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Abstract

A major reason behind the recent success of large language models (LLMs) is their
in-context learning capability, which makes it possible to rapidly adapt them to
downstream text-based tasks by prompting them with a small number of relevant
demonstrations. While large vision-language models (VLMs) have recently been
developed for tasks requiring both text and images, they largely lack in-context
learning over visual information, especially in understanding and generating text
about videos. In this work, we implement Emergent In-context Learning on Videos
(EILeV), a novel training paradigm that induces in-context learning over video
and text by capturing key properties of pre-training data found by prior work
to be essential for in-context learning in transformers. In our experiments, we
show that EILeV-trained models outperform other off-the-shelf VLMs in few-shot
video narration for novel, rare actions. Furthermore, we demonstrate that these
key properties of bursty distributions, skewed marginal distributions, and dynamic
meaning each contribute to varying degrees to VLMs’ in-context learning capability
in narrating procedural videos. Our results, analysis, and EILeV-trained models
yield numerous insights about the emergence of in-context learning over video
and text, creating a foundation for future work to optimize and scale VLMs for
open-domain video understanding and reasoning.1

1 Introduction

In recent years, the advent of transformer-based [38] large language models (LLMs) has garnered
significant attention in and beyond the AI research community. A central reason for this is their
in-context learning capability [4], which makes it possible to rapidly adapt LLMs to novel tasks
by simply prompting them with a few demonstrations. This capability removes the need for the
expensive and arduous task-specific fine-tuning required by earlier language modeling approaches.

While in-context learning has been extensively studied and utilized in purely text-based problems in
language understanding, reasoning, and generation, there are myriad potential applications for this
rapid post-deployment adaptation in processing video. For example, in embodied and task-oriented
AI, a major challenge is to recognize novel, rare human actions from video that cannot possibly
be completely covered in training data [32, 9, 3]. A vision-language model (VLM) capable of
in-context learning over video could address this challenge, as it would only require a few related
videos of actions as few-shot, in-context examples to recognize and reason about these novel, rare
actions. However, while large VLMs for jointly processing text and images have been developed
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[18, 19, 6, 49, 31, 23], they are typically not optimized for reasoning over multiple images (i.e.,
frames), crucial for understanding videos. Meanwhile, a handful of open-source VLMs have recently
been developed for video understanding [43, 17, 44, 21], but they lack in-context learning.

In-context learning in text-only, transformer-based LLMs was initially observed to improve with
increased model size, along with the size and diversity of training data [4]. Later, Chan et al. [5]
identified several distributional properties of the training data as causes for this emergent behavior in
transformer-based models: (1) bursty distributions with entities that tend to appear in clusters, (2)
skewed marginal distributions with a long tail of infrequent items, and (3) dynamic meaning with
label multiplicity. However, as their experiments relied on small transformer-based models trained
on synthetic image classification data, it remains unclear whether their findings hold true for VLMs
trained on video and text at scale.

In this work, we address this question by conducting systematic empirical experiments to investigate
whether these training data distributional properties also elicit in-context learning capabilities in
VLMs for video. Specifically, we use various text annotations from Ego4D [11], a popular video
dataset, to implement Emergent In-context Learning on Videos (EILeV), a novel VLM training
method that satisfies all three properties and successfully elicits in-context learning over video and
text. In our experiments, we observe that the EILeV-trained models outperform other off-the-shelf
VLMs in few-shot video narration on rare actions, and that, through careful ablation studies, each
property indeed contributes to this in-context learning capability. Furthermore, our analysis yields a
host of new insights around the importance of each property in in-context learning for video.

The contributions of our work are as follows: (1) we propose EILeV, a novel training method that can
elicit in-context learning capabilities in VLMs for video and text, (2) we validate through systematic
ablation experiments that the same data distributional properties that elicit in-context learning in small
transformer-based models also apply to VLMs for videos, and (3) we release a set of EILeV-trained
VLMs with in-context learning capabilities optimized for egocentric videos.

2 Related Work

2.1 In-Context Learning

Brown et al. [4] discovered in-context learning in LLMs when creating GPT-3. This was a significant
departure from fine-tuning which involves parameter updates to adapt LLMs to downstream tasks.
Instead, in-context learning enables LLMs to be adapted without parameter updates by prompting
them with a few examples of a task as part of the input context for text generation. The size of
the model and training data were thought to be key to training a model with in-context learning
capabilities.

