
Adapting Newton’s Method to Neural Networks
through a Summary of Higher-Order Derivatives

Pierre Wolinski1

1Laboratoire de Mathématiques d’Orsay, Université Paris-Saclay, France
pierre.wolinski@universite-paris-saclay.fr

February 6, 2024

Abstract

We consider a gradient-based optimization method
applied to a function L of a vector of variables θ, in
the case where θ is represented as a tuple of tensors
(T1, · · · ,TS). This framework encompasses many
common use-cases, such as training neural networks
by gradient descent.

First, we propose a computationally inexpensive
technique providing higher-order information on L,
especially about the interactions between the tensors
Ts, based on automatic differentiation and computa-
tional tricks. Second, we use this technique at order 2
to build a second-order optimization method which is
suitable, among other things, for training deep neural
networks of various architectures.

This second-order method leverages the partition
structure of θ into tensors (T1, · · · ,TS), in such a
way that it requires neither the computation of the
Hessian of L according to θ, nor any approximation of
it. The key part consists in computing a smaller ma-
trix interpretable as a “Hessian according to the parti-
tion”, which can be computed exactly and efficiently.
In contrast to many existing practical second-order
methods used in neural networks, which perform a
diagonal or block-diagonal approximation of the Hes-
sian or its inverse, the method we propose does not
neglect interactions between layers.

Our code is available on GitHub: https://
github.com/p-wol/GroupedNewton.

1 Introduction

The appealing theoretical properties of Newton’s
method have led to numerous attempts to adapt it to
neural network optimization. Therefore, the study of
the Hessian of a loss according to many parameters
has become an area of research in itself, leading to
a large number of methods to approximate it accu-
rately with a small computational cost.

Newton’s method applied to neural network
optimization. When it comes to neural networks,
Newton’s method suffers from several problems.
Some are technical, such as building an accurate and
computationally efficient method to estimate the Hes-
sian. But some of them are essential, in the sense that
they cannot be solved solely by a perfect knowledge
of the full Hessian. For instance, several works (Sa-
gun et al., 2018) have shown that many eigenvalues
of the Hessian are close to zero when training neu-
ral networks, making it impossible to use Newton’s
method in practice, even if the Hessian is perfectly
known.

Therefore, in this work, we do not aim to build a
technique to estimate the Hessian accurately and ef-
ficiently. We propose to take a step aside and focus
on two related goals. First, we aim to access effi-
ciently to higher-order information in order to use it
for optimization. To do so, we leverage the avail-
able computational tools, that is, automatic differ-

1

ar
X

iv
:2

31
2.

03
88

5v
2

 [
cs

.L
G

]
 3

 F
eb

 2
02

4

https://github.com/p-wol/GroupedNewton
https://github.com/p-wol/GroupedNewton

entiation and partition of the set of parameters into
tensors stored on a GPU. Second, we aim to build
a second-order optimization method with properties
similar to the properties of Newton’s method (but
inevitably weaker). Notably, we want a method in-
variant by layer-wise affine reparameterizations of the
model, providing a Hessian-inspired matrix showing
the interactions between each pair of tensors, along
with layer-wise step sizes. Naturally, the computa-
tional cost should remain reasonable, and the prob-
lem of close-to-zero eigenvalues of Hessian has to be
dealt with.

First contribution: extracting higher-order in-
formation. Formally, we study a loss L to mini-
mize according to a vector of parameters θ ∈ RP ,
which can be represented as a tuple of tensors
(T1, · · · ,TS). In a multilayer perceptron with L lay-
ers, the S = 2L tensors (Ts)1≤s≤2L are the tensors
of weights and the vectors of biases of each layer. In
that case, S ≪ P . Within this framework, we pro-
pose a technique summarizing the order-d derivative
of the loss, which is a tensor belonging to RPd

, into a
tensor belonging to RSd

, which is significantly smaller
and easier to compute.

Second contribution: a scalable second-order
optimization method. Then, we make use of the
preceding technique at orders 2 and 3 to build a
second-order optimization method. Formally, the
method presented here and Newton’s method look
alike: in both cases, a linear system H0x = g0 has
to be solved (according to x), where g0 and H0 con-
tain respectively first-order and second-order infor-
mation about L. Despite this formal resemblance,
the difference is enormous: with Newton’s method,
H0 is equal to the Hessian H of L of size P × P ,
while with ours, H0 is equal to a matrix H̄ of size
S × S. Thus, H̄ is undoubtedly smaller and eas-
ier to compute than H when S ≪ P . Nevertheless,
since H̄ is a dense matrix, it still contains information
about the interactions between the tensors Ts when
they are used in L. This point is crucial, since most
second-order optimization methods applied in neural
networks use a simplified version of the Hessian (or

its inverse), usually a diagonal or block-diagonal ap-
proximation, which ignores the interactions between
layers. Finally, we propose an anisotropic version of
Nesterov’s cubic regularization (Nesterov and Polyak,
2006), which uses order-3 information to regularize H̄
and avoid instabilities when computing H̄−1ḡ.

As a preview of the experimental results, we re-
port in Figure 1 the summary of the Hessian H̄ and
its inverse H̄−1 at two stages of training of LeNet-5:
interactions between different layers exist and are not
negligible. And, to achieve the proof-of-concept, we
also provide in Section 5 a short series of experiments
showing that this method is able to achieve training
losses comparable to those of Adam and K-FAC.

0 1 2 3 4
0
1
2
3
4

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0
1
2
3
4

Ep. 0, W-W Ep. 73, W-W Ep. 73, W-B Ep. 73, B-B

Figure 1: LeNet-5 trained by SGD on CIFAR-10.
Submatrices of H̄ (first row) and H̄−1 (second row),
where focus is on interactions: weight-weight, weight-
bias, bias-bias of the different layers. We show it at
initialization and before the 73rd epoch (best valid.
loss). Legend: white: close-to-zero value; dark red:
large positive value; dark blue: negative value, large
in norm.

Structure of the paper. First, we show the
context and motivation of our work in Section 2.
Then, we provide in Sections 3 and 4 standalone
presentations of the contributions, respectively the
higher-order information extraction technique and
the second-order optimization method. In Section
5, we present experimental results showing that the

2

developed methods are usable in practice. Finally,
we discuss the results in Section 6.

2 Context and motivation

2.1 Higher-order information

Extracting the maximum higher-order information
about a loss at a minimal computational cost and
using it to improve optimization is not a novel idea.
This is typically what is done by Dangel (2023), de-
spite it does not go beyond the second-order deriva-
tive. In that research direction, the Hessian-vector
product technique (Pearlmutter, 1994) is decisive,
since it allows to compute at a very small cost the
projection of higher-order derivatives in given direc-
tions (see Appendix A). Regarding the derivatives of
order 3 and beyond, Nesterov’s cubic regularization
of Newton’s method (Nesterov and Polyak, 2006) uses
some information of order 3 to avoid too large train-
ing steps. Incidentally, we develop an anisotropic
variation of it in Section 4.2.

Overall, the current need for information contained
in higher-order derivatives is still limited. Anyway,
we hope that making it available in large models
would lead to the emergence of new uses.

