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ABSTRACT

We investigate the short-context dominance hypothesis: that for most sequences, a
small local prefix suffices to predict their next tokens. Using large language models
as statistical oracles, we measure the minimum context length (MCL) needed
to reproduce accurate full-context predictions across datasets with sequences of
varying lengths. For sequences with 1–7k tokens from long-context documents, we
consistently find that 75–80% require only the last 96 tokens at most. Given the
dominance of short-context tokens, we then ask whether it is possible to detect chal-
lenging long-context sequences for which a short local prefix does not suffice for
prediction. We introduce a practical proxy to MCL, called Distributionally Aware
MCL (DaMCL), that does not require knowledge of the actual next-token and is
compatible with sampling strategies beyond greedy decoding. Our experiments
validate that simple thresholding of the metric defining DaMCL achieves high
performance in detecting long vs. short context sequences. Finally, to counter the
bias that short-context dominance induces in LLM output distributions, we develop
an intuitive decoding algorithm that leverages our detector to identify and boost
tokens that are long-range-relevant. Across Q&A tasks and model architectures,
we confirm that mitigating the bias improves performance.

1 INTRODUCTION

Figure 1: Short-context dominance hypothesis.
In this example, with context 1 the model fails to
predict the ground-truth “neighbour,” Context 2
produces a semantically valid alternative “friend,”
and when using Context 3, the model correctly
predicts “neighbour.” Our work (1) systematically
validates the hypothesis, (2) develops methods to
detect when longer context is truly needed, and
(3) leverages these insights to improve language
model sampling by correcting short-context bias.

When prompted to continue a piece of text,
how much preceding context do humans rely
on? Do they focus on recent words and local
coherence, or plan with a broader, narrative-
wide perspective? For example, when writing
a story, do they recall events from earlier chap-
ters or rely mostly on recent developments?
While difficult to study these questions rig-
orously in humans, large language models
(LLMs) offer a tractable experimental ana-
logue. This leads us to ask: How far back
must a model look to predict the next token
accurately? Although modern transformer-
based LLMs can attend to thousands of tokens
(Beltagy et al., 2020; Dai et al., 2019), it re-
mains unclear and unquantified how often that
capacity is used at inference time, and how of-
ten predictions depend on distant information
or primarily on local spans.

We posit the short-context dominance hypothesis: for the majority of natural-language sequences, the
information required to accurately predict a valid next token is contained within a short, local prefix
of length k ≪ n, where n is the full-context length of the sequence. Confirming this hypothesis could:
(1) reveal how much model capacity is truly needed for next-token prediction of a given sequence, (2)
inform the design of better performing sampling methods, and, eventually, (3) identify opportunities
for architectural or training modifications that leverage locality for computational efficiency.
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Figure 2: Distribution of MCL: Minimum context window needed to confidently predict the next
token across sampled sequences, six datasets, and three LLMs. b̂ denotes the slope of the log-log fit.
Blue/green distinguishes between long (≥ 6k tokens) and short (≥ 1k tokens) documents, respectively.

Measuring natural-language local context dependency. To test our hypothesis, we introduce
Minimal Context Length (MCL), which quantifies how much local context suffices for a language
model, used as oracle, to confidently predict the ground-truth next token of a sequence. We sample
sequences of varying lengths from various sources and filter for cases where an LLM confidently
predicts the actual next token in the corpus, aiming to mitigate confounding effects of LLM limitations.
To quantify MCL, we iteratively increase the prefix length of each sequence until the model confidently
outputs the ground-truth next token. We find consistently that 75-80% of sequences with lengths
100-7k tokens rely on at most 32-96 last tokens, supporting our hypothesis. See Fig. 2.

Practical long-context detection. We develop a practical variant of MCL, the Distributionally
Aware Minimum Context Length (DaMCL), that does not require ground-truth knowledge and
is compatible with sampling strategies beyond greedy decoding. We validate that DaMCL remains
consistent with the short-context dominance hypothesis. Importantly, we show that it enables
accurate classification of sequences as short-context (where a 32-token prefix suffices) or long-context
(requiring longer context). Since detection operates without ground-truth information, it is practical
for inference-time applications.

Post-hoc short-context dominance correction. With a long-context detector at hand, we finally test
a hypothesis that short-context dominance induces a corresponding bias in LLMs themselves: Since
sequences predominantly require only short context, models are implicitly trained on distributions
heavily skewed toward local dependencies, biasing them toward common completions and filler
words predictable from short local context, hurting prediction for long-context sequences (Sharma
et al., 2023; Malkin et al., 2022; Duh et al., 2024). We validate such a short-context bias by applying
TaBoo (Targeted Boosting ), an intuitive decoding algorithm that counteracts the skew: for sequences
that we detect as being long-context, TaBoo identifies and boosts tokens that are long-context-relevant.
On Q&A datasets with inherent long-context dependencies, TaBoo consistently outperforms vanilla
nucleus sampling and competitive logit-adjustment methods across model architectures.
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2 RELATED WORK

We summarize the most closely related works below and defer detailed discussion to Appx. B.

Long context utilization analysis. Prior studies demonstrate that LMs often underutilize available
context (Khandelwal et al., 2018; Sun et al., 2021; Liu et al., 2023). These findings have inspired
algorithmic interventions at both system and data levels (Zhang et al., 2024; Borgeaud et al., 2022;
Izacard et al., 2022; Chen et al., 2025; Chuang et al., 2025). A more closely related recent study
by Fang et al. (2025) provides methodology for detecting tokens with long context relevance and
emphasizing them upon evaluation and fine-tuning. Our work differs by providing systematic
quantification of minimal context requirements from the perspective of natural language properties
themselves, introducing practical detection methods that operate without ground-truth tokens (a key
distinction to Fang et al. (2025)), and demonstrating targeted inference-time interventions.

Contrastive decoding. Several inference-time methods address hallucination in long-context genera-
tion through contrastive approaches (Li et al., 2023; Zhao et al., 2024; Liu et al., 2021). Building on
(Li et al., 2016; Brown et al., 2020), Malkin et al. (2022); Duh et al. (2024) reweight distributions
by contrasting long vs. short contexts. CAD (Duh et al., 2024) is most closely related to our TaBoo
algorithm, but differs fundamentally in both motivation and implementation. While CAD uniformly
adjusts output probabilities for all sequences and tokens through contrastive considerations, our
algorithm stems from the short-context dominance hypothesis and applies targeted adjustments
to long-context sequences and their long-range-relevant tokens. van der Poel et al. (2022) apply
entropy-based selection for contrastive decoding, but their method differs again in both theoretical
motivation and technical implementation. Beyond distinctions specific to TaBoo, we systemati-
cally study minimal context length requirements in natural language and our long-context detection
methods could apply beyond inference-time correction.

n-gram models. Recent work has revisited n-gram models as complements to neural language models
(Li et al., 2022; Liu et al., 2025; Nguyen, 2024). The success of such inherently short-range models
(even Liu et al. (2025)’s Infini-gram typically captures at most 32-token dependencies) provides
indirect evidence toward short-context dominance in natural language. Our systematic quantification
of minimal context requirements offers a principled explanation of this, supporting the broader thesis
that majority of language understanding tasks require primarily local information.

3 LEAST CONTEXT FOR PREDICTION

In this section, we answer the following question: For a given randomly sampled context and
next-token, what is the minimum sub-context needed to predict the actual next token correctly?

3.1 MINIMAL CONTEXT LENGTH

We isolate sequences s for which the LLM, using greedy decoding, correctly and confidently predicts
the actual next token t in the corpus. By focusing on these high-quality predictions, we approximate
using the LLM as a statistical oracle to study context dependency. We define MCL as follows.
Definition 1. The Minimal Context Length (MCL) of sequence s given its next token t is the length ℓ
of the shortest prefix s[−ℓ:] so that the model output given the prefix is correct and confident. Formally,

MCL (s|t) := argminl∈|s|
{
l | Top1(s[−l:]) = t, ∆Conf(s[−l:]) ≥ δ

}
(1)

Here, s[−ℓ:] denotes the prefix of the last ℓ tokens of sequence s of length |s|; Top1(·) returns the
token with highest model output probability given the input sequence; and ∆Conf(·) returns the
gap in probability between the top-ranked and second-best token, which must exceed confidence
threshold δ ∈ [0, 1]. For concreteness in our experiments, we set δ = 0.2 (see Appx. C.1 for ablation).
By definition, a larger MCL implies that the model requires information from earlier in the context to
predict the next token correctly, while smaller MCL indicates greater reliance on local context.

3.2 EXPERIMENTAL SETUP

Datasets. We experiment on the following natural-language documents. Short documents: Reddit
Writing Prompts (Fan et al., 2018), CNN/DailyMail News Articles (Hermann et al., 2015; Nallapati
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et al., 2016) and Wikipedia articles from WikiText-103 (Merity et al., 2016). Long documents: U.S.
Government Reports from GovReport (Huang et al., 2021), Meeting Transcripts from QMSum Zhong
et al. (2021) and story Book Chapters BookSum (Kryściński et al., 2022). These appear in the
LongBench and LongEval (Bai et al., 2024; Krishna et al., 2023) benchmarks and are believed to have
inherent long-context qualities. We further experiment with documents of different languages using
(Schwenk et al., 2019). Datasets are deliberately chosen for their natural-language nature and general
domain coverage, avoiding specialized formats (mathematics/code), which may exhibit different
context dependencies. We leave such extensions to future work.

LLM Oracles. We evaluate three open-weight models: LLaMA-3-8B (Grattafiori et al., 2024),
Mistral-7B-Instruct (v0.2) (Jiang et al., 2023) and Qwen2-7B (Yang et al., 2024). We assume that
these models are sufficiently capable to exhibit reliable performance on next-token prediction and
question answering tasks. Recall also that we isolate sequences that the models confidently predict
the next token. All experiments are performed on a V100 Nvidia GPU with 32GB of memory.