More recently, there has been more research on the exact causes of in-context learning. Min et al.
[28] proposed MetaICL, a meta-training framework to elicit in-context learning capabilities in text-
only language models. MetaICL conditions each example with related in-context examples during
training. Chan et al. [5] investigated the distributional properties of training data for in-context
learning. Their findings showed that there are certain properties that encourage in-context learning
in transformer-based models, and massive textual data from the web used to train LLMs naturally
have those properties. Furthermore, Reddy [33] found that in-context learning is driven by the abrupt
emergence of an induction head. There have also been works with findings about in-context learning
in VLMs. Notably, training large generative VLMs with image-text interleaved data has been shown
to be an effective technique to improve model performance, especially in tasks involving in-context
learning [1, 27, 39, 37, 29]. Our work combines these insights from prior work around the cause
of in-context learning to propose a new VLM training paradigm for video and text, and carefully
investigates how they contribute to in-context learning.

2.2 Vision-Language Models (VLMs)

With the recent success of text-only LLMs, there have been various efforts to replicate their success
in multimodal settings, especially vision and language. Two different types of approaches in training
generative VLMs have been proposed. The first is to train them from scratch using large text
and paired image and text datasets [12, 14, 31, 25]. This approach allows the most controllability
and flexibility as the resulting VLM is not dependent on other pre-trained models that may have
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undesirable behaviors, but it requires a massive amount of compute and data. In order to address
these challenges, a number of approaches have been proposed to create VLMs by learning a mapping
from a frozen pre-trained vision encoder to the input space of a frozen pre-trained LLM [1, 17, 48,
18, 19, 6, 23, 44, 21, 41, 20, 49, 15, 26, 42, 10, 45].

Some of these approaches enable the resulting VLMs to process videos by representing them as
sequences of still frames; however, only Flamingo [1], Otter [17] and Kosmos-2 [31] support in-
context learning over video and text as a by-product of their large-scale pre-training. In this work, we
conduct thorough investigation of how key properties of training data achieve in-context learning
beyond just as a by-product of large-scale training.

3 Three Distributional Properties for In-Context Learning

Since Brown et al. [4] discovered in-context learning in text-only LLMs, there has been much research
into the cause for in-context learning. In particular, Chan et al. [5] found that three characteristics of
the training data are important in eliciting in-context learning in transformer-based models, each of
which is abundant in both natural language and video data: bursty distributions, skewed marginal
distributions, and dynamic meaning.

Bursty Distributions In-context learning relies on data where entities appear in clusters, or non-
uniformly depending on the context. Groups of related entities may be mentioned frequently in some
contexts, but much more rarely in other contexts.

Skewed Marginal Distributions In-context learning also relies on data of skewed marginal dis-
tributions with a long tail of infrequent items (i.e., a Zipfian distribution). This phenomenon is a
long-standing challenge in representing language and images, and has long been observed in text,
image, and video datasets collected for research.

Dynamic Meaning Lastly, in-context learning relies on dynamic meaning, where a single entity
can have multiple possible interpretations, and multiple entities can map to the same interpretation.
In natural language, we observe this property in word senses, homonyms, and synonyms. In the
visual world, a particular object may be described in multiple valid ways, e.g., synonyms, physical
properties, and hypernyms. Meanwhile, many distinct objects may be grouped based on various
descriptors.

4 Problem & Methods

In this section, we first introduce the target problem and dataset for our evaluations of in-context
learning. Next, we introduce EILeV, our training paradigm which captures all three distributional
properties thought to elicit in-context learning, as well as the ablations we use to validate the
importance of each property in enabling in-context learning over video and text. We then introduce
the model architecture we apply this paradigm to, and lastly discuss how we evaluate the in-context
learning capability of VLMs trained on video and text.

4.1 Problem Definition

We target the task of few-shot video narration using the Ego4D dataset [11].

Few-Shot Video Narration Video narration is a captioning task where given a video, a system
must generate a text description of the events occurring in the video. Here, few-shot video narration
refers to the implementation of this task where a VLM (pre-trained on large-scale video and text data)
is conditioned with one or more example videos and narrations before being prompted to generate
a narration for a held-out video clip. If conditioning such a VLM on several example videos and
narrations improves the quality of narration, this implies that the VLM is indeed capable of in-context
learning over video and text.

Ego4D Ego4D is a popular large-scale dataset of egocentric videos that have been densely an-
notated with human-written English narrations, ideal for our task. Beyond narrations, the dataset
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Figure 1: In our proposed training procedure EILeV, we ensure that the training data satisfy the
following three properties: (a) bursty distributions, (b) skewed marginal distributions, and (c) dynamic
meanings. Then, we ablate each property to demonstrate its importance. We ablate property (a) by
randomly sampling in-context examples; we ablate property (b) by varying the number of common
actions in the training data; we ablate property (c) by canonicalizing verbs and nouns using their
corresponding verb and noun classes.

includes higher-level class labels for the verbs and nouns associated with each narrated video clip.
These annotations enable systematic ablations for all three distributional properties of training data
discovered by Chan et al. [5] to facilitate in-context learning, enabling a systematic study of in-context
learning over video and text in VLMs. These ablations are introduced in Section 4.2.