2.2 Second-order methods

The Hessian H of the loss L according to the vector of
parameters θ is known to contain useful information
about L. Above all, the Hessian is used to develop
second-order optimization algorithms. Let us denote
by θt the value of θ at time step t, gt ∈ RP the gra-
dient of L at step t and Ht its Hessian at step t. One
of the most widely known second-order optimization
method is Newton’s method, whose step is (Nocedal
and Wright, 1999, Chap. 3.3):

θt+1 := θt −H−1
t gt.

Under some conditions, including strong convex-
ity of L, Newton’s method is known to have a
quadratic convergence rate (Nocedal and Wright,
1999, Th. 3.7), which makes this method very appeal-
ing. Besides, there exist other methods making use of

second-order information, without requiring the full
computation of the Hessian. For instance, Cauchy’s
steepest descent (Cauchy, 1847) is a variation of the
usual gradient descent, where the step size is tuned by
extracting very little information from the Hessian:

θt+1 := θt − η∗t gt, where η∗t :=
gT
t gt

gT
t Htgt

,

where the value of gT
t Htgt can be obtained with

little computational cost (see Appendix A). How-
ever, when optimizing a quadratic function f with
Cauchy’s steepest descent, f(θt) is known to decrease
at a rate (λmax−λmin

λmax+λmin
)2, where λmax and λmin are re-

spectively the largest and the smallest eigenvalues of
the Hessian of f (Luenberger and Ye, 2008, Chap.
8.2, Th. 2). If the Hessian of f is strongly anisotropic,
then this rate is close to one and optimizatoin is slow.
For a comparison of both methods, one may refer to
(Gill et al., 1981; Luenberger and Ye, 2008; Nocedal
and Wright, 1999).

Finally, one can guess that there is some space be-
tween Newton’s method, which requires to know the
full Hessian, and Cauchy’s steepest descent, which
requires only minimal and computationally cheap
information about the Hessian. The optimization
method presented in Section 4 explores precisely this
in-between space.

Quasi-Newton methods. In many high-
dimensional situations, the computation of the
Hessian Ht, as well as the inversion of the linear
system gt = Htx, is computationally intensive.
Quasi-Newton methods are designed to avoid any
direct computation of the Hessian, and make an
extensive use of the gradients and of finite difference
methods to approximate the direction of H−1

t gt. A
list of common quasi-Newton methods may be found
in (Nocedal and Wright, 1999, Chap. 8).

As explained in Nocedal and Wright (1999), since
it is easy to compute the Hessian by using Automatic
Differentiation (AutoDiff), quasi-Newton methods
tend to lose their interest. Nevertheless, they should
remain useful in situations where such computation
is too difficult. Besides, the availability of a tool as

3

powerful as AutoDiff should push us to invent meth-
ods avoiding the computation of the full Hessian.

Block-diagonal approximations of the Hessian.
In the development of neural network training algo-
rithms, several attempts have been made to use the
Hessian to build second-order optimization methods
with good properties. A first rough attempt has been
made by Wang and Lin (1998). In this work, the Hes-
sian matrix is divided into blocks, following the di-
vision of the network into layers, and its off-diagonal
blocks are removed. From another perspective, Ol-
livier (2015) has kept this block-diagonal structure,
but performed an additional approximation on the
remaining blocks. In both cases, the interactions be-
tween the different layers are neglected.

Kronecker-Factored Approximate Curvature
(K-FAC). This technique of approximation of the
Hessian has been proposed in (Martens and Grosse,
2015) in the context of neural network training. K-
FAC leverages the specific architecture of neural net-
works to output an approximation of the true Hes-
sian, which is usually too costly to compute. How-
ever, the resulting Hessian suffers from several issues.
First, the main approximation is quite rough, since
“[it assumes] statistical independence between prod-
ucts [...] of unit activities and products [...] of unit
input derivatives” (Martens and Grosse, 2015, Sec.
3.1). Second, even with an approximation of the full
Hessian, one still has to invert it, which is computa-
tionally intensive even for small networks. To over-
come this difficulty, Martens and Grosse (2015) make
a block-diagonal or block-tridiagonal approximation
of the inverse of the Hessian, which kills many of
the interactions between the parameters or the lay-
ers. However, this approximation is less rough than a
direct block-diagonal approximation of the Hessian.

Summarizing the Hessian. One should also
mention Lu et al. (2018), which proposes to approxi-
mate the Hessian with a matrix composed of blocks in
which all the coefficient are identical. Thus, the Hes-
sian can be compressed into a smaller matrix, which
looks like the summary of Hessian matrix H̄ used

in Section 4. In a completely different setup, Yuan
et al. (2022) proposes a “Sketched Newton-Raphson”,
which is driven by the same spirit as the method pre-
sented in Section 4: instead of dealing with a compli-
cated large matrix, one should “project” it on spaces
of lower dimension.

Optimization methods invariant by affine
reparameterization. Several optimization meth-
ods based on the Hessian, such as Newton’s method,
have an optimization step invariant by affine repa-
rameterization of θ (Amari, 1998) (Nesterov, 2003,
Chap. 4.1.2). Specifically, when using Newton’s
method, it is equivalent to optimize L according to θ
and according to θ̃ = Aθ+B (A ∈ RP×P invertible,
B ∈ RP). This affine-invariance property holds also
when the function L to minimize is a negative log-
likelihood, and one chooses to minimize θ with the
natural gradient method (Amari, 1998). This method
also requires, at some point, the computation of the
Hessian of L.

2.3 Motivation

What are we really looking for? The meth-
ods presented in Section 2.2, which all attempt to
construct the Hessian matrix H or its inverse H−1,
do the same implicit assumption: we want to use a
Newton-like optimization method, so we must have
access to H or H−1. This assumption is certainly
correct when the loss to optimize is strongly con-
vex. But, when the loss is non convex and very
complicated, for instance when training a neural net-
work, this assumption lacks justification. Worse, it
has been shown empirically that, at the end of the
training of a neural network, the eigenvalues of the
Hessian are concentrated around zero (Sagun et al.,
2018), with only a few large positive eigenvalues.

Therefore, Newton’s method itself does not seem
to be recommended in neural network training, so
we may not need to compute the full Hessian at all,
which would relieve us from a tedious, if not impos-
sible, task.1

1“No one is bound to do the impossible.”

4

Importance of the interactions between layers.
Also, we would like to show the importance of keeping
the off-diagonal blocks in the Hessian or its inverse.
Several empirical works have shown that the role and
the behavior of each layer must be considered along
its interactions between the other layers. We give two
examples. First, Zhang et al. (2022) has shown that,
at the end of their training, many networks exhibit
a strange feature: some (but not all) layers can be
reinitialized to their initial value with little damage
to the performance. Second, Kornblith et al. (2019)
has compared the similarity between the representa-
tions of the data after each layer. It has been re-
marked that the similarity matrix of the layers may
change qualitatively when changing the number of
layers (Kornblith et al., 2019, Fig. 3). Among all,
these empirical results motivate our search for math-
ematical objects showing how layers interact.

