining argumentative coherence. 066

We introduce the Argumentation Preservation 067

Assessment Framework (APAF), a novel approach 068

for evaluating machine translation quality through 069

systematic analysis of argument structure preser- 070

vation. APAF represents a significant advance- 071

ment in translation quality assessment by focus- 072

ing on how well the logical architecture of argu- 073

ments—including claims, premises, examples, and 074

their interrelationships—is maintained across lin- 075

guistic boundaries. The framework addresses a 076

critical epistemological gap in current MT evalu- 077

ation paradigms, particularly for domains where 078

argumentative coherence constitutes an essential 079

dimension of translation adequacy. 080

Our research objectives are threefold: 081

1. To establish a complete methodology for iden- 082
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tifying, representing, and comparing argu-083

ment structures across source and target lan-084

guage texts085

2. To develop quantitative metrics for measuring086

argument preservation at multiple granularity087

levels088

3. To validate the relationship between argument089

preservation and human-perceived translation090

quality in specialized domains091

To address these objectives, we present several092

methodological innovations. First, we introduce an093

argument extraction and categorization approach094

that identifies and classifies argumentative elements095

in both source and translated texts. Second, we de-096

velop a novel argument matching methodology that097

quantifies preservation across languages through098

hierarchical comparison of claims, premises, and099

their relationships. Third, we establish a compre-100

hensive evaluation system with empirically val-101

idated parameters that synthesizes these compo-102

nents into an integrated framework.103

For our empirical investigation, we utilize a par-104

allel corpus of Chinese-English legal judgments105

from the Hong Kong Judiciary database. This cor-106

pus presents an ideal testbed for evaluating argu-107

mentation preservation due to its rich argumenta-108

tive content, high-quality human translations, and109

domain-specific complexity. The integration of110

argumentation analysis into machine translation111

evaluation represents a significant advancement in112

assessing translation quality for argumentative dis-113

course. This approach transcends the limitations114

of traditional metrics by examining the degree to115

which translations maintain the logical infrastruc-116

ture that gives argumentative texts their persuasive117

force and coherence.118

2 Related Work119

2.1 Argumentation Analysis in Cross-Lingual120

Contexts121

Argumentation analysis concerns the identification122

and examination of argumentative elements within123

discourse—including claims, premises, evidence,124

and their interrelationships (Toulmin, 2003; Wal-125

ton et al., 2008). While substantial research has126

focused on computational approaches to argument127

mining (Lawrence and Reed, 2020; Habernal and128

Gurevych, 2017), the cross-lingual dimension of129

argumentation preservation remains relatively un- 130

explored. This epistemic gap is particularly signif- 131

icant given the cultural and linguistic variance in 132

argumentation patterns across languages (Feng and 133

Liu, 2011). 134

The structural components of argumenta- 135

tion—claims (assertions requiring justification), 136

premises (supporting reasons), and examples (illus- 137

trative evidence)—constitute the fundamental units 138

of argumentative discourse (Stab and Gurevych, 139

2014). However, these elements manifest dif- 140

ferently across linguistic contexts due to cultural 141

rhetorical preferences, legal frameworks, and dis- 142

course conventions (Kaplan, 1966). Western ar- 143

gumentation typically employs linear, direct rea- 144

soning patterns, while East Asian traditions of- 145

ten utilize more indirect, contextual approaches 146

(Liu, 2005). These variations present significant 147

challenges for machine translation systems, which 148

must maintain not only lexical and syntactic fidelity 149

but also preserve the argumentative coherence that 150

gives persuasive texts their communicative force. 151

Recent work in cross-lingual argumentation min- 152

ing (Eger et al., 2018) has highlighted the inad- 153

equacy of traditional transfer approaches when 154

applied to argumentative structures. Visser et al. 155

(2020) emphasize that argumentative patterns are 156

deeply embedded in cultural communicative norms, 157

creating multilayered translation challenges that 158

transcend simple lexical mapping. 159

2.2 Limitations of Traditional Machine 160

Translation Evaluation 161

Conventional machine translation evaluation met- 162

rics present several limitations when assess- 163

ing the preservation of argumentative structures. 164

Reference-based metrics such as BLEU (Papineni 165

et al., 2002), METEOR (Banerjee and Lavie, 2005), 166

and TER (Snover et al., 2006) primarily focus on 167

surface-level lexical and syntactic correspondences, 168

while newer approaches like BERTScore (Zhang 169

et al., 2020) and COMET (Rei et al., 2020) im- 170

prove semantic sensitivity but remain inadequate 171

for evaluating higher-order discourse structures. 172

These limitations are particularly pronounced 173

when evaluating argumentative discourse, where 174

the preservation of logical relationships, rhetorical 175

devices, and persuasive elements transcends sim- 176

ple lexical mapping (Lind et al., 2022). Wu et al. 177

(2016) empirically demonstrated that high BLEU 178

scores often fail to correlate with preservation of 179

argumentative coherence, particularly for complex 180
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reasoning patterns and implicit argumentative rela-181