Choice of sequences. We form sequences s by parsing documents from the datasets. For short
documents we sample 100 unique documents of length at least 1k and only keep their first 1k
tokens. For long documents we sample documents of lengths n ∈ [6, 7]k, in order to focus our
analysis on long-context inputs. We sample 100 sequences s and their ground-truth next-token t
from each document. We filter for sequences with correct and confident predictions. We also make
sure to avoid biases toward either shorter or longer seqeunces. Concretely, for our 1k token length
windows (0− 1k for regular documents and 6− 7k for long context data), we ensure to sample the
same number of sequences from sizes [32, 100], [100, 200], · · · , [900, 1000]. Overall, this yields 10k
unique sequences (100 sequences × 100 documents) and their respective next tokens for each dataset.

MCL Algorithm. To determine the MCL as per Defn. 1, we evaluate a model’s predictions using
increasing prefix sizes l ∈ {32, 48, 64, . . . , |s|}, starting from 32 tokens and incrementing by 16. For
the longer documents, we start from 32 and increment by 64. Starting from 32 tokens is motivated by
prior work suggesting this length captures local context beyond classical n-gram statistics (Malkin
et al., 2022; Liu et al., 2025; Fang et al., 2025). For each window size, we evaluate the model’s output
distribution and stop once it confidently predicts the ground-truth next token. In practice, we provide
the full input to preserve positional encoding and simulate truncated contexts via attention masking.

3.3 RESULTS AND DISCUSSION

Fig. 2 shows that the distribution of MCL (s|t) as defined in Equation 1 is highly skewed (note the
histogram y-axis in log scale), indicating that the model requires only the last 32− 96 tokens for the
majority of contexts (∼ 80–90%) to confidently predict the next token (MCL (s|t) ≤ 32 or 96). This
observation formally confirms that for majority of queries, the LLM only needs highly localized
information from the context to correctly and confidently predict the token.

To quantify short-context reliance at finer granularity, we examine the power-law exponent b̂ by
fitting y = a ·x−b in log-log space. For shorter documents, we observe values of b̂ ∈ [−2.5,−2], and
for longer documents, b̂ falls in the range [−2,−1.5]. Both ranges indicate strong power-law decay,
demonstrating short-context sufficiency even in inherently long-context datasets such as Government
Reports, Meeting Transcripts, and Book Chapters. We further validate these findings across linguistic
and domain variations through experiments detailed in Appx. C.2. Table 3 demonstrates that this
pattern holds consistently: Short-context dominance persists across our experimental setups.

Validating the short-context dominance hypothesis carries implications for both pretraining and
evaluation: Since most predictions require only highly localized information, then standard training
objectives and perplexity-based evaluations are inherently skewed toward short-range dependencies,
potentially obscuring true progress on long-context reasoning. This helps explain prior findings that
only small fraction of tokens benefit from contexts larger than 2K (Sun et al., 2021). It also reinforces
recent critiques (Fang et al., 2025) that token-level perplexity is an insufficient metric for long-context
evaluation—even on datasets with genuine long context dependencies, such as Government Reports.

4 DISTRIBUTIONAL AWARENESS

MCL evaluates whether the ground-truth next token from the dataset can be predicted with a shorter
prefix. Intuitively, natural language often permits multiple valid next tokens, and models may
assign high probability to plausible alternatives that differ from the ground-truth token in the dataset.
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Figure 3: Distribution of DaMCL: DaMCL measurements for various sampling strategies and
relative thresholds. Results are shown separately for short- (top row) and long- (bottom row)
documents to highlight potential differences in behavior. While the overall trend resembles the heavy-
tailed decaying pattern observed in standard MCL (see Fig. 2), the choice of threshold influences
the outcome. Each subplot reflects results aggregated over all model–dataset combinations, as only
minor deviations were observed across different configurations under identical hyperparameters.

Definition 1 is also limited to greedy decoding, while popular natural language generation methods
often rely on sampling strategies that draw from multiple probable tokens (Holtzman et al., 2020;
Basu et al., 2021; Zhu et al., 2024). These considerations (see also Appx. D.1) motivate us to
introduce here a more flexible MCL formulation.

4.1 DISTRIBUTION AWARE MCL

Consider decoding strategy ϕ that modifies the model’s raw probability distribution. For example,
nucleus sampling Holtzman et al. (2020) selects a subset of tokens whose cumulative probability mass
reaches threshold p (e.g. p = 0.9), then produces a renormalized distribution pϕ(s) with support on
this subset and zero probability to tokens otherwise. More generally, our framework accommodates
any decoding strategy ϕ that produces a probability distribution pϕ(s). We introduce DaMCL to find
the smallest prefix s[−ℓ:] such that pϕ(s[−ℓ:]) is sufficiently similar to pϕ(s).

Definition 2. The Distribution-aware Minimal Context Length (DaMCL) of a sequence s, given
decoding strategy ϕ, a probability-similarity metricM, and a similarity threshold ϵ, is defined as
the length of the shortest prefix for which the decoding-based next-token distribution given the prefix
pϕ(s[−ℓ:]) lies within an ϵ-neighborhood of the full-context distribution pϕ(s). Formally, we define:

DaMCLMϕ (s, ϵ) := argminl∈|s|
{
l | M(pϕ(s[−l:]) ; pϕ(s)) ≤ ϵ

}
.

While this definition accommodates any distance metricM, we specifically use the Jensen-Shannon
Distance (JSD) throughout our experiments. For distributions p1,p2 in the |V|-dimensional simplex,

JSD is defined as JSD(p1 ; p2) :=
√

1
2KL(p1∥q) + 1

2KL(p2∥q), where q := 1
2 (p1 + p2), and

KL(p1∥p2) :=
∑

t∈V [p1]t log
[p1]t
[p2]t

is the Kullback-Leibler divergence. We choose JSD because it
is a proper distance metric satisfying the triangle inequality and is widely employed in knowledge
distillation Gu et al. (2024) and language model evaluation Ji et al. (2023a). The above definition of
DaMCL (1) relies on measuring the difference between distributions as opposed to a single token,
and, (2) does not require ground-truth information regarding the actual next token of sequence s.

4.2 EXPERIMENTAL SETUP

DaMCL evaluation. We evaluate DaMCL over several decoding strategies: Top-K sampling
(K=1 for greedy) with K ∈ [10] (Radford et al., 2019; Fan et al., 2018), nucleus sampling with
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p=0.9 (Holtzman et al., 2020), and adaptive sampling with ϵ=0.001 (Zhu et al., 2024). We evaluate
two threshold values JSD ≤ 0.1 and JSD ≤ 0.2 to study the effect of varying similarity criteria.

Figure 4: DaMCL distribution for nucleus
sampling with fixed sub-context increments.
Still heavily biased towards short context.

Lower thresholds correspond to stricter conditions
for accepting a local prefix as equivalent to the full
context. Complementary to the setup of Sec. 3.3, we
use lengths ℓ of prefixes based on percentiles of the
full sequence (specifically, the last 10% to 100%)
rather than fixed-length truncation. The length |s| of
the full sequences is restricted to [6, 7]k for long docs
and [200, 1000] otherwise.

4.3 RESULTS AND DISCUSSION

To begin with, Fig. 3 for JSD ≤ 0.2 reveals a similar
bias toward short context as with MCL. Yet, note that
the drop in DaMCL is not as dramatic as observed
when using MCL suggesting that, from a distributional standpoint, larger portions of context are
required to ensure similarity compared to the ground-truth-token-based MCL.

When enforcing stricter similarity requirements (JSD ≤ 0.1) we find the distribution becomes
flatter and even experiences a U-shaped structure. This suggests that a larger subset of tokens either
resolve with short contexts or require nearly the full input to reach distributional convergence. We
further analyze this in Appx. D.3 and discover that this bimodality is mainly attributed to the shorter
sequences. Indeed, we find that the long documents, for which all sequences have more than 6k
tokens, do not experience the bimodality to the same degree.

Further, while all decoding strategies show a similar long-tailed behavior for JSD ≤ 0.2, for the more
strict conditions their DaMCL flatness differs. While top-1 sampling continues to exhibit standard
decay across settings, broader sampling methods such as nucleus, top-5, top-10, and adaptive sampling
increasingly lead to flatter distribution. As these methods spread probability mass across a wider
support set, the resulting distributions become smoother and more diffuse, making convergence under
tight JSD thresholds more difficult.

For completeness, we also provide results for fixed sub-context lengths in Fig. 4, where we use fixed
increments of 50 (for efficiency). These results suggest that short context bias still remains even
when using distribution shift as the metric for detecting minimal context length, even if the severity is
somewhat reduced compared to greedy decoding from MCL. Further results are in Appx. D.3.

5 LONG-CONTEXT SEQUENCE DETECTION

We have seen that for the majority of sequences a valid next-token can be generated with access to
only a short local prefix. Specifically, in Sec. 4, to avoid the need for knowing the actual next-token of
a sequence, we introduced the idea of quantifying whether a prefix is a good proxy of the full-context
by evaluating the JSD of the respective model output probabilities. Here, we build on these insights to
develop a long-context detector that can distinguish between short-context sequences, where a short
prefix of fixed length suffices, and long-context sequences, which require longer context information.

5.1 DISTRIBUTIONAL-AWARE LONG-CONTEXT SEQUENCE DETECTION

To develop our long-context detector, we first define the following metric.

Definition 3. The Long-Short Distribution Shift (LSDS) of sequence s is the JSD between the
next-token distributions obtained with decoding strategy ϕ when given a short prefix of length 32
versus the full context. Formally, LSDS (s) = JSD(pϕ(s[−32:]),pϕ(s)) .

For concreteness, unless otherwise stated, we fix ϕ to nucleus sampling with parameter p = 0.9
(Holtzman et al., 2020). (Ablation results on different metrics and p values in Appx E.2.) Finally, we
fix the prefix length to 32 based on our findings in Sec . 3 and consistent with Liu et al. (2025).

