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ABSTRACT

Full Waveform Inversion (FWI) is a fundamental technique to estimate subsurface
geophysical properties, such as velocity, from seismic measurements. While su-
pervised deep learning methods have recently shown promising performance by
directly mapping seismic data to velocity maps, they require ground-truth velocity
maps, which are costly and impractical to obtain at scale. A recent self-supervised
approach (UPFWI) removes this dependency by leveraging a differentiable for-
ward operator to reconstruct seismic data from predictions. However, in some
practical settings, the forward operator can only be accessed as a black box (e.g.,
legacy or commercial). Moreover, for complex scenarios, the operator can even
be non-differentiable. In this paper, we address this limitation (i.e., the depen-
dency on derivatives of forward operators) by introducing reinforcement learning
(RL) into self-supervised FWI. Our method, named DeepWaveRL, reformulates
FWI as a policy learning problem, where the model generates velocity maps as
actions, and the forward operator is used only to compute rewards. This design
avoids backpropagation through the forward operator, thus eliminating the need
to compute its derivatives. Furthermore, we identify key strategies to stabilize re-
inforcement learning in this challenging setting. In the absence of ground-truth
labels and differentiable forward operators, our method achieves competitive per-
formance compared to supervised counterparts. We believe our approach provides
a more flexible solution for the FWI research community.

1 INTRODUCTION

Subsurface imaging is essential for characterizing geological structures and geophysical properties
(e.g., velocity and impedance), with applications in energy exploration, carbon capture and seques-
tration, and earthquake early warning systems. A central technique in this domain is Full Waveform
Inversion (FWI), which estimates subsurface velocity maps from seismic measurements. Typically,
seismic data are acquired through seismic surveys, where an array of receivers records reflected and
refracted seismic waves. These waves are generated by controlled sources. Mathematically, for an
isotropic medium with constant density, the velocity map and seismic measurements are connected
by the acoustic wave equation:

∇2p(x, z, t)− 1

v(x, z)2
∂2p(x, z, t)

∂t2
= s(x, z, t) , (1)

where x denotes the horizontal offset, z the depth, p(x, z, t) the pressure wavefield at spatial location
(x, z) and time t, v(x, z) the wave propagation velocity at (x, z) , s(x, z, t) the source term, and ∇2

the Laplacian operator. In practice, seismic data are often collected at the surface (i.e., p(x, z =
0, t)). While FWI has the potential to produce high-resolution velocity maps, the inverse problem
itself is inherently non-linear and ill-posed. In addition, conventional physics-driven approaches face
additional challenges, as they require intensive computation due to repeated forward simulations per
sample and exhibit strong sensitivity to noise and initial conditions. These challenges have motivated
growing interest in data-driven deep learning methods.

A majority of data-driven methods (Wu & Lin, 2019; Zhang et al., 2019; Jin et al., 2024) adopt a
supervised learning paradigm and formulate FWI as an image-to-image translation task. As shown
in Figure 1, deep neural networks are trained to directly learn the mapping from seismic data to
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Figure 1: Comparison between different data-driven FWI methods. Top: Supervised learning meth-
ods compute loss between predicted and ground-truth velocity maps; Middle: Self-supervised learn-
ing method with a differentiable forward operator f computes the loss between input and recon-
structed seismic data and backpropagates gradients through f ; Bottom: Our proposed DeepWa-
veRL uses the forward operator only to compute a reward signal based on misfit between seismic
data, without backpropagating gradients through f , enabling greater flexibility.

velocity maps, enabling fast inference and achieving high accuracy under ideal conditions. However,
these methods rely on a large amount of paired seismic data and velocity maps for training. In real-
world scenarios, such ground-truth velocity maps are rarely available because constructing them is
extremely time-consuming and requires substantial expertise from geophysicists.

A recent work (UPFWI, Jin et al., 2022) explicitly leverages the underlying physics knowledge and
achieves self-supervised learning without ground-truth velocity maps. As illustrated in Figure 1, a
differentiable forward operator f is coupled with a neural network to simulate seismic data from
predicted velocity maps. By minimizing reconstruction loss on seismic data with gradients back-
propagated through f , the network can be trained in an end-to-end manner without labeled super-
vision. However, this design imposes several critical limitations. First, the need for differentiability
restricts the choice of forward solvers: many high-performance seismic simulators are implemented
in low-level languages such as Fortran or C++ and are only available as non-differentiable “black
boxes.” Second, real physical systems often exhibit non-smooth behaviors—for example, fractures
that open only beyond a pressure threshold—where the wavefield response can change abruptly,
violating differentiability and further limiting the applicability of such approaches.