tionships. Similarly, Zhao et al. (2023) found that182

neural machine translation systems achieving com-183

parable BLEU scores exhibited substantial varia-184

tion in their ability to maintain argumentative in-185

tegrity—a critical quality dimension invisible to186

conventional metrics.187

Recent advances in neural evaluation metrics188

have partially addressed these limitations by incor-189

porating contextual embeddings and learned quality190

estimation (Rei et al., 2020; Sellam et al., 2020).191

However, these approaches still inadequately cap-192

ture the fine-grained preservation of argumentative193

structures that constitute the logical architecture194

of persuasive discourse. This limitation highlights195

the need for specialized evaluation frameworks fo-196

cused specifically on argumentation preservation,197

particularly for domains where logical coherence198

is paramount to communicative efficacy.199

2.3 Computational Approaches to200

Argumentation Representation201

Computational approaches to argumentation anal-202

ysis have evolved substantially, from early rule-203

based systems to contemporary neural architec-204

tures. Argument Mining (AM), a subfield at the205

intersection of natural language processing and206

computational argumentation, focuses on automat-207

ically identifying argumentative structures in nat-208

ural language text (Lippi and Torroni, 2016). Re-209

cent advances in contextualized language models210

have significantly improved the performance of211

argument identification and classification systems212

(Chakrabarty et al., 2019; Schulz et al., 2018).213

Vector-based representations of argumentative214

components have emerged as a powerful approach215

for capturing the semantic and functional dimen-216

sions of arguments (Reimers et al., 2019). By em-217

bedding argumentative elements in continuous vec-218

tor spaces, these representations facilitate nuanced219

comparison of argumentative structures across lan-220

guages through cross-lingual embedding alignment221

(Glavaš and Vulić, 2018). The integration of com-222

putational argumentation models with cross-lingual223

representation learning represents a promising di-224

rection for translation quality assessment. By lever-225

aging advances in cross-lingual embeddings (Con-226

neau et al., 2017; Lample and Conneau, 2019) and227

argument representation (Durmus et al., 2019), it228

becomes possible to develop nuanced evaluation229

frameworks that quantify argumentation preserva-230

tion across linguistic boundaries.231

3 Methodological Framework 232

3.1 Architectural Overview 233

APAF implements a sophisticated evaluation se- 234

quence where both source and target texts undergo 235

independent argument extraction processes in their 236

respective native languages. This extraction iden- 237

tifies critical argumentative components—claims, 238

premises, and examples—that constitute the log- 239

ical architecture of the text. To enable cross- 240

linguistic comparison, these extracted components 241

are then transformed into a common intermediate 242

language (English in our implementation), estab- 243

lishing a standardized representational basis. The 244

transformed components undergo embedding into 245

a shared vector space, creating a mathematically 246

comparable representation of argumentation struc- 247

tures across languages. 248

Figure 1: APAF evaluation workflow for assessing ar-
gumentation preservation in machine translation. The
framework extracts argumentative components from
source and target texts independently, transforms them
to a common representation space, and performs hier-
archical matching to quantify preservation across lan-
guages.