Controlled validation. To demonstrate that LSDS can effectively detect long-context sequences,
we conduct a controlled needle-in-a-haystack experiment adapted from Kamradt (2023). We create
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short and long queries, such that only in the former the answer appears in the final 32 tokens; see
Appx. E.1.1 for details and example illustration. Figure 5 shows the resulting LSDS distributions for
Mistral-7B-Instruct (v0.2). We observe a clear separation between categories despite no ground-truth
next-token information: short-context sequences concentrate at low LSDS values (≤ 0.4), while
long-context sequences dominate high LSDS values (≥ 0.7). Similar patterns hold for LLaMA-3-
8B/Qwen2-7B (see Appx. E.1.1).

Figure 5: Distribution of LSDS (s) values for
short- and long-context sequences for Mistral-
7B-Instruct on controlled validation setup.

Long-context detector. Based on these findings, we
define our long-context detector as a simple threshold-
ing classifier: LSDS (s) ≷long

short τ where τ is a thresh-
old determined from validation data or prefixed. In
the following sections, we analyze the behavior of
the detector on natural text.

5.2 EVALUATION ON NATURAL TEXT

In natural text, determining the true context depen-
dency requires an oracle with access to the actual
next token. We employ two such oracles to establish
ground-truth short-context vs long-context labels for sequences. (1) MCL Oracle: For s with next-
token t, we classify s as long-context iff MCL (s|t) ≥ 32 (see Defn. 1). (2) LSD Oracle: Following
Fang et al. (2025), we classify s as long-context iff LSD(s|t) > 2 & LCL(s|t) ≥ −1 (details in
Appx. E.1.3 ).Both oracles require knowledge of ground-truth next token and thus cannot be deployed
at inference time. We show that LSDS-based classification agrees well with these oracles despite not
knowing the ground-truth.

Figure 6: Distribution of LSDS (s) for short-
and long-contexts on 2 GovReport (long
doc) and Reddit Writing Prompts (short doc),
pooled across three models. Illustrates a clear
distinction between long and short contexts.

Results. Figure 6 demonstrates strong agreement be-
tween LSDS and the LSD Oracle across Government
Reports and Reddit Writing Prompts datasets. Using
τ = 0.6, we find consistently 80 − 90% of oracle-
labeled long-context sequences being classified by
LSDS as long-context, while fewer than 5− 10% of
short-context sequences are mislabeled. This pattern
holds consistently across LLaMA-3-8B/Mistral-7B-
Instruct/Qwen-2-7B and both oracles (Appx. E.1),
verifying LSDS as a reliable proxy for short vs long
context detection.

Threshold robustness. Through extensive ablations
deferred to Appx. E.1, we find that threshold choices
are robust across models and datasets. While a fixed
threshold works well generally, task-specific tuning
can optimize precision-recall trade-offs.

Ablation on short-context length. We test prefixes-
lengths {8, 16, 32, 64} on Mistral-7B-Instruct-v0.2
(GovReport). Consistent with intuition, too short
prefixes (8, 16) lead to larger overlap between
short/long distributions, while our chosen values
(32, 64) show clearer separation with fewer false
positives. We also show good performance partic-
ularly with respect to consistency among datasets
when adaptively setting the context length to 0.1|s| . See Appx. E.3.

Computational overhead. LSDS requires one extra short forward plus JSD calculation beyond
normal generation. On Qwen2.5-1.5/7/14B, this adds 35–67 ms across sizes, which is negligible at
long contexts, e.g. ≈ 6− 8% at |s| = 6000. See Appx. E.4.
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6 LONG-CONTEXT TOKEN BOOSTING

Fewer exposures to long-context sequences may creates a potential bias toward completions that
follow from local context, overshadowing long-range dependencies. Can we identify tokens
in the vocabulary that are more relevant to full-context information rather than local context?

Figure 7: An example illustrating how a shift in the
model’s next token probabilities when given the long
vs short context could help us recognizing the more
relevant tokens. Here, boosting the probability of said
tokens leads to a more accurate next token distribution.

If so, we could favor generating such to-
kens when we detect a sequence requires
long-context reasoning (which, as shown in
the previous section, we can reliably iden-
tify). Here, we show this is possible and
evaluate our method on text-based ques-
tion answering, a standard benchmark for
assessing long-context reasoning capabili-
ties (Liu et al., 2023; Krishna et al., 2023;
Beltagy et al., 2020; Bai et al., 2024).

6.1 IDENTIFYING
LONG-CONTEXT-RELEVANT TOKENS

First, we show how to identify tokens that are more relevant to full-context information than to local
context. Consistent with our theme, the insight is that tokens requiring long-range dependencies
should exhibit larger probability increases when given access to full versus short context.

Definition 4. The Long-Short Probability Shift (LSPS) of a vocabulary token t given sequence s is
defined as the change in the assigned probability moving from short to full context under decoding ϕ:

LSPS (t|s) =
[
pϕ(s)

]
t
−
[
pϕ(s[−32:])

]
t
.

Figure 8: An example showing how a shift in the
long- vs. short-context next-token distribution can
signal most long-context-relevant tokens.

Here, for probability vector p, [p]t denotes its
t-th entry. As in the previous section, we fix the
prefix length to 32 and, unless otherwise stated,
for ϕ, we use nucleus sampling (p = 0.9).

Our hypothesis is that tokens genuinely requir-
ing long-context information will show positive
LSPS values, as their relevance becomes appar-
ent only with access to the complete context.
Conversely, tokens predictable from local con-
text should show small or (even) negative shifts.

Validation on NarrativeQA. We validate this
hypothesis using NarrativeQA (Kočiský et al.,
2018). We focus on QA pairs where answers are
1–2 words (typically character names or locations), filtering out cases resolvable without the story
context. Given a context with the story, question, and partial answer, we classify the ground-truth
next token as an Answer Token and all other vocabulary tokens as Non-Answer Tokens. Figure 8
shows LSPS distributions for both categories using LLaMA-3-8B.

Observe the clear separation: Answer tokens exhibit significantly higher LSPS values, confirming
that long-context relevant tokens can be identified through their probability shifts. Concretely, using
threshold ϵ ∈ [0.05, 0.07], we capture over 50% of answer tokens while maintaining low false positive
rates (< 5%) on non-answer tokens. Our objective is capturing long-context-relevant tokens while
avoiding irrelevant ones, which this approach achieves effectively. In Appx. F, we compare our
method to a modified version that uses log-probability ratio (rather than difference) common in prior
work (Duh et al., 2024; Malkin et al., 2022; van der Poel et al., 2022; Fang et al., 2025), demonstrating
the superior stability and precision of our difference-based approach.

6.2 TARGETED LONG-CONTEXT TOKEN BOOSTING

Knowing how to (1) detect long-context sequences using LSDS and (2) identify long-context relevant
tokens via LSPS, we now combine these tools to improve Q&A performance. The core insight is to
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Table 1: F1, BLEU, and ROUGE-L (Average over all generations and Best-per-example in parenthe-
ses). Bold = best Average, Underline = best Best-per-example. We omit results for LLaMA-2-7B on
MultifieldQA-en because its context window (4,096 tokens) is insufficient to process the long input
passages in this dataset. We include the standard errors (SE) in Appx. F Table 9 for reference.

Model Method NarrativeQA HotpotQA MultifieldQA-en

F1(↑) BLEU(↑) ROUGE-L(↑) F1(↑) BLEU(↑) ROUGE-L(↑) F1(↑) BLEU(↑) ROUGE-L(↑)

LLaMA-2-7B
Vanilla 16.1 (36.8) 2.9 (8.3) 22.4 (46.2) 25.2 (51.8) 7.7 (17.0) 32.5 (61.0) NA NA NA
CAD 22.5 (43.3) 4.3 (9.7) 30.7 (51.6) 28.3 (53.1) 8.5 (16.7) 34.3 (59.8) NA NA NA
TaBoo 24.1 (44.9) 4.9 (10.9) 31.7 (53.5) 32.8 (56.4) 10.3 (18.7) 39.6 (63.3) NA NA NA

LLaMA-3-8B
Vanilla 24.0 (48.8) 4.9 (12.1) 32.7 (57.9) 29.2 (56.3) 9.0 (18.8) 41.6 (68.6) 19.9 (35.7) 7.7 (16.6) 24.0 (41.1)
CAD 35.4 (55.3) 7.3 (13.5) 49.4 (63.5) 27.7 (46.6) 8.5 (14.7) 46.9 (65.3) 18.8 (33.8) 6.4 (13.8) 26.2 (43.1)
TaBoo 32.0 (53.5) 7.2 (14.7) 42.3 (62.8) 33.1 (55.6) 10.6 (19.1) 48.1 (69.6) 21.9 (35.4) 9.1 (18.2) 28.2 (44.0)

Mistral-7B-v0.1
Vanilla 25.7 (49.7) 5.1 (12.2) 33.7 (58.4) 33.0 (60.1) 10.1 (19.8) 43.1 (69.2) 20.6 (33.6) 6.9 (14.2) 26.0 (41.3)
CAD 34.3 (53.4) 7.1 (13.6) 43.1 (62.7) 35.9 (58.7) 11.0 (18.8) 41.6 (64.3) 18.8 (32.7) 5.9 (12.8) 24.9 (41.8)
TaBoo 35.3 (55.2) 7.7 (15.0) 44.4 (64.6) 37.1 (59.3) 11.7 (19.7) 46.3 (67.5) 23.0 (37.0) 8.6 (16.3) 29.5 (45.3)

Qwen2-7B
Vanilla 33.6 (53.1) 8.1 (14.8) 42.4 (62.9) 59.4 (80.5) 20.1 (29.0) 62.9 (82.7) 31.1 (44.9) 15.1 (25.9) 41.3 (59.7)
CAD 36.6 (50.2) 8.8 (13.6) 45.3 (59.9) 59.3 (75.6) 20.5 (27.4) 62.2 (78.1) 30.6 (43.8) 14.0 (23.5) 40.0 (55.3)
TaBoo 38.5 (53.6) 9.7 (15.4) 48.2 (63.6) 63.2 (79.2) 21.7 (28.4) 66.6 (81.6) 32.3 (45.3) 15.3 (4.7) 42.3 (58.8)

promote those identified long-context relevant tokens, downplaying biases from the short context.
Simultaneously, this can help downplaying tokens that are assigned high probability as an artifact of
noise (Sharma et al., 2023), biases rooted in training data due to potential word/token imbalances
(Razeghi et al., 2022; Kassner et al., 2020) and hallucination (Ji et al., 2023b).

