
An Efficient and Robust Framework for Approximate
Nearest Neighbor Search with Attribute Constraint

Mengzhao Wang
Hangzhou Dianzi University

wmzssy@yeah.net

Lingwei Lv
Hangzhou Dianzi University

llw@hdu.edu.cn

Xiaoliang Xu∗

Hangzhou Dianzi University
xxl@hdu.edu.cn

Yuxiang Wang
Hangzhou Dianzi University

lsswyx@hdu.edu.cn

Qiang Yue
Hangzhou Dianzi University

yq@hdu.edu.cn

Jiongkang Ni
Hangzhou Dianzi University
hananoyuuki@hdu.edu.cn

Abstract

This paper introduces an efficient and robust framework for hybrid query (HQ)
processing, which combines approximate nearest neighbor search (ANNS) with
attribute constraint. HQ aims to find objects that are similar to a feature vector and
match some structured attributes. Existing methods handle ANNS and attribute
filtering separately, leading to inefficiency and inaccuracy. Our framework, called
native hybrid query (NHQ), builds a composite index based on proximity graph
(PG) and applies joint pruning for HQ. We can easily adapt existing PGs to this
framework for efficient HQ processing. We also propose two new navigable PGs
(NPGs) with optimized edge selection and routing, which improve the overall
ANNS performance. We implement five HQ methods based on the proposed
NPGs and existing PGs in NHQ, and show that they outperform the state-of-the-art
methods on 10 real-world datasets (up to 315× faster with the same accuracy).

1 Introduction

Approximate nearest neighbor search (ANNS) is a crucial problem in data science and AI applications
[27, 43, 9, 47]. For example, in a paper-retrieval system based on ANNS, a user wants to find papers
that are most similar to her query text. As Fig. 1(a) shows, the system converts each paper’s
unstructured text and the query text into feature vectors in a high-dimensional space. Then it uses
a vector index to perform ANNS and obtain papers with similar content. Many effective ANNS
methods have been developed to balance query efficiency and accuracy [18, 19, 36, 40, 11].

However, ANNS does not support many real-world scenarios where users want to find objects with
similar feature vectors to the query object and meets the given attribute constraint (e.g., topic, venue,
and publish_year of a paper) [51, 41]. We call this a hybrid query (HQ) [51, 54, 60, 32, 50, 41, 42].
For instance, in Fig. 1(b), a user wants to find some recent papers from top-tier conferences related to
her research interest. She can form a HQ by providing a descriptive text of her interest and two paper
attributes (e.g., NeurIPS and 2022). However, the traditional ANNS shown in Fig. 1(a) only finds
papers with similar content, and it cannot guarantee matching attribute constraint. Therefore, many
have tried to add attribute filtering (AF) on top of ANNS to answer a HQ [54, 51, 60].

Vearch [29] uses ANNS to find candidates that match the feature vector, and then applies AF to
get the final results [32]. This strategy can work with other ANNS libraries, such as SPTAG [37],
NGT [59], and Faiss [17]. On the other hand, Alibaba AnalyticDB-V (ADBV) [54] employs product

∗Corresponding author

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

I prefer NeurIPS 2022I prefer NeurIPS 2022
NeurIPS 2022

User

(a) ANNS

Input
Unstructured data

Structured attributes
Input

Publication NeurIPS

Year 2022

An image retrieval processing that support attribute filtering
beyond vector similarity search, it is to only search vectors that

satisfy a given filtering condition, e.g., finding the T-shirts similar
to a given image vector that also cost less than $100.

Embedding

CVPR 2021

Vector IndexIndex construction

Search

PapersPapersUnstructured textEmbedding

Feature vectorsFeature vectors Feature vectorFeature vector

Embedding

Query textQuery textResultsResults

Query textQuery text

(b) Query input

Feature vectorFeature vector

Attribute
constraints
Attribute

constraints
MergingMerging ResultsResults

(c) Existing HQ processing

Feature vector
+

Attribute constraints

Feature vector
+

Attribute constraints
Composite Index ResultsResults

NeurIPS 2022

(d) Our HQ processing

CandidatesCandidates

CandidatesCandidates Limited efficiency and accuracy

High efficiency and accuracy

“

”

Attribute
Index

Vector
Index

Figure 1: An example of different paper-retrieval schemes, including (a) ANNS and (c–d) HQ. ANNS
retrieves results with semantically similar content, but it does not check the attribute constraint. A
HQ processing obtains results that match both the feature vector and attribute constraints.

quantization (PQ)[28] to create multiple query plans. One of them is to do AF first and then ANNS
to return the final results. This method is scalable and suitable for most use cases [51]. Milvus [38]
partitions the dataset into subsets based on common attributes. This way, it can quickly select the
subsets that meet the query’s attribute constraints, and only perform ANNS on them instead of the
whole dataset. This improves the search efficiency [51].

These solutions have a common idea: they do AF and ANNS separately in different orders (see
Appendix A for details). No matter what order they use, the whole query pipeline can be simplified
as Fig. 1(c), where two subquery systems (for AF and ANNS) are built independently. They can
answer a HQ, but they are not designed for it, which affects their efficiency and effectiveness.

1.1 Limitations of Existing Methods

L1: Two indexes need to be kept at the same time. Fig. 1(c) shows that existing methods need
both the attribute index and vector index for two separate subquery systems. This takes more memory
space and adds more logic (e.g., merging) to make sure two indexes are consistent and query results
are correct [54]. Updating different indexes at the same time is hard when the data changes often.

L2: Extra computational cost from two separate pruning strategies. For existing methods,
pruning is done based on attribute index and vector index separately, which increases computational
cost. For example, suppose that the vector index in Fig. 1(c) is a proximity graph (PG, we define it
in Def. 4) [52], where each vertex is an object’s feature vector. Then, some vertices near the query
object’s feature vector but not matching the attributes can make the search follow wrong paths and
return wrong answers to a HQ. We prune these wrong answers in the attribute-filtering phase, but the
computational cost for returning them in the ANNS phase is unnecessary and inefficient.

L3: Query results rely on the merging of the candidates from both subquery systems. As Fig.
1(c) shows, we need to merge the top-k candidates C1 and C2 from both subquery systems to get
the final results R = C1 ∩ C2. But usually we have |R| ≪ k. This is because existing methods do
ANNS and AF separately, so each system can only return candidates that meet one type of constraint.
To make |R| bigger, we need to make C1 and C2 bigger, which makes both systems slower [60].

L4: Existing methods are not friendly for PGs. Recent methods, like ADBV [54] and Milvus
[51], use a “first AF, then ANNS” strategy to answer a HQ; they only use PQ [28] for ANNS. But
many studies have shown PG is 10× faster than PQ for ANNS [5, 33], so we need to find a way
to use PG in HQ. A simple way is to replace PQ-based vector index with PG-based one, but it has
some problems: (1) In the “first AF, then ANNS” strategy, we want to find similar vectors from a
dynamic space of the vectors filtered by attributes. It is not efficient to build a vector index for these
filtered vectors in runtime. (2) Even worse, if we list all possible combinations of attribute values and
prebuild a vector index for each one offline (like [56]), it would take too much memory space, e.g.,
mn different indexes for n attributes where each attribute has m values.