4.2 Training Paradigm & Ablations

Using Ego4D’s “Forecasting Hands & Objects Master File”, we construct a dataset of interleaved text
and video that satisfies these properties, and use it to train and evaluate VLMs. We call this training
procedure Emergent In-context Learning on Videos (EILeV). EILeV uses the video and text data
provided by Ego4D to implement all three distributional properties necessary for in-context learning:
bursty distributions, skewed marginal distributions, and dynamic meaning. To demonstrate the
importance of each distributional property captured in EILeV, we use Ego4D’s detailed annotations
to carefully ablate each property during training as illustrated in Figure 1.

For all experiments, each training data point consists of a context with 16 video-narration pairs, and
a query with a single video-narration pair. We convert the action narrations into question-answer
pairs where the narrations are the answers, e.g., e.g., What is the camera wearer doing? The camera
wearer cuts a carrot. We vary the syntactic form of questions using a set of templates (Appendix C).
The training objective is to maximize the likelihood of the sequence of tokens in the ground-truth
action narration, conditioned on the context and video clip from the query.

Next, we discuss how each distributional property was incorporated and ablated in EILeV.

Bursty Distributions In order to implement bursty distributions in EILeV, we take advantage of
the annotations in Ego4D, where each video clip is annotated with a verb class and a noun class based
on the main action portrayed in the clip. Specifically, we sample video clips and action narrations
that share the same verb class as the query for half of the context, and we sample those with the
same noun class for the other half. We further ensure that none of the sampled video clips and action
narrations match both the verb class and noun class of the query simultaneously. This ensures that the
context, while comprising a “burst” of similar concepts, only provides partial information regarding
the query. This property can then be ablated by randomly sampling video clips and action narrations
without regard to their verb and noun classes. Figure 1 (a) illustrates the two sampling strategies.
We can measure the impact of bursty distributions by training VLMs with each type of context and
comparing their in-context learning capabilities.

4



Skewed Marginal Distributions Like most natural datasets, Ego4D’s verb and noun class labels
have a skewed marginal distribution with a long tail of verb-noun pairs, making it ideal for our
study. To study how the skewed marginal distributions of training data affect the in-context learning
capability of trained models, we first use the verb and noun class annotations from Ego4D to designate
the most frequent 80% verb-noun pairs as common actions for training, and the remaining 20% as
rare actions only for evaluation. It is important to note that while none of the rare actions are part
of the common action training data, they may still share either verb or noun classes with common
actions. For example, if the training data contain common actions (put, key) and (sit, bench), there
may exist a rare action (put, bench) in the evaluation data.

To measure how the skewness of marginal distributions in the training data impacts models’ capability
to generalize to these novel held-out actions, we then vary the number of common actions in the
training data through three experiments. Specifically, we construct a training dataset with only the
top 100 common actions (little skewness without a long tail of infrequent actions), one with the top
500 common actions (moderate skewness with a short tail of infrequent actions) and another with all
the common actions (highly skewed with a long tail of infrequent items). We uniformly upsample
the datasets with top 100 and top 500 common actions to keep all three training datasets to be the
same size. Figure 1 (b) shows how these training datasets with different marginal distributions are
constructed. Given these curated training datasets, we can measure the impact of the skewness of the
marginal distributions of the training data on trained models’ in-context learning capability.

Dynamic Meaning For dynamic meaning, we rely on the fact that Ego4D’s natural language action
narrations contain words of multiple senses, homonyms, and synonyms. To ablate this dynamic
meaning property in EILeV, we canonicalize verbs and their corresponding objects in the action
narrations. Specifically, we prompt an LLM (Llama-2-Chat 7B; 36) to replace the verb and its
corresponding object of each action narration with their verb and noun class. Figure 1 (c) shows the
canonicalization process. We can then measure the impact of dynamic meaning by comparing the
in-context learning capability of VLMs trained on data with and without this property.