As illustrated in Figure 1, the critical innovation 249

in APAF lies in the hierarchical matching process, 250

which quantitatively compares these vector repre- 251

sentations to measure the degree of preservation 252

across translation boundaries. Unlike conventional 253

translation evaluation metrics that operate primarily 254

at lexical and syntactic levels, APAF functions at 255
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the discourse-functional level, explicitly quantify-256

ing how well the machine translation preserves the257

argumentative infrastructure that gives persuasive258

texts their rhetorical force and logical coherence.259

3.2 Corpus Selection and Characteristics260

Our dataset utilizes a parallel corpus of Chinese-261

English legal judgments from the Hong Kong Ju-262

diciary database. This corpus presents an ideal263

testbed for evaluating argumentation preservation264

across languages due to several significant char-265

acteristics. Legal judgments inherently contain266

complex argumentative structures, making them267

particularly valuable for analyzing argumentation268

patterns (Stede and Schneider, 2018). The Hong269

Kong Judiciary produces professional translations270

that adhere to rigorous quality standards, providing271

reliable reference translations for comparison with272

machine translation outputs. The Hong Kong legal273

system’s unique bilingual framework necessitates274

precise translations that maintain argumentative275

integrity across languages, creating a natural labo-276

ratory for cross-linguistic analysis (Chan, 2008).277

For our empirical investigation, we selected 15278

legal judgments issued between 2012 and 2025,279

encompassing various legal domains including con-280

stitutional law, criminal law, and civil procedure.281

Our dataset comprises 557 aligned paragraph pairs282

carefully selected from judgments with significant283

jurisprudential value. The corpus encompasses284

judgments from all levels of the Hong Kong ju-285

diciary system, ensuring representation of various286

case types, legal domains, and argumentative styles,287

enhancing the generalizability of our findings.288

3.3 Argument Extraction Methodology289

A fundamental component of APAF is the iden-290

tification and categorization of argumentative el-291

ements in both source and target texts. Follow-292

ing an extensive evaluation of existing argument293

mining tools, we determined that current state-of-294

the-art systems demonstrated inadequate perfor-295

mance on our Chinese-English legal corpus. This296

finding aligns with observations by Mochales and297

Moens (2011) and Poudyal et al. (2020) regarding298

the domain-specificity challenges in legal argument299

mining. After systematic comparison through hu-300

man validation, we selected a prompt-engineered301

approach utilizing OpenAI o1 for argument extrac-302

tion, which demonstrated superior performance in303

identifying complex argumentative structures in304

legal texts.305

Our argument extraction framework employs a 306

hierarchical two-stage process: (1) initial claim 307

identification, followed by (2) comprehensive argu- 308

ment structure analysis. This bifurcated approach 309

permits the precise identification of primary argu- 310

mentative claims before establishing their relation- 311

ships to supporting elements, thereby optimizing 312

performance across languages. The system sys- 313

tematically processes each text component (source 314

Chinese, machine-translated English, and reference 315

English translation) to extract a comprehensive tax- 316

onomy of argumentative elements: 317

• Claims: Primary assertions that necessitate 318

justification within the legal discourse 319

• Premises: Supporting reasons that provide 320

logical or evidential backing for claims, clas- 321

sified by logical type (Support, Guarantee, 322

Evidence, Other) and argumentative relation 323

(Support or Refutation) 324

• Examples: Illustrative cases, scenarios, or 325

precedents that strengthen or clarify argumen- 326

tative elements, categorized as Supporting or 327

Refuting relative to the associated claims 328

Methodological validation employed rigorous 329

comparative evaluation protocols against human 330

expert annotation to ensure cross-linguistic relia- 331

bility. The system demonstrated substantial inter- 332

annotator agreement with human experts, achiev- 333

ing a Cohen’s kappa coefficient of 0.79 for compo- 334

nent identification and 0.72 for relationship classi- 335

fication across languages. This validation process 336

incorporated two bilingual legal experts who in- 337

dependently verified the extracted argumentative 338

components across a representative subset of 15 339

documents, with discrepancies resolved through 340

structured consensus discussion. 341

3.4 Cross-Lingual Representation and 342

Comparison 343

APAF implements a neural embedding-based ap- 344

proach for cross-lingual argumentation compari- 345

son that facilitates direct assessment of argumenta- 346

tive preservation across linguistic boundaries. This 347

methodological innovation comprises three inte- 348

grated components: 349

1. Intermediate language translation: Ex- 350

tracted argumentative components in Chinese 351

are systematically translated into English us- 352

ing the GoogleTranslator API with robust 353
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error-handling mechanisms. This process es-354