Per-layer scaling of the learning rates. A
whole line of research is concerned with building a
well-grounded method to find a good scaling of the
distribution of initialization of the parameters, along
with a good scaling for the learning rates, which may
be chosen layer-wise. One may refer to the paper in-
troducing the Neural Tangent Kernels (Jacot et al.,
2018), in which a layer-wise scaling for the weights
has been proposed and theoretically grounded. Also,
in the “feature learning” line of works, (Yang and
Hu, 2021) proposes a general relation between several
scalings related to weight initialization and training.
Therefore, there is an interest in finding a scalable
and theoretically grounded method to build per-layer
learning rates.

Unleashing the power of AutoDiff. Nowadays,
several libraries provide easy-to-use automatic differ-
entiation packages, allowing the user to compute nu-
merically the gradient of a function, and even higher-
order derivatives.2 Disregarding the computational
cost, the full Hessian could theoretically be computed
numerically without approximation. In order to make
this computation feasible in practice, one should aim

2With PyTorch: torch.autograd.grad.

for an easier goal: instead of computing the full Hes-
sian, one may consider computing a smaller matrix,
consisting of projections of the Hessian.

Moreover, we may hope that such projections
would “squeeze” the close-to-zero eigenvalues of the
Hessian, in such a way that the eigenvalues of the
projected matrix would be mostly not too close to
zero.

3 Summarizing higher-order in-
formation

Let us consider the minimization of a loss function
L : RP → R according to a variable θ ∈ RP .

Full computation of the derivatives. The ob-
ject containing all the information of order d about
L is a d-linear form, which can be represented as a
tensor of order d as follows:

∂dL
∂θd

(θ) : RP × · · · × RP → R

(u1, · · · ,ud) 7→ ∂dL
∂θd

(θ)[u1, · · · ,ud].

This tensor belongs to RPd

and contains P d scalars.
Even when considering the symmetries, it is compu-
tationally too demanding to compute it exactly for
d ≥ 2 in most cases. For instance, it is not even
possible to compute numerically the full Hessian of
L according to the parameters of a small neural net-
work, i.e., with P = 105 and d = 2, the Hessian
contains P d = 1010 scalars.

Terms of the Taylor expansion. At the op-
posite, one can obtain cheap higher-order informa-
tion about L at θ by considering a specific direction
u ∈ RP . The Taylor expansion of L(θ + u) gives:

L(θ + u) = L(θ) +
D∑

d=1

1

d!

∂dL
∂θd

(θ)[u, · · · ,u]

+ o(∥u∥D).

5

The terms of the Taylor expansion contain higher-
order information about L in the direction u. No-
tably, they can be used to predict how L(θ) would
change when translating θ in the direction of u. Ad-
ditionally, computing the first D terms has a com-
plexity of order D × P , which is manageable even
for large models. The trick allowing for such a low
complexity, the Hessian-vector product, has been pro-
posed by Pearlmutter (1994) and is recalled in Ap-
pendix A.

An intermediate solution. Now, let us assume
that, in the practical implementation of a gradient-
based method of optimization of L(θ), θ is repre-
sented by a tuple of tensors (T1, · · · ,TS). So, each
Taylor term can be expressed as:

∂dL
∂θd

(θ)[u, · · · ,u]

=

S∑
s1=1

· · ·
S∑

sd=1

∂dL
∂Ts1 · · · ∂Tsd

(θ)[Us1 , · · · ,Usd]

= D
(d)
θ (u)[1S , · · · ,1S],

where 1S ∈ RS is a vector full of ones, the tuple of
tensors (U1, · · · ,US) represents u,3 and D

(d)
θ (u) ∈

RSd

is a tensor of order d with size S in every dimen-
sion with values:

(D
(d)
θ (u))s1,··· ,sd =

∂dL
∂Ts1 · · · ∂Tsd

(θ)[Us1 , · · · ,Usd].

Thus, D(d)
θ (u) is equivalently a d-linear form on RS

and a tensor of order d and size S in every dimension.
Moreover, the trick of Pearlmutter (1994) applies also
to the computation of D(d)

θ (u), which is then much
less costly to compute than the Hessian.

Properties of D
(d)
θ (u). We show a comparison

between the three techniques in Table 1. If S is
small enough, computing D

(d)
θ (u) becomes feasible

for d ≥ 2. For usual multilayer perceptrons with L
layers, there is one tensor of weights and one vector of
biases per layer, so S = 2L. This allows to compute
D

(d)
θ (u) in practice for d = 2 even when L ≈ 20.
3(U1, · · · ,US) is to u as (T1, · · · ,TS) is to θ.

Table 1: Comparison between three techniques ex-
tracting higher-order information about L: size of
the result and complexity of the computation.

size complexity
Full derivative ∂dL

∂θd (θ) P d P d

Taylor term D
(d)
θ (u)[1S , · · ·] 1 d× P

Tensor D
(d)
θ (u) Sd Sd−1 × P

Therefore, the tensors D
(d)
θ (u) extract more infor-

mation than the naive Taylor terms, while keeping
a reasonable computational cost. Moreover, through
their off-diagonal elements, they give access to infor-
mation about the interactions between the tensors
(T1, · · · ,TS) when there are processed in the func-
tion L.

4 A scalable second-order opti-
mization method

4.1 Presentation of the method

The method presented here consists in partitioning
the set of indices of parameters {1, · · · , P} into S
subsets (Is)1≤s≤S , attribute for all 1 ≤ s ≤ S the
same learning rate ηs to the parameters (θp)p∈Is , and
find the vector of learning rates η = (η1, · · · , ηS) op-
timizing the decrease of the loss L for the current
training step t, by using its order-2 Taylor approx-
imation.4 Formally, given a direction ut ∈ RP in
the parameter space (typically, ut = gt, the gradi-
ent) and Ut := Diag(ut) ∈ RP×P , we consider the
training step:

θt+1 := θt −UtIP :Sηt,

which is a training step in a direction based on ut,
distorted by a subset-wise step size ηt. Then, we
minimize the order-2 Taylor approximation ∆2 of

4With the notation of Section 3, Is is the set of indices p of
the parameters θp belonging to the tensor Ts, so the scalars
(θp)p∈Is correspond exactly to the scalars belonging to Ts.
Consequently, everything is as if a specific learning rate ηs is
assigned to each tensor Ts.

6

L(θt+1)− L(θt):

∆2(ηt) := −gT
t UtIP :Sηt +

1

2
ηT
t IS:PUtHtUtIP :Sηt,

which gives:

θt+1 = θt −UtIP :Sη
∗
t , (1)

η∗
t := (IS:PUtHtUtIP :S)

−1IS:PUtgt,

where IS:P ∈ RS×P is the partition matrix, verifying
(IS:P)sp = 1 if p ∈ Is and 0 otherwise, and IP :S :=
ITS:P . Alternatively, η∗

t can be written:

η∗
t = H̄−1

t ḡt, H̄t := IS:PUtHtUtIP :S ∈ RS×S ,

ḡt := IS:PUtgt ∈ RS .

Details are provided in Appendix B.
With the notation of Section 3, H̄t = D

(2)
θt

(ut)

and ḡt = D
(1)
θt

(ut). Incidentally, computing H̄ is of
complexity SP , and solving the system H̄x = ḡ is of
complexity S2.

