
Execution-Based Evaluation for Open-Domain Code Generation

Zhiruo Wang Shuyan Zhou Daniel Fried Graham Neubig
Language Technologies Institute, Carnegie Mellon University

{zhiruow,shuyanzh,dfried,gneubig}@cs.cmu.edu

Abstract

To extend the scope of coding queries to more
realistic settings, we propose ODEX, the first
Open-Domain EXecution-based natural lan-
guage (NL) to Python code generation dataset.
ODEX has 945 NL-Code pairs spanning 79
diverse libraries, along with 1,707 human-
written test cases for execution. Our NL-Code
pairs are harvested from StackOverflow fo-
rums to encourage natural and practical cod-
ing queries. Moreover, ODEX supports four
natural languages as intents, in English, Span-
ish, Japanese, and Russian. ODEX unveils
intriguing behavioral differences among top-
performing code language models (LM). While
CODEX achieves better overall results, CODE-
GEN improves effectively via scaling – CODE-
GEN 6.1B performs comparably with CODEX
12B. Both models show substantial gaps be-
tween open and closed domains, but CODEGEN
gaps tend to decrease with model size while
CODEX gaps increase. We release ODEX to
facilitate research into open-domain problems
for the code generation community.1

1 Introduction

Evaluations of NL-to-code generation systems,
especially for general-purpose programming lan-
guages such as Python, have put an increasing
emphasis on methods that execute code to verify
the results. The predominant approach for creat-
ing such test sets is to manually write test cases
for canonical code solutions (Chen et al., 2021;
Austin et al., 2021; Lai et al., 2022; Huang et al.,
2022). The correctness of model predictions is
then evaluated by seeing if generated code passes
the test cases (Chen et al., 2021). Compared to
execution-free metrics such as text match against
reference solutions, execution-based methods more
rigorously assess the functional correctness of code
(Hendrycks et al., 2021; Chen et al., 2021).

1https://anonymous.4open.science/r/odex-emnlp

However, most resources with execution sup-
port only apply to closed-domain code, that only
use Python built-in functions (Chen et al., 2021;
Hendrycks et al., 2021; Austin et al., 2021; Li et al.,
2022; Haluptzok et al., 2023) or specific libraries in
data science domains (Lai et al., 2022; Huang et al.,
2022). This focus on closed-domain problems di-
verges substantially from natural open-domain pro-
gram usage covering a diverse range of libraries
and functionalities (Yin et al., 2018; Agashe et al.,
2019; Wang et al., 2023). To enable execution-
based evaluation for coding queries using libraries,
we present ODEX, an Open-Domain EXecution-
based dataset (§2). We build ODEX by creating
1,707 test cases for 945 NL-Code pairs from the
CoNaLa (Yin et al., 2018) and MCoNaLa (Wang
et al., 2023) datasets, both stemming from Stack-
Overflow2 with broad practical coding queries.

We analyze and highlight three aspects of ODEX
(§3). First, ODEX has broad domain coverage of
79 libraries, with 53.4% of the problems employ-
ing at least one library. Second, ODEX contains
queries in four different languages, with 439, 90,
164, and 252 samples in English, Spanish, Japanese,
and Russian, as shown in Figure 1. Third, ODEX
addresses three unique challenges in open-domain
code execution: irreproducible runs (Figure 1 a),
randomized outputs (Figure 1 b), and specialized
equivalence checks (Figure 2).

We evaluate two state-of-the-art code LLM fam-
ilies, CODEX and CODEGEN, on ODEX (§5). Our
study shows that larger model sizes and augmented
training data improve execution accuracy. Mean-
while, we observe satisfactory multilingual capa-
bilities, despite that neither model was specifically
designed for multilingual usage. However, we find
that models face greater yet varied challenges with
open-domain queries compared to closed-domain
queries (§5). Specifically, CODEX achieves higher

2https://stackoverflow.com

https://anonymous.4open.science/r/odex-emnlp
https://stackoverflow.com

Code LM
< / >

a

b

c

d

a

b

c

d

Figure 1: Examples in the ODEX dataset. Inputs on the left are function-formatted with (1) library import
expressions; (2) function signatures that declares the function name and input arguments; and (3) natural language
intents as part of the docstrings (English translations are not included in the actual non-English inputs during
inference). Gray boxes indicate places for code solutions. As shown on the right, a code LM fills out the gray boxes
with code solutions, which are then executed on the unit tests underneath. Notably, writing unit tests for open-domain
queries is often more challenging: a requires simulated execution due to the difficulty of reproduction; b is
verified through approximate equivalence. Prior work focuses more on basic assertions, as in c and d .

overall results, while CODEGEN presents better pa-
rameter efficiency and more balanced open-closed
domain performance as model size scales up. By
comparing execution-based metric with a series
of execution-free metrics (§6), we further confirm
the advantage of execution on allowing alternative
solutions, but also show the potential of lexical
metrics to identify simple bug fixes.

ODEX jointly facilitates practical open-domain
code generation and execution-based evaluation.
It serves as a comprehensive data benchmark for
NL-to-code systems, supporting diverse NL con-
texts, library usage, and evaluation methods. By
addressing the unique challenges of test creation
and execution, we hope to lay a foundation for
evaluating open-domain code via execution.

2 The ODEX Dataset

In this section, we describe our four-step process
of constructing the ODEX dataset. We first collect
resources of natural, open-domain coding queries
(§2.1). Next, we establish the annotation standard
and procedures for test case creation (§2.2). We
then describe the annotator hiring and working pro-
cesses (§2.3). Finally, we conduct checks to ensure
data quality (§2.4).

2.1 Resource Collection

We take two NL-to-code datasets, CoNaLa (Yin
et al., 2018) and MCoNaLa (Wang et al., 2023), as
sources for ODEX. We refer to them together as
(M)CoNaLa. Their NL-Code pairs are collected
from StackOverflow, which contains abundant cod-
ing queries that (1) naturally reflect practical pro-
gram usage, and (2) cover diverse domains as mea-
sured by libraries used. These properties align
well with our main focus on open-domain queries.
(M)CoNaLa further proofs and clarifies its NL in-
tents using human annotators to ensure data quality.

2.2 Annotation Standard and Procedures

Given each source NL-Code pair, our main anno-
tation task is to write test cases to check code exe-
cution correctness, as illustrated by the four steps
in Figure 2. A qualified test case should verify the
main functionality of the canonical code solution.
In the case where annotators do not understand the
language of the intent, we use translation tools such
as the Google Translate API.3

Step 1: Wrapping Snippets into Functions
Code solutions in (M)CoNaLa are often short snip-
pets (e.g., x = np.zeros(5)) to ensure more pre-

3https://translate.google.com

https://translate.google.com

 Calculate sum over all rows of 2D numpy array `a`NL

Code

Step 1
code wrapping

Step 2
library import

Step 3
write test case

Step 4
execute

Figure 2: An example annotation comprising four steps.

cise matches with NL intents, but to be executable
they often need additional context such as variable
assignments. We therefore wrap code into stan-
dalone functions by specifying input and output
arguments as contexts. For example, Step 1 in Fig-
ure 2 identifies variable a as an input argument.

Step 2: Specifying Library Prerequisites Due
to the open-domain coverage of (M)CoNaLa, some
code snippets require extra library imports to exe-
cute correctly. Accordingly, our second step is to
specify the prerequisite libraries for code solutions.

Step 3: Test Case Annotation Next, we write
test cases that contain three parts: (1) input: passing
values to input arguments, (2) output: stating ex-
pected execution outputs, and (3) assertion: check-
ing if execution results match the expected outputs.

However, test case creation for open-domain
code faces three challenges. First, safe and re-
producible execution can be hard to achieve. As
in Figure 1 a , it is impractical to send an HTTP
request when evaluating this sample. Instead, we
use mock to simulate the output (a success response
status code 200). Second, some codes entail ran-
domness (e.g., random.randint(3,5)) and have
no definite value. We instead make bounding as-
sertions, e.g., checking that all elements are in-
tegers within the range of [3,5]. Third, stan-
dard equivalence checks by == may be invalid,
since library-specific objects often require special-
ized equality checks. For example, checking the
equivalence of two NumPy arrays a and b uses
np.array_equal(a,b), while a == b would cause
execution errors.

Step 4: Self Verification In the last step, we
perform self-verification to efficiently ensure the
annotation quality. We execute the canonical code
solution on each newly created test case. Unless the

test case enables a successful pass of the solution,
it should not be taken as a valid annotation.

2.3 Annotator Hiring and Task Fulfillment

As our data involves diverse functionalities from
multiple libraries, our annotation task holds a rel-
atively high standard for annotators. A qualified
annotator should be proficient in Python and com-
mon libraries, and in writing workable test cases.

We chose to hire undergraduate students who
have strong computer science backgrounds in
Python. Of the 20 applicants who applied, we first
conducted a resume screening to filter candidates
with sufficient programming experience. Next, we
gave each candidate an annotation test with five
randomly selected NL-Code pairs. Since the test
mirrors the official annotation process, we provided
clear instructions about each step (as in §2.2) and
code scripts for self-verification. Candidates were
asked to finish their tests in three calendar days.
Based on their test performance, we hired four can-
didates to officially participate in this job.

2.4 Quality Check

We put great effort into ensuring data quality
throughout the annotation process. To assist an-
notators in more efficiently and accurately writing
workable test cases, we require them to execute
each written test case using the verification code
that we provided, and explicitly report whether the
canonical code solution can successfully pass all
the annotated test cases that they created.

After the annotation, the authors performed post-
hoc verification to check if each test case reads rea-
sonably and executes correctly. In our final rounds
of automatic quality checks, we confirm that the
pass rate for all canonical code solutions over their
annotated test cases is 100%.

We collect a total of 945 samples with NLs in
four languages, including 439 samples in English,
90 in Spanish, 164 in Japanese, and 252 in Russian.

3 Dataset Analysis

We analyze ODEX from three aspects: domain
diversity (§3.1), sample complexity (§3.2), and ex-
ecution support (§3.3).

3.1 Diversity

One unique property of ODEX is its broad domain
coverage. We categorize codes that entail library
usage (both built-in and third-party) as being in the

open domain and those with none in the closed do-
main. Different libraries often serve specific func-
tions and have unique capabilities. For instance, the
datetime library is designed to handle date/time
operations, while other libraries focus on various
other fields such as data analysis or web requests.
Therefore, in this work, we view the diversity in
libraries as a representation of distinct domains.

Language # Unique Libraries Size

Open Closed Total

en 45 230 209 439
es 20 48 42 90
ja 44 113 51 164
ru 35 114 138 252

Total 79 505 440 945

Table 1: Number of open- and closed-domain examples,
and number of libraries involved in each language.

Table 1 reports domain statistics and Figure 3
shows the library distribution. ODEX covers a di-
verse set of 79 libraries, which varies per language.
Most samples, 53.4%, use at least one library.

0% 25% 50% 75%

none pandas numpy re os collections matplotlib
datetime urllib sys random io json subprocess

requests bs4 itertools operator time math 60 more

Figure 3: ODEX library distribution.