TaBoo (Targetted) Boosting. Our algorithm TaBoo modifies the probability distribution as per the
above intuition. Algorithm 1 details the complete procedure: (1) Detect long-context sequences using
LSDS with threshold γ, (2) Identify long-context relevant tokens where LSPS ≥ ϵ, and (3) boost their
probabilities by factor λ before renormalization and nucleus sampling. See Algorithm 9 in Appx. F.

Experimental setup. We evaluate on NarrativeQA (Kočiský et al., 2018), HotpotQA (Yang et al.,
2018), and MultiFieldQA (Bai et al., 2024) from the LonBench dataset. Focusing on stories with ≥
1000 tokens to emphasize long-context dependencies, we sample 3,000 examples from NarrativeQA
and HotpotQA while using the full 150 examples from MultiFieldQA. We set γ = 0.12251 and
ϵ = 0.05. We test on LLaMA-2-7B, LLaMA-3-8B, Mistral-7B, and Qwen-2-7B. For each question-
text pair, we generate 5 answers using nucleus sampling and report both average and best-of-5
F1/BLEU/ROUGE scores. We compare our TaBoo approach against two baselines: (1) vanilla
nucleus sampling, and (2) Context Aware Decoding (CAD) (Malkin et al., 2022; Duh et al., 2024)
with α = 0.5, which applies probability adjustments to all generations and their tokens, unlike our
targeted boosting of only long-context relevant tokens in detected long-context sequences.

Results. Table 1 shows TaBoo consistently outperforms vanilla nucleus sampling across all models
and datasets. Compared to CAD, TaBoo achieves superior F1 performance on 11 out of 12 dataset-
model combinations, losing only on NarrativeQA with LLaMA-3-8B (although not wrt BLEU score).
The improvements generalize across different model architectures and scale to higher-performing
base models like Qwen2-7B. Best-per-example scores also favor TaBoo, with improvements over
vanilla ranging from 0.5-8.1 F1 points and generally outperforming CAD as well. Additional results
in Appx. F.1, F.3 present ablations on hyperparameter selection (γ, ϵ, λ). Experiments for short
summarization on XSUM (Narayan et al., 2018) are also deferred to Tab. 7 in the appendix, where we
also discuss the computational overhead of LSDS (thus, also TaBoo) are minimal for long sequences.

7 OUTLOOK
Our work provides a systematic framework for understanding context dependency in language models,
with implications for inference efficiency in tasks like QA through principled post-hoc decoding.
Specifically, our ability to detect long-context requirements without ground-truth tokens opens
opportunities for context-aware generation methods, but also for more targeted evaluation of long-
context capabilities and improved training approaches (e.g., following Fang et al. (2025)). Beyond
immediate applications, our findings reveal the short-context dominance hypothesis as an inherent
property of natural language sequences, with potential broader implications for understanding how
language models process and generate text, such as providing alternative motivations for recently
proposed logit-adjusted decoding modifications in the hallucination literature Duh et al. (2024).

1The boosting threshold γ = 0.1225 is intentionally more liberal than the classification threshold τ = 0.6 used
in Sec. 5. While τ was set conservatively for clear evaluation of long vs. short context, γ captures borderline
cases where targeted boosting may still be beneficial.
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8 REPRODUCIBILITY STATEMENT

Following reproducibility requirements, we have ensured to include all detail regarding experimental
setup in the text. Regarding the implementation of comparable methods or baseline, we have followed
the source reference and common practice to the best of our abilities. Additionally, we have python
files and notebooks to recreate versions of our experiments on MCL, long-context detection and the
implementation of our TaBoo algorithm.
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A SUMMARY OF PAPER’S NOTATIONS

Table 2 provides a summary of the notation used in this paper.

Symbol Description

a / a Scalar / vector (boldface)
[i] i-th entry of vector
[i : j] Index set {i, i+ 1, . . . , j}
[−l :] Suffix of of length l
V Vocabulary of tokens, V = |V|
s = [t1, . . . , tn] Tokenized document of length n
s[i] Prefix of s of length i
∆n Probability simplex in Rn

Topk(·) Indices of k largest entries of a vector;
πθ(s) LM distribution over V given context s
∆Conf(s) Confidence = gap between top-1 and top-2 probabilities
LSDS(s) Long–short distribution shift (JSD of short vs full context)
LSPS(t|s) Long–short probability shift for token t in sequence s

Table 2: Notation used throughout the paper.

B DISCUSSION AND RELATED WORK

Pursuit of Long Context: Capturing dependencies that extend beyond a few tokens has been a
long-standing difficulty in language modeling. Early statistical and neural models either truncated
context to short n-grams or attempted to maintain memory through recurrence, but both approaches
faced limitations with sparsity or vanishing gradients (Chen & Goodman, 1996; Bengio et al., 2003;
Hochreiter & Schmidhuber, 1997; Cho et al., 2014). The Transformer architecture (Vaswani et al.,
2017) marked a turning point, with self-attention providing a scalable mechanism for integrating
information from across the entire input. Contemporary open-access models such as LLaMA 3
(Grattafiori et al., 2024), Mistral (Jiang et al., 2023), Qwen2 (Yang et al., 2024), and Gemma (Team
et al., 2024) support context lengths from 8K to 128K tokens, large enough to encode entire novels
in a single pass. To make such extensions feasible, architectural innovations like rotary position
encodings (RoPE) (Su et al., 2021), attention linear biases (ALiBi) (Press et al., 2021), and position
interpolation (Chen et al., 2023) enable models to extrapolate beyond their training horizon, while
retrieval-augmented designs (Borgeaud et al., 2022; Izacard et al., 2022; Wang et al., 2023) surface
or cache relevant information as an alternative to enlarging the raw attention window. Yet, greater
architectural capacity does not imply that models make effective use of long-range context at inference
time—the focus of our analysis.

Context Utilization: Despite larger context windows, studies show that LMs often do not utilize
long-range information. Khandelwal et al. (2018) characterize predictions as “sharp nearby, fuzzy far
away,” with sensitivity concentrated in the most recent span, while Sun et al. (2021) demonstrate that
only a small fraction of tokens benefit from context beyond the first few thousand tokens. Such works
emphasize the inherent recency bias in language models. Complementing these results, Liu et al.
(2023) document a strong positional bias—models attend to evidence at the edges of long prompts
while neglecting the middle, a challenge further analyzed by Zhang et al. (2024), who trace the
effect to rotary positional encodings and propose positional modifications to resolve it. To mitigate
these limitations, document retrieval approaches have been proposed to surface relevant passages at
inference time (Borgeaud et al., 2022; Izacard et al., 2022), while recent work emphasizes the role of
training data quality in enabling long-context utilization. In particular, Chen et al. (2025) introduce
an attention-based dependency measurement framework (LADM) to identify long documents with
strong internal dependencies, showing that selecting such high-quality data for continual pretraining
substantially improves long-context performance. Beyond interventions at the system and data level,
attribution-based methods such as Chuang et al. (2025) directly test the necessity and sufficiency of
context spans, offering a finer-grained perspective on how LLMs actually use long inputs. Similarly,
we study the utilization of context from a minimal required sub-context viewpoint, showing that
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majority of next token queries utilize very local information. Additionally, we provide methodology
to identify the minimal required sub context and while distinguishing between long-short context
queries.

Contrastive Decoding: Beyond architectural and data-level interventions, several ad hoc inference-
time methods aim to improve token generation. Early work encouraged generation that depends
more strongly on the given context rather than defaulting to frequent or generic outputs. (Li et al.,
2016) propose a mutual-information–based objective for dialogue generation to discourage generic
responses, while (Brown et al., 2020) address this issue in multiple-choice QA by normalizing
candidate likelihoods against unconditional probabilities, thereby encouraging context-dependent
answers. Malkin et al. (2022) introduced coherence boosting, a general inference-time method
that reweights the next-token distribution to favor predictions supported by the full long context by
explicitly contrasting it against the distribution induced by a shortened context. van der Poel et al.
(2022) proposed an entropy-aware decoding strategy for summarization, where the scoring function
switches to pointwise mutual information between the source document and the next token when
model uncertainty is high, thereby discouraging hallucinations and reducing the tendency to select
high-frequency but unsupported tokens. Similar to Malkin et al. (2022) but operating on a logit level,
Duh et al. (2024) introduce Context-Aware Decoding (CAD), an inference-time method designed to
reduce hallucinations by explicitly amplifying the difference between a model’s output probabilities
with and without the provided context. Much of this line of research grows out of the broader family
of contrastive decoding methods (Li et al., 2023; Zhao et al., 2024; Liu et al., 2021) which are
designed for ad hoc modification toe next token distribution to improve language generation. For our
case, instead of focusing on performance we first provide an objective study of short context bias of
language and use our findings to design intuitive and explainable algorithms to to identify long long
contexts, relevant tokens and how to combine this knowledge to help improve generation.

n-gram and its short context relevance: Recent work has revisited n-gram models as complements
or interpretive tools for neural language models. Li et al. (2022) showed that residual learning with a
small n-gram LM can regularize neural text generation and reduce hallucination. More recently, Liu
et al. (2025) introduced Infini-gram, which scales n-gram models to trillions of tokens and supports
unbounded context length using suffix arrays, enabling both strong next-token prediction and new
diagnostic analyses of neural LMs. In parallel, Nguyen (2024) argue for understanding Transformers
through the lens of n-grams, showing that simple n-gram rulesets can approximate a majority of
model predictions (e.g., covering 68–79% of top-1 predictions across benchmarks). Given that
n-grams are inherently short-range models—even Infini-gram typically captures at most 32-token
dependencies—the fact that they achieve performance comparable to Transformers on standard text
suggests a structural bias in language toward short-context sufficiency, which allows such models to
achieve moderate success despite their limited horizon. Our observations regarding the overwhelming
prevalence of inherently short contexts in natural language can help explain the reason behind the
success of such methods which rely on local information using n-grams for generation.