tablishes a standardized linguistic representa-355

tion that enables direct comparative analysis:356

ACN→EN = τ(ACN ) (1)357

where τ represents the translation function358

and A represents argumentative components.359

2. Neural embedding representation: Both360

original English and translated Chinese ar-361

gumentative components undergo embedding362

transformation using the "doubao-embedding-363

large-text-240915" model, generating high-364

dimensional vector representations (dimen-365

sions = 4096) that capture semantic, prag-366

matic, and functional dimensions:367

e⃗i = ϕ(Ai) (2)368

where ϕ represents the embedding function369

and e⃗i is the resulting vector representation.370

3. Hierarchical similarity computation: Vec-371

tor representations undergo systematic com-372

parison through a multi-tiered matching algo-373

rithm employing differential thresholds:374

(a) Claim-level matching: Using threshold375

θclaim = 0.7376

(b) Premise-level matching: Using thresh-377

old θpremise = 0.6378

(c) Example-level matching: Using thresh-379

old θexample = 0.6380

The matching algorithm is formalized as:381

M(A,B) = {(i, j, sij) | sij = cos(e⃗Ai , e⃗
B
j ) > θt, i ∈ A, j ∈ B}

(3)382

where A and B represent component sets from383

different languages, sij is the cosine similarity be-384

tween vectors, and θt is the threshold specific to385

component type t.386

3.5 Evaluation Metrics387

APAF quantifies argumentation preservation across388

languages through a comprehensive set of metrics:389

1. Claim Preservation Rate (CPR): Measures390

the proportion of source text claims preserved391

in the target text:392

CPR =
len(Mclaim)× 2

len(CS) + len(CT )
(4) 393

where len(Mclaim) represents matched claim 394

pairs, and len(CS) and len(CT ) represent 395

claims in source and target texts. 396

2. Premise Preservation Rate (PPR): Quanti- 397

fies premise preservation: 398

PPR =
len(Mpremise)× 2

len(PS) + len(PT )
(5) 399

3. Example Preservation Rate (EPR): Mea- 400

sures example maintenance: 401

EPR =
len(Mexample)× 2

len(ES) + len(ET )
(6) 402

4. Relationship Preservation Rates (RPR): 403

Quantifies preservation of logical relation- 404

ships: 405

RPRpremise =

∑
c∈Claimsmatched

len(Pc ∩ P ′
c)∑

c∈Claimsmatched
len(Pc) + len(P ′

c)
(7) 406

RPRexample =

∑
c∈Claimsmatched

len(Ec ∩ E′
c)∑

c∈Claimsmatched
len(Ec) + len(E′

c)
(8) 407

5. Comprehensive Argumentation Preserva- 408

tion Score (CAPS): Integrates component- 409

level metrics: 410

CAPS = α · CPR + β · PPR + γ · EPR (9) 411

with empirically calibrated weights α = 0.35, 412

β = 0.40, and γ = 0.25. 413

4 Implementation and Experimental 414

Setup 415

4.1 Translation Systems 416

To evaluate argumentation preservation across di- 417

verse machine translation architectures, we imple- 418

mented seven distinct translation systems encom- 419

passing both commercial APIs and LLM-based 420

approaches: 421
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1. Commercial API-based systems:422