Comparison to Existing Datasets We compare
ODEX with eight other code generation datasets
that support test case execution: HumanEval (Chen
et al., 2021), MBPP (Austin et al., 2021), APPS
(Hendrycks et al., 2021), MTPB (Nijkamp et al.,
2023), P3 (Haluptzok et al., 2023), DSP (Chandel
et al., 2022), DS-1000 (Lai et al., 2022), and Exe-
DS (Huang et al., 2022).

25% 50% 75%

none

25% 50% 75%

none itertools random collections heapq re math

25% 50% 75%

none math collections hashlib re

25% 50% 75%

none sklearn numpy matplotlib pandas scipy 11 more

25% 50% 75%

pandas numpy matplotlib sklearn scipy pytorch 1 more

25% 50% 75%

none sklearn pandas numpy matplotlib scipy 23 more

25% 50% 75%

none re math collections heapq itertools 7 more

25% 50% 75%

none pandas re numpy sklearn collections 3 more

AP
PS

P3
H
um
an
Ev
al

D
SP

D
S-
10
00

Ex
e-
D
S

M
BP
P

M
TP
B

Figure 4: Library distribution of eight other datasets.

From their distributions in Figure 4, six out of
eight datasets focus on the closed domain and most

examples use zero libraries. Such examples deviate
from realistic programs, which often use APIs of
different libraries. DS-1000 and Exe-DS feature
some open-domain problems, but their library us-
age is more homogeneous with a particular focus
on data science domains. Moreover, DS-1000 re-
stricts to code using libraries but only has seven
libraries. In contrast, ODEX is more “colorful”; it
covers significantly more open-domain libraries, as
well as frequent queries in the closed domain.

Comparison to Natural Distribution To pro-
vide a reference on natural domain distribution, we
approximate real-world usage by counting GitHub
Python files that use each library. As shown in Fig-
ure 5, ODEX presents a better alignment with the
practical scenario concerning the open domains –
it features more diverse domains and preserves the
long-tailed pattern in practical scenarios.

The full lists of libraries and their frequencies
about ODEX, the eight comparison datasets, and
the approximated natural setting are in §A.1.

0% 25% 50% 75%

none pandas numpy re os collections matplotlib
datetime urllib sys random io json 67 more

25% 50% 75%

none pandas numpy re os collections matplotlib
datetime urllib sys random io json 67 more

Figure 5: Approximated natural distribution based on
GitHub Python files in the open domain.

3.2 Complexity

To measure dataset complexity, we first calculate
the lengths of NL intents and code snippets. We
tokenize NL intents with the spaCy4 tokenizers in
respective languages; we follow Yin and Neubig
(2018) to tokenize code. For code, we also parse the
AST tree using the Python standard ast library,5

and count the number of input and output variables
to quantify the complexity of execution contexts.

Language len(NL) len(Code) depth(AST) N var
in N var

out

en 14.36 18.49 7.02 1.13 0.21
es 18.69 28.62 7.74 1.46 0.64
ja 17.24 17.70 6.77 1.40 0.41
ru 11.39 20.19 6.94 1.44 0.71

Table 2: Complexity measured in the averaged number
of NL words, code tokens, AST depth, and i/o variables.

In Table 2, we see that code in the Spanish set is
longer on average than other languages. For both
the input and output sides, code in the English set
has fewer variables, suggesting potentially simpler

4https://spacy.io/
5https://docs.python.org/3/library/ast.html

https://spacy.io/
https://docs.python.org/3/library/ast.html

Dataset Samples Domain Executable? Avg. Test Cases Data Source NL

JuICe (Agashe et al., 2019) 1,981 open ✗ - GitHub Notebooks en
HumanEval (Chen et al., 2021) 164 4 ✓ 7.7 Hand-written en
MBPP (Austin et al., 2021) 974 8 ✓ 3.0 Hand-written en
APPS (Hendrycks et al., 2021) 10,000 0 ✓ 13.2 Competitions en
DSP (Chandel et al., 2022) 1,119 16 ✓ 2.1 Github Notebooks en
MTPB (Nijkamp et al., 2023) 115 8 ✓ 5.0 Hand-written en
Exe-DS (Huang et al., 2022) 534 28 ✓ - GitHub Notebooks en
DS-1000 (Lai et al., 2022) 1,000 7 ✓ 1.6 StackOverflow en

CoNaLa (Yin et al., 2018) 2,879 open ✗ - StackOverflow en
MCoNaLa (Wang et al., 2023) 896 open ✗ - StackOverflow es, ja, ru

ODEX 945 79 ✓ 1.8 StackOverflow en, es, ja, ruHand-Written

Table 3: Comparing ODEX with other NL-to-code generation datasets, in terms of domain diversity (Domain),
test-case execution support (Evaluation, Avg. Test Cases), and natural language contexts (NL). Since it is hard
to calculate the exact number of libraries for some open-domain datasets that do not specifically import required
libraries in the code, we mark their domains as open instead of providing the exact number of domains.

execution environments, which could stem from
relative simplicity of SO queries asked in English.

3.3 Execution Support

We systematically compare code generation
datasets that concern execution or open-domain
code in Table 3. ODEX is the first dataset that sup-
ports execution-based evaluation for open-domain
code. While ODEX does not have the largest num-
ber of test cases, we discuss in §7 how these test
cases can still reliably measure code correctness.

4 Experiment Setup

Code LLMs have achieved strong results on mul-
tiple code generation tasks, yet their open-domain
proficiency is understudied due to the limited do-
main settings of past datasets. To examine model
capabilities in the open domain, we evaluate two
top-performing model families, CODEX and CODE-
GEN, on ODEX. We perform evaluations using a
prompting setting, without finetuning any model.

We introduce the baseline models, the prompt
settings, and lay out the metrics for evaluation.

The CODEX Family At the time of this work,
CODEX had three publicly available models. CODE-
CUSHMAN-001 (C1) is a 12B CODEX model in
Chen et al. (2021). CODE-DAVINCI-001/002 (D1,
D2) are two 175B GPT-3 models.6

The CODEGEN Family CODEGEN (Nijkamp
et al., 2023) models are auto-regressive models
trained on a combination of NL and code corpora,
differing in model sizes (350M, 2.7B, 6.1B, 16.1B)
and training data. Models are progressively trained

6https://beta.openai.com/docs/
model-index-for-researchers

on THEPILE (Gao et al., 2020), BIGQUERY,7 and
BIGPYTHON datasets are denoted as NL, MULTI,
and MONO. The most powerful CODEGEN-16.1B-
MONO, performs similarly to CODE-CUSHMAN-
001 on the HumanEval and MTPB datasets.

Prompt Design For fair comparison, we use
the same prompt for both model families. While
prompting with few-shot in-context examples may
improve, our experiments do not always find this
helpful for both models. Therefore, we report zero-
shot results as baselines and leave few-shot results
to §7. Creating zero-shot prompts only requires
content from the test sample. Following Chen
et al. (2021), we construct prompts by concatenat-
ing function context and a docstring. A docstring
includes the NL intent and optional unit tests (com-
pared in §7). Figure 6 shows an example prompt.

DocString

Function Context

Function Context

Figure 6: Zero-shot prompt with one test case in doc-
string. The gray box notes the place for code solution.

Evaluation Metrics We follow Chen et al. (2021)
and measure the execution accuracy using the
pass@k metric, by computing the fraction of prob-
lems having at least one correct prediction within
k samples. We also compare it with a series of
execution-free metrics later in §5.

Implementation Details We follow Chen et al.
(2021) and use nucleus sampling (Holtzman et al.,
2020) with top-p set to 0.95 and temperature set to
0.8. We set outputs to a maximum of 512 tokens.

7https://cloud.google.com/bigquery

https://beta.openai.com/docs/model-index-for-researchers
https://beta.openai.com/docs/model-index-for-researchers
https://cloud.google.com/bigquery

Language CODEX
pass@k CODEGEN

pass@k

1 2 5 10 1 2 5 10

en

CUSHMAN-001

31.91 44.67 59.95 68.79

350M

26.26 32.18 39.10 42.82
es 31.89 43.33 55.72 63.33 16.67 21.85 27.82 30.00
ja 25.67 36.69 49.27 57.32 17.44 22.86 28.21 30.49
ru 40.00 53.48 66.63 73.41 25.87 31.44 37.44 40.87

en

DAVINCI-001

33.62 46.65 60.18 67.43

2.7B

35.24 42.87 50.68 53.99
es 36.89 49.46 61.37 68.89 26.00 33.65 41.52 45.56
ja 31.04 42.11 54.26 61.59 24.27 32.10 41.13 45.12
ru 43.21 57.53 70.03 76.59 39.64 48.11 57.23 61.90

en

DAVINCI-002

47.15 57.61 67.87 73.12

6.1B

34.49 37.91 41.18 43.05
es 47.44 57.90 66.33 71.11 28.56 32.05 35.86 37.78
ja 41.46 50.42 59.47 64.02 35.55 40.11 44.12 46.34
ru 51.87 63.36 73.03 78.17 44.64 47.29 49.82 51.19

Table 4: Execution accuracy of CODEX and CODEGEN-MONO models.

5 Experiment Results

We first present the overall performance of two
model families on ODEX (§5.1). Next, given the
unique challenges of open-domain code, we study
the variances between open- and closed-domain
problems (§5.2), and in individual domains (§5.3).

5.1 Baseline Performance

CODEX Results As in Table 4, aligning to exist-
ing works and our intuition, larger DAVINCI 175B
models outperform the smaller CUSHMAN 12B
model, and the 002 version improves over 001.
This trend holds for all languages and all sampling
sizes. Somewhat surprisingly, all models attain de-
cent results on non-English problems, even though
CODEX is not designed for multilingual use. This
high accuracy on non-English problems suggests
the multilingual potential of CODEX models.

CODEGEN Results We report results of MONO

models in Table 4 given their superior performance
over NL and MULTI variants (Nijkamp et al., 2023).
The pass rate increases as CODEGEN grows from
350M to 2.7B, and continues to increase in non-
English languages when further scaling to 6.1B.
CODEGEN exhibits multilingual capacity, as its
results on non-English subsets are close to that on
English, and consistently increase during scaling.

Although CODEX and CODEGEN have compa-
rable performance on existing datasets such as
HumanEval, ODEX effectively unveils the effi-
cacy of CODEGEN on open-domain coding queries
even with many fewer parameters, i.e., CODEGEN

6.1B yields similar pass@1 to the 176B CODEX

DAVINCI-001 model, although not necessarily so
when k increases. More detailed results (pass@k
at 1 ≤ k ≤ 10) for both models are in §B.

5.2 Open Domain versus Closed Domain
CODEX Results Figure 7 (left) shows pass@1
on open-domain and closed-domain. All CODEX

models score much lower in open than in closed
domain. Such large gaps hold across all languages,
ranging from 4.34 in Spanish to 38.57 in Japanese
on the best DAVINCI-002 model. Model upgrades
(C1 → D1 → D2) do not always reduce the gaps.
Gaps slightly shrink in Spanish, but increase in
English and Japanese. While D2 performs the best,
it also exhibits the most severe gaps. These findings
suggest that common practices to improve LLMs
may not address the complexities inherent in open-
domain coding problems. It is hence imperative
that more advanced strategies are employed.