To sum up, most of these limitations happen because existing methods answer HQ in a “decomposition-
assembly” model, where a HQ is split into two subqueries that process separately and then combine
the results. This motivates us to present a new general framework for HQ that works well with
existing PGs. It has the well-designed composite index and joint pruning modules to support ANNS
with attribute constraint, instead of keeping two separate indexes and doing pruning separately.

1.2 Our Solution and Contributions

To the best of our knowledge, we are the first to present a Native Hybrid Query framework (NHQ)
for ANNS with attribute constraint in a fused way, not the “decomposition-assembly” model used by

2

existing methods. As Fig. 1(d) shows, our framework first combines feature vectors and attributes in
a well-designed composite index (for L1); then it prunes the search space on the composite index
by considering both the feature vector and attribute constraints (for L2); and finally, it gets the final
top-k results directly without a merging operation (for L3). Our NHQ is a general framework, where
the composite index is based on PG, so existing PGs can easily work with NHQ (for L4) and it also
supports custom-optimized PGs. Our main contributions are:

• We introduce NHQ, a general framework for ANNS with attribute constraint (§3). NHQ works
well with existing PGs, and can make them handle HQ only by a lightweight modification.

• We design two navigable PGs (NPGs) with optimized edge selection and routing strategies (§4),
which have better efficiency-vs-accuracy trade-off than basal PGs.

• We use the proposed NPGs and existing PGs in our NHQ framework, and get several new HQ
methods that beat the state-of-the-art competitors on all datasets (up to 315× faster, §5.3).

• We show our methods’ better effectiveness, efficiency, and scalability on 10 real-world datasets,
compared with state-of-the-art HQ frameworks and methods (§5).

2 Preliminaries

Definition 1 Object Set. An object set is defined as a set S = {e0, . . . , en−1} of size n. For each
object e ∈ S, (1) its features are represented as a high-dimensional vector, denoted by ν(e), (2) e
has a set of attributes denoted by {a0, . . . , am−1} and e.ai indicates the value of attribute ai of e.
Moreover, we define the feature vector set of all objects in S as X = {ν(e)|e ∈ S}.

Example 1 An object set could refer to different types of data, e.g., images, papers. When we specify
each object e as a paper, it carries two types of information: one is the implicit semantics behind the
text, which is usually represented as a feature vector ν(e) by neural network, e.g., BERT [13]; and
another is the explicit attributes, e.g., {venue, topic}, such as e.venue =“NeurIPS”.

Given an object set S and a user-input query object q, many approaches have been studied to retrieve
the most similar objects to q from S by considering feature vectors’ distance alone [15, 36, 16]. In
the following, we first introduce ANNS, then formally define the HQ that we study.

For an object e ∈ S and its feature vector ν(e) ∈ X , we write ν(e) = [ν(e)0, ν(e)1, . . . , ν(e)d−1],
where ν(e)i is the value of ν(e) on the i-th dimension. We focus on the high-dimensional case where
d is from hundreds to thousands. For any two objects e, o ∈ S with feature vectors ν(e), ν(o) ∈ X ,
we can measure their similarity with different methods, such as Euclidean distance [19] and Cosine
similarity [36]. Euclidean distance is the most popular method [33], which is in Eq. 1.

δ(ν(e), ν(o)) =

√√√√d−1∑
i=0

(ν(e)i − ν(o)i)2 (1)

Definition 2 NNS [18, 20, 45]. Given an object set S and a query object q with the feature vector
ν(q), the NNS aims at obtaining the top-k objects from S whose feature vectors are closest to ν(q).

In Def. 2, the exact top-k objects (denoted by T) hold that

T = arg min
T⊆S,|T |=k

∑
e∈T

δ(ν(e), ν(q)) . (2)

Exact NNS on a large S is not feasible because it takes too much computation [52]. So, an ANNS is
more realistic, as it balances accuracy and efficiency with a vector index [52]. Let T be the exact
top-k objects from Def. 2 and R be the approximate top-k objects from an ANNS method. We can
use recall rate Recall@k to measure the search accuracy of the approximate method:

Recall@k =
|R ∩ T |

k
. (3)

A bigger Recall@k means more accurate results from ANNS.

3

A query object

feature vector

Attribute constraints 0u 1u

q
2u

3u

4u

5u

x
x

x

An object set
...

Feature vector space

{ () | }e eν= ∈X S

Attribute vector space
{ () | }e e= ∈ℓY S

Online: joint pruning

Offline: building composite index

Fusion distance

1.0
0(,)Γ q u

1(,)Γ q u

2(,)Γ q u

3(,)Γ q u

4(,)Γ q u

1.2

1.3

0.5

0.6

0.1
5(,)Γ q u

Figure 2: NHQ framework overview.

To return the query results fast, ANNS makes a vector index based on the feature vector. We can
classify ANNS methods into four types by how they make the index: quantization [28, 23]; tree
[46, 2]; hashing [22, 24]; and proximity graph (PG)[36, 19]. Many works [33, 19] have shown that
the PG-based methods have better efficiency vs accuracy trade-off.

Definition 3 Hybrid Queries (HQ). Given an object set S and a query object q with a feature vector
ν(q) and a set of attributes {a0, . . . , am−1} of size m, the HQ returns the top-k objects from S,
denoted by T . The objects in T satisfy two conditions: 1⃝ attribute filtering (AF): they have the
same attributes as q—that is, for any e ∈ T , ∀i = 0, 1, · · · ,m− 1, e.ai = q.ai; and 2⃝ ANNS: their
feature vectors are the closest to ν(q) among those that meet 1⃝.

It is also too slow to answer an exact HQ on a large S . So, current research works on an approximate
HQ processing [51, 54] and the query accuracy is measured by Eq. 3 for a returned R from the
approximate method. HQ is an extended ANNS with attribute constraint [51]. But it is a challenging
problem, because all existing methods have accuracy and efficiency issues (L1-L4 in §1.1).

3 NHQ Framework

We begin by defining proximity graph (PG) and then introduce the NHQ framework based on PG.

Definition 4 PG. Given an object set S, we define the PG of S w.r.t. an distance threshold B
as a graph G = (V,E) with the vertex set V and edge set E. 1⃝ For each vertex u ∈ V , it
corresponds to an object e ∈ S. 2⃝ For any two vertices ui and uj from V , if uiuj ∈ E, we have
δ(ν(ui), ν(uj)) ≤ B, where ν(ui) and ν(uj) is the feature vectors of objects ui and uj , respectively.

Let N(ui) be the neighbor set of ui. Our idea is to build a PG that uses both feature vectors and
attributes as a composite index. In the index, the neighbors of u may have the same attributes as u.
We can use Eq. 1 to measure the feature vector distance, but we need to quantify the attributes and
define a distance metric function [55]. Then, we can fuse the feature vector distance and the attribute
distance into a fusion distance to compare the objects. Therefore, we can directly prune the vertices
that have either dissimilar feature vectors or different attributes with the fusion distance.