Long Context Evaluation: Much of the evaluation of a model’s contextual understanding has
focused on tasks such as question answering, retrieval, and needle-in-the-haystack probing, evaluated
on datasets such as NarrativeQA (Kočiský et al., 2018), TriviaQA (Joshi et al., 2017), QuALITY
(Pang et al., 2022), and LongBench (Bai et al., 2024). While these benchmarks test a model’s ability
to extract specific information from distant context, they differ from standard language modeling and
tend to be highly task-specific. A recent study by Fang et al. (2025) proposes a method for identifying
tokens with long-context dependencies and encourages training-time metrics that distinguish such
tokens. While their work focuses on a binary classification of long- vs. short-context tokens, we
adopt a more fine-grained perspective: treating the language model as a probabilistic oracle and
estimating the minimal context required for each next-token prediction in natural text. Additionally,
we provide methods for detection of long-context and tokens with long-context relevance without
requiring the actual ground truth next token, making our methods applicable during inference.

Decoding Strategies: Given our assumption that language models serve as strong proxies for
language understanding, it is important to account for the decoding strategy used during inference.
A growing body of research has shown that different sampling methods—such as greedy decoding,
top-k sampling (Radford et al., 2019; Fan et al., 2018), nucleus (p) sampling (Holtzman et al., 2020),
and adaptive techniques (Basu et al., 2021; Zhu et al., 2024)—can substantially influence output
diversity, factuality, and calibration. Greedy decoding in particular has been shown to produce
degenerate or overly deterministic outputs, while adaptive and dynamic approaches aim to adjust
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sampling entropy and generate a high-quality, contextually valid subset of tokens (Holtzman et al.,
2020; Zhu et al., 2024; Basu et al., 2021). When treating the language model as a statistical oracle
for analyzing context usage, it is essential to consider how decoding strategy influences conclusions
about effective context length. This perspective may help improve the practical utility of methods
such as Fang et al. (2025), which focus primarily on a single sample from the next-token distribution
to classify tokens by their context length requirements. Accordingly, we provide a dedicated analysis
of how decoding strategies impact context dependence in next-token prediction and its relation to
short-long context detection.

C ADDITIONAL RESULTS ON MCL

C.1 ABLATION RESULTS: MODEL SIZE AND ONFIDENCE THRESHOLD δ

We perform ablation experiments on MCL results regarding model size and the impact of confidence
threshold δ in Fig. 9 and Fig. 10 respectively. Observations further confirm that the short-context
dominance hypothesis appears irrespective of experimental setup.

Figure 9: Impact of model size: Similar setup to Fig. 2 but Llama models withe different sizes. We
can see that the distribution of MCL behavior doesn’t change across different models sizes of 1,3 and
7 billion parameter sizes.

Figure 10: Impact of confidence threshold δ: Similar setup to Fig. 2 with Llama-3 8B running
MCL experiments with different values of δ ∈ {0.05, 0.1, 0.2}. Results suggest that the observation
is confidence threshold of the MCL value.

C.2 LANGUAGE AND DOMAIN RESULTS

We conduct two sets of generalization experiments to confirm the robustness of the short-context
dominance. First, we examine the language effect by running inference on Wikipedia article transla-
tions in Arabic, Chinese, French, German, Korean, Russian, and Thai, using the Qwen2-7B model
(Yang et al., 2024). These texts are sampled from the Wikimedia dataset (Schwenk et al., 2019), and
follow the same selection and truncation procedure as our English WikiText documents. Results in
Table 3 and Fig. 11 confirm that the reliance on short context is preserved across languages, with
similarly highly skewed token count distributions and consistent exponential fits.
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Figure 11: Distribution of MCL on Different Languages: Similar setup to Fig. 2 but performed
over a set of articles from Wikipedia and their respective translations into different languages. We see
that the same trend appears irrespective of target language. This analysis was conducted on Qwen-2
model only.

Figure 12: Distribution of MCL on Math And Medical Datasets: This figure shows the distribu-
tion of MCL values over two specialized domains: medical (CCDV PubMed Summarization) and
mathematical (Open Web Math), with a similar setup as Fig. 2. The MCL distribution consistently
follows the same trend across both domains and all three models. This suggests that the observed
phenomenon is robust to changes in domain knowledge.

Table 3: Estimated power-law ex-
ponents (b̂) for MCL distributions
on the Wikimedia dataset using
Qwen.

Language b̂

English −2.63
Arabic −2.41
French −2.33
German −2.36
Chinese −2.35
Russian −2.41
Korean −2.32
Thai −2.30

Second, to evaluate domain knowledge effects, we test on two
specialized datasets: CCDV PubMed Summarization (Cohan
et al., 2018) for biomedical abstracts, and Open Web Math
(Paster et al., 2023)for mathematical content, across all 3 mod-
els: LLaMA-3-8B (Grattafiori et al., 2024), Mistral-7B-Instruct
(v0.1) (Jiang et al., 2023) and Qwen2-7B (Yang et al., 2024).
As shown in Fig. 12, the short-context dominance pattern re-
mains intact across both domains and models. This suggests
models’ reliance on local context persist even when dealing
with knowledge-intensive content.

D DAMCL

D.1 MOTIVATIONS ON DAMCL

In Sec. 3, we posed the question of determining the minimum subcontext prefix needed to predict
the next token in a given dataset. A key limitation of this formulation is that it is constrained by the
specific realization of the natural language distribution underlying that dataset.

Put simply, given a context, there are often multiple valid next tokens—valid in terms of the un-
derlying (but unknown) distribution of natural language. While we cannot access this true dis-
tribution, we have treated pretrained LLMs as statistical oracles. However, in defining MCL
in Definition 1, we constrain these oracles by evaluating them against only the actual next to-
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ken from the dataset. Furthermore, we rely solely on greedy decoding, which outputs a sin-
gle token, thereby underutilizing the model’s full predictive distribution as a language oracle.

Figure 13: An example illustrating the limita-
tions of relying on greedy sampling and the ac-
tual next token: the Top-1 prediction is a valid
response but does not match the ground-truth to-
ken. Metrics like MCL may overlook such cases,
misidentifying the minimal required context.

We summarize the issues as follows:

1. Even if the oracle’s top-1 prediction
does not match the next token in the
source text, i.e., Top1(s[−l:]) ̸= t, this
does not invalidate the model’s output
or imply a lack of contextual under-
standing. As shown in Fig. 13, the
model assigns high probability to sev-
eral plausible continuations, even if
the dataset token is not ranked first.
This suggests that relying solely on the
dataset token may mislead any context-
length detection method.

2. Using the Top-1 token from the sam-
pling distribution is not always a re-
liable way to evaluate next-token pre-
diction, as greedy decoding often re-
sults in low-quality or repetitive out-
puts (Holtzman et al., 2020). More recent sampling strategies instead aim to identify a set
of valid next tokens (Zhu et al., 2024; Zhou et al., 2025), shifting the focus away from
single-token probabilities toward broader support coverage.

These issues motivate the need for a broader definition of MCL—one that 1) relies on the model’s
own next-token distribution rather than the actual next token, and 2) accounts for the sampling
strategy used during inference. The goal of DaMCL is to mitigate these limitations and offer a
more faithful metric for contextual understanding.

D.2 ADDITIONAL METRICS FOR DAMCL

In addition the main JSD metric used in Sec. 4, we perform the same experiments with a number
of other common metrics used to represent similarity between sets and distributions. For the given
distributions P,Q ∈ ∆V in the |V|-dimensional simlex we use the following standard distributional
similarity metrics:

Total Variation Distance: TVD(P,Q) :=
1

2
∥P −Q∥1 ,

Kullback-Leibler Divergence: KL(P∥Q) :=
∑
v∈V

P (v) log
P (v)

Q(v)
.

These metrics are widely employed in applications such as knowledge distillation and in assessing
performance degradation of large language models under various conditions (Gu et al., 2024; Ji et al.,
2023a; Jia, 2024). Exploring alternative, less conventional metrics remains an avenue for future work.

Furthermore, we consider metrics which rely on the inclusions of tokens in the support set rather than
the probability distributions. To this end, we define define the Recall, Precision and F1 metric from
set P to set Q as:

Recall (P | Q) :=
|P ∩Q|
|Q|

∈ [0, 1] Prec (P | Q) :=
|P ∩Q|
|P |

∈ [0, 1] ,

F1 (P | Q) :=
2× Recall (P | Q)× Prec (P | Q)

Recall (P | Q) + Prec (P | Q)
∈ [0, 1] .

Recall measures the proportion of elements in set Q that are also present in set P , i.e., how much
of Q is recovered by P . Precision, on the other hand, quantifies the proportion of elements in P
that are relevant—those that also belong to Q. A Recall of 1 implies Q ⊆ A, meaning all elements
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Figure 14: Distribution of DaMCL: The distributionally-aware MCL is defined using a range of
metrics applied with relative thresholds. Results are presented separately for standard documents
(top row) and long-context documents (bottom row) to highlight potential differences in behavior.
While the overall trend resembles the exponentially decaying pattern observed in standard MCL (see
Fig. 2), the choice of metric and threshold clearly influences the outcome. Each subplot reflects
results aggregated over all model–dataset combinations, as only minor deviations were observed
across different configurations under identical hyperparameters.

of Q are captured by P . Conversely, a Precision of 1 implies P ⊆ Q, indicating that P contains
no extraneous elements outside of Q. The F1 score is defined as the harmonic mean of Recall and
Precision, providing a balanced measure that accounts for both. These definitions are standard in the
information-theoretic analysis of set similarity and coverage. For this set, we focus on the F1 score,
specifically calculating 1− F1 in order to match the preference for smaller values, similar to the JSD,
TVD and KL metrics.