4.3 Model

To experiment with EILeV as discussed above, we adopt a VLM architecture capable of processing
sequential data interleaved with both video clips and texts, making it possible to infer patterns and
relationships among them and thus support the emergence of in-context learning over them. We
initialize our model with BLIP-2 [19], a VLM created by learning a transformer-based projection
(called a querying transformer or Q-Former) from a frozen pre-trained vision encoder into the input
space of a frozen LLM. Since BLIP-2’s original implementation is not able to handle data interleaved
with video clips and texts, we follow Hao et al. [12] to perform simple modifications to enable its
frozen language model to serve as a universal interface for video clips and texts.2 Specifically, we first
encode all the video clips by independently encoding sampled frames with BLIP-2’s frozen Vision
Transformer (ViT)-based [8] vision encoder to produce a sequence of vision tokens for each video
clip. The sequence of vision tokens is then compressed by BLIP-2’s Q-Former into a fixed-length
sequence. The fixed-length sequence is further projected to the word embedding space of the frozen
language model of BLIP-2 by a linear layer. It is then interleaved with the text tokens according to
the order in which video clips and texts appear in the interleaved data to form the input to the frozen
language model. Following the fine-tuning procedure of Li et al. [19], we freeze the vision encoder
and language model of the BLIP-2 models during training. For all of our experiments, we use BLIP-2
with 2.7 billion parameter OPT [46] as its frozen language model (BLIP-2 OPT-2.7B), and BLIP-2
with XL-size Flan-T5 [40] as its frozen language model (BLIP-2 Flan-T5-xl).3

4.4 Evaluation

To evaluate our various model ablations, we need a means to measure the quality of action narrations
generated by models, and the degree to which in-context learning supports this generation.

2While there exist VLMs that already natively support interleaved video and text [1, 2, 17], we intentionally
chose a VLM that did not to isolate the impact of our EILeV training paradigm on VLMs’ in-context learning
capability.

3We intentionally use the smaller BLIP-2 variants in order to remove the model size as a confounding variable
for in-context learning.
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4.4.1 Action Narration Generation

One major difficulty in evaluating generative models for the action narration generation task is that
there is no single correct way to describe the action in a video clip. In an ideal world, we would
rely on human annotators to rate how close a generated action narration is to the ground truth, but
the cost to do so would be prohibitive. In order to address this challenge, a number of semantic-
similarity-based metrics [47, 34] that correlate closely with human judgment have been proposed,
and we take advantage of them in our evaluations. Specifically, we report the performance along
semantic similarity-based scores produced by Siamese Sentence-BERT Bi-Encoder (STS-BE; 34).
For completeness, we also report ROUGE-L [22], a lexical-based text generation metric.

4.4.2 In-Context Learning Capability

To evaluate the in-context learning capability of trained models for action narration, we vary the
number of in-context examples in context-query instances (different numbers of “shots”) and calculate
the above text generation metrics for generated action narrations on the test set. If adding more shots
improves narration quality under these metrics, this suggests that the VLM is successfully using
in-context learning to adapt to the action narration generation task. Within a single experiment setting,
we use the same pre-sampled in-context examples with all of the three distributional properties to
ensure fair comparison.

5 Experimental Results

In our experiments, we find that the performance of both EILeV-trained models strictly increases as
more in-context examples (shots) are provided, indicating that our models successfully acquired
in-context learning capabilities during training. First, in Section 5.1, we establish the in-context
learning capability of our models by measuring their performance on rare actions they were not trained
on (the key challenge motivating this work), and compare their performance to that of off-the-shelf
VLMs. In Sections 5.2, 5.3, and 5.4, we compare their performance to that of models trained on
datasets with each key distributional property ablated (as described in Section 4.2) to explore the
impact of these training data properties on in-context learning for video and text in VLMs.

5.1 Generalization to Rare Actions

We first compare our EILeV-trained models with existing off-the-shelf VLMs in the challenging
practical setting that motivated this work: adaptation to rare actions. Specifically, we evaluate our
models, Kosmos-2 [31], and Otter [17] on the evaluation set of held-out rare action videos from
Ego4D described in Section 4.2.4 We choose these two models as they are the only open-source
large VLMs that support video input and in-context-learning out-of-the-box at the time of writing.
Compared to our EILeV-trained models, these models have been trained on far more multi-modal
interleaved (MMI) data directly related to in-context learning over video (Table 1), as well as other
naturalistic multi-modal and text data from the Internet. They also have far more trainable parameters:
Kosmos-2 has 1.6 billion and Otter has 1.3 billion, while our models have 188 million (the same
number as BLIP-2). Further, unlike our architectural modification that represents each video with a
fixed-length sequence, Kosmos-2 and Otter both treat each video as a sequence of images. For an
evaluation representative of the practical usage of VLMs, we do not fine-tune models (which requires
prohibitive computing power). Instead, we rely solely on models’ in-context learning capability to
adapt to these rare actions.