Fusion distance. Given an object set S with feature vectors X (see Fig. 2, bottom left), we can
use different encoding methods [3, 44, 48] to encode the attributes of each object e ∈ S. Ordinal
encoding works well for structured attributes [53]. We use ordinal encoding ℓ(.) to get an attribute
vector ℓ(e) = [ℓ(e)

0
, · · · , ℓ(e)m−1

] for each object e, where ℓ(e)
i is e.ai’s encoded value (e.g.,

{NeurIPS,NLP} can be encoded as [1, 3] by ℓ(.)). Then, we get attribute vectors Y = {ℓ(e)|e ∈ S}.
We can measure the distance between two feature vectors ν(ei) and ν(ej) in X by using Eq. 1. We
can measure the distance between two attribute vectors ℓ(ei) and ℓ(ej) in Y by using this formula:

χ(ℓ(ei), ℓ(ej)) =

m−1∑
k=0

ϕ(ℓ(ei)
k
, ℓ(ej)

k
) , (4)

where ϕ(ℓ(ei)
k
, ℓ(ej)

k
) is

ϕ(ℓ(ei)
k
, ℓ(ej)

k
) =

{
0 ℓ(ei)

k
= ℓ(ej)

k

1 ℓ(ei)
k ̸= ℓ(ej)

k . (5)

In Eq. 4–5, m is the number of dimensions in ℓ(ei), and ℓ(ei)
k is the value on the k-th dimension.

The smaller this distance is, the more similar the attribute vectors are.

4

We can fuse the feature vector distance δ(ν(ei), ν(ej)) and the attribute vector distance χ(ℓ(ei), ℓ(ej))
into a single distance Γ (ei, ej) for objects ei and ej by using this formula:

Γ (ei, ej) = wν · δ(ν(ei), ν(ej)) + wℓ · χ(ℓ(ei), ℓ(ej)) , (6)

where wν and wℓ are distance weights. The smaller this distance is, the more similar the objects are
in both feature vectors and attributes. Eq. 6 is a simple and practical way to combine two different
distances. It also makes it easy to build a composite index on top of existing PGs, because we just
need to change the distance measure from Eq. 1 to Eq. 6. For example, if we set wν = 1 and wℓ = 0,
we get Γ (ei, ej) = δ(ν(ei), ν(ej)), which is the same as building a PG based on feature vector. If
we set wν = 0 and wℓ = 1, we get Γ (ei, ej) = χ(ℓ(ei), ℓ(ej)), which is a PG based on attribute. So,
we can find the best balance between two distances by adjusting wν and wℓ.

Weight configuration. We found that wν = 1 and wℓ = δ(ν(ei), ν(ej))/m give the best query
performance for most datasets and algorithms (see Appendix U). These weights do not depend on
the dataset, but only on the feature vector distance δ(ν(ei), ν(ej)) of two objects and the attribute
vector dimension m. The idea is to fine-tune the feature vector distance with the attribute distance.
For example, if ei and ej have the same attributes, that is, χ(ℓ(ei), ℓ(ej)) = 0, we keep the feature
vector distance as it is (i.e., Γ (ei, ej) = δ(ν(ei), ν(ej))). If ei and ej have completely different
attributes, that is, χ(ℓ(ei), ℓ(ej)) = m, we double the feature vector distance to get Γ (ei, ej) =
2 · δ(ν(ei), ν(ej)). In general, we have δ(ν(ei), ν(ej)) ≤ Γ (ei, ej) ≤ 2 · δ(ν(ei), ν(ej)).

Algorithm 1: Building Composite Index (S)
Input: Object set S
Output: Composite Index G = (V,E)
V ← S, E ← ∅
forall ui ∈ V do

forall uj ∈ V \ {ui} do
if Γ (ui, uj) ≤ B′ then

E = E ∪ {uiuj}

return G = (V,E)

Composite index. We build a composite index
based on Algorithm 1 (see Fig. 2, bottom right).
We start with V = S, so each object e ∈ S is a
vertex u ∈ V in G, and E = ∅. Then, we add an
edge uiuj ∈ E between two vertices ui, uj ∈ V
if Γ (ui, uj) ≤ B′, where B′ is a fusion distance
threshold. Note that our composite index does
not incur extra space cost, as shown in Lemma 1.

Lemma 1 The composite index and the ordinary
PG have the same index size for an object set S.

Theorem 1 Let Ωmin and Ωmax be the minimum and maximum distances between feature vectors on
S . Suppose we have at least |N(e)| objects with the same attributes as e for any object e ∈ S . Then,
1⃝ for any vertex u and its neighbor o in the composite index, we have Ωmin ≤ Γ (u, o) ≤ Ωmax; 2⃝

for any vertex u and its neighbor o in the ordinary PG, we have Ωmin ≤ Γ (u, o) ≤ 2 · Ωmax.

Theorem 1 shows that our composite index has a smaller fusion distance bound.

Algorithm 2: Joint Pruning (G, q, P)
Input: Composite index G = (V,E),

query object q, seed set P
Output: Result set R
candidate set C ← P ; result set R← P
while R is updated do

ui ← arg minui∈C Γ (q, ui);
C = C \ {ui}
N(ui)← the neighbors of ui;
C = C ∪N(ui)
forall uj ∈ N(ui) do

ur ← arg maxur∈R Γ (q, ur)
if Γ (q, uj) < Γ (q, ur) then

R = R \ {ur};
R = R ∪ {uj}

return R

Joint pruning. Given a query object q, we use a
composite index G and a seed set P (usually chosen
randomly from V [52]) to find the approximate top-k
objects based on Algorithm 2. We follow these steps
(see Fig. 2, top right): 1⃝ Initialization. We use a
visited vertex set C to store the vertices for search
expansion and a result set R of size k to store the
current query results. We set both sets to P at first.
2⃝ Search expansion. We take out the vertex ui with

the smallest Γ (q, ui) from C as the next visited vertex,
and then add N(ui) to C. 3⃝ Query results update.
We update R with the better vertices in N(ui). For
any vertex uj ∈ N(ui) and a vertex ur ∈ R that
is the farthest from q, we replace ur with uj in R if
Γ (q, uj) < Γ (q, ur). This means uj is more similar
to q in both feature vectors and attributes than ur. We
repeat 2⃝ and 3⃝ until R does not change, then we
return R as the approximate top-k objects.

Example 2 We show an example of joint pruning for finding the nearest object (i.e., top-1) to the
query object q in Fig. 2 (top right). We start with a random vertex as the seed, i.e., P = {u0},

5

P1

P2 P3

P4 P1

P2 P3

P4

lune

(a) Naïve edge selection (b) RNG’s edge selection

1
u

0
u2

u

i
u

3
u

4
u

9
u

8
u

7
u

6
u

5
u

5
u

6
u

7
u

8
u9

u

i
u

4
u

3
u

2
u

0
u

1
u P1

P2 P3

P4

(c) Our edge selection

2
u

0
u

1
u

3
u

4
u

5
u

6
u

7
u

8
u9

u

i
u

Figure 3: Different edge selection strategies for ui (we assume ui has at most four neighbors).

and set C = {u0} and R = {u0}. Then, we expand the search space with u0’s neighbors and get
C = {u1, u2, u3, u4}. We update R with u4 because Γ (q, u4) = 0.5 is smaller than Γ (q, u0) = 1.0.
We continue to expand the search space with u4’s and u5’s neighbors and get R = {u5}. Since no
vertex uj ∈ N(u5) has a smaller distance than Γ (q, u5), we return u5 as the approximate top-1
nearest object. We prune the vertices u1, u2, and u3 from the search space.