In comparison to JSD, we observe that both TVD and KL exhibit similar bimodal distribution trends
under stricter threshold values. Moreover, neither metric shows substantially different behavior across
sampling strategies. In contrast, the 1− F1 metric, while following the same general trend, displays
several notable deviations. Specifically, the distributions tend to be more heavily biased toward
requiring longer subcontexts to meet threshold requirements. This effect is particularly pronounced in
smaller documents when using adaptive sampling, where DaMCL values skew more strongly toward
full-context reliance under stricter thresholds.

Table 4: MCL vs. DaMCL results for LLaMA-3. GovRe-
port is shown at 96 tokens, CNN and Wiki at 64 tokens.

Dataset MCL (%) DaMCL (%)
GovReport (≤ 96) 75.19 36.36
News Articles (≤ 64) 80.52 45.43
Wikipedia (≤ 64) 78.15 31.65

Our focus on JSD is motivated by
several desirable properties that make
it especially well-suited for DaMCL.
Notably, JSD is a proper distance met-
ric and satisfies the triangle inequal-
ity. Furthermore, as a smoothed and
symmetric variant of KL divergence,
JSD is generally more robust to noise
and less sensitive to zero-probability
events—properties that are particularly beneficial when working with LLM next-token distributions.
Nonetheless, we acknowledge that further exploration of alternative metrics may reveal additional
insights or complementary advantages. We leave this to future work.
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Figure 15: DaMCL with fixed sub-contexts: Similar to Fig. 4, but under difference decoding
methods.

Figure 16: DaMCL heatmap with fixed sub-contexts: Each row represents contexts of a certain
size and each column represents sub-contexts which were tested for JSD ≤ 0.2.

D.3 DAMCL WITH FIXED SUB-CONTEXT

In order to further analyze the behavioral change of DaMCL compared to MCL, where a larger
number of contexts rely on the full length, we perform a number of experiments and analysis using
fixed subcontext lengths. First note the results provided in Table 4 which indicate that compared to
MCL, a smaller portion of context queries can be resolved with the short sub-contexts.

Looking at Fig. 4 and its more complete counterpart Fig. 15 we still see the bias towards shorter
context but less than that of MCL. Once again for ease of computation, we change the sub-context
increments to 50 tokens instead of 32. Instead of looking at all contexts sizes at the same time, we
can analyze each context size group separately.

In Fig. 3, we can see that for longer context, very rarely does the the model require the full context
to have a close distribution in terms of JSD. Notably, for shorter contexts |s| ≤ 200, its much more
likely for the model to require the full context and this could be a reason behind our observation of
the bimodal DaMCL values on Fig. 14.

E LONG-CONTEXT SEQUENCE DETECTION

E.1 ADDITIONAL SETUPS AND ORACLES

Here, we provide further experiments with various setups and oracles that complement the results in
Section 5. These additional studies reinforce the effectiveness of Jensen–Shannon Distance (JSD) as
a robust detector of long-context dependence.

E.1.1 CONTROLLED VALIDATION EXPERIMENT ON LONGEVAL TASK
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Figure 17: DaMCL heatmap with fixed sub-contexts: JSD ≤ 0.1.

Figure 18: An example of the con-
trolled validation experiment setup on
the LongEval benchmark.

Using the LongEval benchmark (Dacheng Li* & Zhang,
2023), we construct prompts containing multiple register
lines, each with a line_id and <REGISTER_CONTENT>
value, where the model must identify specific content. We
create two types of queries with known ground-truth la-
bels: short-context queries where the answer (a line_id)
appears in the last 32 tokens, and long-context queries
where the answer (a <REGISTER_CONTENT>) requires
information from the full context. We conduct the exper-
iments on three models: LLaMA-3-8B (Grattafiori et al.,
2024), Mistral-7B-Instruct (v0.2) (Jiang et al., 2023), and
Qwen2-7B (Yang et al., 2024). As shown in Figure 20,
across all models, we observe the same distributional trend,
confirming the robustness of the results.

E.1.2 NEEDLE-IN-A-HAYSTACK EXPERIMENT ON GENERAL TEXT

We next adapt a needle-in-a-haystack (NIAH) style setup to general text. Following the classic
needle-in-a-haystack test by Kamradt (2023), given a natural context, we insert a needle statement
with a randomly generated 6-digit number: "The magic number is xxxxxx" at a specific position in
the text. At the end of the document, we append a query prompt: "The magic number mentioned
in the provided text is ", expecting the model to output the correct number from the needle. If the
needle statement is placed within the final 32 tokens, the answer is recoverable from the local suffix,
and we label the case as a short context. Otherwise, when the needle is inserted far away, answering
requires long-range recall, and we label it as a long context. We only retain cases where the model
outputs the correct number, ensuring the prediction truly relies on the inserted statement rather than
hallucination.

Figure 19 presents the JSD distributions under this setup, showing that long-context tokens yield
consistently higher JSD values compared to short-context tokens, validating JSD as a detector in this
natural-text scenario.

E.1.3 PRIOR-WORK ORACLE (LSD/LCL) ON GENERAL TEXT

As described in Section 5, we evaluate a prior-work oracle detector that follows the log-probability
intervention from Fang et al. (2025). The oracle Long-Short Difference (LSD) and Long-Context
Likelihood (LCL) are defined as follows:
For sequence s with corpus next-token t, and a language model Pθ,

LSDθ(s|t) = logPθ(t | s) − logPθ(t | s[−32:]) (2)

and
LCLθ(s|t) = logPθ(t | s) (3)
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Figure 19: NIAH-based experiment on General text result: LSDS distribution across three models
(LLaMA, Mistral, Qwen) on long-context dataset (GovReport) and standard-length context (Reddit),
each with 10000 samples. Each subplot shows the proportion of tokens falling into fixed JSD bins.

Figure 20: Controlled validation experiment on LongEval task result: LSDS distribution across
three models (LLaMA, Mistral, Qwen) on the LongEval synthetic benchmark. Each subplot shows
the proportion of tokens falling into fixed JSD bins.

Figure 21 shows the per-model distributions of LSDS for LLaMA-3-8B, Mistral-7B-Instruct, and
Qwen2-7B on the same data used in the main body. The per-model trends mirror the pooled result:
using a threshold of τ = 0.6, we find consistently that 80 − 90% of oracle-labeled long-context
sequences achieve LSDS (s) ≥ 0.6, while fewer than 5 − 10% of short-context sequences exceed
this threshold.

E.1.4 MCL ORACLE ON GENERAL TEXT

Additionally, we evaluate our MCL Oracle on general text. Following the definition and computation
procedure in Section 3, we compute the MCL of each given context. Tokens with small MCL values
(≤ 32) are classified as short-context, while those requiring larger suffixes (> 32) are classified as
long-context. A limitation of this approach is that the MCL framework does not always yield a finite
value, leaving some contexts unlabeled.

We then compare the JSD distributions of tokens across the two categories. Figure 22 shows that the
detected trend is still preserved.

E.2 ABLATION ON NUCLEUS SAMPLING PARAMETER (p)

In this section, we examine how varying the nucleus sampling parameter p influence our LSDS
and the resulting JSD threshold. We report results for 4 settings: no nucleus sampling, p = 0.95,
p = 0.90, and p = 0.80. We conduct the experiment with Mistral-7B-Instruct (v0.2) (Jiang et al.,
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Figure 21: Prior-work oracle (LSD/LCL) on general text result: LSDS distribution across three
models (LLaMA, Mistral, Qwen) on long-context dataset (GovReport) and standard-length context
(Reddit), each with 10000 samples. Each subplot shows the proportion of tokens falling into fixed
JSD bins.

Figure 22: MCL oracle on general text result: LSDS distribution across three models (LLaMA,
Mistral, Qwen) on long-context dataset (GovReport) and standard-length context (Reddit), each with
10000 samples. Each subplot shows the proportion of tokens falling into fixed JSD bins.

2023) on 5000 contexts randomly selected from Government Report (Huang et al., 2021), with full
context length ranging from 100–1000 tokens. The ground truth oracle we use here is Prior Work
Oracle as introduced in Sec. 5.

Across all settings, we observe that the separation between short- and long-context distribution is
preserved (see Figure 23). Regardless of p, short-context examples consistently concentrate in low
JSD bins (< 0.40), while long-context examples dominate the high JSD bins (≥ 0.60). However, the
optimal detection thresholds vary slightly depending on p value.

To quantitatively assess performance, we compute the maximized Youden’s J statistic (Youden,
1950):

J = max
θ
{TPR(θ)− FPR(θ)}

where TPR is the true positive rate and FPR is the false positive rate, and θ is the decision threshold.
Unlike accuracy, which can be biased by imbalanced class distributions, J simultaneously accounts
for both sensitivity (true positive rate) and specificity (true negative rate). In our case, detecting
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Figure 23: LSDS distribution with Mistral-7B-Instruct-v0.2 on GovReport(5000 samples) with no
nucleus sampling, p = 0.95, p = 0.90, and p = 0.80.

long- versus short-context tokens requires balancing correct identification of long-context samples
with avoidance of false detections. Thus Youden’s J provides an appropriate criterion for threshold
selection. Table 5 summarizes the best thresholds and corresponding performance metrics.

Table 5: Ablation study on different nucleus sampling parameters (p). Reported are the optimal
threshold, maximized Youden’s J , true positive rate (TPR), false positive rate (FPR), precision, recall,
and accuracy.

Case Threshold J TPR FPR Precision Recall Accuracy

No nucleus 0.49 0.834 0.967 0.133 0.268 0.967 87.2%
top-p=0.95 0.53 0.831 0.950 0.119 0.286 0.950 88.4%
top-p=0.90 0.55 0.840 0.954 0.114 0.296 0.954 88.9%
top-p=0.80 0.62 0.816 0.895 0.079 0.361 0.895 91.9%

The setting p = 0.90 achieves the highest Youden’s J (0.840), indicating the most balanced trade-off
between sensitivity (TPR) and specificity (1− FPR). While p = 0.80 achieves the highest accuracy
(91.9%), its J value is lower, reflecting weaker overall discriminative balance. Therefore, we adopt
p = 0.90 as our standard nucleus sampling configuration in the main experiments. This choice is
consistent with prior work recommending p in the 0.9–0.95 range for stable yet diverse generation
quality (Holtzman et al., 2020).