Figure 2 shows the results of this evaluation.5 While the zero-shot performance of our EILeV-trained
models is similar to Kosmos-2 and Otter, as we provide in-context examples, the performance
of our models increases while that of off-the-shelf VLMs does not. Consequently, our EILeV-
trained VLMs significantly outperform off-the-shelf VLMs. While Kosmos-2 and Otter have not
been fine-tuned on this exact data, they are much larger models trained on an enormous amount of

4Our models were not trained on these rare actions, and Kosmos-2 was not trained on Ego4D. While Otter
was trained on Ego4D, the video-text training data was not interleaved as proposed for EILeV-trained models,
and the low frequency of these actions nevertheless poses a significant challenge.

5We can only perform evaluations up to 2-shot with Kosmos-2, as it runs out of its context window beyond
2-shot.
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Model MMI Dataset Size

EILeV BLIP-2
OPT-2.7B &
Flan-T5-xl

115K context-query
instances

Kosmos-2 71M image-text
webpages [13]

101.2M image-text
webpages [50] &
2.8M context-query
instances [16]

Otter

Table 1: Off-the-shelf and EILeV-trained VLMs
and their multi-modal interleaved (MMI) dataset
sizes.
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Figure 2: Performance of off-the-shelf VLMs
(Kosmos-2 and Otter) on the evaluation set of
rare actions for the skewed marginal distributions
ablation experiment.

naturalistic data, and their in-context learning capability is a main selling point thought to remove
the need for task-specific fine-tuning. Therefore, it is reasonable to expect their performance to
improve with more in-context examples or even outperform our models. This observation underscores
that training smaller VLMs with a focused approach like EILeV can be advantageous for certain
use-cases, such as generating narrations for novel, rare actions, than training large, generalist VLMs
on huge naturalistic datasets.

5.2 Bursty Distributions Ablation
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Figure 3: Results for the bursty distributions abla-
tion experiment.

Figure 3 shows the results of the bursty distri-
butions ablation experiment. To maintain the
same action distributions in both the training
and test sets, we use a random train-test split
with a ratio of 75/25 for this experiment. Un-
like the EILeV-trained models, the performance
of the models trained on randomly sampled in-
context examples (ablation) initially improves
from 0-shot to 4-shot, but tapers or even de-
creases as more examples are provided. This
indicates that they failed to acquire in-context
learning capabilities during training, suggesting
that bursty distributions are indeed necessary
for in-context learning on video and text. We
hypothesize that the initial improvement in per-
formance from 0-shot to 4-shot is mainly due
to the fact that ablation models have learned to
mimic lexical characteristics from in-context ex-
amples. However, as they have failed to learn to
exploit the semantic information from in-context
examples due to the lack of bursty distributions
in training data, they do not benefit from addi-
tional in-context examples.

5.3 Skewed Marginal Distributions Ablation

Figures 4 and 5 show the results of the skewed marginal distribution ablation experiment. The T100
models trained on data with only the top 100 common actions (little skewness without a long tail of
infrequent actions) show a noticeably inferior in-context learning performance to the EILeV-trained
models that were trained on the training dataset with all the common actions (highly skewed with
a long tail of infrequent items). On the other hand, the T500 models trained on data with the top
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Figure 4: Results for the skewed marginal dis-
tributions ablation experiment using a training
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Figure 5: Results for the skewed marginal dis-
tributions ablation experiment using a training
dataset with top 500 common actions (T500).

500 common actions (moderate skewness with a short tail of infrequent actions) show an in-context
learning performance that is only slightly worse than the EILeV-trained models, indicating that an
increased amount of skewness with a long tail of infrequent items makes in-context learning
more likely to appear in VLMs. Further, we observe that the T500 models outperform their
respective EILeV-trained models in the 0-shot setting. This is an instance of in-context versus in-
weights learning tradeoff (also studied in 5), a phenomenon where in-context learning capability can
reduce pre-trained models’ ability to utilize knowledge encoded in their weights during pre-training.
Interestingly, we do not observe this pattern with the T100 models, perhaps because the less diverse
training data is not representative enough for models to gain sufficient in-weights knowledge.

5.4 Dynamic Meaning Ablation
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Figure 6: Results for the dynamic meaning abla-
tion experiment.