• Google Translate API: Google Cloud423

Translation API v3424

• DeepL API: DeepL’s official Python425

client library426

2. Large Language Model (LLM) systems:427

• DeepSeek-671B: Large-scale multilin-428

gual model (671B parameters)429

• Gemma3-1B: Google’s lightweight430

LLM (1.1B parameters)431

• Gemma3-4B: Mid-sized Gemma3 vari-432

ant (4.1B parameters)433

• Qwen-0.5B: Alibaba’s compact model434

(0.5B parameters)435

• Qwen-3B: Expanded Qwen variant (3B436

parameters)437

For all LLM-based systems, we implemented438

a consistent prompt-engineering approach to opti-439

mize translation quality and ensure fair comparison.440

We also evaluated official human translations from441

the Hong Kong Judiciary’s professional translation442

service, establishing a human-level performance443

benchmark.444

4.2 Computational Pipeline445

Our implementation architecture follows a modular446

design with four primary computational modules:447

1. Preprocessing Module: Handles corpus seg-448

mentation, standardization, and metadata tag-449

ging, using jieba (v0.42.1) for Chinese tok-450

enization and spaCy (v3.7.2) with custom le-451

gal lexicons for English preprocessing.452

2. Translation Module: Manages interfaces453

with translation systems, implementing454

system-specific adapters that normalize in-455

puts/outputs across platforms.456

3. Argument Extraction Module: Encapsulates457

the OpenAI o1-based extraction system with458

a parallelized inference pipeline and caching459

mechanisms.460

4. Evaluation Module: Implements metrics461

using optimized vector operations through462

numpy (v1.26.0) and scikit-learn (v1.3.2),463

performing hierarchical matching with an464

O(n log n) algorithm.465

For vector representations, we used the doubao- 466

embedding-large-text-240915 model, which gener- 467

ates 4096-dimensional vectors that capture seman- 468

tic and functional dimensions critical for argumen- 469

tative discourse. The embedding infrastructure in- 470

corporates batched processing, persistent caching, 471

and asynchronous processing to maximize compu- 472

tational efficiency. 473

5 Results and Analysis 474

5.1 Overall Preservation Performance 475

Figure 2 presents the overall argumentation preser- 476

vation performance of each translation system as 477

measured by the Comprehensive Argumentation 478

Preservation Score (CAPS). This score represents 479

the weighted average of component-level preserva- 480

tion metrics, providing a holistic assessment of how 481

effectively each system maintains argumentative 482

structures across languages. 483
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Figure 2: Overall Argumentation Preservation Perfor-
mance Across Translation Systems

Several key patterns emerge from this analysis: 484

1. Human translation superiority: Profes- 485

sional human translations demonstrate sub- 486

stantially higher argumentation preservation 487

(CAPS = 0.9128) compared to all machine 488

translation systems, establishing an upper 489

benchmark for performance in this domain. 490

2. Commercial API performance: DeepL 491

(CAPS = 0.7336) slightly outperforms Google 492

Translate (CAPS = 0.7097), suggesting more 493

effective preservation of argumentative struc- 494

tures despite both systems using neural ma- 495

chine translation architectures. 496

3. LLM system performance: Among LLM- 497

based systems, DeepSeek-671B achieves the 498

highest performance (CAPS = 0.7239), fol- 499

lowed by Gemma3-4B (CAPS = 0.7087), 500
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while Qwen-0.5B shows the lowest preserva-501

tion capability (CAPS = 0.6593).502

4. Scale advantage: Within each model family503

(Gemma and Qwen), larger parameter counts504

correlate with improved argumentation preser-505

vation, suggesting that increased model capac-506

ity enhances the ability to maintain complex507

discourse structures.508

The performance gap between human and ma-509

chine translation ranges from approximately 19.6%510

(DeepL) to 27.8% (Qwen-0.5B), highlighting sig-511

nificant opportunities for improvement in argumen-512

tation preservation capabilities of machine transla-513

tion systems.514

5.2 Component-Level Analysis515

Figure 3 presents component-specific preservation516

scores across translation systems, reflecting the517

CPR, PPR, and EPR metrics defined in our evalua-518

tion framework.519
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Figure 3: Preservation Performance by Argument Com-
ponent Type

This component-level analysis reveals several520

important trends:521

1. Hierarchical preservation pattern: Across522

all systems including human translation,523

Claim Preservation Rate (CPR) consistently524

shows higher values than Premise Preserva-525

tion Rate (PPR), which in turn outperforms526

Example Preservation Rate (EPR). This pat-527

tern suggests that central argumentative asser-528

tions receive better translation attention than529

supporting elements.530

2. Component-specific challenges: The preser-531

vation gap between claims and examples532

ranges from 5-10% across systems, highlight-533

ing the particular challenge of preserving il-534

lustrative content that often contains domain- 535

specific knowledge and contextual references. 536

3. System-specific variations: DeepL demon- 537

strates particularly strong performance in 538

claim preservation (CPR = 0.79) compared to 539

other systems, while DeepSeek-671B shows 540

more balanced preservation across all compo- 541

nent types, suggesting different strengths in 542

handling argumentative structures. 543

5.3 Relationship Preservation Analysis 544

Beyond individual components, argumentative co- 545

herence depends critically on preserving the logical 546

relationships between elements. Figure 4 illustrates 547

how effectively each translation system maintains 548

support and refutation relationships within argu- 549

mentative structures. 550
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Figure 4: Argument Relationship Preservation Analysis