CODEGEN Results As shown in Figure 7 (right),
CODEGEN also has substantial gaps between open
and closed domains, however, smaller than CODEX

gaps across all languages, by on average 6.0%
points. As model size increases from 2.7B to 6.1B,
the gaps reduce by about 6.3 points in English and
1.7 points in Spanish. This is in contrast to CODEX,
which when scaling up to DAVINCI-002, these gaps
continue to increase by 4.9 points on average, indi-
cating that scaling up CODEGEN more effectively
catches up on open-domain performance.

5.3 Domain Variance
We now dive deeper into the results within individ-
ual domains. We focus on the CODE-DAVINCI-002
model as it has the best performance across all mod-
els. In Figure 8, we plot accuracy with respect to
the domain frequency, as approximated in §3.1.

Execution accuracy is not low on all open do-
mains. For example, CODE-DAVINCI-002 achieves
50% pass@1 for several common libraries such
as random and math. But high domain frequency
does not ensure model proficiency. For example,

35

50

65

80

p@1 p@2 p@3 p@4 p@5 p@6 p@7 p@8 p@9 p@10

en / 1

en / n

es / 1

es / n

ja / 1

ja / n

ru / 1

ru / n

35

50

65

80

p@1 p@2 p@3 p@4 p@5 p@6 p@7 p@8 p@9 p@10

en / id

en / const

en / intent

es / id

es / const

es / intent

ja / id

ja / const

ja / intent

ru / id

ru / const

ru / intent

0

15

30

45

60

350M 2.7B 6.1B

en / open
en / closed
es / open
es / closed
ja / open
ja / closed
ru / open
ru / closed0

15

30

45

60

cushman-001 davinci-001 davinci-002

Figure 7: CODEX (left) and CODEGEN (right) pass@1 on open- and closed-domain problems in each language.

Figure 8: CODEX pass@1 for domains of varied fre-
quencies. Domains are differently colored based on
their frequency ranking: the 10 most frequent domains
in red, the 10 least frequent domains in blue, and other
domains in the middle in yellow.

on libraries with complex functionalities such as
matplotlib and tensorflow, pass@1 can go be-
low 10%. See §C for more domain-wise results.

6 Comparing to Execution-Free Metrics

In this section, we study the alignment between
execution-based evaluation and five execution-free
metrics, identifying advantages for both types.

Model Ranking Using Different Metrics We
evaluate models using five execution-free met-
rics using lexical, syntax, and semantic matches:
BLEU (Papineni et al., 2002), ROUGE (Lin,
2004), METEOR (Banerjee and Lavie, 2005),
ChrF (Popović, 2015), and CodeBLEU (Ren et al.,
2020). Refer to §D.1 for more descriptions.

Figure 9: CODEX models evaluated on six metrics.

We analyze using CODEX, given its better per-

formance. As shown in Figure 9, model rankings
by execution-free metrics do not precisely cor-
relate with their rankings by execution accuracy.
Even when the rankings align, their differences are
largely not proportional. Comparing the metrics,
ChrF and METEOR have smaller inter-model vari-
ances, while BLEU and ROUGE change more and
correlate better with pass rates. Notably, Code-
BLEU is low in most settings and might not be
suitable for evaluating code in snippet-style.

Metric Correlation We next evaluate whether
execution-free metrics might be used to discrimi-
nate between passed and failed samples. We take
BLEU as an example since it shows similar rank-
ing patterns to execution. Figure 10 shows negligi-
ble variances in BLEU scores of passed and failed
groups. The other four metrics exhibit similar pat-
terns, as could be found in §D.3.

EN ES

JA RU

Figure 10: BLEU scores on passed and failed samples.

7 What Affects Model Performance?

Besides differences in model configurations, we
study three factors that might affect performance.

Number of In-Context Examples Models might
benefit from example NL-Code pairs. We thus ex-
plore to few-shot prefixing N ∈ {1, 2, 3} input-
output pairs in prompts. In Figure 11 (left), for
CUSHMAN-001 and DAVINCI-001, few-shot ex-

amples yield a clear improvement over the zero-
shot setting; but for the strongest DAVINCI-002, it
brings minimal gains in English. See similar results
in other languages in §E.1.

30

40

50

60

70

0 1 2 3

cushman-001 davinci-001
davinci-002

30

40

50

60

70

en es ja ru

zero one all

Figure 11: Left: CODEX pass@1 (on English set) using
0/1/2/3-shot prompts. Right: DAVINCI-002 pass@1
when adding zero, one, or all test cases in prompts.

Number of Test Cases in the Docstring Includ-
ing test cases in inputs adds execution hints of the
expected functionality of the solution, and hence
may improve execution accuracy. We test this hy-
pothesis by experimenting with prompts that have
varying numbers of test cases. Besides the default
setting with zero tests, we compare adding one
random test case and all annotated test cases.

Figure 11 (right) shows that injecting as few as
one exemplar test case significantly improves the
execution accuracy, yet adding more cases has little
bonus. This potentially implies the sufficiency of
one test case to show the main functionality.

Number of Evaluation Test Cases Execution
results could be more reliable if using more test
cases for evaluation. However, there is a trade-off
between evaluation effectiveness and annotation
efficiency, due to the high cost of human effort. To
study this tradeoff, we observe how results change
with respect to the number of tests. Compared to
using all cases in default, we also try using one
randomly selected case. For simplicity, we do not
include any test cases in prompts.

As shown in Figure 12, evaluating over one ran-
dom test largely preserves the accuracy of using all
tests, indicating that one case is sufficient to test the
main functionality for most queries. Check §E for
analysis on other factors such as function naming.

8 Related Work

Open Domain Code Generation Programs of-
ten use APIs from different Python libraries. Some
datasets preserve natural coverage from interactive
Jupyter Notebooks (Agashe et al., 2019) or Stack-
Overflow posts (Yin et al., 2018; Wang et al., 2023),

Figure 12: pass@1 when executing one or all test cases.

but face challenges in enabling execution (Lai et al.,
2022; Chandel et al., 2022). Our ODEX dataset
addresses execution for open-domain code.

Coding Queries vs. Programming Challenges
Some works stem from coding contest web-
sites (Hendrycks et al., 2021; Li et al., 2022), but
GitHub Jupyter Notebooks (Agashe et al., 2019;
Huang et al., 2022) and StackOverflow (SO) (Yin
et al., 2018; Wang et al., 2023; Lai et al., 2022) pro-
vide more natural and practical coding queries. We
preserve this naturalness and incorporate various
NL settings to assist programmers worldwide.

Execution-based Evaluation Evaluation by ex-
ecution has long been used for SQL (Zhong et al.,
2017) or logical forms (Dong and Lapata, 2016).
Many datasets have begun to support Python ex-
ecution via test cases, however focus on built-in
functions (Chen et al., 2021; Austin et al., 2021;
Hendrycks et al., 2021) or specific domains (Lai
et al., 2022; Huang et al., 2022). Our test cases, in
contrast, cover diverse libraries in the open domain.

9 Conclusion

We present ODEX, an open-domain code genera-
tion dataset supporting execution-based evaluation
via human-written test cases. ODEX not only sup-
ports execution-based evaluation of code using test
cases, but also extends the task to the open domain,
covering 79 diverse Python libraries and four natu-
ral languages (English, Spanish, Japanese, and Rus-
sian). Comparing two state-of-the-art code genera-
tion models, CODEX and CODEGEN, our dataset
effectively unveils their varied behaviors between
program domains and language contexts. ODEX
serves as a comprehensive NL-to-code benchmark
given its open-domain coverage, multi-natural lan-
guage queries, and multi-metric support. When
bringing code execution to open domain scenarios,
our explorations also reveal emerging challenges in
test creation and reliable execution, which we hope
that our dataset will enable future work to tackle.

Limitations

ODEX aims to serve as a comprehensive testbed,
by enabling execution-based evaluation of code in
the open domain, with flexible intent inputs in four
natural languages. However, we should hold contin-
uous awareness of execution security, multilingual
support, and evaluation reliability.

First, execution supports in ODEX enables
more rigorous evaluations than other execution-free
methods. However, due to the increased complex-
ity of open-domain codes, more inspections are
required for execution safety, either for code solu-
tions or test cases. We should always keep alert
to avoid concealing malicious code (Wallace et al.,
2021) or generating code with security vulnerabili-
ties (Verdi et al., 2020; Pearce et al., 2021).

Second, in addition to English inputs, ODEX
also includes intents specified in three other lan-
guages. Still, its language coverage is bounded by
the available forums in StackOverflow. We hope
our initiative can highlight the multilingual nature
of program developers, encourage the emergence
of similar data resources in other languages, and
continuously promote AI programming assistance
in languages worldwide.

Third, as ODEX covers wide-ranging code
queries in the open domain, it is more suitable for
less resource-demanding scenarios such as down-
stream evaluation or few-shot learning. Although
ODEX is larger than many previous datasets with
human-written test cases, it is still limited due to
the intense human effort required by the curation
process. Regarding this, we encourage users of the
dataset to conduct significance testing (Dror et al.,
2018) and report more substantial model improve-
ments.

Ethics Statement

Our work has received IRB approval and is licensed
under a Creative Commons Attribution-ShareAlike
(CC BY-SA) 4.0 International License. The result-
ing ODEX dataset is built to serve as a benchmark
for open-domain code generation, to further facili-
tate technological advances in AI programming as-
sistance, meanwhile supporting multiple languages
to encourage its universal accessibility.

We strive to ensure high data quality and opti-
mize annotation efficiency. We build the ODEX
dataset with natural and practical StackOverflow re-
sources and hire annotators with qualified program-
ming proficiency. We provide our annotators with

clearly documented instructions, flexible annota-
tion interfaces (Google Sheets, Jupyter Notebooks),
and self-verification tools. We (authors) conduct
pilot annotation to confirm the clarity of annotation
standards and feasibility of the annotation task. We
conduct posthoc examinations on the annotation
results, both manually and automatically, to obtain
assured data quality (100% pass rate).

We respect the contribution and privacy of our
annotators. We offer competitive remuneration for
their annotation job and treat each one of them
fairly. All annotators possess the right to withdraw
at any time. We secure that all their personal infor-
mation is removed before public release.

We conduct systematic analysis from multiple
perspectives in the paper, in an attempt to foster
public awareness on generating and evaluating pro-
grams in the open domain, both in encouraging
more advances in this direction, and raising more
concerns about the robustness and security of such
unique coding problems.

References
Rajas Agashe, Srinivasan Iyer, and Luke Zettlemoyer.

2019. Juice: A large scale distantly supervised
dataset for open domain context-based code gener-
ation. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
5436–5446.

Loubna Ben Allal, Raymond Li, Denis Kocetkov,
Chenghao Mou, Christopher Akiki, Carlos Munoz
Ferrandis, Niklas Muennighoff, Mayank Mishra,
Alex Gu, Manan Dey, et al. 2023. Santacoder: don’t
reach for the stars!

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, and
Charles Sutton. 2021. Program synthesis with large
language models.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65–72, Ann Arbor,
Michigan. Association for Computational Linguis-
tics.