In this paper, we present DeepWaveRL, a novel self-supervised approach for FWI that removes
the dependency on differentiable forward operators by leveraging reinforcement learning (RL). As
depicted in Figure 1, we formulate FWI as a single-step decision problem, where the input seismic
data serve as the state, and a policy network outputs the corresponding velocity map as the action.
A forward operator f is still used, but only to compute rewards based on the simulated seismic
data from the predicted velocity map. The policy is then optimized via a policy gradient algorithm,
which computes the gradients of the network’s action probabilities, weighted by the reward signal.
Therefore, our method eliminates the need to backpropagate gradients through f .

Policy optimization in this setting poses unique challenges: continuous velocity values lead to an
enormous action space, hindering effective exploration; large amplitude disparities between waves
bias learning toward dominant ones; reward signals can only be evaluated for the entire velocity map
without pixel-level feedback.

To address these issues, we further identify three key strategies. First, we use a discrete action space
by partitioning the velocity range into finite bins, which significantly reduces the burden of explo-
ration while maintaining accuracy. Second, we adopt a sign-preserving logarithmic transformation
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for seismic data that compresses dominant directive wave energy and amplifies weaker signals (e.g.,
reflections and deep arrivals), thereby yielding more precise predictions in deeper regions. Third, we
exploit the ability of a well-trained policy to adapt across datasets, allowing transfer of knowledge
in scenarios where training from scratch would be difficult or unstable.

We evaluate our method on several datasets from OpenFWI (Deng et al., 2022), a large-scale, multi-
structural dataset collection. Experimental results show that our DeepWaveRL attains comparable
performance to the supervised baseline InversionNet (Wu & Lin, 2019; Jin et al., 2024) on CurveVel-
A, with a Mean Absolute Error (MAE) of 0.0527 (vs. 0.0409), a Root Mean Squared Error (RMSE)
of 0.1012 (vs. 0.0944), and a Structured Similarity (SSIM) of 0.8601 (vs. 0.8796). DeepWaveRL
with transfer learning also yields competitive performance on FlatFault-A and CurveFault-A.

Our contribution is summarized as follows:

• We propose DeepWaveRL, a reinforcement learning framework for self-supervised full
waveform inversion (FWI), which removes the need for differentiable forward operators.

• We propose three key techniques for stable and efficient training of DeepWaveRL, in-
cluding discretized velocity actions, sign-preserving logarithmic transformation on seismic
data, and transfer learning of well-trained policies.

• We demonstrate that our proposed DeepWaveRL achieves competitive performance with-
out the involvement of ground-truth labels and differentiable forward operators.

2 METHOD

In this section, we first briefly summarize the state-of-the-art group-based reinforcement learning
algorithms and then present our DeepWaveRL and its components. After that, we provide a summary
of the comparison of DeepWaveRL with previous FWI methods from a gradient perspective.

2.1 PRELIMINARY

Shao et al. (2024) introduces Group Relative Policy Optimization (GRPO) that enhances Proximal
Policy Optimization (PPO, Schulman et al., 2017) by omitting the value function and estimating
the advantage in a group-relative manner. This is followed by several variants such as Decoupled
Clip and Dynamic Sampling Policy Optimization (DAPO, Yu et al., 2025) and Group Sequence
Policy Optimization (GSPO, Zheng et al., 2025), yielding even superior training efficiency and per-
formance. The core idea of GRPO is summarized as follows.

For a specific question q ∼ P (Q), a group of G responses {oi}Gi=1 are sampled from an old policy
network πθold . Each response oi is then fed into a reward function to obtain the individual reward
Ri. By normalizing the rewards within each group, an advantage Âi is assigned to each response.
The policy network is optimized by maximizing the following clipped objective, similar to PPO:
JGRPO(θ) = Eq∼P (Q),{oi}G

i=1∼πθold (·|q)

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

{
min

[
ri,t(θ)Âi,t, clip

(
ri,t(θ), 1− ε, 1 + ε

)
Âi,t

]
− βDKL(πθ||πref)

}
,

(2)
where ϵ is the hyperparameter to determine the clipping boundaries, and β is to control the impor-
tance of the KL divergence DKL between the online policy πθ and the frozen reference policy πref.
In addition, Âi,t and ri,t(θ) are the group-based advantage estimation and importance ratio of oi,t,
which is the t−th token in response oi. They are defined as:

Âi,t = Âi =
Ri − mean({Ri}Gi=1)

std({Ri}Gi=1)
, ri,t(θ) =

πθ(oi,t | q, oi,<t)

πθold(oi,t | q, oi,<t)
. (3)

2.2 SELF-SUPERVISED FWI VIA REINFORCEMENT LEARNING

As illustrated in Figure 2, DeepWaveRL formulates FWI as a single-step policy learning problem.
Each input seismic data p ∈ RNs×Nt×Nr is treated as a state and passed into the policy network πθ.
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Figure 2: Schematic illustration of the policy optimization pipeline in DeepWaveRL. For brevity,
we only show the seismic data from one source.

Here, Ns denotes the number of sources used during data acquisition, Nt the number of recorded
timesteps, and Nr the total number of receivers. The network then outputs the probability distribu-
tion of velocity πθ(·|p)h,w at each spatial location (h,w). Following GRPO, we sample a group of
G velocity maps {V̂i}Gi=1 from the predicted joint probability distribution as 2D actions, where each
V̂i = {v̂i,h,w}Hh=1,

W
w=1, and H and W are the vertical and horizontal dimensions of the velocity

map. To reduce exploration burden, we use a discrete action space instead of the continuous one.

To assign a reward Ri to each sampled action V̂i, we employ a forward operator f to simulate
seismic data p̃i = f(V̂i) ∈ RNs×Nt×Nr . The reward is then computed based on the misfit between
the input seismic data p and the reconstruction p̃i. We further compute the relative advantage Âi

within each group following Equation 3, but use a map-level importance ratio.

According to a recent work (Zheng et al., 2025), the mismatch between the unit of reward and the
unit of optimization objective can introduce high-variance noise and further lead to model collapse.
In our settings, a reward is assigned to the whole 2D velocity map. Therefore, instead of computing
the pixel-level importance ratios in Equation 3, we define the map-level importance ratio as:

mi =

[
πθ(V̂i|p)
πθold(V̂i|p)

] 1
H·W

= exp

[
1

H ·W

H∑
h=1

W∑
w=1

log(
πθ(v̂i,h,w|p)
πθold(v̂i,h,w|p)

]
. (4)

Consequently, the overall optimization objective can now be written as:
J (θ) = Ep∼P,{V̂ }G

i=1∼πθold (·|p)

1

G

G∑
i=1

{
min

[
mi(θ)Âi, clip

(
mi(θ), 1− εlow, 1 + εhigh

)
Âi

]}
,

(5)

where we follow Yu et al. (2025) and decouple the lower and higher clipping range as εlow and εhigh,
and P denotes the distribution of seismic data. We also remove the KL penalty term as our initial
model is not as good as common pretrained language models, and we allow the model distribution
to diverge from the initial model.

The policy network is thus trained to shift its output distribution toward higher-reward actions. Im-
portantly, the entire training process is self-supervised, without the involvement of ground-truth ve-
locity maps. Furthermore, no gradients are backpropagated through the forward operator f , which
allows f to be arbitrary, including non-differentiable or black-box simulators.

Additionally, we note that the policy network can also be optimized at test time, since only seismic
data are required. This test-time optimization further boosts performance, which will be discussed
in Section 3.3.

2.3 KEY STRATEGIES FOR STABLE AND EFFICIENT LEARNING

Discrete Action Space. During training, we treat the predicted velocity map V̂ = {v̂h,w}Hh=1,
W
w=1 as

a 2D action sampled from the joint distribution. We initially experimented with a continuous action

4
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space, where the network outputs two maps of size H×W , representing the mean µh,w and standard
deviation σh,w of a Gaussian distribution at each spatial location. Hence, the velocity at location
(h,w) was sampled as v̂h,w ∼ N (µh,w, σh,w). However, this formulation led to unstable training
and noisy predictions. To address these issues, we discretize the velocity values uniformly into B
bins, treating the sampled action as a predicted category. Given an action ah,w ∈ [0, 1, ..., B − 1),
we compute the corresponding velocity as

v(ah,w) =
vmax − vmin

B
· (ah,w + 0.5) + vmin, (6)

where vmax and vmin are the largest and smallest possible velocities in a dataset. This discrete action
space substantially improves both training stability and prediction quality.