The relationship preservation analysis yields sev- 551

eral significant insights: 552

1. Support vs. refutation asymmetry: All sys- 553

tems demonstrate significantly higher preser- 554

vation rates for support relationships com- 555

pared to refutation relationships. This dis- 556

parity ranges from 5% (human translation) 557

to 11-12% (machine translation systems), re- 558

flecting the greater complexity of maintaining 559

contradictory logical connections across lan- 560

guages. 561

2. System-specific performance: DeepL ex- 562

hibits the strongest machine performance in 563

preserving support relationships (0.78), while 564

DeepSeek-671B performs comparatively bet- 565

ter in maintaining refutation relationships 566

(0.66). 567

3. Human translation advantage: Human 568

translations maintain a substantial advantage 569
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in preserving both relationship types (0.93 for570

support, 0.88 for refutation), highlighting the571

continuing human edge in maintaining logical572

coherence across languages.573

The consistent challenge in preserving refutation574

relationships compared to support relationships in-575

dicates a critical area for improvement in machine576

translation systems. Refutation relationships often577

involve complex linguistic markers, implicit con-578

trasts, and nuanced negation patterns that appear579

particularly challenging for current MT architec-580

tures to maintain across languages.581

5.4 Model Scale Effects and Human582

Comparison583

Within both Gemma and Qwen families, increased584

parameter count correlates with improved argumen-585

tation preservation, with Gemma3-4B outperform-586

ing Gemma3-1B by approximately 3%, and Qwen-587

3B surpassing Qwen-0.5B by about 3.7%. This588

improvement reflects enhanced performance across589

all component metrics. However, the improvement590

gradient appears to flatten at larger scales, sug-591

gesting diminishing returns from parameter scaling592

alone.593

Despite its massive scale (671B parameters),594

DeepSeek-671B does not demonstrate proportion-595

ally higher performance compared to smaller mod-596

els, suggesting that architectural design and train-597

ing methodology may be equally important as raw598

parameter count. Commercial APIs (especially599

DeepL) remain competitive with even the largest600

LLMs, suggesting effective specialization for trans-601

lation tasks.602

All machine translation systems exhibit a signifi-603

cant performance gap compared to human transla-604

tion, ranging from 19.6% (DeepL) to 27.8% (Qwen-605

0.5B). This gap is consistent across all component606

metrics, suggesting a fundamental limitation in ma-607

chine translation’s ability to preserve argumentative608

structures. When examined by component type, the609

gap is smallest for claim preservation (CPR) and610

largest for example preservation (EPR) across all611

systems.612

6 Conclusion613

Our findings provide strong evidence that argumen-614

tation preservation constitutes a distinct quality di-615

mension not adequately captured by conventional616

metrics. The moderate correlations between APAF617

scores and traditional metrics (BLEU, COMET),618

combined with substantial unexplained variance, 619

demonstrate that argumentation preservation repre- 620

sents a complementary evaluation dimension with 621

unique explanatory power. 622

A consistent pattern across all systems shows 623

that preservation of individual argumentative com- 624

ponents substantially outperformed the preserva- 625

tion of relationships between these components. 626

This asymmetry suggests that current neural ma- 627

chine translation architectures, while increasingly 628

adept at preserving content elements, continue to 629

struggle with modeling the logical architecture that 630

connects these elements into coherent argumenta- 631

tive structures. This finding has significant implica- 632

tions for neural MT architecture design, suggesting 633

the need for models that explicitly represent and 634

preserve hierarchical discourse structures beyond 635

sentence-level translation. 636

APAF offers several practical applications for 637

translation system selection, targeted improvement 638

of MT systems, and domain-specific adaptation 639

strategies. The detailed performance profiles across 640

different argumentative components and case types 641

provide valuable guidance for translation practition- 642

ers, while the component-specific metrics enable 643

MT developers to focus improvements on specific 644

aspects of argumentation preservation. 645

In conclusion, APAF represents an important 646

step toward evaluation methodologies that tran- 647

scend surface-level correspondences to capture 648

deeper pragmatic dimensions of translation qual- 649

ity. Our empirical findings reveal substantial chal- 650

lenges in argumentation preservation across all cur- 651

rent machine translation systems, with even the 652

best-performing systems achieving only 80% of 653

human-level preservation. As machine translation 654

systems increasingly achieve high performance 655

on conventional metrics, frameworks like APAF 656

that address higher-order discourse phenomena be- 657

come increasingly important for driving continued 658

progress toward truly human-level translation capa- 659

bilities. 660

Limitations 661

While APAF provides significant advancements in 662

evaluating argumentation preservation in machine 663

translation, several limitations should be acknowl- 664

edged. First, our study focused exclusively on 665

Chinese-to-English translation in the legal domain, 666

limiting the generalizability of findings to other 667

language pairs and domains. Different language 668
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pairs may present unique challenges for argument669