Figure 6 shows the results of the dynamic mean-
ing ablation experiment. We use a random train-
test split with a ratio of 75/25 for this experi-
ment to maintain the same action distributions
in both the training and test sets. The ablation
models trained on data with verbs and their cor-
responding objects canonicalized surprisingly
acquire some in-context learning capabilities,
but the EILeV-trained models mostly outper-
form them. Since the performance gaps under
this ablation are smaller than that of the previ-
ous ablations, this suggests that while dynamic
meaning plays a role in the in-context capabil-
ities of a VLM, it contributes less than bursty
and skewed marginal distributions do. Inter-
estingly, however, the performance gap is much
more pronounced for STS-BE (semantic simi-
larity metric) than ROUGE-L (lexical metric),
suggesting that dynamic meaning contributes
more to the model’s ability to extract seman-
tic information from in-context examples than
lexical information.
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6 Conclusion

In this work, we conducted a first-of-its-kind systematic investigation of in-context learning in
vision-language models (VLMs) trained on videos and text. Specifically, we implemented Emergent
In-context Learning on Videos (EILeV), a novel training paradigm capturing three key properties of
training data found to induce in-context learning in transformers [5]: bursty distributions, skewed
marginal distributions, and dynamic meaning. In our experiments, we showed that our EILeV-trained
models exhibit in-context learning capabilities superior to that of off-the-shelf VLMs, as they were
significantly more adaptable to novel, rare actions. We demonstrated that all three of these properties
are indeed important to optimize the in-context learning capabilities of these models on narrating
actions in videos, especially bursty and skewed marginal distributions.

Our work yields new insights about the nature of in-context learning in video and text. For example,
we observed that while reducing the skewness of the training data distribution compromised in-context
learning capability, it improved in-weights learning in trained models [5]. We also found that dynamic
meaning had a bigger impact on semantic similarity metrics for generated narrations than lexical
metrics, suggesting this property is particularly important for acquiring semantic information through
in-context learning.

While we focused on action narration in Ego4D [11] as a proof-of-concept, EILeV serves as a
foundation for the community to build VLMs capable of in-context learning on video and text in
broader tasks and domains. We release our EILeV-trained models as a resource for future work in
egocentric video narration.

7 Limitations

Since our EILeV-trained models are optimized and evaluated for action narration generation on
egocentric video using in-context learning, their ability to generalize to diverse, real-world scenarios
may be limited. However, this focus was by design and necessity. The primary goal of this work
was to verify that the three distributional properties identified by Chan et al. [5] also elicit in-context
learning capabilities in VLMs for videos. To that end, we intentionally chose to use Ego4D, a dataset
with sufficient annotations to enable our systematic ablation experiments as a proof of concept.
Despite this limitation, EILeV-trained models may retain some capability to answer other types
of questions due to the use of a frozen language model. Furthermore, EILeV is a general training
method that can be applied to other tasks given the appropriate data.

Additionally, our models may inherit biases from their frozen language models, making it possible
that they could generate harmful content. Before deploying such a system for real-world applications,
safety measures like guardrails and training data sanitization are crucial to minimize potential negative
impact. On the other hand, since we used the diverse and global data from Ego4D to train our models,
this may mitigate possible socio-economic bias found in pre-trained visual representations [30].
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A Additional Experiments

A.1 Additional Baselines

We report the performance of three additional baselines on the Ego4D-based dataset used in the main
ablation experiments, as well as another dataset constructed from EPIC-KITCHENS-100 [7]. The
first is a naive action classification baseline (“VideoMAE”). Specifically, we fine-tune the “videomae-
huge-finetuned-kinetics” variant of VideoMAE [35] using the verb and noun class annotations to
produce a verb and a noun classifier. The predicted verb and noun classes are then transformed into
action narrations using an off-the-shelf LLM (7 billion parameter Llama-2-Chat [36]). Note that
this baseline only uses videos as its input, and cannot perform in-context learning. The second are
off-the-shelf BLIP-2 models with the architectural modifications from Section 4.3 for interleaved data
support (“BLIP-2 OPT-2.7B & Flan-T5-xl”). The third are EILeV-trained models with in-context
examples ablated, and fine-tune solely on the query (“FT BLIP-2 OPT-2.7B & Flan-T5-xl”).

A.1.1 Results on Ego4D

Figure 7 reports the performance of the three additional baselines on the Ego4D-based dataset. We
use a random train-test split with a ratio of 75/25 for this experiment to maintain the same action
distributions in both the training and test sets. The EILeV-trained BLIP-2 models demonstrate
superior in-context learning capabilities, as their performance improves with an increasing number
of shots, ultimately outperforming all baseline models. This is a further indication that EILeV has
successfully elicited in-context-learning capabilities in them. The VideoMAE and FT BLIP-2 models
exhibit the best performance at 0-shot, suggesting they have the most amount of in-weights knowledge
due to their fine-tuning. However, VideoMAE cannot process in-context examples, and its 0-shot
performance is quickly outperformed by EILeV-trained models with only one in-context example.
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Figure 7: Performance of additional baselines on the Ego4D-based dataset.