Theorem 2 Given a query object q, the composite index guarantees at least the same Recall@k of
HQ as the ordinary PG. (see Appendix H for the proof)

Theorem 2 states that our composite index has a higher or equal Recall@k than the ordinary PG.

4 Navigable PG Algorithm

To form the composite index, we can deploy a specific PG in NHQ and change its original distance
measure to the fusion distance (Eq. 6). This gives the PG the ability to handle HQ effectively.
However, current PGs have limitations that affect NHQ’s performance with the PG-based composite
index. Therefore, we present two new navigable PGs (NPGs) in this section. We optimize the edge
selection and routing strategies for building and searching on a PG, respectively.

4.1 Edge Selection

Edge selection is a crucial step for building a PG. It determines the neighbors of each object e
in an object set S. Different strategies build different structures for a PG, which affect its search
performance [19]. Existing PGs use two factors for edge selection: distance between two vertices
(D1) and distribution of all vertices (D2) [52]. Early PGs like NSW [35] and KGraph [14] only use
D1 and connect each vertex with some of its nearest neighbors (Fig. 3(a)). However, this can cause
redundant computations and reduce search efficiency [34]. Recent PGs also use D2 with RNG’s edge
selection, which diversifies the neighbors’ direction [33]. However, RNG’s edge selection still fails
to diversify the neighbors well (Fig. 3(b)). Due to the space limitation, we explain this in Appendix I.

Our edge selection. We design a new edge selection strategy that uses D1 and D2. It connects ui

with one nearest neighbor in each area of ui (P1–P4 in Fig. 3(c)). We define the landing zone of ui

and one of its neighbors uj ∈ N(ui), which is the area where only the vertices in it can be added to
N(ui). We then describe our edge selection strategy based on the landing zone.

Definition 5 Landing zone. The landing zone L(ui, uj) of a vertex ui and one of its neighbors
uj ∈ N(ui) is an area defined by H(ui, uj) \ B(ui, δ(ν(ui), ν(uj))). Here, H(ui, uj) is the half
space with ui that is split by the perpendicular bisector U(ui, uj) of the line between ui and uj . And
B(ui, δ(ν(ui), ν(uj))) is the hypersphere centered at ui with radius δ(ν(ui), ν(uj)).

Example 3 As Fig. 3(c) shows, in a two dimensional space, U(ui, u0) is a perpendicular bisector of
the line connecting ui and u0 (i.e., the red line), H(ui, u0) is located on the upper side of U(ui, u0),
and B(ui, δ(ν(ui), ν(u0))) is the area enclosed by the green circle. Therefore, the landing zone
L(ui, u0) formed by ui and u0 is the green shaded region (i.e., H(ui, u0) \B(ui, δ(ν(ui), ν(u0)))).

To find the areas without any neighbor of ui, we intersect the landing zones of all its existing neighbors
(i.e.,

⋂
uj∈N(ui)

L(ui, uj)). Then, we add the closest vertex (w.r.t. ui) within this area into N(ui),
making the neighbors more diverse. We get N(ui) for each vertex ui ∈ V as follows (Algorithm 3).

1⃝ Candidates acquisition. We obtain a set of l candidate neighbors for ui from (V \ {ui}), denoted
by C(ui). We can use random sampling or an extra index to get C(ui) (e.g., we get C(ui) based

6

on NSW [35] and KGraph [14] in §4.3). We ensure that l ≥ R, where R is the maximum number
neighbors for ui (i.e., |N(ui)| ≤ R). 2⃝ Neighbors initialization. We sort the elements in C(ui) in
ascending order of distance to ui. We initialize N(ui) with ui’s nearest candidate neighbor ut from
C(ui) and remove ut from C(ui). 3⃝ Neighbors update. We select the nearest vertex up of ui from
C(ui), and add it to N(ui) if it is in the intersection area (i.e.,

⋂
uj∈N(ui)

L(ui, uj)) of the landing
zones of ui and its existing neighbors. We repeat this process until C(ui) = ∅ or |N(ui)| = R.

Algorithm 3: Edge Selection (ui, l, R)
Input: Vertex ui, constants l and R
Output: Neighbor set N(ui)
candidate set C(ui)← l candidate neighbors
ut ← arg minut∈C(ui) δ(ν(ui), ν(ut))
N(ui)← N(ui) ∪ {ut};
C(ui)← C(ui) \ {ut}

while C(ui) ̸= ∅ or N(ui) < R do
up ← arg minup∈C(ui) δ(ν(ui), ν(up))
C(ui)← C(ui) \ {up}
if up ∈

⋂
uj∈N(ui)

L(ui, uj) then
N(ui)← N(ui) ∪ {up}

return N(ui)

Our strategy ensures that ui’s neighbors are di-
verse in terms of the areas where C(ui) is lo-
cated. This is because we add up to N(ui) from
a different area each time. We have the follow-
ing theorem.

Theorem 3 The angle between any two neigh-
bors is not less than π/3. (See Appendix J for
the proof)

Example 4 In Fig. 3(c), assuming N(ui) =
{u0} and C(ui) = {u3, u4, · · · , u9}, we
include u3 in N(ui) because it lies within
L(ui, u0) (the green region). Next, we add u5 to
N(ui) since it belongs to L(ui, u0)∩L(ui, u3).
We continue this process until each new area
has one neighbor of ui. Consequently, in the search procedure, we can efficiently route to the query
object q by utilizing the neighbors of ui present in the same area as q.

Complexity. To obtain C(ui), the time complexity depends on the methods used, so we skip this
term in our analysis. The time complexity of sorting C(ui) is O(l · log(l)). For each up ∈ C(ui), we
check at most |N(ui)| times (|N(ui)| ≤ R) to see if up is in L(ui, uj) for each uj ∈ N(ui). So, our
edge selection gets the final N(ui) with no more than l ·R checks. Thus, the time complexity of our
edge selection on the vertex set V is O(l · (R+ log(l)) · |V |).

4.2 Routing

Routing is a crucial process for searching on a PG. It determines a path from the start vertex to the
result vertex that matches the query. The routing strategy affects both the efficiency and accuracy of
the search [39]. A recent study [58] splits routing into two stages: the far stage (S1) and the close
stage (S2), based on how far they are from the query object.