4.2 Regularizing H̄ by using order-3
information

The method proposed in Section 4.1 requires to com-
pute η∗ = H̄−1ḡ. Usually, inverting such a lin-
ear system at every step is considered as hazardous
and unstable. That is why, when using Newton’s
method, instead of computing a direction of descent
u := H−1g, it is very common to add a regulariza-
tion term: uλ := (H+ λI)

−1
g (Nocedal and Wright,

1999, Chap. 6.3).
However, this regularization technique suffers from

several drawbacks. The most obvious is computa-
tional: finding the best hyperpameter λ requires ei-
ther many runs of the full optimization process, ei-
ther one run with a technique adjusting λ on the fly.
Anyway, there is an inevitable extra computational
cost.

Besides of that, the theoretical ground of such a
regularization technique is not fully satisfactory. Ba-
sically, the main problem is not having a matrix H̄
with close-to-zero eigenvalues: after all, if the loss
landscape is very flat in a specific direction, it is bet-
ter to make a large training step. The problem lies

in the order-2 approximation of the loss made in the
training step (1), as well as in Newton’s method: in-
stead of optimizing the true decrease of the loss, we
optimize the decrease of its order-2 approximation.
Thus, the practical question is: does this approxima-
tion model faithfully the loss at the current point θt,
in a region encompassing also the next point θt+1?

To answer that question, one has to take into ac-
count order-3 information, and regularize H̄ in such
a way that the resulting update remains in an area
around θt where the cubic term of the Taylor ap-
proximation is negligible. In practice, we propose an
anisotropic version of Nesterov’s cubic regularization
Nesterov and Polyak (2006).

Anisotropic Nesterov cubic regularization.
By using the technique presented in Section 3,
the diagonal coefficients (D1, · · · , DS) of D

(3)
θ (u) ∈

RS×S×S are available with little computational cost.
Let:

D := Diag(|D1|1/3, · · · , |DS |1/3) ∈ RS .

We modify the method of Nesterov and Polyak (2006)
by integrating an anisotropic factor D into the cubic
term. Thus, our goal is to minimize according to η
the function T :

T (η) := −ηT ḡ +
1

2
ηH̄η +

λint

6
∥Dη∥3,

where λint is the internal damping coefficient, which
can be used to tune the strength of the cubic regu-
larization. Under conditions detailed in Appendix D,
this minimization problem is equivalent to finding a
solution η∗ such that:

η∗ =

(
H̄+

λint

2
∥Dη∗∥D2

)−1

ḡ, (2)

which is no more than a regularized version of (1).
Finally, this multi-dimensional minimization problem
boils down to a scalar root finding problem (see Ap-
pendix D).

4.3 Properties
The final method is a combination of the training
step (1) with regularization (2):

7

Method 4.1. Training step θt+1 = θt −UtIP :Sη
∗
t ,

where η∗ is the solution with the largest norm ∥Dη∥
of the equation:

η =

(
H̄+

λint

2
∥Dη∥D2

)−1

ḡ.

Method 4.1 has several interesting properties.

Encompassing Newton’s method and Cauchy’s
steepest descent. Without the cubic regulariza-
tion (λint = 0), Newton’s method is recovered when
using the discrete partition, that is, S = P with
Is = {s} for all s, and Cauchy’s steepest descent
is recovered when using the trivial partition, that is,
S = 1 with I1 = {1, · · · , P}. See Appendix C for
more details.

No need to compute or approximate the full
Hessian. The full computation of the Hessian Ht ∈
RP×P is not required. Instead, one only needs to
compute the S × S matrix H̄t := IS:PUtHtUtIP :S ,
which can be done efficiently by computing uTHtv
for a number S × S of pairs of well-chosen directions
(u,v) ∈ RP × RP . This property is useful especially
when S ≪ P . When optimizing a neural network
with L = 10 layers and P = 106 parameters, one can
naturally partition the set of parameters into S = 2L
subsets, each one containing either all the weights or
all the biases of each of the L layers. In this situation,
one has to solve a linear system of size 2L = 20 at
each step, which is much more reasonable than solv-
ing a linear system with P = 106 equations. We call
this natural partition of the parameters of a neural
network the canonical partition.

No need to solve a very large linear system.
Using Equations (1) or (2) only requires solving a
linear system of S equations, instead of P in New-
ton’s method. With the cubic regularization, only a
constant term is added to the complexity, since it is
a matter of scalar root finding.

The interactions between different tensors are
not neglected. The matrix H̄t, which simulates

the Hessian Ht, is basically dense, which means that
it does not exhibit a diagonal or block-diagonal struc-
ture. So, the interactions between subsets of param-
eters are taken into account when performing opti-
mization steps. In the framework of neural networks
with the canonical partition, it means that interac-
tions between layers are taken into account during
optimization, including even when the layers are far
from each other. This is a great advantage compared
to many existing approximations of the Hessian or its
inverse, which are diagonal or block-diagonal.

Invariance by subset-wise affine reparameter-
ization. As showed in Appendix E, under a condi-
tion on the directions ut, the trajectory of optimiza-
tion of a model trained by Method 4.1 is invariant by
affine reparameterization of the sub-vectors of param-
eters θIs := vec({θp : p ∈ Is}).5 More precisely, let
(αs)1≤s≤S and (βs)1≤s≤S be respectively a sequence
of nonzero scalings and a sequence of offsets, and θ̃
such that, for all 1 ≤ s ≤ S, θ̃Is

= αsθIs
+βs. Then,

the training trajectory of the model is the same with
both parameterizations θ and θ̃. This property is
interesting in the case of neural networks, where one
can either use the usual parameterization or the NTK
parameterization, which consists in a layer-wise scal-
ing of the parameters.

Compared to the standard regularization H̄ + λI
and Nesterov’s cubic regularization, the anisotropic
Nesterov regularization does not break the property
of invariance by subset-wise scaling of the parame-
ters of (1). Among all, this is due to our choice to
keep only the diagonal coefficients of D

(3)
θ (u) while

discarding the others. Notably, the off-diagonal co-
efficients contain cross-derivatives, which would be
difficult to include in an invariant training step.

5 Experiments

5.1 Empirical computation of H̄ and η

As recalled in Section 2, many works perform a di-
agonal, block-diagonal or block-tridiagional (Martens

5This holds typically if ut is the gradient or a moving av-
erage of the gradients (momentum).

8

and Grosse, 2015) approximation of the Hessian or its
inverse.

Since a summary H̄ of the Hessian and its inverse
H̄−1 are available and all their off-diagonal coeffi-
cients have been computed and kept, one can to check
if these coefficient are indeed negligible.

Setup. We have trained LeNet-5 and VGG-11’6 on
CIFAR-10 by SGD with momentum. Before each
epoch, we compute the full-batch gradient, denoted
by u, which we use as a direction to compute H̄, again
in full-batch. We report submatrices of H̄ and H̄−1

at initialization and at the epoch where the valida-
tion loss is the best in Figure 1 (LeNet) and Figure
2 (VGG-11’).