Sign-Preserving Logarithm Transformation in Reward. Similar to the loss function of UP-
FWI (Jin et al., 2022), we define the reward as the negative pixel-wise ℓ1 and ℓ2 distance between
the input and reconstructed seismic data. To further enhance learning, we apply a sign-preserving
logarithm transformation during the computation of rewards as:

p′ = sign(p) · log(k · |p|+ c), (7)

where k and c are hyperparameters to control the strength of the transformation. This non-linear
transformation can compress dominant directive wave energy and amplify weaker signals (e.g., re-
flections and deep arrivals), thereby guiding the network to recover more accurate velocities in
deeper regions. The reward function can then be described as:

R = −ℓ1(p
′, p̃′)− ℓ2(p

′, p̃′). (8)

Transfer Learning using Well-Trained Policies. Directly training our DeepWaveRL from scratch
sometimes leads to unstable learning and convergence issues. We provide examples of predicted ve-
locity maps generated by these models in Appendix D.5. The predictions exhibit unrealistically low
velocities in deep regions after certain training steps. To address this issue, we propose to initialize
the policy network with weights from a well-trained model on a different dataset. This transfer learn-
ing strategy allows prior knowledge of velocity distributions to be reused across datasets, leading to
more stable training and improved convergence.

2.4 COMPARISON WITH PREVIOUS FWI METHODS FROM A GRADIENT PERSPECTIVE

To demonstrate the relationship among supervised, self-supervised with a differentiable forward
operator, and RL-based self-supervised approaches, we provide analysis from the perspective of
gradient construction and propagation.

Supervised: Gradients are directly computed from discrepancies with ground-truth velocity maps,
∇θLsup ∝ ∂ ∥V−V̂ ∥

∂V̂
. While this yields stable optimization and strong supervision, it is impractical

in real-world scenarios due to the scarcity of paired data.

Differentiable self-supervised: Gradients originate from seismic reconstruction error and back-
propagate through a differentiable forward operator, ∇θLdiff ∝ ∂f(V̂ )

∂V̂
, enabling physics-informed

learning but restricted by differentiability and high computational cost.

RL-based self-supervised: In contrast to self-supervised methods with a differentiable forward
operator, where the loss must be differentiable with respect to V̂ and thus optimization is tightly
coupled to f , our RL-based method replaces this requirement by converting non-differentiable errors
into reward signals that act as multipliers of the policy gradients, ∇θJ (θ) ∝ E

[
Â · ∇θ logmi(θ)

]
.

Full derivations and detailed comparisons are provided in Appendix B.

3 EXPERIMENTS

In this section, we evaluate the performance of our proposed DeepWaveRL on OpenFWI (Deng
et al., 2022), comparing it with both supervised and self-supervised baselines. We also investigate
the impact of the discrete action space and examine the effect of the logarithm transformation on
seismic data through ablation studies.
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Table 1: Quantitative results evaluated on CurveVel-A. For models with discrete predictions, we
report the mean estimate.

Method MAE↓ RMSE↓ SSIM↑
InversionNet 0.0409 0.0944 0.8796

UPFWI 0.0805 0.1411 0.8443
DeepWaveRL 0.0717 0.1300 0.8303

DeepWaveRL + TTO
:::::
0.0527

:::::
0.1012

:::::
0.8601

Ground Truth InversionNet DeepWaveRL DeepWaveRL+TTO

Figure 3: Illustration of ground truth and inversion results of different methods on CurveVel-A.

3.1 DATASETS

We verify our method on CurveVel-A, FlatFault-A and CurveFault-A of OpenFWI (Deng et al.,
2022), an open-source collection of large-scale, multi-structural benchmark datasets for data-driven
seismic FWI. CurveVel-A contains velocity maps composed of curved layers with clear interfaces,
while FlatFault-A and CurveFault-A focus more on geological fault identification and have velocity
maps with flat and curved layers, respectively. CurveVel-A contains 30K velocity maps and their
corresponding seismic data. Following the official data split, we use 24K for training and 6K for
testing. FlatFault-A and CurveFault-A contain 54K samples each, and we use 48K/6K splitting.

Each velocity map in all three datasets has a size of 70 × 70, with a grid size of 10 meters in
both horizontal and depth directions. The velocity value ranges from 1,500 meter/second to 4,500
meter/second. For seismic data, five sources are placed evenly with a 170-meter spacing and a central
source frequency of 15 Hz. The seismic data are recorded by 70 receivers at 10-meter intervals, each
collecting 1,000 timesteps over 1 second. This results in seismic data of shape 5 × 1000 × 70. For
additional details, we refer readers to the original OpenFWI paper (Deng et al., 2022).