Algorithm 4: Routing (G, q, P)
Input: PG G = (V,E), query object q, seed set P
Output: Result set R
candidate set C ← P ; result set R← P
forall {S1, S2} do

while R is updated do
ui ← arg minui∈C δ(ν(q), ν(ui));
C = C \ {ui}
S1: M ← ⌈R/h⌉ random neighbors of ui

S2: M ← all neighbors of ui

C = C ∪M
forall uj ∈ N(ui) do

ur ← arg maxur∈R δ(ν(q), ν(ur))
if δ(ν(q), ν(uj)) < δ(ν(q), ν(ur))
then

R = R \ {ur}; R = R ∪ {uj}

C ← C ∪R;
return R

Our routing. Algorithm 4 illustrates our
random two-stage routing strategy. In S1,
we randomly select ⌈R/h⌉ neighbors from
N(ui) (where 1 ≤ h ≤ R, and R is the
maximum out-degree), and calculate their
distances to the query object q. This enables
us to quickly approach the neighborhood of
q. In S2, we evaluate the distances of all
neighbors in N(ui) to q, following a similar
approach to the greedy search [19]. The tran-
sition from S1 to S2 occurs when S1 reaches
a local optimum, indicated by no further up-
dates to the result set R. In S2, we continue
updating R by checking all neighbors of the
visited vertex. The process terminates when
R no longer receives any updates.

Theorem 4 In the worst case, our rout-
ing has the same Recall@k as the current
greedy search [19].

7

According to Theorem 4 (See Appendix L for the proof), our random strategy in S1 does not reduce
the accuracy because most vertices do not require distance calculation from the query in S1 and we
can recover a small number of possibly missed vertices in S2.

Complexity. Previous works [36, 19, 58] show that the time complexity of greedy search on a
state-of-the-art PG (e.g., HNSW [36], NSG [19]) is O(R · log(|V |)), where R≪ |V | is the maximum
number of neighbors per vertex and log(|V |) is roughly the average routing path length. In our
routing, we use l1 and l2 to denote the average routing path lengths in S1 and S2, respectively; then
we have l1 + l2 = log(|V |). Thus, our routing’s time complexity is O((⌈R/h⌉) · l1 +R · l2).

4.3 NPG with Our Edge Selection and Routing

We present two NPGs, NPGnsw and NPGkgraph, that use our edge selection and routing strategies
on two basal PGs: NSW [35] and KGraph [14]. See Appendix M for implementation details.

5 Experiments

5.1 Experimental Setting

Table 1: Statistics of real-world datasets.
Dataset Dimension # Base # Query LID [33, 18] Type
UQ-V 256 1,000,000 10,000 7.2 Video + Attributes
Msong 420 992,272 200 9.5 Audio + Attributes
Audio 192 53,387 200 5.6 Audio + Attributes
SIFT1M 128 1,000,000 10,000 9.3 Image + Attributes
GIST1M 960 1,000,000 1,000 18.9 Image + Attributes
Crawl 300 1,989,995 10,000 15.7 Text + Attributes
GloVe 100 1,183,514 10,000 20.0 Text + Attributes
Enron 1,369 94,987 200 11.7 Text + Attributes
Paper 200 2,029,997 10,000 - Text + Attributes
BIGANN100M 128 100,000,000 10,000 9.3 Image + Attributes

Datasets. We use ten real-world datasets, including one newly released dataset called Paper. They
span various modalities, such as video, image, audio, and text. We summarize their main character-
istics in Tab. 1. With the exception of the Paper dataset, the remaining datasets solely consist of
high-dimensional feature vectors without any original attributes. Therefore, we generate attributes for
each object in these datasets using the similar method described in [51, 56]. For instance, in SIFT1M,
we augment each image with attributes such as date, location, and size, thereby creating an object
set that comprises both feature vectors and attributes.

Compared methods. We compare our HQ methods with seven existing ones that have been used
in many high-tech companies. ADBV [54] is a cost-based HQ method proposed by Alibaba. It
optimizes IVFPQ [28] for ANNS. Milvus [38, 51] divides the object set through frequently used
attributes, and deploys ADBV [54] on each subset. Vearch [29, 32] is developed by Jingdong, which
implements the HQ working off Strategy B. NGT [59] is a ANNS library released by Yahoo Japan,
which answers a HQ to conduct attribute filtering atop the candidates recalled by NGT (Strategy B).
Faiss [17] is a ANNS library developed by Facebook, which answers a HQ based on IVFPQ [28] and
Strategy A. SPTAG [37] is a PG-based ANNS library from Microsoft, which answers HQ on Strategy
B. Filtered-DiskANN [21] proposes two optimizations based on DiskANN: FilteredVamana and
StitchedVamana. FilteredVamana connects vertices with shared attributes. StitchedVamana builds
separate graph indexes for each filter and overlays them. NHQ-NPGnsw and NHQ-NPGkgraph

are our HQ methods based on NHQ framework integrating two NPGs.

Metrics. We measure the search efficiency by queries per second (QPS), which is the number of
queries (#q) divided by the search time (t), i.e., #q/t. We use the Recall rate to evaluate the search
accuracy, which is defined by Eq. 3. Unlike ANNS, hybrid query also requires attribute constraints in
Eq. 3, i.e., the elements in R ∩ T must have the same attributes as the query object.

Implementation setup. All codes are written in C++, and are compiled by g++ 6.5. All experiments
are conducted on a Linux server with an Intel(R) Xeon(R) Gold 6248R CPU at 3.00GHz, and a 755G
memory. We use 64 threads to build all the indexes in parallel. We use a single thread for search,
which is a common setting in related work [19, 18]. We report the average results from three trials.

8

0.80 0.85 0.90 0.95 1.00
Recall@10

101

102

103

104

Q
PS NHQ-NPGkgraph

NHQ-NPGnsw
Vearch
ADBV

Milvus
Faiss
SPTAG
NGT

(a) SIFT1M
0.80 0.85 0.90 0.95 1.00

Recall@10

103

104

Q
PS

(b) Audio

Figure 4: HQ performance.

0.6 0.7 0.8 0.9 1.0
Recall@10

103.5

103.8

104.0

104.2

Q
PS

NHQ DiskANN
FilteredVamana
StitchedVamana

(a) In-memory
0.5 0.6 0.7 0.8 0.9 1.0

Recall@10

101.5

102.0

102.5

103.0

Q
PS

NHQ DiskANN
Filtered DiskANN

(b) On-disk

Figure 5: Comparison with new baselines.
5.2 HQ Performance

Fig. 4 shows that our methods outperform existing methods in terms of QPS vs Recall trade-off on all
datasets. For example, NHQ-NPGkgraph achieves two to three orders of magnitude higher QPS than
others when Recall@10 > 0.99. To execute Filtered-DiskANN, we only test single-attribute queries
in Fig. 5. To eliminate other factors, we implement NHQ on DiskANN (NHQ can be easily extended
to the current graph index), named NHQ-DiskANN. We keep the same parameters in DiskANN.
From the results, NHQ-DiskANN outperforms Filtered-DiskANN, in both memory and disk versions.

0.85 0.90 0.95 1.00
Recall@10

101

102

103

Q
PS

NHQ-DiskANN
AF-DiskANN

(a) BIGANN100M
0.85 0.90 0.95 1.00

Recall@10

0

1000

2000

3000

M
ea

n
I/O

s

(b) BIGANN100M

Figure 6: HQ performance on larger dataset.

0.7 0.8 0.9 1.0
Recall@10

102

103

104

Q
PS NHQ-HNSW(Strategy C)

HNSW(Strategy B)
IVFPQ(Strategy A)

(a) HNSW (SIFT1M)
0.7 0.8 0.9 1.0

Recall@10

102

103

104

Q
PS

NHQ-NSG(Strategy C)
NSG(Strategy B)
IVFPQ(Strategy A)

(b) NSG (SIFT1M)

Figure 7: Comparison of different strategies.