For the sake of readability, H̄ has been divided
into blocks: a weight-weight block H̄WW, a bias-bias
block H̄BB, and a weight-bias block H̄WB. They
represent the interactions between the layers: for in-
stance, (H̄WB)l1l2 represents the interaction between
the tensor of weights of layer l1 and the vector of
biases of layer l2. Naturally, l1 and l2 are not neces-
sarily different.

Results on H̄. First, the block-diagonal approx-
imation of the Hessian is indeed very rough, while
the block-diagonal approximation of the inverse Hes-
sian seems to be more reasonable (at least in these
setups), which has already been shown by Martens
and Grosse (2015). Second, long-range interactions
between layers seem to exist, both at initialization
and after several epochs. For instance, in LeNet, all
the layers (except the first one) seem to interact to-
gether at initialization (Fig. 1). In te matrix H̄−1

computed on VGG, the block of the last 3 layers in-
teract strongly and the block of the last 6 layers also
interact, but a little less.

According to these observations, a neural networks
should also be regarded as a whole, in which layers
can hardly be studied independently from each other.

As far as we know, this result is the first scalable il-
lustration of interactions between layers far from each
other, based on second-order information.

6VGG-11’ is a variant of VGG-11 with only one fully-
connected layer at the end, instead of 3.

0 1 2 3 4 5 6 7 8
0
1
2
3
4
5
6
7
8

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

0
1
2
3
4
5
6
7
8

Ep. 0, W-W Ep. 4, W-W Ep. 4, W-B Ep. 4, B-B

Figure 2: VGG-11’ trained by SGD on CIFAR-10.
Submatrices of H̄ (first row) and H̄−1 (second row),
where focus is on interactions: weight-weight, weight-
bias, bias-bias of the different layers, at initialization
and before the 4th epoch (best validation loss).

Results on η∗. The evolution of the learning rates
η∗ computed according to (2) in LeNet and VGG
has been reported in Figure 3. First, the learning
rates computed for the biases are larger than for the
weights. Second, even when considering only the
weights, the computed η∗ can differ by several order
of magnitude. Finally, the first two layers of LeNet
(which are convolutional) have smaller η∗ than the
last three (which are fully-connected). Conversely, in
VGG, the weights of the last (convolutional) layers
have a smaller η∗ than in the first ones.

5.2 Training experiments

In this section, we show a proof-of-concept of the op-
timization method 4.1, on simple vision tasks and
with medium-sized neural networks. All the imple-
mentation details are available in Appendix F. No-
tably, we have introduced a damping factor λ1, which
leads to the following modification of the training
step (1):

θt+1 = θt − λ1UtIP :Sη
∗
t .

Setup. We consider 4 image classification setups:

9

0 1 2 3 4
layer indices (LeNet)

10 3

10 1

101

le
ar

ni
ng

 ra
te

Ep. 10 Ep. 30 Ep. 50 Ep. 70 Ep. 90

0 1 2 3 4 5 6 7 8
layer indices (VGG)

10 2

101

104
Weight
Bias

By-tensor learning rates at different epochs

Figure 3: Setup: LeNet, VGG-11’ trained by SGD
on CIFAR-10.
Learning rates η∗ computed according to (2), specific
to each tensor of weights and tensor of biases of each
layer. For each epoch k ∈ {10, 30, 50, 70, 90}, the
reported value has been averaged over the epochs [k−
10, k + 9] to remove the noise.

• MLP: multilayer perceptron trained on MNIST
with layers of sizes 1024, 200, 100, 10, with tanh
activation function;

• LeNet: LeNet-5 (LeCun et al., 1998) model
trained on CIFAR-10 with 2 convolutional lay-
ers of sizes 6, 16, and 3 fully connected layers of
sizes 120, 84, 10;

• VGG: VGG-11’ trained on CIFAR-10. VGG-11’
is a variant of VGG-11 (Simonyan and Zisser-
man, 2014) with only one fully-connected layer
at the end, instead of 3, with ELU activation
function (Clevert et al., 2015), without batch-
norm;

• BigMLP: multilayer perceptron trained on
CIFAR-10, with 20 layers of size 1024 and one
classification layer of size 10, with ELU activa-
tion function.

And we have tested 3 optimization methods:

• Adam: the best learning rate has been selected
by grid-search;

• K-FAC: the best learning rate and damping
have been selected by grid-search;

• NewtonSummary (ours): the best λ1 and λint

have been selected by grid search.

Results. The evolution of the training loss has
been plotted in Figure 4 for each of the 3 optimiza-
tion methods, for 5 different seeds. In each series of
experiments, training is successful, while being slow
or unstable at some points. Anyway, the minimum
training loss achieved by Method 4.1 (NewtonSum-
mary) is comparable to the minimum training loss
achieved by K-KAC or Adam in all the series except
with BigMLP, whose training is extremely slow.

Some runs have been stopped early due to failures
caused by a very large step size (large η∗). Actually,
we did not use any safeguard, such as a regularization
term λI added to H̄, or clipping the learning rates ex-
ceeding a given value. This choice has been made in
order to maintain the property of invariance by repa-
rameterization, and to avoid increasing the number
of hyperparameters to tune.

0 50 100 150 200

10 8

10 6

10 4

10 2

100

MLP (L=4) + MNIST
0 25 50 75 100

10 4

10 3

10 2

10 1

100

VGG-11' (L=9) + CIFAR10

0 25 50 75 100

10 6

10 4

10 2

100

BigMLP (L=20) + CIFAR10
0 50 100 150 200

10 3

10 2

10 1

100

LeNet (L=5) + CIFAR10

Adam
KFAC
NewtonSummary

Figure 4: Training curves in different setups. The
reported loss is the negative log-likelihood computed
on the training set.

10

Extension to very large models. Since the ma-
trix H̄ can be computed numerically as long as S
remains relatively small, then, for very large mod-
els, this method may become unpractical. However,
Method 4.1 is flexible enough to be adapted to such
models: one can regroup tensors “of the same kind”
in order to build a coarser partition of the param-
eters, and consequently obtain a small S, which is
exactly what is needed to compute H̄ and invert it.
The main difficulty would then be to find a good par-
tition of the parameters, by grouping all the tensors
that “look alike”. We provide an example in Appendix
G, with a very deep multilayer perceptron.

6 Discussion

Convergence rate. Method 4.1 does not come
with any convergence rate. Given the convergence
rates of Newton’s method and Cauchy’s steepest de-
scent, we may expect to find some in-between con-
vergence rates. Since Cauchy’s steepest method is
vulnerable to a highly anisotropic Hessian, it would
be valuable to know how much this weakness is over-
come with our method.

Practicality. Despite the interesting properties of
Method 4.1 (scalabity, invariance by reparameteri-
zation, evaluation of long-range interactions between
layers), we have proposed nothing more than a proof-
of-concept. As showed in the experimental section,
this method is subject to instabilities during training,
which is certainly not surprising for a second-order
method, but it is not acceptable for the end user.
Therefore, some additional tricks should be added to
improve the stability of training, which is a common
practice, but comes usually with additional hyper-
parameters to tune. Besides, this method has to be
improved to reduce the duration of each epoch, which
is longer than with K-FAC.