3.2 EXPERIMENT SETTINGS

Evaluation Metrics: We evaluate predicted velocity maps using MAE, RMSE, and Structural Sim-
ilarity (SSIM), consistent with prior work (Wu & Lin, 2019; Feng et al., 2024; Deng et al., 2022).
MAE and RMSE quantify pixel-wise errors, while SSIM captures perceptual similarity, reflecting
the structured information of velocity maps where distortions can be easily perceived by a human.
Note that all measurements are computed on normalized velocity maps, with MAE and RMSE in
the range [−1, 1], and SSIM in [0, 1].

Comparison: We compare our method to InversionNet (Wu & Lin, 2019) which achieves the state-
of-the-art performance when trained solely on each dataset, as demonstrated in a recent work (Jin
et al., 2024). Additionally, we list the benchmarking results of UPFWI (Jin et al., 2022) from the
original OpenFWI paper.

Technical details regarding training are provided in Appendix C.
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Table 2: Quantitative results evaluated on FlatFault-A and CurveFault-A.

Dataset Method MAE↓ RMSE↓ SSIM↑

FlatFault-A

InversionNet 0.0098 0.0276 0.9880
UPFWI 0.0876 0.2060

:::::
0.9340

DeepWaveRL 0.0301 0.0557 0.9062
DeepWaveRL + TTO

:::::
0.0268

:::::
0.0476 0.9146

CurveFault-A

InversionNet 0.0164 0.0480 0.9721
UPFWI 0.0500 0.0966

:::::
0.9495

DeepWaveRL 0.0362 0.0703 0.9111
DeepWaveRL + TTO

:::::
0.0278

:::::
0.0502 0.9323

Ground Truth InversionNet DeepWaveRL DeepWaveRL+TTO

Figure 4: Illustration of ground truth and inversion results of different methods on FlatFault-A (top)
and CurveFault-A (bottom).

3.3 MAIN RESULTS

Results on CurveVel-A: Table 1 shows the quantitative results of different methods on CurveVel-
A. For the models that predict velocity as discrete values, we report the mean prediction (expected
value) where we compute the expectation over the bin values using their predicted probabilities.

Among all the models, InversionNet yields the best performance, which is expected as it leverages
supervised learning and directly predicts continuous velocity values. In comparison, our DeepWa-
veRL with test-time optimization (DeepWaveRL+TTO) attains the second-best performance with a
slight gap. Notably, test-time optimization substantially boosts the performance of DeepWaveRL.

Figure 3 further illustrates examples of ground-truth velocity maps and inversion results from dif-
ferent methods. Here, the results of DeepWaveRL models are all mean predictions. Consistent with
our quantitative analysis, InversionNet produces sharp layer boundaries and smooth and uniform
velocities within layers. However, in certain regions, DeepWaveRL+TTO yields more details. For
instance, as highlighted in the first row, the predictions of DeepWaveRL+TTO have more accurate
velocities in deep regions, whereas InversionNet introduces additional layers and predicts inaccurate
velocities. Another observation is that only DeepWaveRL+TTO precisely reconstructs the subsur-
face structure in the highlighted areas in the second row. Moreover, when comparing the results of
DeepWaveRL and DeepWaveRL+TTO, we find that test-time optimization helps eliminate artifacts,
recover curved structures, and improve the accuracy of intra-layer velocities. More visualization
results are shown in Appendix D.1.

Transfer Learning Results on FlatFault-A and CurveFault-A: Table 2 lists the quantitative re-
sults on FlatFault-A and CurveFault-A, and mean predictions are reported. For transfer learning,
we adopt the last checkpoint of the DeepWaveRL model trained with test-time optimization on
CurveVel-A. For both datasets, our DeepWaveRL+TTO consistently outperforms UPFWI in terms
of MAE and RMSE, with small gaps in SSIM. This indicates that DeepWaveRL-TTO yields gener-
ally accurate predictions, but there may be small shifts or artifacts that are visually noticeable.
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Table 3: Quantitative results evaluated on CurveVel-A, with different choices of action space.

Setting MAE↓ RMSE↓ SSIM↑
Continuous Action Space 0.1443 0.2073 0.4359

Discrete Action Space 0.0527 0.1012 0.8601

Ground Truth Continuous Discrete Ground Truth Continuous Discrete

Figure 5: Illustration of ground truth and inversion results of DeepWaveRL with different choices
of action space

The visualization results in Figure 4 further support our hypothesis. Despite some stripe artifacts,
our DeepWaveRL and DeepWaveRL+TTO generate more precise details in some shallow regions.
As highlighted in the first row (FlatFault-A), DeepWaveRL models reconstruct the fault on the top-
left corner, while it is barely visible in the predictions of InversionNet. Similarly, in the second
row (CurveFault-A), our DeepWaveRL models precisely capture the triangle-shaped region. More
visualization results are shown in Appendix D.2.