Random 40K Subset Turn On Tap Turn Off Tap Open Cupboard

Figure 8: t-SNE plots of the video embeddings from the frozen vision encoder of BLIP-2 OPT-2.7B.
Ego4D videos are in red, and EPIC-KITCHENS-100 videos are in blue. Plots for a randomly sampled
subset of 40k videos from both and three most common actions from EPIC-KITCHENS-100 are
shown. We manually map Ego4D actions to the EPIC-KITCHENS-100 actions.

The performance of FT BLIP-2 models stagnates or even declines as the number of shots increases,
highlighting their lack of in-context learning capabilities and the importance of the training data design
discussed in Section 4.2. These findings about the performance of different models at 0-shot and
subsequent shots align with Chan et al. [5] observations regarding the “tradeoff between in-context
learning and in-weights learning,” where no models could maintain both in their experiments. In our
experiment, the EILeV-trained BLIP-2 models are optimized for in-context learning, as evidenced
by their subpar performance at 0-shot and superior performance with additional shots, whereas the
FT BLIP-2 models show the opposite trend. We leave designing training data to find the right balance
for future work.

A.1.2 Results on EPIC-KITCHENS-100

Next, we test if EILeV-trained BLIP-2 models trained solely on Ego4D can generalize to out-of-
distribution actions via in-context learning. Specifically, we evaluate them on the validation split of
a different egocentric video dataset, EPIC-KITCHENS-100, without further fine-tuning. Note that
there is a significant distributional shift between Ego4D and EPIC-KITCHENS-100 even though they
both contain egocentric videos in the kitchen setting as evidenced by the t-SNE plot in Figure 8. All
the experimental setups are same as the experiments on the Ego4D-based dataset except evaluation
context-query instances are formed by sampling both the context and the query from the validation
set of EPIC-KITCHENS-100. Unlike Ego4D, the action narrations from EPIC-KITCHENS-100 are
not full sentences, but simple verb-noun phrases. Therefore, we use an LLM (7 billion parameter
Llama-2-Chat [36]) to turn the simple verb-noun phrases into full sentences with “the camera wearer”
as the subject.

Figure 9 reports the evaluation results. The performance of the EILeV-trained BLIP-2 models
improves with an increasing number of in-context examples and ultimately outperforms all the
baselines. This indicates that these models can generalize to out-of-distribution actions via in-
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Figure 9: Performance of additional baselines on the EPIC-KITCHENS-100-based dataset
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Figure 10: Scatter plots with trend lines and R2 values between the log verb/noun class frequency in
the training data with common actions and the difference in STS-BE (∆ STS-BE) for the correspond-
ing rare action between 16-shot and 0-shot settings for the EILeV-trained models.

context learning. All the baseline models exhibit similar trends as on the Ego4D-based dataset: they
demonstrate the best performance at 0-shot but fail to benefit from the in-context examples.

A.2 In-Context or In-Weights Learning

We now aim to validate that the source of the generalization capabilities demonstrated by the EILeV-
trained models in Section 5.1 is indeed from in-context learning, not in-weights learning. This is to
further reinforce our claim that EILeV-trained models can generalize to actions that they have not
seen during training, i.e., actions of which they have no direct in-weights knowledge. To that end, we
use the frequency of each verb/noun class in the common action training data as the proxy for the
knowledge about the verb/noun class encoded into the weights of the model (in-weights learning),
and the difference in model performance between 16-shot and 0-shot settings for a particular rare
action as the proxy for in-context learning performance. If the model relies on in-weights learning
for a particular novel, rare action, the difference in performance for that action between 16-shot and
0-shot settings would be correlated to the frequency of the corresponding verb/noun class in the
training data. This outcome is not desired, as we want the model to rely on in-context learning for
generating accurate narrations of novel, rare actions unseen during training.

Figure 10 shows the scatter plots between the log verb/noun class frequency in the training data
and the difference in STS-BE for the corresponding rare action between 16-shot and 0-shot settings
for the EILeV-trained models. For example, given a rare action (“put”, “bench”), a point on the
scatter plot may refer to the log frequency of “put” in the common action training data in the x-axis
and the difference in the STS-BE performance of EILeV BLIP-2 OPT-2.7B on (“put”, “bench”)
between 16-shot and 0-shot. As the scatter plots and their corresponding R2 values show, there is a
minimal linear correlation between the log verb/noun class frequency in the training data and the
difference in STS-BE for the corresponding action from in-context learning. This suggests that the
EILeV-trained models generate accurate narrations for novel, rare actions via in-context learning
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rather than in-weights learning, as the linear model does not significantly account for the variance in
the observed data.