7 Acknowledgments

This work was granted access to the HPC resources
of IDRIS under the allocation 2023-AD011013762R1

made by GENCI.

11

References

Amari, S.-I. (1998). Natural gradient works efficiently
in learning. Neural computation, 10(2):251–276.

Cauchy, A.-L. (1847). Méthode générale pour la
résolution des systèmes d’équations simultanées.
Comptes rendus hebdomadaires des séances de
l’Académie des sciences, Paris, 25:536–538.

Clevert, D.-A., Unterthiner, T., and Hochreiter, S.
(2015). Fast and accurate deep network learning
by exponential linear units (elus). arXiv preprint
arXiv:1511.07289.

Dangel, F. J. (2023). Backpropagation beyond the
gradient. PhD thesis, Universität Tübingen.

Gill, P. E., Murray, W., and Wright, M. H. (1981).
Practical optimization. Academic Press, San Diego.

Jacot, A., Gabriel, F., and Hongler, C. (2018). Neural
tangent kernel: Convergence and generalization in
neural networks. Advances in Neural Information
Processing Systems, 31.

Kornblith, S., Norouzi, M., Lee, H., and Hinton, G.
(2019). Similarity of neural network representa-
tions revisited. In International conference on ma-
chine learning, pages 3519–3529. PMLR.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner,
P. (1998). Gradient-based learning applied to
document recognition. Proceedings of the IEEE,
86(11):2278–2324.

Lu, Y., Harandi, M., Hartley, R., and Pascanu,
R. (2018). Block mean approximation for effi-
cient second order optimization. arXiv preprint
arXiv:1804.05484.

Luenberger, D. G. and Ye, Y. (2008). Linear and
Nonlinear Programming. Springer, fourth edition.

Martens, J. and Grosse, R. (2015). Optimizing neu-
ral networks with Kronecker-factored approximate
curvature. In International conference on machine
learning, pages 2408–2417. PMLR.

Nesterov, Y. (2003). Introductory lectures on convex
optimization: A basic course, volume 87. Springer
Science & Business Media.

Nesterov, Y. and Polyak, B. T. (2006). Cubic regu-
larization of Newton method and its global perfor-
mance. Mathematical Programming, 108(1):177–
205.

Nocedal, J. and Wright, S. J. (1999). Numerical op-
timization. Springer.

Ollivier, Y. (2015). Riemannian metrics for neural
networks I: feedforward networks. arXiv preprint
arXiv:1303.0818.

Pearlmutter, B. A. (1994). Fast exact multiplication
by the Hessian. Neural computation, 6(1):147–160.

Sagun, L., Evci, U., Guney, V. U., Dauphin, Y.,
and Bottou, L. (2018). Empirical analysis of the
Hessian of over-parametrized neural networks. In
International Conference on Learning Representa-
tions.

Simonyan, K. and Zisserman, A. (2014). Very deep
convolutional networks for large-scale image recog-
nition. arXiv preprint arXiv:1409.1556.

Wang, Y.-J. and Lin, C.-T. (1998). A second-
order learning algorithm for multilayer networks
based on block Hessian matrix. Neural Networks,
11(9):1607–1622.

Yang, G. and Hu, E. J. (2021). Tensor programs iv:
Feature learning in infinite-width neural networks.
In International Conference on Machine Learning,
pages 11727–11737. PMLR.

Yuan, R., Lazaric, A., and Gower, R. M. (2022).
Sketched Newton–Raphson. SIAM Journal on Op-
timization, 32(3):1555–1583.

Zhang, C., Bengio, S., and Singer, Y. (2022). Are
all layers created equal? The Journal of Machine
Learning Research, 23(1):2930–2957.

12

A Fast computation of the
terms of the Taylor expan-
sion

In this appendix, we show how to use the trick of
Pearlmutter (1994) to compute the terms of the Tay-
lor expansion of L. We recall that we want to com-
pute:

D̃
(d)
θ (u) :=

∂dL
∂θd

(θ)[u, · · · ,u] ∈ R.

We use the following recursion formula:

D̃
(d+1)
θ (u) =

(
∂D̃

(d)
θ (u)

∂θ

)T

u.

Therefore, at each step d, we only have to compute
the gradient of a scalar D̃(d)

θ (u) according to θ ∈ RP ,
and compute a dot product in the space θ ∈ RP . So,
computing D̃

(d)
θ (u) has a complexity proportional to

d × P , and does not require the computation of the
full tensor ∂dL

∂θd (θ) ∈ RPd

.

B Derivation of the second-
order method

We consider an update of θ with one learning rate ηs
for each subset Is of parameters. Let IS:P ∈ RS×P be
the partition matrix, verifying (IS:P)sp = 1 if p ∈ Is
and 0 otherwise, and IP :S := ITS:P . We consider an
update based on a given direction ut and we define
Ut := Diag(ut):

θt+1 = θt −UtIP :Sη,

where η = (η1, · · · , ηS) ∈ RS .

The second-order approximation of L gives:

L(θt+1) = L(θt −UtIP :Sη)

= L(θt)− ηT IS:PUt
∂L
∂θ

(θt)

+
1

2
ηT IS:PUt

∂2L
∂θ2 (θt)UtIP :Sη + o(∥η∥2)

= L(θt)− ηT IS:PUtgt

+
1

2
ηT IS:PUtHtUtIP :Sη + o(∥η∥2)

= L(θt)− ηT ḡt +
1

2
ηT H̄tη + o(∥η∥2),

where:

ḡt := IS:PUtgt ∈ RS ,

H̄t := IS:PUtHtUtIP :S ∈ RS×S .

Now, we omit the o(∥η∥2) term and we want to
minimize according to η the variation of the loss:

L(θt+1)− L(θt)

≈∆2(η) := L(θt)− ηT ḡt +
1

2
ηT H̄tη.

We have:
∂∆2

∂η
= −ḡt + H̄tη,

which is zero if, and only if:

ḡt = H̄tη.

If this linear system can be inverted, one may choose:

η = η∗
t := H̄−1

t ḡt.

C Link with Cauchy’s steep-
est descent and Newton’s
method

Cauchy’s steepest descent. Let us consider the
trivial partition: S = 1, I1 = {1, · · · , P}. So, IS:P =
(1, · · · , 1) = 1T

S . Therefore, the training step is:

θt+1 := θt −Gt1S(1
T
SGtHtGt1S)

−11T
SGtgt

= θt − gt
gT
t gt

gT
t Htgt

,

13

since Gt1S = gt. We recover Cauchy’s steepest de-
scent.

Newton’s method. Since we aim to recover New-
ton’s method, we assume that the Hessian Ht is pos-
itive definite. Let us consider the discrete partition:
S = P , Is = {s}. So, IS:P = IP , the identity matrix
of RP×P . Therefore, the training step is:

θt+1 := θt −Gt(GtHtGt)
−1Gtgt.