Shubham Chandel, Colin B. Clement, Guillermo Ser-
rato, and Neel Sundaresan. 2022. Training and evalu-
ating a jupyter notebook data science assistant.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan,
Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. 2023.
Codet: Code generation with generated tests. In In-
ternational Conference on Learning Representations.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluating
large language models trained on code.

Naihao Deng, Shuaichen Chang, Peng Shi, Tao Yu, and
Rui Zhang. 2021. Prefix-to-sql: Text-to-sql genera-
tion from incomplete user questions.

Li Dong and Mirella Lapata. 2016. Language to logical
form with neural attention. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
33–43, Berlin, Germany. Association for Computa-
tional Linguistics.

Rotem Dror, Gili Baumer, Segev Shlomov, and Roi
Reichart. 2018. The hitchhiker’s guide to testing sta-
tistical significance in natural language processing.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1383–1392, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Mikhail Evtikhiev, Egor Bogomolov, Yaroslav Sokolov,
and Timofey Bryksin. 2023. Out of the bleu: how
should we assess quality of the code generation mod-
els? Journal of Systems and Software, 203:111741.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2020. The pile: An
800gb dataset of diverse text for language modeling.

Patrick Haluptzok, Matthew Bowers, and Adam Tauman
Kalai. 2023. Language models can teach themselves
to program better.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, and Jacob
Steinhardt. 2021. Measuring coding challenge com-
petence with apps.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text
degeneration.

Junjie Huang, Chenglong Wang, Jipeng Zhang, Cong
Yan, Haotian Cui, Jeevana Priya Inala, Colin Clement,
and Nan Duan. 2022. Execution-based evaluation for
data science code generation models. In Proceedings
of the Fourth Workshop on Data Science with Human-
in-the-Loop (Language Advances), pages 28–36, Abu
Dhabi, United Arab Emirates (Hybrid). Association
for Computational Linguistics.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2018. Mapping language to code
in programmatic context. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1643–1652, Brussels, Bel-
gium. Association for Computational Linguistics.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,
Ruiqi Zhong, Luke Zettlemoyer, Scott Wen tau Yih,
Daniel Fried, Sida Wang, and Tao Yu. 2022. Ds-1000:
A natural and reliable benchmark for data science
code generation.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023. Starcoder: may the source be with you!

http://arxiv.org/abs/2301.03988
http://arxiv.org/abs/2301.03988
http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07732
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
http://arxiv.org/abs/2201.12901
http://arxiv.org/abs/2201.12901
https://openreview.net/forum?id=ktrw68Cmu9c
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2109.13066
http://arxiv.org/abs/2109.13066
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/P18-1128
https://doi.org/10.18653/v1/P18-1128
http://arxiv.org/abs/2101.00027
http://arxiv.org/abs/2101.00027
http://arxiv.org/abs/2207.14502
http://arxiv.org/abs/2207.14502
http://arxiv.org/abs/2105.09938
http://arxiv.org/abs/2105.09938
http://arxiv.org/abs/1904.09751
http://arxiv.org/abs/1904.09751
https://aclanthology.org/2022.dash-1.5
https://aclanthology.org/2022.dash-1.5
https://doi.org/10.18653/v1/D18-1192
https://doi.org/10.18653/v1/D18-1192
http://arxiv.org/abs/2211.11501
http://arxiv.org/abs/2211.11501
http://arxiv.org/abs/2211.11501
http://arxiv.org/abs/2305.06161

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,
Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago,
et al. 2022. Competition-level code generation with
alphacode. Science, 378(6624):1092–1097.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Chin-Yew Lin and Franz Josef Och. 2004. Auto-
matic evaluation of machine translation quality using
longest common subsequence and skip-bigram statis-
tics. In Proceedings of the 42nd Annual Meeting of
the Association for Computational Linguistics (ACL-
04), pages 605–612, Barcelona, Spain.

Stephan Lukasczyk and Gordon Fraser. 2022. Pyn-
guin: Automated unit test generation for python. In
International Conference on Software Engineering:
Companion Proceedings.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2023. Codegen: An open large language
model for code with multi-turn program synthesis.
In International Conference on Learning Representa-
tions.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Hammond Pearce, Baleegh Ahmad, Benjamin Tan,
Brendan Dolan-Gavitt, and Ramesh Karri. 2021.
Asleep at the keyboard? assessing the security of
github copilot’s code contributions.

Maja Popović. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392–395, Lisbon, Portugal. Association for
Computational Linguistics.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu,
Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio
Blanco, and Shuai Ma. 2020. Codebleu: a method
for automatic evaluation of code synthesis.

Michele Tufano, Dawn Drain, Alexey Svyatkovskiy,
Shao Kun Deng, and Neel Sundaresan. 2021. Unit
test case generation with transformers and focal con-
text.

Morteza Verdi, Ashkan Sami, Jafar Akhondali, Foutse
Khomh, Gias Uddin, and Alireza Karami Motlagh.
2020. An empirical study of c++ vulnerabilities in
crowd-sourced code examples. IEEE Transactions
on Software Engineering.

Eric Wallace, Tony Zhao, Shi Feng, and Sameer Singh.
2021. Concealed data poisoning attacks on NLP
models. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 139–150, Online. Association for
Computational Linguistics.

Zhiruo Wang, Grace Cuenca, Shuyan Zhou, Frank F.
Xu, and Graham Neubig. 2023. MCoNaLa: A bench-
mark for code generation from multiple natural lan-
guages. In Findings of the Association for Compu-
tational Linguistics: EACL 2023, pages 265–273,
Dubrovnik, Croatia. Association for Computational
Linguistics.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan
Vasilescu, and Graham Neubig. 2018. Learning to
mine aligned code and natural language pairs from
stack overflow. In International Conference on Min-
ing Software Repositories, pages 476–486. IEEE.

Pengcheng Yin and Graham Neubig. 2018. TRANX:
A transition-based neural abstract syntax parser for
semantic parsing and code generation. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing: System Demonstra-
tions, pages 7–12, Brussels, Belgium. Association
for Computational Linguistics.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries from
natural language using reinforcement learning.

https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.3115/1218955.1219032
https://doi.org/10.3115/1218955.1219032
https://doi.org/10.3115/1218955.1219032
https://doi.org/10.3115/1218955.1219032
https://doi.org/10.1145%2F3510454.3516829
https://doi.org/10.1145%2F3510454.3516829
https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=iaYcJKpY2B_
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://arxiv.org/abs/2108.09293
http://arxiv.org/abs/2108.09293
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W15-3049
http://arxiv.org/abs/2009.10297
http://arxiv.org/abs/2009.10297
http://arxiv.org/abs/2009.05617
http://arxiv.org/abs/2009.05617
http://arxiv.org/abs/2009.05617
https://doi.org/10.18653/v1/2021.naacl-main.13
https://doi.org/10.18653/v1/2021.naacl-main.13
https://aclanthology.org/2023.findings-eacl.20
https://aclanthology.org/2023.findings-eacl.20
https://aclanthology.org/2023.findings-eacl.20
https://doi.org/10.18653/v1/D18-2002
https://doi.org/10.18653/v1/D18-2002
https://doi.org/10.18653/v1/D18-2002
http://arxiv.org/abs/1709.00103
http://arxiv.org/abs/1709.00103

A ODEX Dataset

A.1 Library Distribution Statistics
Aside from the illustrations in § 3.1, we list out the
detailed statistics of libraries in ODEX, the eight
comparison datasets, and the approximated natural
distribution.

ODEX Domain Statistics Table 5 lists the num-
ber and percentage of occurrences for each library
in the ODEX dataset.

ODEX

Library Count Frequency Library Count Frequency

none 440 41.90 functools 2 0.19
pandas 81 7.71 http 2 0.19
numpy 80 7.62 obspy 2 0.19
re 62 5.90 pickle 2 0.19
os 42 4.00 pytz 2 0.19
collections 26 2.48 seaborn 2 0.19
matplotlib 22 2.10 sqlalchemy 2 0.19
datetime 21 2.00 statistics 2 0.19
urllib 19 1.81 string 2 0.19
sys 17 1.62 xlrd 2 0.19
random 16 1.52 IPython 1 0.10
io 15 1.43 argparse 1 0.10
json 15 1.43 aspose 1 0.10
subprocess 13 1.24 bisect 1 0.10
requests 10 0.95 cgi 1 0.10
bs4 9 0.86 configparser 1 0.10
itertools 9 0.86 ctypes 1 0.10
operator 9 0.86 dateutil 1 0.10
time 9 0.86 difflib 1 0.10
math 8 0.76 docxtpl 1 0.10
builtins 6 0.57 filecmp 1 0.10
selenium 6 0.57 ftplib 1 0.10
tensorflow 6 0.57 hashlib 1 0.10
django 5 0.48 heapq 1 0.10
sqlite3 5 0.48 imp 1 0.10
PIL 4 0.38 inspect 1 0.10
codecs 4 0.38 locale 1 0.10
cv2 4 0.38 lxml 1 0.10
scipy 4 0.38 mechanize 1 0.10
sklearn 4 0.38 mpl_toolkits 1 0.10
base64 3 0.29 multidict 1 0.10
csv 3 0.29 pprint 1 0.10
flask 3 0.29 queue 1 0.10
glob 3 0.29 regex 1 0.10
shutil 3 0.29 rsa 1 0.10
socket 3 0.29 ssl 1 0.10
struct 3 0.29 texttable 1 0.10
sympy 3 0.29 unicodedata 1 0.10
xlwt 3 0.29 warnings 1 0.10
ast 2 0.19 xml 1 0.10

Table 5: ODEX library distribution.

Domain Statistics of Comparison Datasets Ta-
ble 6 lists the library frequency of eight compari-
son dataset mentioned in § 3: HumanEval, MBPP,
APPS, MTPB, P3, DSP, DS-1000, and Exe-DS.

HumanEval

Library Count Frequency Library Count Frequency

none 155 94.51

math 6 3.66 hashlib 1 0.61
collections 1 0.61 re 1 0.61

MBPP

Library Count Frequency Library Count Frequency

none 794 81.52

re 73 7.49 cmath 3 0.31
math 37 3.80 operator 3 0.31
collections 25 2.57 array 0 0.00
heapq 16 1.64 bisect 2 0.21
itertools 12 1.23 copy 1 0.10
sys 7 0.72 datetime 1 0.10

APPS

Library Count Frequency

none 10,000 100.00

MTPB

Library Count Frequency Library Count Frequency

- 103 88.03

pandas 3 2.56 collections 1 0.85
re 3 2.56 datetime 1 0.85
numpy 2 1.71 math 1 0.85
sklearn 2 1.71 regex 1 0.85

P3

Library Count Frequency Library Count Frequency

- 1581 92.19

itertools 35 2.04 heapq 15 0.87
random 31 1.81 re 15 0.87
collections 28 1.63 math 10 0.58

DSP

Library Count Frequency Library Count Frequency

- 2034 92.79

sklearn 110 5.02 collections 8 0.36
numpy 84 3.83 time 8 0.36
matplotlib 50 2.28 gzip 4 0.18
pandas 46 2.10 pickle 4 0.18
scipy 46 2.10 random 4 0.18
math 16 0.73 csv 2 0.09
numbers 12 0.55 itertools 2 0.09
utils 12 0.55 seaborn 2 0.09

DS-1000

Library Count Frequency Library Count Frequency

pandas 291 29.10 scipy 106 10.60
numpy 220 22.00 pytorch 68 6.80
matplotlib 155 15.50 tensorflow 45 4.50
sklearn 115 11.50

Exe-DS

Library Count Frequency Library Count Frequency

none 379 56.23

sklearn 75 11.13 pylab 2 0.30
pandas 58 8.61 __future__ 1 0.15
numpy 53 7.86 arch 1 0.15
matplotlib 32 4.75 cPickle 1 0.15
scipy 18 2.67 cofi 1 0.15
seaborn 15 2.23 csv 1 0.15
math 7 1.04 datetime 1 0.15
collections 4 0.59 functools 1 0.15
re 4 0.59 graphviz 1 0.15
folium 3 0.45 json 1 0.15
nltk 3 0.45 mpl_toolkits 1 0.15
statsmodels 3 0.45 operator 1 0.15
warnings 3 0.45 os 1 0.15
IPython 2 0.30 tensorflow 1 0.15

Table 6: Library statistics of eight comparison datasets.