E.3 ABLATION ON SHORT-CONTEXT LENGTH

We investigate the effect of varying the short-context prefix length ℓ on LSDS and JSD threshold.
Experiments are run with Mistral-7B-Instruct-v0.2 on Government Report, using 5000 randomly
selected samples, with full context length ranging from 100–1000 tokens. The ground truth oracle we
use here is Prior Work Oracle as introduced in Sec. 5, and the short prefix length in Equation 2 is
adjusted accordingly when computing LSD.

Different fixed short-prefix length. Figure 24 shows results for ℓ = 8, 16, 32, 64. We observe that
the overall distributional separation between short and long contexts is preserved across all choices.
However, very small short-context prefixes (e.g., ℓ = 8) produce more imbalanced distributions:
nearly 20% of short-context tokens fall above the detection threshold. This indicates that while
separation is robust, extremely small short prefixes may introduce higher false-positive rates. In
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Figure 24: LSDS distribution with Mistral-7B-Instruct-v0.2 on GovReport(5000 samples) with short
prefix length ℓ = 8, 16, 32, 64.

contrast, ℓ = 32, 64 yield clearer separation, with false negative rates less than 5%, suggesting they are
preferable for stable detection. Although using longer prefixes incurs slightly higher computational
cost, the improved robustness makes the tradeoff worthwhile—especially in applications where false
positives are costly.

Figure 25: LSDS distribution with Mistral-7B-
Instruct-v0.2 on GovReport(5000 samples) with
short prefix length ℓ = 0.1|s|, consistent separa-
tion of the distributions is preserved.

Adaptive Short-Context Length. We also eval-
uate an adaptive strategy where the short-context
length is chosen as a proportion of the full se-
quence length, ℓ = 0.1|s|. Figure 25 demon-
strates consistent separation trends under this
setup, while adapting naturally to dataset-specific
context lengths. Such adaptive schemes may pro-
vide better cross-dataset generalization, although
their computational implications require further
study. We leave exploration of such direction for
future work.

E.4 COMPUTATIONAL
OVERHEAD OF LSDS DETECTION AND TABOO

In this section, we quantify the computational cost
introduced by LSDS. Recall that LSDS requires
evaluating token distributions under both the full context and a short suffix (e.g., 32 tokens). For a
generation task, the full forward is already computed, so the incremental cost reduces to a single
short forward (32 tokens) plus lightweight top-p filtering and JSD computation.

We benchmark this overhead on Qwen2.5 models of different scales (1.5B, 7B, 14B) using contexts
|s| = 100, 250, 500, 1000, 2000, 4000, 6000. The absolute overhead remained nearly constant: about
35–40 ms for 1.5B, 37–41 ms for 7B, and 58–67 ms for 14B. Relative cost is high at short contexts
(> 90% at |s| = 100) but drops to ≈ 6− 8% at |s| = 6000). These results confirm that LSDS adds
only minor and predictable overhead with cache reuse.

For other purposes or as a conservative upper bound, one can rerun the full forward pass, which
would roughly double the cost. In addition, using adaptive short-prefix length as described above
introduces overhead that scales linearly with context length.
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Figure 26: Computational overhead of LSDS detection across Qwen2.5 models (1.5B, 7B, 14B). Top
row: mean forward time for normal inference versus detection with reuse (long context + 32-token
suffix). Bottom row: relative overhead, measured as the ratio of additional cost to normal forward
time. The added cost is nearly constant, demonstrating that LSDS overhead is limited, predictable,
and diminishes in importance as sequence length grows.

Figure 26 illustrates the relative computational cost of a full forward pass compared with the extra
short-context forward required for detection across all three models.

Regarding the calculations for selecting target tokens, the token selection takes on average less than
≤ 1% of the computation time in comparison to the forward pass, thus we consider it as negligible.

F LONG-CONTEXT TOKEN DETECTION AND BOOSTING

F.1 PROBABILITY SHIFT AS SELECTION METRIC

For our selection of long context relevant tokens, we decide to to use the change in the probability
values as our determining metric. While we decide on using the probability difference LSPS (t|s) =
pp=0.9(sc)(t)− pp=0.9(s[−32:c])(t) as the determining factor, alternative choice could be the use of
probability ratios rather than the difference. In other words we can define Long-Short Probability
Ratio:

LSPR (t|s) = log(
pp=0.9(sc)(t)

pp=0.9(s[−32:c])(t)
)

A comparison between this form of metric and our probability difference LSPS becomes important
when you consider works such as Fang et al. (2025) use the log probability ratio to detect long-short
context/next-tokens. Additionally, in Malkin et al. (2022) and Duh et al. (2024) the authors use the
log ratio for probability and logits with in the form of P1.5

sc P
0.5
s[−32:c]

(t) to improve the final probability
of long-context tokens. Implicitly, such methods select and increase the probability of tokens who’s
probability ratio increases rather than the difference itself.

In order to compare the choice of metric, we compare the use of LSPS and LSPR when boosting
the final word/token of on the validation set of LAMBADA (Paperno et al., 2016) dataset. For each
context, we have a ground truth next token, which we call the target token t̂. All other tokens we call
incorrect tokens. We analyze the choice of which token’s are selected for probability increase rather
than the improvement itself, therefore we don’t include multiplicative factors like λ. For each case of
boosting, we consider the following scenarios:

• Scenario 1 (Best): t̂ ∈ B and pp=0.9(s)(t̂) ≥ pp=0.9(s)(t) for any other t ∈ B. Under such a
scenario, even if some non answer tokens are selected for probability increase, if we grow λ
eventually greedy sampling would select select the answer token.

• Scenario 2 (Bad): t̂ ∈ B however, there exists at least one token t ∈ B with a higher probability
than the answer token pp=0.9(s)(t) > pp=0.9(s)(t̂) ∀ t ∈ B. Under such a scenario, while a
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higher λ value increases the probability of t̂ and thus improving perplexity, but there there isn’t a
possibility of the ground token to be selected by a greedy sampler.

• Scenario 3 (Worst): t̂ ̸∈ B ̸= ∅. In this case we didn’t detect the ground truth token but rather
chose a set of incorrect tokens. Under such circumstances, the model next token perplexity would
suffer.

• Scenario 4 (Neutral): B = ∅ and so no change is made to the probability distribution.

We use nucleus sampling with p = 0.9 and set a minimum probability of 10−6 as the minimum, in
order to prevent numerical instability for the log probability calculations. We will select a range of ϵ
values as the selection threshold with respect to the metrics themselves. We report the ratio of each of
above’s scenarios from the 5153 examples in the LAMBADA validation dataset.

Table 6: Analysis of ground truth t̂ token being selected for probability improvement.
A comparisong between LSPD (diff) and LSPR (log ratio).

(a) LSPD (diff case)

ϵ Best Bad Worst Neutral
0.04 66.8% 10.0% 14.2% 9.1%
0.06 65.5% 7.8% 12.8% 13.9%
0.08 64.3% 6.4% 11.1% 18.2%
0.10 62.9% 5.4% 9.5% 22.1%
0.12 61.4% 4.4% 8.6% 25.7%
0.14 59.8% 3.6% 7.7% 28.9%
0.16 58.1% 3.0% 6.8% 32.1%
0.18 56.5% 2.4% 6.1% 35.0%
0.20 55.0% 2.0% 5.6% 37.5%
0.22 53.3% 1.5% 5.1% 40.1%

(b) LSPR (log ratio case)

ϵ Best Bad Worst Neutral
0.5 60.3% 10.7% 20.2% 8.8%
1.0 57.7% 7.2% 22.1% 13.0%
1.5 56.2% 5.2% 23.1% 15.4%
2.0 54.8% 4.3% 23.9% 17.0%
2.5 53.2% 3.7% 24.8% 18.3%
3.0 51.7% 3.1% 25.8% 19.5%
3.5 49.7% 2.6% 27.5% 20.3%
4.0 46.8% 2.0% 29.4% 21.8%
4.5 43.2% 1.6% 31.5% 23.7%
5.0 38.5% 1.4% 34.2% 26.0%

Table 7: XSum summarization results (Average
over all generations; Best-per-example in paren-
theses). Bold = best Average, Underline = best
Best-per-example. Regarding the low perfor-
mance of CAD, we employ the same methods we
did for the QA and with a α = 0.5 hyperparame-
ter selection similar to their setup. Interestingly
our average Vanilla Score is similar to theirs.
Nevertheless this table is provided to show that
our TaBoo method successfully removes certain
short context bias in the context of summariza-
tion, not to compare our methods directly with
CAD.

Model Method F1 BLEU ROUGE-L

LLaMA-2-7B
Vanilla 18.1 (28.6) 2.3 (5.2) 17.4 (27.3)
CAD 10.4 (16.4) 1.0 (1.6) 10.0 (15.5)
TaBoo 21.0 (31.5) 3.0 (6.9) 19.9 (30.0)

LLaMA-3-8B
Vanilla 18.4 (29.6) 2.4 (5.9) 17.8 (28.7)
CAD 12.0 (18.6) 1.1 (2.0) 11.5 (17.5)
TaBoo 20.7 (31.8) 3.0 (6.9) 19.7 (30.5)

Mistral-8B
Vanilla 18.9 (26.5) 2.4 (4.5) 17.9 (25.1)
CAD 9.4 (12.8) 0.8 (1.1) 9.2 (12.3)
TaBoo 21.3 (28.0) 3.1 (5.5) 20.4 (26.7)

Qwen2-7B
Vanilla 20.8 (28.3) 2.7 (5.0) 19.5 (26.7)
CAD 12.0 (17.3) 1.1 (1.7) 11.5 (16.2)
TaBoo 21.1 (27.9) 2.7 (4.8) 19.9 (26.2)

Mistral-Inst-8B
Vanilla 24.4 (33.5) 3.9 (8.0) 22.4 (31.4)
CAD 12.2 (18.4) 1.2 (2.1) 11.3 (17.0)
TaBoo 25.2 (33.1) 4.4 (7.9) 23.3 (31.0)

We observe that using log probability ra-
tio is more likely to lead to a wrong token
selection for the boosted set without includ-
ing the target token t̂. This case is particu-
larly dangerous as it negatively impacts a
metric such as perplexity. Additionally, re-
sults suggest that the selection performance
highly sensitive to the choice of ϵ.