To perform the training step, we have to find x ∈ RP

such that: (GtHtGt)
−1Gtgt = x. That is, solve the

linear system GtHtGtx = Gtgt. In the case where
all the coordinates of the gradient gt are nonzero, we
can write:

x = G−1
t H−1

t G−1
t Gtgt = G−1

t H−1
t gt,

so the training step becomes:

θt+1 := θt −Gtx = θt −H−1
t gt,

which corresponds to Newton’s method.

D Anisotropic Nesterov cubic
regularization

Let D be a diagonal matrix whose diagonal coeffi-
cients are all strictly positive: D = Diag(d1, · · · , dS),
with di > 0 for all i.

We want to minimize the function:

T (η) := −ηT ḡ +
1

2
ηH̄η +

λint

6
∥Dη∥3.

The function T is strictly convex if, and only if, H̄ is
positive definite. Moreover, T is differentiable twice
and has at least one global minimum η∗, so ∂T

∂η (η∗) =
0. Therefore, we first look for the solutions of the
equation ∂T

∂η (η) = 0.
We have:

∂T

∂η
(η) = −ḡ + H̄η +

λint

2
∥Dη∥D2η

= −ḡ +

(
H̄+

λint

2
∥Dη∥D2

)
η,

which is equal to zero if, and only if:

ḡ =

(
H̄+

λint

2
∥Dη∥D2

)
η. (3)

Let η′ := Dη. Eqn. (3) is then equivalent to:

ḡ =

(
H̄D−1 +

λint

2
∥η′∥D

)
η′.

=
λint

2
D

(
2

λint
D−1H̄D−1 + ∥η′∥I

)
η′

Let K := 2
λint

D−1H̄D−1. We want to solve:

ḡ =
λint

2
D (K+ ∥η′∥I)η′ (4)

Since K is positive definite if, and only if, H̄ is posi-
tive definite, we consider the following cases.

Case 1: H̄ is positive definite. In this case,
Eqn. (4) is equivalent to:

η′ =
2

λint
(K+ ∥η′∥I)−1

D−1ḡ.

Now, let r = ∥η′∥. We want to solve:

r =
2

λint

∥∥∥(K+ rI)
−1

D−1ḡ
∥∥∥ . (5)

Trivially: η solution of (3) ⇒ Dη solution of (4)
⇒ ∥Dη∥ solution of (5). Reciprocally: r solution of
(5) ⇒ η′ := (H̄D−1 + λint

2 rD)−1ḡ solution of (4) ⇒
D−1η′ solution of (3).

Therefore, in order to find the unique global min-
imum of T , it is sufficient to solve Eqn. (5). This is
doable numerically.

Case 2: H̄ is not positive definite. We fol-
low the procedure proposed in (Nesterov and Polyak,
2006, Section 5). Let λmin be the minimum eigen-
value of K. So, λmin ≤ 0. Following Nesterov and
Polyak (2006), we look for the unique η′ belonging
to C := {η′ ∈ RS : ∥η′∥ > |λmin|}, which is also the
solution of maximum norm of Eqn. (4). Condition-
ally to η′ ∈ C, (K + ∥η′∥I) is invertible. So we only
need to solve:

r > |λmin| : r =
2

λint

∥∥∥(K+ rI)
−1

D−1ḡ
∥∥∥ , (6)

14

which has exactly one solution r∗. Then, we compute
η∗ := D−1(H̄D−1 + λint

2 r∗D)−1ḡ.

E Approximate invariance by
subset-wise affine reparame-
terization

We consider a parameter θ̃ such that:

θ = φ(θ̃),

where φ is an invertible map, affine on each sub-
set of parameters. Therefore, its Jacobian is: J =
Diag(α1, · · · , αp), where, for all 1 ≤ s ≤ S and
1 ≤ p1, p2 ≤ P , we have:

p1, p2 ∈ Is ⇒ αp1 = αp2 =: as.

Also, let J̄ = Diag(a1, · · · , aS).
We want to compare the training trajectory of L(θ)

and L(φ(θ̃)) when using Method 4.1. For any quan-
tity x computed with the parameterization θ, we de-
note by x̃ its counterpart computed with the param-
eterization θ̃.

We compute η̃∗. Equation (2) gives:

η̃∗ =

(
˜̄H+

λint

2
∥D̃η̃∗∥D̃2

)−1

˜̄g. (7)

Besides:

˜̄H := IS:P ŨH̃ŨIP :S

˜̄g := IS:P Ũg̃

To go further, we need to do an assumption about
the direction u.

Assumption E.1. We assume that Ut is computed
in such a way that Ũt = JUt at every step.

This assumption holds typically when ut is the gra-
dient at time step t. It holds also when ut is a linear
combination of the past gradients:

u1 := g1

ut+1 := µut + µ′gt+1,

which includes the momentum.
To summarize, we have:

Ũ = JU, H̃ = JHJ, g̃ = Jg,

So:

˜̄H = J̃2IS:PUHUIP :SJ̃
2 = J̃2H̄J̃2,

˜̄g = J̃2IS:PUg = J̃2ḡ,

since J and U are diagonal. And:

since: Dii =
∣∣∣(D(3)

θ (u))iii

∣∣∣1/3 ,
then: D̃ii = a2iDii,

thus: D̃ = J̃2D.

Thus, Eqn. (7) becomes:

η̃∗ =

(
J̃2H̄J̃2 +

λint

2
∥J̃2Dη̃∗∥J̃4D2

)−1

J̃2ḡ,

which can be rewritten (since J̃ is invertible):

J̃2η̃∗ =

(
H̄+

λint

2
∥DJ̃2η̃∗∥D2

)−1

ḡ.

Therefore, η̃∗ is a solution of Eqn. (2) in the param-
eterization θ̃ if, and only if, J̃2η̃∗ is a solution in the
parameterization θ. Moreover, ∥D̃η̃∗∥ = ∥DJ2η̃∗∥,
so η̃∗ is the solution of maximum norm ∥D̃η̃∗∥ of (2)
with parameterization θ̃ iff J̃2η̃∗ is a the solution of
maximum norm ∥DJ2η̃∗∥ of (2) with parameteriza-
tion θ.

Thus, η∗ = J̃2η̃∗, and the update step in parame-
terization θ̃ is:

θ̃t+1 = θ̃t − ŨtIP :Sη̃∗

= θ̃t − ŨtIP :SJ̃
−2η∗

which can be rewritten:

J−1θt+1 = J−1θt −UJIP :SJ̃
−2η∗, (8)

since φ is an affine function with factor J. Finally,
En. (8) boils down to:

θt+1 = θt −UIP :Sη∗,

which is exactly Method 4.1 in parameterization θ.

15

F Experimental details
Practical implementation. To implement the
method proposed in Section 4, we propose Algorithm
1. The key function is compute_lr(λint;L,θ, Z̃,u),
which returns a solution η∗ of:

η∗ =

(
H̄+

λint

2
∥Dη∗∥D2

)−1

ḡ,

with: H̄ := IS:PDiag(u)
∂2L
∂θ2 (θ, Z̃)Diag(u)IP :S ,

ḡ := IS:PDiag(u)gt,

D := Diag

((∣∣∣D(3)
θ (u)

∣∣∣1/3
iii

)
1≤i≤S

)
.