5.3 Scalability on Larger Dataset

To test the scalability of NHQ, we implement HQ on the state-of-the-art disk-resident PG, DiskANN
[27], using “first ANNS, then AF” strategy (AF-DiskANN) and our NHQ (NHQ-DiskANN). Both
implementations have the same hyper-parameters for DiskANN. Fig. 6(a) and (b) show the QPS and
Mean I/Os results for different Recall on BIGANN100M dataset. NHQ-DiskANN consistently beats
AF-DiskANN by a large margin. For QPS, NHQ-DiskANN is 315× faster than AF-DiskANN when
Recall@10=0.95, because NHQ-DiskANN reduces expensive random disk I/Os. For example, to
get a recall of 0.95, AF-DiskANN needs 1,303 disk I/Os, while NHQ-DiskANN only needs 30 I/Os,
saving about 97.7% of disk I/Os. This shows the scalability of NHQ to handle larger dataset.

5.4 Ablation Study

Validation of NHQ framework. We test the universality of our NHQ (Strategy C) by applying the
HQ model with “decomposition-assembly” to different PGs (including HNSW [36] and NSG [19])
based on “first ANNS, then AF” (Strategy B in Appendix A). We also use IVFPQ [28] in “first AF,
then ANNS” (Strategy A in Appendix A) following state-of-the-art implementation [54, 51] because
Strategy A does not support PG (L4 in §1.1). We integrate HNSW and NSG into NHQ to form
NHQ-HNSW and NHQ-NSG, respectively. As Fig. 7 shows, NHQ outperforms other strategies on
different PGs, and keeps stable QPS advantage on different datasets. Due to IVFPQ’s limitations, the
HQ based on Strategy A have low accuracy, e.g., Recall@10 < 0.8 on SIFT1M.

0.80 0.85 0.90 0.95 1.00
Recall@10

101.7
102.0

102.5

103.0

Sp
ee

du
p Ours

NGT
HNSW
HCNNG
NSG

(a) SIFT1M
0.80 0.85 0.90 0.95 1.00

Recall@10
101.0

101.5

102.0

102.5

Sp
ee

du
p Ours

NGT
HNSW
HCNNG
NSG

(b) GIST1M

Figure 8: Effect of our edge selection strategy.

0.85 0.90 0.95 1.00
Recall@10

104

Q
PS

NHQ-NPGkgraph

NHQ-HNSW
NHQ-NSG

(a) SIFT1M
0.85 0.90 0.95 1.00

Recall@10

103

104

Q
PS

(b) GloVe

Figure 9: Effect of different PGs.
Effect of our edge selection strategy. We compare our edge selection strategy with four existing
ones: NGT [59], HNSW [36], HCNNG [39], and NSG [19] on SIFT1M and GIST1M datasets using
a recent evaluation framework [52]. All competitors use the same routing inference and distance
function. We measure the Speedup-Recall metric, where Speedup is relative to brute force. Fig. 8

9

shows that our strategy outperforms the others. For example, at Recall@10=0.9 on SIFT1M, our
strategy achieves 1.1×, 1.4×, and 25.9× speedup over HCNNG/NSG, HNSW, and NGT, respectively.

Table 2: Comparison of different routing strategies.
Speedup (vs. HNSW) Index size (MB) Memory cost (MB)

HNSW 1.00 790 3,871
HCNNG 1.02 803 3,884
TOGG 1.20 807 3,888
FINGER 1.30 2,150 11,625
Ours 1.21 790 3,871

Effect of our routing strategy. We compare our routing strategy with three existing ones: TOGG
[58], FINGER [8], and HCNNG [39] within the HNSW index framework with consistent parameters.
Tab. 2 shows the speedup of each optimized strategy over the original HNSW at Recall@10 = 0.9
on SIFT1M. All optimized strategies are faster than the original HNSW, indicating the benefit of
optimizing the routing procedure. Our strategy has the lowest storage cost, as it does not require extra
structures. Moreover, it delivers a significant improvement in search performance.

Effect of different PGs under NHQ. We compare the performance of three PGs on NHQ:
HNSW [36], NSG [19], and our NPGkgraph. We call them NHQ-HNSW, NHQ-NSG, and NHQ-
NPGkgraph respectively. Fig. 9 shows their results on SIFT1M and GloVe. NHQ-NPGkgraph

outperforms the others, especially on the harder GloVe dataset.

6 Discussion

Memory overhead. NHQ has a higher memory cost than Faiss when considering their best trade-offs.
This is a common drawback of graph-based methods compared to PQ-based methods in the ANNS
community. This is mainly because graph-based methods build an extra proximity graph index
(stored as an adjacency list) to speed up the online search process. While graph-based methods have
a higher storage cost, they achieve a significantly better trade-off between accuracy and efficiency
and have become the mainstream algorithms in most vector databases (such as Milvus [51]). Our
NHQ framework enhances the ability of current graph-based methods to handle ANNS + AF.

0.80 0.85 0.90 0.95 1.00
Recall@100

101

102

103

Q
PS

NHQ-NPGkgraph Vearch ADBV Milvus Faiss SPTAG NGT

0.75 0.80 0.85 0.90 0.95 1.00
Recall@10

101

102

103

104

Q
PS

(a) z = 36

0.80 0.85 0.90 0.95 1.00
Recall@10

102

103

104

Q
PS

(b) z = 972

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall@10

102

103

104

Q
PS

(c) z = 26244

Figure 10: Hybrid query performance of different number of attribute combinations (z).
Number of attribute combinations. We conduct QPS-Recall comparisons across different attribute
dimensions {3, 6, 9} in Fig. 10. The corresponding number of attribute combinations (represented by
z) is {36, 972, 26244}. We find that increasing z can pose challenges for both the NHQ and existing
frameworks. However, NHQ demonstrates higher speedup over existing frameworks in scenarios
with a large z, indicating its potential advantage in handling diverse attribute sets efficiently.

7 Conclusion

In this paper, we address HQ, which is ANNS with attribute constraint. We present a NHQ framework
that adapts to most existing PGs (including disk-resident PGs, e.g., DiskANN [27]) and optimizes
them for HQ. We introduce two NPGs with enhanced edge selection and routing strategies that achieve
better ANNS performance than original PGs. We integrate several PGs into NHQ to implement HQ
methods that are up to 315× faster than the state-of-the-art alternatives. A possible future and ongoing
work is to apply our framework to multimodal search to handle more complex query requirements.

Acknowledgments

This work was supported by the Primary R&D Plan of Zhejiang (2021C03156 and 2023C03198) and
the National NSF of China (62072149).

10

References
[1] A comprehensive survey and experimental comparison of graph-based approximate nearest

neighbor search. https://github.com/Lsyhprum/WEAVESS/tree/dev/dataset, 2021.

[2] Akhil Arora, Sakshi Sinha, Piyush Kumar, and Arnab Bhattacharya. Hd-index: Pushing the
scalability-accuracy boundary for approximate knn search in high-dimensional spaces. PVLDB,
11(8):906–919, 2018.