From our analysis such observations can
be explained by the sensitivity of log ratio.
Particularly for tokens with near zero prob-
ability, small perturbation when moving
from short to long context probability can
be registered under large change in proba-
bility ratio changes. Consider using log10
for this explanation only (experiments are
done with natural log). If a token’s prob-
ability goes from pp=0.9(s[−32:c])(t) =

10−6 → pp=0.9(s)(t) = 10−2, the log
probability ratio is set to 4. Similarly if the
token’s probability goes from 10−3 → 10
we have a similar probability ratio change.
However, for the first scenario the full con-
text token probability is near zero, while
for the second case the token has a 10%
probability. If we go with a the log ratio,
both these tokens are treated equally.

On the other hand, for the probability dif-
ference case, we have implicitly set a min-
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imal lower bound on the pp=0.9(s)(t) ≥ ϵ by only selecting tokens where |pp=0.9(s)(t) −
pp=0.9(s[−32:c])(t)| ≥ ϵ. This allows us to circumvent tokens who have very low probability
where the log ratio behavior could be noisy and misleading. We believe this is a potential reason
for why the long context token selection algorithm in Fang et al. (2025) uses log(Ps)(t) ≥ 10−2 (
Long-Context Likelihood (LCL) ) in addition to their log probability ratio to classify tokens.

While we find probability difference to be a safer and more effective option for our studies, further
analysis could help discover new methods for ad-hoc detection of long-context relevant token by
comparing short-long context distributions. We believe this can serve a direction for future research.

F.2 TABOO ALGORITHM

Algorithm 9 presents our TaBoo method.

Algorithm 1: Long Context Token Boosting with JSD and Nucleus Constraint
Input: Short- and full-context distributions pϕ(s[−32:]), pϕ(s); thresholds ϵ, γ; boost factor λ;

decoding ϕ: nucleus sampling with parameter p; support set Vnuc of pϕ(s)
Output: TaBoo distribution p̃ϕ(s)

1 Initialize (to the raw probability distribution): p̃(s)← pϕ(s) ;
2 Step 1: Identify whether sequece is long-context:
3 if LSDS (s) ≤ γ then
4 return pϕ(s) ; // Return unmodified nucleus distribution

5 Step 2: Identify set of long-context-relevant tokens: B ← {t ∈ Vnuc | LSPS (t|s) > ϵ} ;
6 Step 3: Targeted Boosting: foreach token t ∈ B do
7 [p̃(s)]t ← λ · [pϕ(s)]t ;

8 Re-normalize and apply nucleus decoding: p̃(s) nuc← p̃(s)/ sum(p̃(s)) for all t ∈ V ;
9 return p̃(s)

F.3 IMPACT OF DECODING

Another question we ask is the impact of using decoding methods when implementing the token
selection during Taboo. In order to test this our, we provide a similar table to Tab . 6 but this time
without any nucleus sampling and using the raw probability distributions.

Results are provided in Tab . 8. Comparing LSPS we don’t observe a major change, one case being
better than the other depending on the value of ϵ. For LSPR on the other hand, we can see that not
doing any nucleus sampling leads to much more Worst case scenarios where we don’t boost the
answer token but rather a irrelevant one. This observation both points towards the robustness of LSPS
w.r.t the next token probability distribution (with or without decoding). Additionally it points our the
potential problem with using the log ratio of probabilities.

Table 8: Similar setup to Tab. 6 but this time without any nucleus sampling.

(a) LSPD (diff case)

ϵ Best Bad Worst Neutral
0.04 66.7% 9.3% 13.8% 9.1%
0.06 65.4% 7.4% 12.0% 15.2%
0.08 63.9% 5.9% 10.2% 20.0%
0.10 62.0% 4.9% 8.7% 24.0%
0.12 60.3% 3.9% 7.7% 28.1%
0.14 58.6% 3.2% 6.6% 31.7%
0.16 56.9% 2.6% 5.9% 34.7%
0.18 55.2% 2.1% 5.2% 37.6%
0.20 53.6% 1.6% 4.8% 40.9%
0.22 51.9% 1.2% 4.3% 42.6%

(b) LSPR (log ratio case)

ϵ Best Bad Worst Neutral
0.5 60.6% 11.2% 28.1% 0.1%
1.0 58.5% 7.5% 34.6% 0.3%
1.5 57.0% 5.4% 38.0% 0.4%
2.0 55.6% 4.3% 40.4% 0.5%
2.5 54.0% 3.6% 42.7% 0.6%
3.0 52.4% 3.0% 45.0% 0.7%
3.5 50.3% 2.4% 47.9% 0.7%
4.0 47.3% 1.7% 51.6% 0.8%
4.5 43.8% 1.3% 56.4% 0.9%
5.0 39.0% 1.0% 61.7% 0.9%
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F.4 ILLUSTRATIVE EXAMPLE OF LONG-CONTEXT TOKEN BOOSTING ON NARRATIVEQA

Figure 27 shows some examples from the NARRATIVEQA dataset to illustrate how our boosting
method (Taboo) operates.

The boosted output generated by Taboo matches the ground truth, with tokens highlighted by context
origin: orange tokens correspond to short-context (names from the question), while blue tokens
correspond to long-context (the reasoning required from the story). The figure also shows which
tokens were boosted, showing that the algorithm consistently promotes the correct words needed to
form the right answer. This example illustrates how Taboo leverages long-context signals to reinforce
accurate completions.

F.5 AVERAGE PERFORMANCE WITH STANDARD ERRORS

We report the Average scores for F1, BLEU, and ROUGE-L across all generations; values in
parentheses are the corresponding standard errors (SE). These SEs capture variability across evaluation
examples on the same split. Results for LLaMA-2-7B on MultifieldQA-en are omitted due to the
4096-token context limit.

Table 9: F1, BLEU, and ROUGE-L (Average; standard error in parentheses). Bold = best Average
within each dataset block.

Model Method NarrativeQA HotpotQA MultifieldQA-en

F1(↑) BLEU(↑) ROUGE-L(↑) F1(↑) BLEU(↑) ROUGE-L(↑) F1(↑) BLEU(↑) ROUGE-L(↑)

LLaMA-2-7B
Vanilla 16.1 (±0.29) 2.9 (±0.09) 22.4 (±0.36) 25.2 (±0.48) 7.7 (±0.21) 32.5 (±0.53) NA NA NA
CAD 22.5 (±0.40) 4.3 (±0.12) 30.7 (±0.48) 28.3 (±0.53) 8.5 (±0.24) 34.3 (±0.56) NA NA NA
TaBoo 24.1 (±0.41) 4.9 (±0.14) 31.7 (±0.47) 32.8 (±0.58) 10.3 (±0.27) 39.6 (±0.61) NA NA NA

LLaMA-3-8B
Vanilla 24.0 (±0.37) 4.9 (±0.13) 32.7 (±0.46) 29.2 (±0.49) 9.0 (±0.23) 41.6 (±0.58) 9.9 (±1.62) 7.7(±1.17) 24.0 (±1.73)
CAD 35.4 (±0.52) 7.3 (±0.18) 49.4 (±0.62) 27.7 (±0.53) 8.5 (±0.23) 46.9 (±0.68) 18.8 (±1.72) 6.4 (±1.03) 26.2 (±2.02)
TaBoo 32.0 (±0.47) 7.2 (±0.18) 42.3 (±0.53) 33.1 (±0.55) 10.6 (±0.26) 48.1 (±0.64) 21.9 (±1.74) 9.1 (±1.29) 28.2 (±1.87)

Mistral-7B-v0.1
Vanilla 25.7 (±0.41) 5.1 (±0.13) 33.7 (±0.48) 33.0 (±0.54) 10.1 (±0.24) 43.1 (±0.59) 20.6 (±1.54) 6.9 (±1.07) 26.0 (±1.72)
CAD 34.3 (±0.55) 7.1 (±0.17) 43.1 (±0.57) 35.9 (±0.62) 11.0 (±0.28) 41.6 (±0.63) 18.8 (±1.44) 5.9 (±0.99) 24.9 (±1.65)
TaBoo 35.3 (±0.52) 7.7 (±0.15) 44.4 (±0.46) 37.1 (±0.61) 11.7 (±0.29) 46.3 (±0.64) 23.0 (±1.65) 8.6 (±1.27) 29.5 (±1.83)

Qwen2-7B
Vanilla 33.6 (±0.49) 8.1 (±0.19) 42.4 (±0.53) 59.4 (±0.64) 20.1 (±0.36) 62.9 (±0.63) 31.1 (±1.86) 15.1 (±1.63) 41.3 (±2.01)
CAD 36.6 (±0.58) 8.8 (±0.22) 45.3 (±0.60) 59.3 (±0.68) 20.5 (±0.39) 62.2 (±0.67) 30.6 (±1.80) 14.0 (±1.49) 40.0 (±2.10)
TaBoo 38.5 (±0.56) 9.7 (±0.15) 48.2 (±0.64) 63.2 (±0.67) 21.7 (±0.39) 66.6 (±0.65) 32.3 (±1.85) 15.3 (±1.64) 42.3 (±2.07)
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Figure 27: Example from NarrativeQA with Taboo. Orange tokens are short-context (names from
the question), blue tokens are long-context (story-based reasoning). Boosted tokens align with the
correct answer, showing that Taboo consistently promotes the right completions.
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