3.4 ABLATIONS

Continuous vs. Discrete Action Space: We further analyse how the choice of action space affects
model performance. The quantitative results are summarized in Table 3. For simplicity, we denote
DeepWaveRL with a discrete action space as DeepWaveRL-D, and with a continuous action space
as DeepWaveRL-C. In terms of all three metrics, DeepWaveRL-D outperforms DeepWaveRL-C to a
large extent. The gap is particularly large in SSIM, suggesting that DeepWaveRL-C fails to produce
results consistent with human perceptual quality.

Figure 5 provides qualitative comparisons between DeepWave-C and DeepWaveRL-D, which fur-
ther support our quantitative analysis. While DeepWaveRL-C can recover some structures in shallow
regions, there are plenty of artifacts all over the predictions. In particular, the high-velocity areas
are severely corrupted, making boundaries unrecognizable. Furthermore, these artifacts persist even
when training is extended, indicating that the continuous action space poses significant optimiza-
tion challenges. By contrast, discretization reduces the complexity of the action space and greatly
stabilizes training, leading to more accurate and reliable results.

With or Without Logarithm Transformation: To evaluate the effect of the sign-preserving log-
arithm transformation, we train our DeepWaveRL without transformation on CurveVel-A. The re-
sulting MAE, RMSE, and SSIM are 0.0785, 0.1383, and 0.8195, respectively. Compared to the
results of DeepWaveRL with transformation in Table 1, the performance degrades in terms of all
three metrics. This is consistent with the visualization results in Appendix D.3, where some details
are missing in deep regions.

4 DISCUSSION

During qualitative analysis, we find that mode collapse occurs in some of the predictions of our
DeepWaveRL, as illustrated in Appendix D.4. The ground-truth velocity maps of these predictions
have close velocities in their shallow regions, but this pattern does not guarantee the occurrence of

8
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mode collapse. Thus, we may take this into consideration in our future work. Another limitation
is that our DeepWaveRL still struggles with the recovery of the structures in deeper regions due to
the inherent attenuation of signals in these regions. Our sign-preserving logarithm transformation is
one of the solutions, but more advanced algorithms are still needed. Furthermore, our DeepWaveRL
framework enables another potential research direction, which is to incorporate non-differentiable
regularization terms such as total variation into the reward design.

5 RELATED WORK

Deep Learning for FWI: Deep learning approaches to FWI span data-driven, physics-informed,
and hybrid paradigms (Lin et al., 2023; Adler et al., 2021; Yu & Ma, 2021). Fully supervised meth-
ods (Araya-Polo et al., 2018; Wu & Lin, 2019; Zhang et al., 2019; Li et al., 2020) learn direct
mappings from seismic data to velocity models using paired data, which are costly to acquire and
often lead to poor generalization under domain shifts. To reduce reliance on labels and improve
robustness, self-supervised strategies have emerged. Feng et al. (Feng et al., 2022; 2024) decouple
the seismic encoder and velocity decoder by leveraging latent space correlations, enabling separate
training. SiameseFWI (Saad et al., 2024) explores self-supervision with a Siamese network that bet-
ter aligns simulated and observed data. Semi-supervised learning has also been explored. Sun et al.
(2023) proposes a CycleGAN-based framework to reconstruct missing low-frequency components
in field data. Other methods generate pseudo-labels from unlabeled or auxiliary data (Rojas-Gómez
et al., 2022; Cai et al., 2022), bridging the gap between labeled and unlabeled domains. Unsuper-
vised methods such as UPFWI (Jin et al., 2022) and Jia et al. (Jia et al., 2025) go further by eliminat-
ing labels entirely. These approaches minimize waveform mismatches under physical constraints,
using differentiable forward modeling to optimize predicted velocity maps. However, their reliance
on computationally intensive and differentiable solvers limits scalability to high-resolution, elastic,
or 3D FWI, and precludes use with black-box simulators. Diffusion models offer an alternative by
learning generative priors that guide the inverse process via plug-and-play (PnP) denoising (Song
et al., 2022; Chung et al., 2023; Zhang et al., 2025). Wang et al. (2023) successfully applies this strat-
egy to FWI. While these models avoid paired supervision, they still require large velocity datasets
for training and incur high inference costs due to repeated forward simulations during sampling.