Approximated Natural Domain Distribution
To approximate the natural distribution of libraries
in the open domain, we count the number of Python
files on GitHub that imports the library of interest.
Following the GitHub search syntax,8 we use the
query import ${library_name} to search files
that import a certain library, and use NOT import
to count files not using any libraries. Their frequen-
cies are shown in Table 7.

Approximated Natural Distribution

Library Count Library Count

os 30,188,921 sqlite3 694,794
sys 24,213,844 configparser 640,014
numpy 20,965,506 queue 631,326
re 11,762,193 ssl 602,351
time 5,946,718 http 597,866
pandas 5,878,651 xml 574,030
random 5,740,444 seaborn 567,576
matplotlib 5,416,874 imp 560,862
json 4,792,536 builtins 560,148
tensorflow 4,720,266 locale 542,607
argparse 4,570,391 ast 444,349
subprocess 4,165,781 bisect 315,031
string 4,114,004 pytz 295,167
codecs 3,973,691 heapq 281,393
warnings 3,824,001 cgi 277,852
math 3,569,158 unicodedata 267,310
django 3,447,092 regex 235,800
shutil 2,999,394 difflib 225,154
requests 2,837,310 PIL 218,526
cv2 2,575,063 sklearn 208,913
datetime 2,536,970 statistics 127,725
socket 2,489,033 rsa 122,447
pickle 2,419,604 lxml 111,742
io 2,190,998 dateutil 107,041
collections 2,152,651 bs4 90,224
glob 2,114,567 xlrd 86,522
itertools 1,899,461 filecmp 79,328
urllib 1,809,462 IPython 73,274
flask 1,788,601 sympy 70,969
csv 1,680,232 selenium 56,709
functools 1,433,520 xlwt 55,035
pprint 1,378,679 ftplib 52,121
base64 1,352,623 multidict 29,224
hashlib 1,330,158 mechanize 20,978
scipy 1,121,371 obspy 5,799
inspect 1,112,770 texttable 4,749
operator 1,104,841 aspose 1,048
ctypes 864,108 docxtpl 76
sqlalchemy 814,096 mpl_toolkits 2
struct 787,484

Table 7: Approximated natural domain distribution.

A.2 More Annotation Details

Along with the NL-Code pair, we also provide IDs
of the source StackOverflow post, using which an-
notators can trace back to the original post webpage

8https://docs.github.com/en/search-github/
searching-on-github/searching-code

and get a better understanding of the question. If
any errors or under-specification are spotted in the
given NL or code, we ask the annotators to correct
it by making the minimal change possible.

Aligning with how programmers import a li-
brary, we require the expressions be written
in three forms: (1) import ${LIBRARY}, (2)
import ${LIBRARY} as ${ABBR}, or (3)
from ${LIBRARY} import ${FUNCTION}, where
the ${LIBRARY} can also be sub-classes such as
matplotlib.pyplot.

We encourage the annotators to use the language
identical to the given NL intent when creating the
test cases, especially if the code involves string-
related operations (e.g., writing regular expressions
in Japanese). We encourage the annotators to write
reasonably more and diverse test cases, by varying
the values or types of variables.

Please find the full instruction9 and examples10

for annotation in our code repository.

B Baseline Results

According to the baseline results in § 5.1, we pro-
vide more detailed evaluation results, on the exe-
cution pass rate ranging from the top-1 to top-10
model predictions. Table 8 and Table 9 show the
zero-shot execution accuracy of CODEX and CODE-
GEN models, respectively.

Model NL Pass Rate

@1 @2 @3 @4 @5 @6 @7 @8 @9 @10

C1

en 31.91 44.67 51.81 56.54 59.95 62.56 64.61 66.28 67.65 68.79
es 31.89 43.33 49.23 53.01 55.72 57.81 59.52 60.96 62.22 63.33
ja 25.67 36.69 42.66 46.49 49.27 51.44 53.23 54.76 56.10 57.32
ru 40.00 53.48 60.04 63.96 66.63 68.62 70.17 71.44 72.50 73.41

D1

en 33.62 46.65 53.27 57.34 60.18 62.31 64.00 65.37 66.49 67.43
es 36.89 49.46 55.44 58.96 61.37 63.22 64.78 66.20 67.56 68.89
ja 31.04 42.11 47.83 51.54 54.26 56.39 58.11 59.53 60.67 61.59
ru 43.21 57.53 63.93 67.58 70.03 71.85 73.29 74.51 75.60 76.59

D2

en 47.15 57.61 62.58 65.69 67.87 69.47 70.70 71.67 72.46 73.12
es 47.44 57.90 62.20 64.65 66.33 67.61 68.65 69.53 70.33 71.11
ja 41.46 50.42 54.84 57.59 59.47 60.84 61.87 62.71 63.41 64.02
ru 51.87 63.36 68.25 71.09 73.03 74.5 75.67 76.64 77.46 78.17

Table 8: CODEX zero-shot performance.

Model NL Pass Rate

@1 @2 @3 @4 @5 @6 @7 @8 @9 @10

350M

en 26.26 32.18 35.46 37.59 39.10 40.22 41.08 41.78 42.35 42.82
es 16.67 21.85 24.70 26.56 27.82 28.68 29.27 29.65 29.89 30.00
ja 17.44 22.86 25.51 27.12 28.21 28.97 29.52 29.93 30.24 30.49
ru 25.87 31.44 34.27 36.11 37.44 38.44 39.22 39.86 40.40 40.87

2.7B

en 37.74 42.58 44.92 46.36 47.36 48.11 48.70 49.18 49.57 49.89
es 36.44 40.89 42.83 44.01 44.84 45.48 45.96 46.32 46.56 46.67
ja 31.83 35.70 37.64 38.80 39.58 40.13 40.56 40.92 41.22 41.46
ru 45.67 49.83 52.07 53.50 54.54 55.37 56.04 56.61 57.10 57.54

6.1B

en 34.49 37.91 39.55 40.52 41.18 41.69 42.11 42.47 42.78 43.05
es 28.56 32.05 33.85 35.03 35.86 36.48 36.94 37.28 37.56 37.78
ja 35.55 40.11 42.04 43.25 44.12 44.77 45.28 45.69 46.04 46.34
ru 44.64 47.29 48.53 49.28 49.82 50.23 50.56 50.82 51.03 51.19

Table 9: CODEGEN zero-shot performance.
9https://anonymous.4open.science/r/odex/data/

instruction.md
10https://anonymous.4open.science/r/odex/data/sample_

annotation.ipynb

https://docs.github.com/en/search-github/searching-on-github/searching-code
https://docs.github.com/en/search-github/searching-on-github/searching-code
https://anonymous.4open.science/r/odex/data/instruction.md
https://anonymous.4open.science/r/odex/data/instruction.md
https://anonymous.4open.science/r/odex/data/sample_annotation.ipynb
https://anonymous.4open.science/r/odex/data/sample_annotation.ipynb

C Domain-Wise Execution Results

We list out detailed results for experiments in §5.

C.1 Open Domain Versus Closed Domain
Table 10 and Table 11 shows the execution accuracy
for CODEX and CODEGEN on open-domain and
closed-domain problems, respectively.

NL Split Pass Rate

@1 @2 @3 @4 @5 @6 @7 @8 @9 @10

CODE-CUSHMAN-001

en
- 31.91 44.67 51.81 56.54 59.95 62.56 64.61 66.28 67.65 68.79

open 24.39 35.82 43.08 48.22 52.04 54.97 57.27 59.10 60.57 61.74
close 40.19 54.42 61.41 65.69 68.66 70.90 72.70 74.18 75.45 76.56

es
- 31.89 43.33 49.23 53.01 55.72 57.81 59.52 60.96 62.22 63.33

open 27.71 38.98 45.12 49.14 52.06 54.34 56.20 57.78 59.17 60.42
close 36.67 48.31 53.93 57.44 59.91 61.79 63.31 64.60 65.71 66.67

ja
- 25.67 36.69 42.66 46.49 49.27 51.44 53.23 54.76 56.10 57.32

open 21.24 30.29 35.16 38.34 40.71 42.61 44.20 45.55 46.73 47.79
close 35.49 50.89 59.28 64.56 68.23 71.01 73.25 75.16 76.86 78.43

ru
- 31.91 44.67 51.81 56.54 59.95 62.56 64.61 66.28 67.65 68.79

open 25.96 36.80 42.57 46.22 48.79 50.76 52.38 53.76 55.00 56.14
close 51.59 67.26 74.47 78.61 81.37 83.37 84.87 86.04 86.96 87.68

CODE-DAVINCI-001

en
- 33.62 46.65 53.27 57.34 60.18 62.31 64.00 65.37 66.49 67.43

open 26.91 39.25 45.97 50.25 53.33 55.70 57.62 59.21 60.57 61.74
close 41.00 54.79 61.32 65.14 67.71 69.59 71.02 72.14 73.01 73.68

es
- 36.89 49.46 55.44 58.96 61.37 63.22 64.78 66.20 67.56 68.89

open 31.67 44.63 51.11 54.78 57.07 58.63 59.81 60.79 61.67 62.50
close 42.86 54.97 60.40 63.73 66.28 68.46 70.46 72.38 74.29 76.19

ja
- 31.04 42.11 47.83 51.54 54.26 56.39 58.11 59.53 60.67 61.59

open 23.72 32.72 37.88 41.48 44.21 46.36 48.08 49.46 50.53 51.33
close 47.25 62.92 69.89 73.85 76.54 78.62 80.34 81.83 83.14 84.31

ru
- 43.21 57.53 63.93 67.58 70.03 71.85 73.29 74.51 75.60 76.59

open 28.86 41.01 47.05 50.77 53.47 55.65 57.53 59.22 60.79 62.28
close 55.07 71.18 77.87 81.47 83.71 85.22 86.32 87.15 87.83 88.41

CODE-DAVINCI-002

en
- 47.15 57.61 62.58 65.69 67.87 69.47 70.70 71.67 72.46 73.12

open 37.52 47.52 52.81 56.32 58.86 60.79 62.29 63.48 64.43 65.22
close 57.75 68.72 73.33 76.02 77.78 79.03 79.96 80.69 81.29 81.82

es
- 47.44 57.90 62.20 64.65 66.33 67.61 68.65 69.53 70.33 71.11

open 45.42 56.02 60.17 62.68 64.59 66.17 67.52 68.70 69.79 70.83
close 49.76 60.05 64.52 66.89 68.32 69.26 69.94 70.48 70.95 71.43

ja
- 41.46 50.42 54.84 57.59 59.47 60.84 61.87 62.71 63.41 64.02

open 29.47 37.70 41.91 44.59 46.44 47.75 48.72 49.44 50.00 50.44
close 68.04 78.61 83.48 86.40 88.36 89.82 91.03 92.11 93.14 94.12

ru
- 51.87 63.36 68.25 71.09 73.03 74.5 75.67 76.64 77.46 78.17

open 34.74 46.20 51.46 54.65 56.93 58.75 60.29 61.66 62.89 64.04
close 66.01 77.54 82.11 84.67 86.34 87.52 88.38 89.02 89.49 89.86

Table 10: CODEX pass rate in open and closed domains.