“momentum(µ,x, x̃)” returns x if x̃
is undefined, else µx̃ + (1 − µ)x.
“schedule(τsch, psch, fsch; · · ·)” corresponds to
torch.optim.lr_scheduler.ReduceLROnPlateau
called every τsch with patience psch and factor fsch,
in order to reduce the damping λt when the loss
attains a plateau.7 The samplers Dg and Dnewt are
respectively used to compute the gradients gt and
(H̄, ḡ) used in “compute_lr”.

The hyperparameters are: the initial damping fac-
tor λ1, the momentum µg on the gradients gt, the
minibatch size B to sample the Z̃ (used to compute ḡ,
H̄ and D), the number of steps τ between each call of
compute_lr, the momentum µη on the learning rates
ηt, the internal damping λint, and the parameters of
the scheduler τsch, psch, fsch.

Explanation. The “momentum” functions are used
to deal with the stochastic part of the training pro-
cess, since our method has not been designed to be
robust against noise. The period τ is usually strictly
greater than 1, in order to avoid calling “compute_lr”
at every step, which would be costly. The minibatch
size B should be large enough to reduce noise in the
estimation of η∗. If we denote by Bg the size of the
minibatches in Dg, then we recommend the following
setup: τ = B

Bg
= 1

1−µg
. That way, we ensure that

the training data are sampled from Dg and Dnewt at

7See torch.optim.lr_scheduler.ReduceLROnPlateau.

Algorithm 1 Complete implementation of the
second-order optimization method described in Sec-
tion 4. λ1 and λint are the only hyperparameter to be
tuned across the experiments, the others are fixed.

Hyperpar.: λ1, µg, Bg, B, τ, µη, λint, τsch, psch, fsch
Dg ← sampler of minibatches of size Bg

Dnewt ← sampler of minibatches of size B
for all t ∈ [1, T] do
Zt := (Xt, Yt) ∼ Dtr (sample minibatch)
Lt ← L(θt, Zt) (forward pass)
gt ← ∂L

∂θ (θt, Zt) (backward pass)
g̃t ← momentum(µg;gt, g̃t−1)
if t% τ == 0 then

sample Z̃t ∼ Dnewt

ηt ← compute_lr(λint;L,θt, Z̃t, g̃t)
η̃t ← momentum(µη; (ηt)+, η̃t−1)

end if
θt+1 ← θt − λtDiag(g̃t)IP :Sη̃t (training step)
λt+1 ← schedule(τsch, psch, fsch; t,Lt, λt)

end for

the same rate, and that g̃t memorizes the preceding
gradients gt for τ steps. Besides, we have to take the
positive part (ηt)+ of ηt in order to avoid negative
learning rates.

Experimental setup. We provide in Table 2 the
hyperparameters fixed for all the experiments. In Ta-
ble 3, we report the results of the grid-search for the
hyperparameters of the 3 tested optimization meth-
ods.

Table 2: Hyperparameters fixed in all the series of
experiments. Ne is the number of training steps per
epoch.

µg Bg B τ µη τsch psch fsch
0.9 102 103 10 0.5 Ne 5 0.5

16

Table 3: Hyperparams tuned for each series of exper-
iments. η: learning rate, λ1: initial damping factor.

MLP LeNet VGG-11’ BigMLP
Adam: η 3 · 10−4 3 · 10−4 10−5 10−5

KFAC: η 10−4 10−4 3 · 10−4 10−5

KFAC: λ1 10−2 3 · 10−2 3 · 10−2 10−2

Ours: λ1 10−1 3 · 10−1 3 · 10−1 10−1

Ours: λint 10 3 3 10

G Very deep multilayer percep-
tron

Grouping the layers. In addition to the neural
networks considered in Section 5, we have also tested
“VBigMLP”, a very deep multilayer perceptron with
100 layers of size 1024 trained on CIFAR-10. Instead
of considering S = 2L = 200 groups of parameters,
we split the sequence of layers of VBigMLP into 5
chunks. Then, each chunk is divided into 2 parts, one
containing the weight tensors, and the other the bias
vectors. Finally, we have S = 10 subsets of param-
eters, grouped by role (weight/bias) and by position
inside the network.

Experimental results. We show in Figure 5 the
matrices H̄ and H̄−1 at different stages of training.
At initialization, even if the neural network is very
deep, we observe that all the chunks of the network
interact together, even the first one with the last
one. However, after several training steps, the long-
range interactions seem to disappear. Incidentally,
the matrices become tridiagonal, which ties in with
the block-tridiagonal approximation of the inverse of
the Hessian done by Martens and Grosse (2015).

In Figure 6, we observe the evolution of the learn-
ing rates η∗ computed according to (2). First, there
are all increasing during training. Second, the biases
in the last layers of the network seem to need larger
learning rates than biases in the first layers. Third,
the learning rate computed for the weights of the first
chunk of layers is smaller than the others.

Finally, the training curves in Figure 7 indicate

0 1 2 3 4
0
1
2
3
4

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0
1
2
3
4

Ep. 0, W-W Ep. 100, W-W Ep. 100, W-B Ep. 100, B-B

Figure 5: VBigMLP trained by SGD on CIFAR-10.
Submatrices of H̄ (first row) and H̄−1 (second row),
at initialization and before the 100th epoch.

that our method can be used to train very deep net-
works, but quite slowly. In this setup, it is far from
being competitive with Adam. Besides, we did not
manage to tune the learning rate and th damping of
K-FAC to make it work in this setup.

17

0 1 2 3 4
layer group indices (VBigMLP)

10 6

10 5

10 4

le
ar

ni
ng

 ra
te

 (w
ei

gh
ts

)

10 6

10 5

10 4

10 3

10 2

10 1

100

le
ar

ni
ng

 ra
te

 (b
ia

se
s)

By-tensor learning rates at different epochs

25
75
125
175

225
275
325
375

Figure 6: VBigMLP trained by SGD on CIFAR-10.
Legend: solid lines: weights; dotted lines: biases.
Learning rates η∗ computed according to (2), spe-
cific to each subset of parameters. For each epoch
k ∈ {25, 75, 125, 175, 225, 275, 325, 375}, the reported
value has been averaged over the epochs [k−25, k+24]
to remove the noise.

0 50 100 150 200 250 300 350 400

10 3

10 2

10 1

100

101

VBigMLP (L=100) + CIFAR10

Adam
NewtonSummary

Figure 7: Training curves with VBigMLP, CIFAR-
10.
The training of Adam has been stopped at 200
epochs, since no significant improvement was ob-
served in the last 50 epochs.

18

	Introduction
	Context and motivation
	Higher-order information
	Second-order methods
	Motivation

	Summarizing higher-order information
	A scalable second-order optimization method
	Presentation of the method
	Regularizing by using order-3 information
	Properties

	Experiments
	Empirical computation of and bold0mu mumu
	Training experiments

	Discussion
	Acknowledgments
	Fast computation of the terms of the Taylor expansion
	Derivation of the second-order method
	Link with Cauchy's steepest descent and Newton's method
	Anisotropic Nesterov cubic regularization
	Approximate invariance by subset-wise affine reparameterization
	Experimental details
	Very deep multilayer perceptron