A.3 Context Modeling and In-Context Learning

In this evaluation, we seek to investigate if the EILeV-trained models perform correct context
modeling by incorporating the relationships between video clips and narrations. To that end, we
evaluate the EILeV-trained models and the off-the-shelf BLIP-2 baseline models from Section A.1
on shuffled in-context examples where video clips no longer match the action narrations. We then
compare their performance from shuffled in-context examples (the treatment group) to the one from
un-shuffled in-context examples as the control group. If the performance remains unchanged, it
implies that the model does not consider the relationships between in-context video clips and action
narrations. On the other hand, if the performance decreases, it implies that the model does take the
relationships between video clips and action narrations into account, and the mismatch adversely
affects its performance. We do not report the results at 0 and 1-shot since shuffling of the in-context
video clips would not have any impact at those settings.

2 4 8 12 16
4

3

2

1

0

%
 D

if
f. 

ST
S-

B
E

BLIP-2

2 4 8 12 16

EILEV BLIP-2

OPT-2.7B Flan-T5-xl

Figure 11: Percentage difference plots between
the treatment group with shuffled in-context video
clips and the control group. A negative value be-
low the dotted zero line means the STS-BE per-
formance of the treatment group is worse than the
control group.

Figure 11 shows the percentage differences
in STS-BE from 16-shot to 0-shot between
the treatment group and the control group for
the EILeV-trained models and the off-the-self
BLIP-2 models. For the off-the-shelf BLIP-2
models, the percentage differences are small
across all shots. This indicates that they rely
mostly on the context as a whole rather than the
semantic details from the relationships between
video clips and action narrations when perform-
ing in-context learning. We hypothesize that our
proposed architectural modifications (Section
4.3 allow the off-the-shelf BLIP-2 models to tap
into the text-only in-context learning capabili-
ties of their frozen language models, which lack
the ability to extract semantic details from the
relationships between video clips and action nar-
rations. This hypothesis is supported by their
subpar in-context learning capabilities from Sec-
tion A.1, which speaks to the importance of our modifications to the training data. On the other
hand, there is a clear drop in performance for the EILeV-trained models in terms of the semantic-
similarity-based metric STS-BE. This indicates that the EILeV-trained models extract detailed
semantic information from the correspondence between in-context video clips and action narrations.

B Training Details

In all of our experiments, each video clip is created by taking the four seconds before and after its
action narration timestamp, and 8 frames are sampled uniformly from each video clip. The total
training batch size is 128 and the optimizer is AdamW [24] with the initial learning rate of 1× 10−5,
weight decay of 0.05 and a linear scheduler. We train for 5 epochs on 8 NVIDIA A40 GPUs using
distributed data parallel. We evaluate every 200 steps and select the model with the lowest loss. The
training time is about a day and a half.
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C Question Templates

Table 2: List of question-answer pair templates.
What is the camera wearer doing? {narration}

Question: What is the camera wearer doing? {narration}

What is the camera wearer doing? An answer to the question is {narration}

Q: What is the camera wearer doing? A: {narration}

Given the video, answer the following question.
What is the camera wearer doing? {narration}

Based on the video, respond to this question:
What is the camera wearer doing? Answer: {narration}

Use the provided video to answer the question:
What is the camera wearer doing? {narration}

What is the answer to the following question?
"What is the camera wearer doing?" {narration}

The question "What is the camera wearer doing?" can be answered using the video.
The answer is {narration}

Table 2 shows the question-answer pair templates we use in our experiments. They are based on the
instruction templates proposed by Dai et al. [6].
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the paper are supported by the reported experimental
results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of this work are discussed in Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper discusses the details of the modifications applied to training and
evaluation data, as well as the model architecture to fully reproduce the experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

19



Answer: [Yes]

Justification: The code for the experiments will be released publicly upon acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: These details are provided in the main body and appendices.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Due to limited compute resources, we could not perform our experiments
multiple times to report the statistical significant of the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: This information is provided in Section B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research was conducted in full compliance with the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The broader impacts of this work are discussed in Section 7.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We refer the user to the same guidelines provided by the developers of the
pretrained language models used in our research.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the existing assets used in this paper are properly credited, and all the assets
(code and model weights) released in the paper have the appropriate licenses specified.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The new assets (code and model weights) introduced in the paper are well
documented with concrete examples.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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