NL Split Pass Rate

@1 @2 @3 @4 @5 @6 @7 @8 @9 @10

350M

en
- 26.26 32.18 35.46 37.59 39.10 40.22 41.08 41.78 42.35 42.82

open 22.35 27.04 29.75 31.58 32.93 33.97 34.80 35.48 36.04 36.52
close 30.57 37.84 41.75 44.21 45.89 47.09 48.00 48.71 49.28 49.76

es
- 16.67 21.85 24.70 26.56 27.82 28.68 29.27 29.65 29.89 30.00

open 16.04 19.58 21.23 22.12 22.59 22.82 22.90 22.92 22.92 22.92
close 17.38 24.44 28.67 31.62 33.79 35.39 36.55 37.35 37.86 38.10

ja
- 17.44 22.86 25.51 27.12 28.21 28.97 29.52 29.93 30.24 30.49

open 15.40 19.67 21.67 22.91 23.78 24.41 24.88 25.23 25.49 25.66
close 21.96 29.93 34.04 36.46 38.02 39.07 39.80 40.35 40.78 41.18

ru
- 25.87 31.44 34.27 36.11 37.44 38.44 39.22 39.86 40.40 40.87

open 20.53 24.89 26.83 28.12 29.08 29.81 30.38 30.84 31.23 31.58
close 30.29 36.84 40.41 42.71 44.34 45.57 46.53 47.31 47.97 48.55

2.7B

en
- 35.24 42.87 46.75 49.11 50.68 51.78 52.59 53.19 53.64 53.99

open 26.04 33.02 36.92 39.36 41.01 42.20 43.10 43.80 44.35 44.78
close 45.36 53.69 57.58 59.85 61.32 62.33 63.03 63.53 63.88 64.11

es
- 26.00 33.65 37.74 40.06 41.52 42.58 43.44 44.20 44.89 45.56

open 22.50 27.45 30.68 32.96 34.76 36.32 37.76 39.12 40.42 41.67
close 30.00 40.74 45.81 48.17 49.25 49.74 49.94 50.00 50.00 50.00

ja
- 24.27 32.10 36.45 39.22 41.13 42.51 43.54 44.30 44.82 45.12

open 18.67 23.93 26.94 28.97 30.45 31.58 32.44 33.06 33.45 33.63
close 36.67 50.20 57.52 61.93 64.78 66.73 68.14 69.19 70.00 790.59

ru
- 39.64 48.11 52.46 55.25 57.23 58.71 59.84 60.71 61.39 61.90

open 27.02 34.72 38.61 41.12 42.96 44.41 45.59 46.59 47.46 48.25
close 50.07 59.18 63.90 66.93 69.03 70.53 71.61 72.38 72.90 73.19

6.1B

en
- 34.49 37.91 39.55 40.52 41.18 41.69 42.11 42.47 42.78 43.05

open 28.30 31.57 33.21 34.25 35.02 35.64 36.17 36.64 37.04 37.39
close 41.29 44.89 46.53 47.42 47.97 48.35 48.64 48.88 49.09 49.28

es
- 28.56 32.05 33.85 35.03 35.86 36.48 36.94 37.28 37.56 37.78

open 25.83 28.61 30.16 31.25 32.06 32.64 33.02 33.24 33.33 33.33
close 31.67 35.98 38.08 39.35 40.21 40.86 41.41 41.90 42.38 42.86

ja
- 35.55 40.11 42.04 43.25 44.12 44.77 45.28 45.69 46.04 46.34

open 28.76 31.96 33.36 34.23 34.83 35.28 35.62 35.89 36.11 36.28
close 50.59 58.17 61.26 63.26 64.71 65.81 66.68 67.41 68.04 68.63

ru
- 44.64 47.29 48.53 49.28 49.82 50.23 50.56 50.82 51.03 51.19

open 28.33 30.14 31.16 31.92 32.53 33.04 33.45 33.78 34.04 34.21
close 58.12 61.47 62.87 63.63 64.10 64.43 64.69 64.90 65.07 65.22

Table 11: CODEGEN pass rate in various domains.

C.2 Domain-wise Execution Accuracy
As introduced in § 5.3, we take CODE-DAVINCI-
002, and report its execution accuracy on each
domain in Table 12.

Library Count Pass@1 Library Count Pass@1

none 440 61.45 functools 2 15.00
pandas 81 38.52 http 2 40.00
numpy 80 36.18 obspy 2 0.00
re 62 36.13 pickle 2 0.00
os 42 42.62 pytz 2 20.00
collections 26 35.38 seaborn 2 0.00
matplotlib 22 9.00 sqlalchemy 2 50.00
datetime 21 30.95 statistics 2 40.00
urllib 19 14.74 string 2 0.00
sys 17 15.88 xlrd 2 30.00
random 16 62.00 IPython 1 0.00
io 15 32.67 argparse 1 100.00
json 15 35.33 aspose 1 10.00
subprocess 13 30.77 bisect 1 0.00
requests 10 37.00 cgi 1 80.00
bs4 9 38.89 configparser 1 60.00
itertools 9 27.78 ctypes 1 60.00
operator 9 64.44 dateutil 1 30.00
time 9 20.00 difflib 1 0.00
math 8 61.43 docxtpl 1 10.00
builtins 6 76.67 filecmp 1 40.00
selenium 6 50.00 ftplib 1 60.00
tensorflow 6 6.67 hashlib 1 0.00
django 5 20.00 heapq 1 0.00
sqlite3 5 38.00 imp 1 40.00
PIL 4 35.00 inspect 1 0.00
codecs 4 72.50 locale 1 0.10
cv2 4 22.50 lxml 1 0.00
scipy 4 5.00 mechanize 1 0.00
sklearn 4 0.00 mpl_toolkits 1 0.00
base64 3 6.67 multidict 1 90.00
csv 3 36.67 pprint 1 20.00
flask 3 50.00 queue 1 0.00
glob 3 43.33 regex 1 100.00
shutil 3 60.00 rsa 1 10.00
socket 3 40.00 ssl 1 0.00
struct 3 16.67 texttable 1 60.00
sympy 3 0.00 unicodedata 1 90.00
xlwt 3 20.00 warnings 1 70.00
ast 2 50.00 xml 1 0.00

Table 12: CODE-DAVINCI-001 execution accuracy on
each domain subset inside ODEX.

C.3 Qualitative Error Analysis
To provide more intuitive explanations of the do-
main divergence aforementioned, we conduct error
analysis over 60 randomly selected examples from
ODEX dataset (15 for each language). By exam-
ining the error patterns from these examples, we
aim to answer: what are the common error types
on open- and closed-domain problems? What are
the main differences between them?

Similar to the previous section, we take the
CODE-DAVINCI-002 since it scores the best and
presents clear domain gaps, which might give more
intuitive variances between domains.

Closed-Domain Errors Of the 60 random sam-
ples we analyzed, 31 are closed-domain problems,
and CODEX predicts erroneous code solutions for
22 of them. We identify four main types of errors

from these samples: (1) 11 cases (50.0%) use the
Python built-in functions incorrectly, mostly about
strings manipulations and number calculations; (2)
7 cases (31.8%) failed at complex functions, which
usually require multi-step implementations; (3) 4
cases (18.2%) received empty predictions, poten-
tially because they involve unfamiliar topics to the
model; (4) 2 cases (9.1%) imports extra library or
add redundant implementations.

Note that the number of error cases in these four
categories does not add up to 22. Since we analyze
all of the error predictions among the model top-10
predictions, one case could present multiple error
types in its different predictions.

Open-Domain Errors Of the other 29 problems
belonging to the open domain, 26 of them have
erroneous predictions. Errors in the open domain
exhibit more diversity than in the closed domain.
The major error enclosing 16 cases (61.5%) is the
failure to use the prerequisite libraries, or missing
part of them when multiple libraries are involved.
The next major type is using incorrect functions,
which happens in 9 cases (34.6%). Similarly to
the closed-domain errors, 5 cases (19.2%) have
error usage of correct functions, 4 cases (15.4%)
struggle with complex multi-step implementations,
and 3 cases (11.5%) face empty predictions.

OD and CD problems share some error cate-
gories such as function misuse and complex oper-
ations. Nonetheless, open-domain problems intro-
duce extra challenges: correct selection and usage
of libraries and functions in the wild.

D Evaluation Metrics

We describe each of the non-execution metrics
(§ D.1) as introduced in § 6, report model per-
formance with each (§ D.2), and visualize their
correlations with the execution accuracy (§ D.3).

D.1 Metric Description

BLEU BLEU (Papineni et al., 2002) is a lexical-
based evaluation metric, which calculates the n-
gram overlap between text prediction and (multi-
ple) references. Most default calculation processes
calculate up to 4-grams and adopt the smoothing
function introduced in Lin and Och (2004).

ROUGE ROUGE (Lin, 2004) is another more
recall-oriented lexical-based evaluation metric. It
was originally designed for measuring text sum-
marization, mainly by counting the number of

overlapping units (n-gram, word sequences, and
word pairs) between prediction and references.
Among the multiple variants proposed (ROUGE-N,
ROUGE-L, ROUGE-W, and ROUGE-S), we use
the most common ROUGE-L in our experiments.

METEOR METEOR (Banerjee and Lavie,
2005) is a unigram-based metric originally in-
tended for machine translation. It builds on a gener-
alized unigram concept by involving unigram pre-
cision, unigram recall, and word order measures.

ChrF ChrF (Popović, 2015) targets lexical match
on the character level, by calculating the character-
level n-gram F-score between predictions and ref-
erences. ChrF is also originally proposed for the
machine translation task, but later adopted for some
code evaluation works (Evtikhiev et al., 2023).

CodeBLEU CodeBLEU (Ren et al., 2020) is
specifically designed for code evaluation, by jointly
considering the surface-form match, syntax simi-
larly, and semantic data flows.

D.2 Evaluating with Non-execution Metrics

Table 13 and Table 14 shows the scores of CODEX

and CODEGEN using non-execution metrics.