[3] Jianmin Bao, Dong Chen, Fang Wen, Houqiang Li, and Gang Hua. Towards open-set identity
preserving face synthesis. In CVPR, pages 6713–6722, 2018.

[4] Dmitry Baranchuk, Dmitry Persiyanov, Anton Sinitsin, and Artem Babenko. Learning to route
in similarity graphs. In ICML, volume 97, pages 475–484, 2019.

[5] Erik Bernhardsson, Martin Aumüller, and Alexander Faithfull. Benchmarking nearest neighbors.
https://github.com/erikbern/ann-benchmarks, 2018.

[6] Prosenjit Bose, Vida Dujmović, Ferran Hurtado, John Iacono, Stefan Langerman, Henk Meijer,
Vera Sacristán, Maria Saumell, and David R Wood. Proximity graphs: E, δ, δ, χ and ω.
International Journal of Computational Geometry & Applications, 22(05):439–469, 2012.

[7] Antoine Boutet, Anne-Marie Kermarrec, Nupur Mittal, and François Taïani. Being prepared in
a sparse world: The case of KNN graph construction. In ICDE, pages 241–252, 2016.

[8] Patrick Chen, Wei-Cheng Chang, Jyun-Yu Jiang, Hsiang-Fu Yu, Inderjit Dhillon, and Cho-Jui
Hsieh. Finger: Fast inference for graph-based approximate nearest neighbor search. In WWW,
pages 3225–3235, 2023.

[9] Qi Chen, Bing Zhao, Haidong Wang, Mingqin Li, Chuanjie Liu, Zengzhong Li, Mao Yang,
and Jingdong Wang. SPANN: highly-efficient billion-scale approximate nearest neighborhood
search. In NeurIPS, pages 5199–5212, 2021.

[10] Shivani Choudhary, Tarun Luthra, Ashima Mittal, and Rajat Singh. A survey of knowledge
graph embedding and their applications. CoRR, abs/2107.07842, 2021.

[11] Benjamin Coleman, Santiago Segarra, Alexander J Smola, and Anshumali Shrivastava. Graph
reordering for cache-efficient near neighbor search. In NeurIPS, pages 38488–38500, 2022.

[12] John P. Collomosse, Tu Bui, and Hailin Jin. Livesketch: Query perturbations for guided
sketch-based visual search. In CVPR, pages 2879–2887, 2019.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018.

[14] Wei Dong, Moses Charikar, and Kai Li. Efficient k-nearest neighbor graph construction for
generic similarity measures. In WWW, pages 577–586, 2011.

[15] Karima Echihabi. High-dimensional vector similarity search: From time series to deep network
embeddings. In SIGMOD, pages 2829–2832, 2020.

[16] Karima Echihabi, Kostas Zoumpatianos, and Themis Palpanas. High-dimensional similarity
search for scalable data science. In ICDE, pages 2369–2372, 2021.

[17] Facebook. A library for efficient similarity search and clustering of dense vectors.
https://github.com/facebookresearch/faiss, 2018.

[18] Cong Fu, Changxu Wang, and Deng Cai. High dimensional similarity search with satellite
system graph: Efficiency, scalability, and unindexed query compatibility. TPAMI, 2021.

[19] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. Fast approximate nearest neighbor search
with the navigating spreading-out graph. PVLDB, 12(5):461–474, 2019.

[20] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high dimensions via
hashing. In VLDB, pages 518–529, 1999.

11

[21] Siddharth Gollapudi, Neel Karia, Varun Sivashankar, Ravishankar Krishnaswamy, Nikit Beg-
wani, Swapnil Raz, Yiyong Lin, Yin Zhang, Neelam Mahapatro, Premkumar Srinivasan, et al.
Filtered-diskann: Graph algorithms for approximate nearest neighbor search with filters. In
WWW, pages 3406–3416, 2023.

[22] Long Gong, Huayi Wang, Mitsunori Ogihara, and Jun Xu. idec: Indexable distance estimating
codes for approximate nearest neighbor search. PVLDB, 13(9):1483–1497, 2020.

[23] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and Sanjiv
Kumar. Accelerating large-scale inference with anisotropic vector quantization. In ICML, pages
3887–3896, 2020.

[24] Qiang Huang, Jianlin Feng, Yikai Zhang, Qiong Fang, and Wilfred Ng. Query-aware locality-
sensitive hashing for approximate nearest neighbor search. PVLDB, 9(1):1–12, 2015.

[25] Qiujun Huang, Jingli Mao, and Yong Liu. An improved grid search algorithm of svr parameters
optimization. In ICCT, pages 1022–1026, 2012.

[26] Xiao Huang, Jundong Li, and Xia Hu. Label informed attributed network embedding. In WSDM,
pages 731–739, 2017.

[27] Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravishankar Krishnawamy,
and Rohan Kadekodi. Diskann: Fast accurate billion-point nearest neighbor search on a single
node. In NeurIPS, volume 32, 2019.

[28] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor
search. TPAMI, 33(1):117–128, 2011.

[29] Jingdong. A distributed system for embedding-based retrieval. https://github.com/vearch/vearch,
2020.

[30] Amar Viswanathan Kannan, Dmitriy Fradkin, Ioannis Akrotirianakis, Tugba Kulahcioglu, Ar-
quimedes Canedo, Aditi Roy, Shih-Yuan Yu, Arnav V. Malawade, and Mohammad Abdullah Al
Faruque. Multimodal knowledge graph for deep learning papers and code. In CIKM, pages
3417–3420, 2020.

[31] Conglong Li, Minjia Zhang, David G. Andersen, and Yuxiong He. Improving approximate
nearest neighbor search through learned adaptive early termination. In SIGMOD, pages 2539–
2554, 2020.

[32] Jie Li, Haifeng Liu, Chuanghua Gui, Jianyu Chen, Zhenyuan Ni, Ning Wang, and Yuan Chen.
The design and implementation of a real time visual search system on JD e-commerce platform.
In Proceedings of the 19th International Middleware Conference, pages 9–16, 2018.

[33] Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Mingjie Li, Wenjie Zhang, and Xuemin Lin.
Approximate nearest neighbor search on high dimensional data - experiments, analyses, and
improvement. TKDE, 32(8):1475–1488, 2020.

[34] Peng Cheng Lin and Wan Lei Zhao. Graph based nearest neighbor search: Promises and failures.
CoRR, abs/1904.02077, 2019.

[35] Yury Malkov, Alexander Ponomarenko, Andrey Logvinov, and Vladimir Krylov. Approximate
nearest neighbor algorithm based on navigable small world graphs. Information Systems,
45:61–68, 2014.

[36] Yury A. Malkov and D. A. Yashunin. Efficient and robust approximate nearest neighbor search
using hierarchical navigable small world graphs. TPAMI, 42(4):824–836, 2020.

[37] Microsoft. Sptag: A library for fast approximate nearest neighbor search.
https://github.com/microsoft/SPTAG, 2020.

[38] Milvus. The world’s most advanced open-source vector database. https://github.com/milvus-
io/milvus, 2019.