preservation, particularly those with greater typo-670

logical and cultural divergence than Chinese and671

English. Future research should extend APAF to672

additional language pairs to assess which argumen-673

tation preservation challenges are language-pair674

specific versus representing universal translation675

difficulties.676

Second, although legal texts represent an ideal677

testbed for argumentation analysis due to their678

explicit argumentative structures, they constitute679

just one specialized domain where argumentation680

preservation matters. The patterns observed may681

not generalize to other argumentative genres such682

as scientific writing, policy documents, or aca-683

demic discourse, which may exhibit different argu-684

mentative structures and conventions. Our corpus685

of 15 judgments (557 paragraph pairs), while care-686

fully selected, may not capture the full diversity687

of argumentative patterns even within the legal do-688

main.689

Third, our embedding-based approach to cross-690

lingual argument comparison, while effective, re-691

lies on thresholds that were empirically determined692

for our specific language pair and domain. These693

thresholds may not be optimal for other contexts694

and would benefit from adaptive approaches that695

adjust parameters based on document characteris-696

tics or argument types. Additionally, the intermedi-697

ate language translation step introduces a potential698

source of error that could affect the reliability of699

the cross-lingual comparison.700

Fourth, the prompt-engineered approach for ar-701

gument extraction using OpenAI o1, while out-702

performing existing argument mining tools on our703

dataset, may not be equally effective across dif-704

ferent domains or for more implicit argumentative705

structures. The method’s reliance on large language706

models also raises concerns about reproducibility707

and computational requirements, potentially limit-708

ing accessibility for resource-constrained environ-709

ments.710

Finally, while APAF effectively quantifies preser-711

vation of argumentative structures, it does not di-712

rectly assess the semantic accuracy of the translated713

arguments or their pragmatic appropriateness in the714

target language context. A comprehensive evalua-715

tion of translation quality would need to integrate716

APAF with complementary metrics that address717

these dimensions. Furthermore, the relationship be-718

tween argumentative preservation as measured by719

APAF and actual functional efficacy of translations720

in real-world contexts requires further validation 721

through user studies and task-based evaluations. 722

These limitations highlight important directions 723

for future research to refine and extend the APAF 724

methodology while maintaining its foundational 725

contribution to understanding and improving cross- 726

lingual argumentation preservation. 727

References 728

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An 729
automatic metric for mt evaluation with improved 730
correlation with human judgments. In Proceedings 731
of the ACL workshop on intrinsic and extrinsic evalu- 732
ation measures for machine translation and/or sum- 733
marization, pages 65–72. 734

Tuhin Chakrabarty, Christopher Hidey, Smaranda Mure- 735
san, Kathy McKeown, and Alyssa Hwang. 2019. Am- 736
persand: Argument mining for persuasive online dis- 737
cussions. In Proceedings of the 2019 Conference on 738
Empirical Methods in Natural Language Processing 739
and the 9th International Joint Conference on Natu- 740
ral Language Processing (EMNLP-IJCNLP), pages 741
2933–2943. 742

Clara Ho-yan Chan. 2008. The role of language profes- 743
sionals in interpreting the basic law. The Hong Kong 744
Linguist, 28:34–40. 745

Alexis Conneau, Guillaume Lample, Marc’Aurelio Ran- 746
zato, Ludovic Denoyer, and Hervé Jégou. 2017. 747
Word translation without parallel data. arXiv preprint 748
arXiv:1710.04087. 749

Esin Durmus, Faisal Ladhak, and Claire Cardie. 2019. 750
Determining relative argument specificity and stance 751
for complex argumentative structures. In Proceed- 752
ings of the 57th Annual Meeting of the Association 753
for Computational Linguistics, pages 4630–4641. 754

Steffen Eger, Johannes Daxenberger, Christian Stab, and 755
Iryna Gurevych. 2018. Cross-lingual argumentation 756
mining: Machine translation (and a bit of projection) 757
is all you need! In Proceedings of the 27th Inter- 758
national Conference on Computational Linguistics, 759
pages 831–844, Santa Fe, New Mexico, USA. Asso- 760
ciation for Computational Linguistics. 761

Ruili Feng and Yameng Liu. 2011. Cross-cultural per- 762
ceptions of argumentative strategies in chinese and 763
english. Intercultural Communication Studies, 20(1). 764
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