Model NL Metrics

BLEU ROUGE METEOR ChrF CodeBLEU

C1

en 31.27 52.79 55.43 43.07 3.18
es 13.69 38.29 40.86 21.17 3.96
ja 18.57 46.67 48.76 34.89 3.63
ru 14.42 41.49 45.53 34.63 2.70

D1

en 30.94 53.88 56.01 43.60 3.27
es 20.40 43.93 46.71 29.36 3.27
ja 19.98 48.23 51.46 38.41 3.40
ru 16.97 44.71 47.11 35.54 2.74

D2

en 38.75 56.05 55.39 44.40 3.77
es 18.47 44.98 43.52 27.11 5.78
ja 27.10 52.04 50.17 40.02 3.58
ru 25.00 50.04 50.51 38.60 3.75

Table 13: CODEX results on non-execution metrics.

Model NL Metrics

BLEU ROUGE METEOR ChrF CodeBLEU

350M

en 12.04 50.94 50.46 30.12 4.90
es 9.07 37.90 37.76 20.90 5.47
ja 9.43 44.21 41.29 26.16 6.05
ru 13.35 44.77 44.27 32.40 3.86

2.7B

en 18.22 54.82 54.32 34.98 5.30
es 13.05 39.79 40.93 22.61 6.67
ja 14.72 52.46 51.22 31.28 5.42
ru 23.27 50.82 49.98 37.75 4.31

6.1B

en 12.41 52.82 54.03 31.38 4.51
es 11.69 33.26 34.47 19.04 4.57
ja 19.14 51.31 52.07 34.78 5.68
ru 23.66 49.09 49.48 37.44 3.72

Table 14: CODEGEN results on non-execution metrics.

D.3 Visualizing Metric Correlations
Following the discussion in § 6, we visualize
the non-execution metric metrics between sam-
ples that pass and fail during execution time.
All experiments use CODE-DAVINCI-002 predic-
tions for evaluation. Figure 13, Figure 14, Fig-
ure 15, Figure 16 illustrates the histogram between
passed/failed samples using ROUGE, METEOR,
ChrF, and CodeBLEU metrics, respectively.

EN ES

JA RU

Figure 13: ROUGE on passed and failed samples.

EN ES

JA RU

Figure 14: METEOR on passed and failed samples.

EN ES

JA RU

Figure 15: ChrF on passed and failed samples.

EN ES

JA RU

Figure 16: CodeBLEU on passed and failed samples.

D.4 Why is Execution Better?
To give more intuitive reasons for the advantages
of execution, we randomly sample 15 cases from
each language subset and identified two major ben-
efits: it tolerates alternative solutions and allows
execution results as outputs.

Alternative Code Implementation Probably the
greatest advantage of execution is it only requires
correct execution results, without limitations on
alternative methods, as in Figure 17.

Figure 17: An alternative yet correct prediction, only
has a low 4.8 BLEU score due to having little lexical
overlap with the canonical solution.

Directly Generating Execution Results An-
other interesting category is directly generating the
code execution results instead of the implementa-
tion steps. This often happens to simple coding
queries such as basic string manipulation, where
predicting the results might cost the model similar
efforts to getting the programmatic solutions.

Figure 18: An example output of a correct execution
result, yet only achieving 0.6 BLEU.

In Figure 18, instead of the string decoding pro-
gram, the model directly outputs the result string
“JLK”. While this is somewhat unexpected under

the NL-to-Code task, execution effectively handles
such cases and would judge them as correct.

D.5 Potential Benefit of Lexical-based Metrics

Lexical-based metrics, although relatively ineffec-
tive for functional correctness, still are potentially
helpful for debugging and interpretation. They are
effective in small errors of two types: (1) a single
function misuse and (2) slight variance in complex
strings. The high lexical match in such cases indi-
cates less effort for fixing (Deng et al., 2021).

Function Misuse Some code predictions are cor-
rect except for a single place where a wrong func-
tion is used, or an argument is misplaced.

Figure 19: Example that the model prediction uses the
wrong function, having a very high BLEU score 0.925.

For example, in Figure 19, the code imports the
library and copies all strings correctly. But it uses
the wrong function match instead of the correct
findall. Although the execution fails, the code
is similar to the solution. Given the sign of a high
BLEU score of 92.5, we could readily spot such
similarities and fix them with simple edits.

String Difference Another frequent error con-
cerns string copying, where the code calls the cor-
rect functions but copies the string differently.

The example in Figure 20 gets a 100.0 BLEU
score, but the string inside actually misses a single
whitespace, which the BLEU tokenization would
discard. Such code also resembles the solution and
could be easily fixed by even rule-based methods.

Figure 20: Example that the model prediction varies
slightly in copied strings, but scores 100.0 in BLEU.

E Ablation Studies

This section provides the results tables according
to each ablation study section in § 7.

E.1 Prompting Strategy
E.1.1 Few-shot Prompting
Table 15, Table 16, Table 17 show the change in
execution accuracy with respect to the examples in
in-context learning, on the three CODEX variants

N-shot NL Pass Rate

@1 @2 @3 @4 @5 @6 @7 @8 @9 @10

1-shot

en 37.90 48.71 54.50 58.25 60.88 62.82 64.31 65.52 66.54 67.43
es 36.22 45.51 50.70 53.96 56.14 57.68 58.81 59.70 60.44 61.11
ja 29.76 38.54 43.22 46.23 48.33 49.90 51.14 52.15 52.99 53.66
ru 45.67 56.75 62.32 65.86 68.38 70.32 71.88 73.21 74.37 75.40

2-shot

en 37.27 47.89 53.39 57.02 59.68 61.75 63.41 64.80 65.97 66.97
es 38.56 48.77 54.12 57.50 59.90 61.75 63.26 64.54 65.67 66.67
ja 32.26 41.57 46.71 50.18 52.76 54.78 56.40 57.74 58.84 59.76
ru 46.75 58.56 64.24 67.63 69.90 71.55 72.82 73.84 74.68 75.40

3-shot

en 39.91 50.45 55.62 58.83 61.06 62.74 64.07 65.17 66.13 66.97
es 37.00 45.88 50.05 52.63 54.48 55.87 56.95 57.80 58.44 58.89
ja 32.87 42.48 47.58 50.88 53.29 55.16 56.66 57.89 58.90 59.76
ru 48.33 60.03 65.32 68.51 70.71 72.35 73.66 74.75 75.71 76.59

Table 15: CODE-CUSHMAN-001 few-shot results.

N-shot NL Pass Rate

@1 @2 @3 @4 @5 @6 @7 @8 @9 @10

1-shot

en 43.05 53.67 58.80 62.01 64.31 66.09 67.52 68.71 69.73 70.62
es 41.00 52.69 58.54 62.11 64.56 66.35 67.69 68.69 69.44 70.00
ja 35.00 45.57 51.17 54.79 57.45 59.58 61.35 62.86 64.15 65.24
ru 47.30 59.07 64.57 67.92 70.25 72.02 73.41 74.52 75.44 76.19

2-shot

en 44.26 53.98 58.77 61.85 64.00 65.59 66.79 67.70 68.43 69.02
es 40.44 50.15 54.97 57.90 59.91 61.41 62.64 63.70 64.67 65.56
ja 35.12 44.82 49.87 53.07 55.25 56.77 57.86 58.66 59.27 59.76
ru 49.72 60.59 65.76 68.96 71.16 72.78 74.03 75.04 75.87 76.59

3-shot

en 43.58 53.27 57.88 60.81 62.99 64.74 66.19 67.44 68.52 69.48
es 41.67 53.14 58.78 62.03 64.11 65.55 66.62 67.48 68.22 68.89
ja 38.78 49.40 54.59 57.66 59.71 61.18 62.31 63.21 63.96 64.63
ru 49.21 58.83 63.58 66.73 69.08 70.99 72.63 74.08 75.40 76.59

Table 16: CODE-DAVINCI-001 few-shot results.

N-shot NL Pass Rate

@1 @2 @3 @4 @5 @6 @7 @8 @9 @10

1-shot

en 46.33 56.08 60.54 63.36 65.39 66.97 68.24 69.28 70.14 70.84
es 44.33 54.00 59.04 62.49 65.07 67.09 68.72 70.07 71.22 72.22
ja 46.33 56.08 60.54 63.36 65.39 66.97 68.24 69.28 70.14 70.84
ru 51.35 62.72 68.20 71.60 73.98 75.79 77.24 78.47 79.56 80.56

2-shot

en 47.29 57.32 61.96 64.69 66.53 67.86 68.90 69.74 70.46 71.07
es 45.78 55.85 60.41 63.29 65.44 67.16 68.63 69.93 71.11 72.22
ja 42.38 52.28 56.80 59.38 61.02 62.12 62.88 63.41 63.78 64.02
ru 51.75 63.38 68.47 71.51 73.60 75.13 76.30 77.23 77.98 78.57

3-shot

en 48.18 57.99 62.64 65.50 67.50 68.99 70.17 71.14 71.96 72.67
es 44.44 53.95 58.31 61.07 63.11 64.74 66.07 67.19 68.11 68.89
ja 46.10 55.64 59.74 62.17 63.81 65.00 65.90 66.61 67.20 67.68
ru 49.40 60.56 66.09 69.64 72.19 74.17 75.77 77.12 78.29 79.37

Table 17: CODE-DAVINCI-002 few-shot results.

E.1.2 Number of Input Test Cases
Table 18 shows the effects on execution accuracy
of adding one or more test cases to prompts. Ex-
periments use CODE-DAVINCI-002 as an example.

test NL Pass Rate

@1 @2 @3 @4 @5 @6 @7 @8 @9 @10

0

en 47.15 57.61 62.58 65.69 67.87 69.47 70.70 71.67 72.46 73.12
es 47.44 57.90 62.20 64.65 66.33 67.61 68.65 69.53 70.33 71.11
ja 41.46 50.42 54.84 57.59 59.47 60.84 61.87 62.71 63.41 64.02
ru 51.87 63.36 68.25 71.09 73.03 74.5 75.67 76.64 77.46 78.17

1

en 63.35 75.61 80.28 82.70 84.20 85.22 85.97 86.57 87.06 87.47
es 63.89 76.37 81.75 84.75 86.60 87.82 88.65 89.23 89.67 90.00
ja 63.90 74.66 78.85 81.13 82.61 83.68 84.49 85.12 85.61 85.98
ru 65.04 77.80 82.89 85.72 87.53 88.75 89.60 90.19 90.60 90.87

n

en 64.76 77.36 82.02 84.40 85.93 87.05 87.93 88.65 89.25 89.75
es 59.89 72.42 77.44 80.41 82.49 84.03 85.16 85.95 86.44 86.67
ja 63.41 74.02 78.49 80.98 82.57 83.69 84.51 85.14 85.61 85.98
ru 66.67 79.07 83.70 86.19 87.82 89.01 89.91 90.62 91.19 91.67

Table 18: CODE-DAVINCI-002 results when using zero
(0), one (1), and all (n) test cases in the prompt input.

Furthermore, we experiment on the subset of
examples having sufficient test cases, to prevent the

n-test setting being trivialized into the 1-test case.
Concretely, we filtered all examples with at least 3
test cases and got 112, 17, 25, and 45 examples in
English, Spanish, Japanese, and Russian. Pass@1
results on 0/1/n-test settings are shown in Table 19.