Reinforcement learning and group-based policy optimization: Policy-gradient RL methods (e.g.,
PPO (Schulman et al., 2017)) provide a principled way to optimize stochastic policies via likelihood-
ratio estimators, and have been widely used in sequential generation and control. Recent advances in
group-/sequence-level policy optimization demonstrate that performing importance-weighting and
clipping at the unit-of-reward level (group or sequence) can reduce variance and stabilize training for
structured outputs. In particular, DeepSeekMath (Shao et al., 2024) replaces value-function estima-
tion with group-relative normalization, yielding more efficient and stable updates. They show that
this framework can be scaled to mathematical reasoning tasks with strong generalization. DAPO (Yu
et al., 2025) extends the paradigm by decoupling clipping ranges and introducing dynamic sampling,
further improving stability under diverse reward distributions. GSPO (Zheng et al., 2025) general-
izes these ideas to full sequence-level optimization with the importance ratio based on sequence
likelihood, aligning long-horizon objectives with token-level policies. Inspired by this progression,
DeepWaveRL adapts the same philosophy to the geophysics domain by treating an entire velocity
map as a structured action, making map-level optimization a natural extension of group-based RL
methods for physics-driven inverse problems.

6 CONCLUSION

In this study, we introduce DeepWaveRL, a reinforcement learning framework for self-supervised
full waveform inversion that eliminates the need for differentiable forward operators. By incorpo-
rating discretized velocity actions, a sign-preserving logarithmic transformation of seismic data, and
transfer learning from well-trained policies, DeepWaveRL achieves stable and efficient training. We
demonstrate through experiments that our method attains competitive performance without relying
on ground-truth velocity maps or differentiable forward operators. This approach provides a flexible
solution for FWI, offering new possibilities in real-world settings.
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APPENDIX

A USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this manuscript, we utilized a large language model (LLM) to assist with the writing
process. Its role was limited to improving language quality, including grammar, phrasing, and over-
all readability, as well as helping with LATEX formatting for tables and equations. The conception
of the research, design of experiments, analysis of results, and all scientific contributions were the
responsibility of the authors.

B COMPARISON WITH PREVIOUS FWI METHODS FROM A GRADIENT
PERSPECTIVE

To elucidate the relationship among supervised, self-supervised with a differentiable forward op-
erator, and reinforcement learning based self-supervised approaches, we provide a unified analysis
from the perspective of gradient construction and propagation.

Supervised learning: In the supervised paradigm, a neural network gθ maps seismic measure-
ments p to a predicted velocity map V̂ = gθ(p). Training relies on paired ground-truth velocity
maps v, with a loss function of the form

Lsup(θ) = E(p,V )∼D ∥V − gθ(p) ∥ , (9)

where D denotes the joint distribution of seismic data and corresponding velocity maps, and ∥ · ∥
denotes a generic norm (e.g., ℓ1, ℓ2, or mixed/perceptual norms). The gradient is obtained via direct
backpropagation:

∇θLsup = E(p,V )∼D
∂Lsup

∂V̂
· ∂V̂
∂θ

= E(p,V )∼D
∂Lsup

∂gθ(p)︸ ︷︷ ︸
Ground truth involved

· ∂gθ(p)
∂θ

, (10)

where the learning signal is explicitly anchored to the availability of ground-truth velocity maps.
While this yields stable optimization and strong supervision, it is impractical in real-world scenarios
due to the scarcity of paired data.

Self-supervised learning with a differentiable forward operator: The UPFWI framework (Jin
et al., 2022) removes the dependence on ground truth by incorporating a differentiable forward
operator f that simulates seismic data from predicted velocity maps:

V̂ = gθ(p), p̃ = f(V̂ ). (11)

The reconstruction objective is defined as

Ldiff(θ) = Ep∼P∥p− p̃∥ = Ep∼P∥p− f(gθ(p))∥, (12)

with gradients computed via the chain rule:

∇θLdiff = Ep∼P
∂Ldiff

∂p̃
· ∂p̃

∂V̂
· ∂V̂
∂θ

= Ep∼P
∂Ldiff

∂f(gθ(p))
· ∂f(gθ(p))

∂gθ(p)︸ ︷︷ ︸
Differentiable

· ∂gθ(p)
∂θ

. (13)

This formulation enables end-to-end training using only seismic data, yet a differentiable forward
operator is required to compute ∂f/∂V̂ .