12

[39] Javier Alvaro Vargas Muñoz, Marcos André Gonçalves, Zanoni Dias, and Ricardo da Silva Tor-
res. Hierarchical clustering-based graphs for large scale approximate nearest neighbor search.
Pattern Recognition, 96:106970, 2019.

[40] Liudmila Prokhorenkova and Aleksandr Shekhovtsov. Graph-based nearest neighbor search:
From practice to theory. In ICML, pages 7803–7813, 2020.

[41] Jianbin Qin, Wei Wang, Chuan Xiao, and Ying Zhang. Similarity query processing for high-
dimensional data. PVLDB, 13(12):3437–3440, 2020.

[42] Jianbin Qin, Wei Wang, Chuan Xiao, Ying Zhang, and Yaoshu Wang. High-dimensional
similarity query processing for data science. In SIGKDD, pages 4062–4063, 2021.

[43] Jie Ren, Minjia Zhang, and Dong Li. HM-ANN: efficient billion-point nearest neighbor search
on heterogeneous memory. In NeurIPS, 2020.

[44] Eli Schwartz, Leonid Karlinsky, Joseph Shtok, Sivan Harary, Mattias Marder, Abhishek Kumar,
Rogerio Feris, Raja Giryes, and Alex Bronstein. Delta-encoder: an effective sample synthesis
method for few-shot object recognition. NeurIPS, 31, 2018.

[45] Larissa Capobianco Shimomura, Marcos R Vieira, and Daniel S Kaster. Performance analysis
of graph-based methods for exact and approximate similarity search in metric spaces. In
International Conference on Similarity Search and Applications, pages 18–32, 2018.

[46] Chanop Silpa-Anan and Richard I. Hartley. Optimised kd-trees for fast image descriptor
matching. In CVPR, 2008.

[47] Harsha Vardhan Simhadri, George Williams, Martin Aumüller, Matthijs Douze, Artem Babenko,
Dmitry Baranchuk, Qi Chen, Lucas Hosseini, Ravishankar Krishnaswamy, Gopal Srinivasa,
Suhas Jayaram Subramanya, and Jingdong Wang. Results of the neurips’21 challenge on
billion-scale approximate nearest neighbor search. In NeurIPS, pages 177–189, 2021.

[48] Zhenan Sun and Tieniu Tan. Ordinal measures for iris recognition. TPAMI, 31(12):2211–2226,
2008.

[49] Godfried T Toussaint. The relative neighbourhood graph of a finite planar set. Pattern recogni-
tion, 12(4):261–268, 1980.

[50] Nam Vo, Lu Jiang, Chen Sun, Kevin Murphy, Li-Jia Li, Li Fei-Fei, and James Hays. Composing
text and image for image retrieval - an empirical odyssey. In CVPR, pages 6439–6448, 2019.

[51] Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li, Xiangyu Wang,
Xiangzhou Guo, Chengming Li, Xiaohai Xu, Kun Yu, Yuxing Yuan, Yinghao Zou, Jiquan Long,
Yudong Cai, Zhenxiang Li, Zhifeng Zhang, Yihua Mo, Jun Gu, Ruiyi Jiang, Yi Wei, and Charles
Xie. Milvus: A purpose-built vector data management system. In SIGMOD, pages 2614–2627,
2021.

[52] Mengzhao Wang, Xiaoliang Xu, Qiang Yue, and Yuxiang Wang. A comprehensive survey
and experimental comparison of graph-based approximate nearest neighbor search. PVLDB,
14(11):1964–1978, 2021.

[53] Zhenhua Wang, Bin Fan, Gang Wang, and Fuchao Wu. Exploring local and overall ordinal
information for robust feature description. TPAMI, 38(11):2198–2211, 2015.

[54] Chuangxian Wei, Bin Wu, Sheng Wang, Renjie Lou, Chaoqun Zhan, Feifei Li, and Yuanzhe Cai.
Analyticdb-v: A hybrid analytical engine towards query fusion for structured and unstructured
data. PVLDB, 13(12):3152–3165, 2020.

[55] Suping Xu, Lin Shang, and Furao Shen. Latent semantics encoding for label distribution
learning. In IJCAI, pages 3982–3988, 2019.

[56] Xiaoliang Xu, Chang Li, Yuxiang Wang, and Yixing Xia. Multiattribute approximate nearest
neighbor search based on navigable small world graph. Concurrency and Computation: Practice
and Experience, 32(24), 2020.

13

[57] Xiaoliang Xu, Jun Liu, Yuxiang Wang, and Xiangyu Ke. Academic expert finding via (k,P)-
core based embedding over heterogeneous graphs. In ICDE, pages 338–351, 2022.

[58] Xiaoliang Xu, Mengzhao Wang, Yuxiang Wang, and Dingcheng Ma. Two-stage routing with
optimized guided search and greedy algorithm on proximity graph. Knowledge-Based Systems,
page 107305, 2021.

[59] Yahoo. Nearest neighbor search with neighborhood graph and tree for high-dimensional data.
https://github.com/yahoojapan/NGT, 2016.

[60] Wen Yang, Tao Li, Gai Fang, and Hong Wei. Pase: Postgresql ultra-high-dimensional approxi-
mate nearest neighbor search extension. In SIGMOD, page 2241–2253, 2020.

[61] Zhao Zhang, Fuzhen Zhuang, Hengshu Zhu, Zhiping Shi, Hui Xiong, and Qing He. Relational
graph neural network with hierarchical attention for knowledge graph completion. In AAAI,
pages 9612–9619, 2020.

[62] Wan-Lei Zhao, Hui Wang, and Chong-Wah Ngo. Approximate k-nn graph construction: A
generic online approach. IEEE Transactions on Multimedia, 2021.

[63] Weijie Zhao, Shulong Tan, and Ping Li. SONG: approximate nearest neighbor search on GPU.
In ICDE, pages 1033–1044, 2020.

[64] Yuke Zhu, Ce Zhang, Christopher Ré, and Li Fei-Fei. Building a large-scale multimodal
knowledge base for visual question answering. CoRR, abs/1507.05670, 2015.

14

	Introduction
	Limitations of Existing Methods
	Our Solution and Contributions

	Preliminaries
	NHQ Framework
	Navigable PG Algorithm
	Edge Selection
	Routing
	NPG with Our Edge Selection and Routing

	Experiments
	Experimental Setting
	HQ Performance
	Scalability on Larger Dataset
	Ablation Study

	Discussion
	Conclusion
	Implementation Strategy Analysis for HQ
	Intuition for NHQ framework
	PG Analysis
	Composite Index
	Joint pruning
	Proof for Lemma 1
	Proof for Theorem 1
	Proof for Theorem 2
	Analysis for Current Edge Selection Strategies.
	Proof for Theorem 3
	Analysis for Routing Strategies
	Proof for Theorem 4
	Implementation Details for Two NPG Algorithms
	NPG-Based HQ Methods
	NPG-Based Composite Index
	Joint Pruning Optimization

	Evaluation Setting
	HQ performance
	Index Build Performance
	ANNS performance of NPG
	Validation of NHQ framework.
	Speedup Evaluation of PG
	Weight Analysis
	Parameter Sensitivity
	Use Case Study
	Connectivity
	Storage Cost of NHQ and PQ-based methods