Language en es ja ru

0 52.7 47.1 52.0 64.4
1 63.4 70.6 64.0 66.7
n 67.9 58.8 68.0 71.1

Table 19: Results on examples with 3 or more test cases,
using zero (0), one (1), and all (n) test cases.

E.1.3 Pre-processing: Trailing Whitespaces

While the input construction process may intro-
duce whitespaces at the start and the end of the
text sequence, we find CODEGEN model unexpect-
edly sensitive to trailing whitespaces. As shown in
Table 20, removing whitespaces from the prompt
input increases the pass rate of all sized CODEGEN

models by over 20 percent.

Model NL w/ WS w/o WS

@1 @2 @5 @10 @1 @2 @5 @10

350M

en 10.32 11.29 12.24 12.53 26.26 32.18 39.10 42.82
es 17.56 17.78 17.78 17.78 16.67 21.85 27.82 30.00
ja 7.01 8.06 9.55 10.37 17.44 22.86 28.21 30.49
ru 21.35 24.20 26.94 28.17 25.87 31.44 37.44 40.87

2B

en 14.28 15.69 16.99 17.54 37.74 42.58 47.36 49.89
es 19.67 22.32 24.76 25.56 36.44 40.89 44.84 46.67
ja 10.98 12.56 14.20 14.63 31.83 35.70 39.58 41.46
ru 33.10 36.01 39.53 41.67 45.67 49.83 54.54 57.54

6B

en 11.96 12.95 14.01 14.81 34.49 37.91 41.18 43.05
es 14.78 16.64 18.70 20.00 28.56 32.05 35.86 37.78
ja 12.44 14.34 16.51 17.68 35.55 40.11 44.12 46.34
ru 32.86 34.45 36.28 37.30 44.64 47.29 49.82 51.19

Table 20: CODEGEN results when inputting prompts
with and without trailing whitespaces (WS).

We conjecture the gain brought by whitespace
stripping to be better distributional alignment with
CODEGEN training data. As CODEGEN might be
pre-trained on whitespace-stripped text sequences,
inputs without whitespaces are potentially more
aligned with them, hence resulting in better test-
time performance. Meanwhile, note that the tok-
enization processes for text (natural language) and
code (programming language) differ in whitespace-
style tokens such as \n or \t. These tokens would
be removed by text tokenizers by default, while pre-
served by code tokenizers since they imply struc-
tural information in code pieces.

E.2 Number of Evaluation Test Cases

Table 21 shows the effect when using different num-
bers of test cases for execution-based evaluation.

E.2.1 Number of Evaluation Test Cases

test NL Pass Rate

@1 @2 @3 @4 @5 @6 @7 @8 @9 @10

1

en 48.31 58.81 63.70 66.72 68.83 70.39 71.59 72.55 73.35 74.03
es 48.00 58.52 62.71 64.98 66.51 67.69 68.67 69.53 70.33 71.11
ja 42.44 51.96 56.51 59.36 61.34 62.80 63.95 64.91 65.73 66.46
ru 52.50 63.26 67.85 70.60 72.53 74.00 75.19 76.17 77.02 77.78

n

en 47.15 57.61 62.58 65.69 67.87 69.47 70.70 71.67 72.46 73.12
es 47.44 57.90 62.20 64.65 66.33 67.61 68.65 69.53 70.33 71.11
ja 41.46 50.42 54.84 57.59 59.47 60.84 61.87 62.71 63.41 64.02
ru 51.87 63.36 68.25 71.09 73.03 74.50 75.67 76.64 77.46 78.17

Table 21: CODE-DAVINCI-002 results when using dif-
ferent numbers of test cases for execution-based evalua-
tion. 1 means using one randomly selected test case, n
means using all annotated test cases in ODEX.

We also evaluate on the subset of examples having
at least 3 test cases. Table 22 shows the pass@1
results for each language.

Language en es ja ru

1 60.7 64.7 68.0 73.3
n 52.7 47.1 52.0 64.4

Table 22: Results on examples with 3 or more test cases,
using one (1) or all (n) test cases at evaluation.

E.3 Semantics of Function Names

Because code is wrapped into functions to enable
execution, how functions are named may affect
model predictions. By default, we name func-
tions using the post ID (e.g., f_3844801), which
expresses little semantics of queries. So we try
two other methods: (1) a constant string function;
and (2) summary phrases from NL intents, e.g.,
find_max_value.

To do (2), we conduct a heuristic phrase extrac-
tion. We first cut the NL intent into words by
whitespace, then remove the stop words (‘in’, ‘of’,
‘a’, ‘to’, ‘and’, ‘for’, ‘with’, ‘that’) and meaningless
punctuations, lastly, concatenate the first M = 4
words with ‘_’. For example, given an intent “de-
code a hex string ’4a4b4c’ to UTF-8”, the resulting
function name would be “decode_a_hex_string”.
However, for languages that do not separate words
with whitespace, this approach may produce less
meaningful strings, hence contributing to the infe-
rior performance as shown below.

To fairly compare with previous results, we do
not add test cases in prompts.

From Figure 21 and Table 23, using more se-
mantically meaningful functional names barely im-
proves over the default setting. Intuitively, summa-
rizing names from intents adds no extra semantics,
but may cost information loss at the curation step,
both contributing to the performance drop.

Figure 21: pass@1 using different function names.

Func Name NL Pass Rate

@1 @2 @3 @4 @5 @6 @7 @8 @9 @10

task-id

en 47.15 57.61 62.58 65.69 67.87 69.47 70.70 71.67 72.46 73.12
es 47.44 57.90 62.20 64.65 66.33 67.61 68.65 69.53 70.33 71.11
ja 41.46 50.42 54.84 57.59 59.47 60.84 61.87 62.71 63.41 64.02
ru 51.87 63.36 68.25 71.09 73.03 74.50 75.67 76.64 77.46 78.17

constant

en 43.14 52.71 56.94 59.54 61.38 62.78 63.90 64.82 65.60 66.29
es 40.11 51.58 56.90 60.10 62.33 63.99 65.28 66.30 67.11 67.78
ja 38.29 48.01 52.76 55.61 57.56 59.05 60.24 61.23 62.07 62.80
ru 48.06 60.19 65.75 69.25 71.78 73.77 75.41 76.80 77.98 78.97

intent

en 43.23 53.77 58.87 62.06 64.34 66.11 67.54 68.74 69.75 70.62
es 37.78 49.21 54.52 57.75 60.12 62.05 63.72 65.21 66.56 67.78
ja 37.99 47.78 52.40 55.06 56.77 58.03 59.05 59.96 60.79 61.59
ru 48.29 60.64 66.39 69.79 72.11 73.86 75.26 76.42 77.38 78.17

Table 23: CODE-DAVINCI-002 results when the wrap-
ping function name contains different semantics.

F ODEX Results on Additional Models

It is possible that some source StackOverflow (SO)
posts used to create ODEX examples were used
in the training data of the closed-source models
in our experiments. However, we have no way to
remove those overlapping examples due to the lack
of a detailed web index within the training data
of these models. On the one hand, we modified
the NL intents and code solutions to some extent
§2.2, which may alleviate exact matches to scraped
training data and, hence reduce the influence of
unqualified training data (Lai et al., 2022).

Language Domain SantaCoder StarCoderBase StarCoder

en
all 37.65 46.51 44.67
open 30.87 40.65 37.00
closed 45.12 52.97 53.11

es
all 32.11 30.11 37.56
open 26.04 25.42 32.92
closed 39.05 35.48 42.86

ja
all 28.11 41.22 44.21
open 23.01 37.61 39.56
closed 39.41 49.22 54.51

ru
all 36.87 46.11 50.40
open 22.98 34.04 33.77
closed 48.33 56.09 64.13

Table 24: STARCODER pass@1 results on ODEX, eval-
uated on all (all), open-domain (open), and closed-
domain (closed) examples.

To further address the train-test data overlap is-
sue in Codex and CodeGen models, we addition-

ally evaluate the SantaCoder (Allal et al., 2023)
and StarCoder (Li et al., 2023) models, which have
not been trained on any SO data. Table 24 shows
the pass@1 of 16B StarCoder and StarCoderBase
models, where both models show significant gaps
between open- and closed-domain queries, thanks
to the broad domain coverage of ODEX.

G Related Work

Open Domain Code Generation Code written
in general-purpose programming languages often
uses classes or functions from external libraries.
A few datasets for code generation preserve this
open-domain nature. The CONCODE (Iyer et al.,
2018) dataset tested generation of Java class meth-
ods. Later works target Python generation given the
interactive context of Jupyter Notebooks (Agashe
et al., 2019) or natural language intents from Stack-
Overflow posts (Yin et al., 2018; Wang et al.,
2023). Despite their natural coverage, enabling
open-domain code execution has faced great chal-
lenges given its diversity and complexity (Lai et al.,
2022; Chandel et al., 2022). To address this issue,
our ODEX provides test cases as code execution
contexts for evaluation.

Code Evaluation via Execution Execution-
based evaluation has been long adopted for
domain-specific programming languages such as
SQL queries (Zhong et al., 2017) or logical
forms (Dong and Lapata, 2016). This execution-
based paradigm has not been introduced to general-
purpose languages until recently by the HumanEval
dataset (Chen et al., 2021), where human-written
test cases are provided for code execution. Many
works afterward follow this approach, but focus
more on closed-domain settings (Austin et al.,
2021; Hendrycks et al., 2021) or specific libraries
of interest (Lai et al., 2022; Huang et al., 2022). To-
ward broader execution environments, we provide
executable test cases for as many as 79 libraries.

Coding Queries Versus Programming Chal-
lenges Programs from different sources are or-
ganized for various purposes. Coding contest web-
sites such as LeetCode11 and Codeforces12 have
been used to build many code generation bench-
marks (Hendrycks et al., 2021; Li et al., 2022).
However, they randomly align with how humans
program in practical scenarios. To build datasets

11https://leetcode.com/
12https://codeforces.com/

https://leetcode.com/
https://codeforces.com/

with natural and practical usage of code, many
works use GitHub Jupyter Notebooks (Agashe
et al., 2019; Huang et al., 2022) and StackOverflow
forums (Yin et al., 2018; Wang et al., 2023; Lai
et al., 2022) as a source of naturally-occurring code.
We remain such naturalness by using StackOver-
flow posts, but uniquely from forums in various
languages to also assist programmers worldwide.

Test Case Creation While most benchmarks use
Python test cases annotated by human program-
mers (Chen et al., 2021; Nijkamp et al., 2023;
Lai et al., 2022), challenge-style datasets adopt
a more direct approach by crawling from the
web (Hendrycks et al., 2021; Li et al., 2022). An-
other thread of work attempts to generate test
cases automatically based on the Python gram-
mar (Lukasczyk and Fraser, 2022), but is largely
limited to basic Python functions. Some propose
to leverage the power of neural LMs (Tufano et al.,
2021; Li et al., 2022), even jointly considering so-
lution and test case generation (Chen et al., 2023).
However, the quality and diversity of test cases are
not robustly ensured. We hence use high-quality
human-written test cases for ODEX evaluation.