Self-supervised learning via reinforcement learning: Our proposed DeepWaveRL relaxes the
differentiability constraint by reframing FWI as a policy optimization problem. With the definition
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in the above sections, we can derive the gradient of our objective as follows (clipping is omitted for
brevity):

∇θJ (θ) = ∇θEp∼P,{V̂ }G
i=1∼πθold (·|p)

1

G

G∑
i=1

{
mi(θ)Âi

}
(14)

= Ep∼P,{V̂ }G
i=1∼πθold (·|p)

[
1

G

G∑
i=1

mi(θ) Âi · ∇θ logmi(θ)

]
(15)

= Ep∼P,{V̂ }G
i=1∼πθold (·|p)

(16)[
1

G

G∑
i=1

(
πθ(V̂i | p)
πθold(V̂i | p)

) 1
H·W

Âi︸︷︷︸ · 1

H ·W
∑
h,w

∇θ log πθ(v̂i,h,w | p)

]
Forward model only involved as a multiplier

.

(17)

Unlike supervised and differentiable self-supervised learning, where the error must be differentiable
with respect to V̂ and thus couples optimization tightly to the properties of f , reinforcement learning
replaces this requirement by transforming non-differentiable errors into reward signals that directly
reweight policy gradients.

Thus, the three paradigms can be interpreted within a common gradient-based framework: Super-
vised: Gradients are directly computed from discrepancies with labeled velocity maps, yielding
stable optimization but requiring costly ground truth. Differentiable self-supervised: Gradients
originate from seismic reconstruction error and backpropagate through a differentiable forward op-
erator, enabling physics-informed learning but restricted by differentiability and high computational
cost. RL-based self-supervised: Gradients arise from log-likelihood weighting in policy space,
with seismic misfit entering only as a reward. This bypasses differentiability, accommodates arbi-
trary forward operators, and enables stochastic exploration in complex inversion landscapes.

C TECHNICAL DETAILS

We normalize the input seismic data to the range [−1, 1] and apply the logarithm transformation
with k = 3 and c = 0 on seismic data. For optimization, we employ the AdamW optimizer with
momentum parameters β1 = 0.9, β2 = 0.999, and a weight decay of 1 × 10−4 to update all
parameters of the network. The details of hyperparameters and training settings are provided in
Table 4. The ϵlow and ϵhigh are 0.2 and 0.27, respectively. For the network architecture, we adopt
a four-layer encoder-decoder Vision Transformer (ViT), and we append four convolutional blocks
with upsampling layers (5× and 2×), batch normalization, and leaky ReLU as activation functions
to map the output of the decoder to 70× 70 velocity map with 100 bins. We implement our models
in Pytorch and train them on 16 NVIDIA H100 GPUs.

CVA FFA & CFA
Test-time Optimization ✓ ✓

Training Steps 44,880 1,440 7,360 1,600
Initial Learning Rate 8e-4 1.6e-4 6.4e-4 6.4e-4
Learning Rate Decay / 1,360 / /

Batch Size 128 2048 2048 2048
Group Size 256 16 32 32

Table 4: Training details

D VISUALIZATIONS

D.1 MORE VISUALIZATION RESULTS ON CURVEVEL-A
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Ground Truth InversionNet DeepWaveRL DeepWaveRL+TTO

Figure 6: Illustration of ground truth and inversion results of different methods on CurveVel-A.

D.2 MORE VISUALIZATION RESULTS ON FLATFAULT-A AND CURVEFAULT-A

Ground Truth InversionNet DeepWaveRL DeepWaveRL+TTO

Figure 7: Illustration of ground truth and inversion results of different methods on FlatFault-A and
CurveFault-A.
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D.3 VISUALIZATION RESULTS OF DEEPWAVERL WITHOUT LOGARITHM TRANSFORMATION

Ground Truth w/o Log. w. Log. Ground Truth w/o Log. w. Log.

Figure 8: Illustration of ground truth and inversion results of DeepWaveRL with and without the
sign-preserving logarithm transformation

D.4 FAILURE CASES

Ground Truth Prediction Ground Truth Prediction Ground Truth Prediction

Figure 9: Examples of failure cases where the predictions collapse to similar patterns.

D.5 EXAMPLES OF UNSTABLE TRAINING RESULTS

Ground Truth Prediction Ground Truth Prediction Ground Truth Prediction

Figure 10: Examples of predicted velocity maps generated by the model that has experienced unsta-
ble training.
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