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Abstract

The complexity and vastness of our world can re-
quire large models with numerous variables. Unfor-
tunately, coming up with a model that is both accu-
rate and able to provide predictions in a reasonable
amount of time can prove difficult. One possibility
to help overcome such problems is sum-product
networks (SPNs), probabilistic models with the
ability to tractably perform inference in linear time.
In this paper, we extend SPNs’ capabilities to the
field of causality and introduce counterfactual Sum-
Product Networks (cf-SPNs), a type of SPNs capa-
ble of answering counterfactual questions. cf-SPNs
make use of a neural component that sets the pa-
rameters of an SPN such that it represents the spec-
ified counterfactual world. We show that cf-SPNs
can successfully learn counterfactual distributions.

1 INTRODUCTION

Consider the following example, which is an adaptation of
a well-known scenario. Person U keeps a small plant in
their office but forgets to water it before going on a business
trip. If person U now remembers the plant (U = 1), a
message M is sent (M = 1) to two colleagues A and B.
Both colleagues water the plant (A = 1, B = 1) if they get
a message, in which case the plant remains healthy (H = 1).
In this example, a strong correlation between the plant being
healthy and a message being sent can be observed, but it
is clear that the plant’s health has no causal impact on the
message. To reason about causes and effects or to answer
counterfactual questions such as “Given that the plant is
healthy, would it still be healthy had A not watered it?”,
an understanding of causality and its implications on the
underlying structural equations is necessary.

Causality can be seen as the science centered around the
study of causes and effects [Pearl, 2009, Bareinboim and

Pearl, 2016], which distinguishes between purely correla-
tional observations and directed causal relations. Here, Pearl
introduced the “ladder of causation” [Pearl and Mackenzie,
2018], which consists of an observational rung (correla-
tions), an interventional rung (general causes and effects),
and a counterfactual rung (hypothetical statements based
on real-world evidence). Each further step on the causal
ladder describes a more difficult problem that requires more
information to solve. Starting from the second rung, models
can differentiate between the plant’s health being correlated
with ‘sending a message’ and the directed causal impact of
the message on the plant.

An example of probabilistic models that can reason causally
is Causal Bayesian Networks (CBNs; Pearl [1995]). CBNs
combine the advantages of Bayesian Networks, i.e., decom-
posing the joint probability distribution into a set of (inter-
pretable) conditional distributions with the field of causality
and can thus reach the interventional, second rung of the
causal ladder. A major downside of CBNs is inference being
intractable [Cooper, 1990]. While approaches exist that try
to circumvent this problem using approximations [Murphy
et al., 2013], it would be desirable to obtain causal mod-
els that can perform exact inference in tractable time. To
achieve this objective, sum-product networks (SPNs) [Poon
and Domingos, 2011] pose a promising alternative as they
specifically allow for exact tractable inference.

Unfortunately, conventional SPNs only operate on the ob-
servational rung of the ladder of causation. With the goal of
utilizing the tractable inference property of SPNs in the field
of causality, we expand upon existing work of interventional
sum-product networks [Zečević et al., 2021] and introduce
counterfactual sum-product networks (cf-SPNs).

2 BACKGROUND AND RELATED WORK

Here, we explain the required background and give an
overview of related work. We denote random variables by
upper-case letters V , sets of random variables in boldface
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V, values of single and sets of random variables as v and v
respectively, and probabilities of them as P (v) or P (v).

2.1 CAUSAL MODELS

In order to introduce the necessary background on causality,
we follow Pearl’s formalism of causal models and say that

Definition 1. A structural causal model (SCM) is a tu-
ple M := ⟨V,U,F, PU⟩ over a set of variables X =
{X1, . . . , XK} taking values in XXX =

∏
k∈{1...K} Xk sub-

ject to a strict partial order <X, where

• V = {X1, . . . , XN} ⊆ X, N ≤ K is the set of en-
dogenous variables,

• U = X \V = {XN+1, . . . , XK} is the set of exoge-
nous variables,

• F = {f1, . . . , fN} is the set of deterministic structural
equations, i.e. Vi := fi(X

′) for Vi ∈ V and X′ ⊆
{Xj ∈ X|Xj <X Vi},

• PU is the probability distribution over the exogenous
variables U.

The relationships between the variables as described by F
induce the directed graph G(M), which by definition is
acyclic due to <X. The exogenous variables U are usually
unobserved. We say that an SCM M entails the probability
distribution PM

V over the set of endogenous variables V.

Interventions in causal models change how a variable value
is determined, ignoring what was previously defined in the
set of functions F.

Definition 2. Consider an SCM M := ⟨V,U,F, PU⟩ and
a variable Vi ∈ V. Applying an intervention do(Vi =
vi) ∈ I on M replaces the structural equation fi with
f̃i := vi and results in the intervened SCM Mdo(Vi=vi) :=

⟨V,U, F̃, PU⟩ where F̃ = (F \ {fi}) ∪ {f̃i := vi}.

A frequent assumption when using SCMs is the invariance
of cause-effect relations (also known as invariance to the ori-
gin of the mechanism). Autonomy describes the invariance
with respect to interventions, i.e., that conditional distri-
butions of unintervened variables remain unchanged from
interventions on different variables.

To extend our notion of SCMs to counterfactuals, we use the
terminology of a “world” to describe a specific configuration
of the entire set of endogenous variables.

Definition 3. Consider an SCM M := ⟨V,U,F, PU⟩, an
original world V′ = v′, and an intervention do(Vi = vi) ∈
I. Due to the (counterfactual) intervention, we have F̃ =
(F\{fi})∪{f̃i := vi}. The distribution over the exogenous
variables PU is inferred to reproduce the original world
v′: PV′=v′

U = PU(U|V′ = v′). We call MV′=v′

do(Vi=vi)
:=

⟨V,U, F̃, PV′=v′

U ⟩ the counterfactual SCM.

In SCMs, the entire randomness responsible for sample
variability is captured by PU since all functions computing
V are deterministic. In other words, each sample u entails
a specific setting of variables v. Thus, given the original
world v′, it is possible to infer information about u′.1

2.2 SUM-PRODUCT NETWORKS (SPNS)

An SPN is a probabilistic graphical model consisting of a
directed acyclic graph (DAG) and a set of weights. Each
leaf represents a probability distribution over a variable, and
multiple leaves can correspond to the same variable but
contain different probability distributions. The inner nodes
are either sum or product nodes. In a product node, the child
probability distributions are multiplied and in a sum node, a
weighted sum over the children is calculated.

The following definition considers binary variables as a
means of illustrating the concepts for computing probabil-
ities with SPNs. An extension to continuous variables is
without loss of generality made possible by having contin-
uous distributions in the leaf nodes of the SPN, for further
reference consider París et al. [2020]. Formally, we can de-
scribe an SPN S = (G,w) by a DAG 2 G = (V,E) and the
non-negative weights w. Sum and product nodes are given
by S(λλλ) =

∑
C∈ch(S) wS,CC(λλλ) and P(λλλ) =

∏
C∈ch(P) C(λλλ)

, where λλλ is an indicator variable (IV). The SPN output
is the value at the root node S(λλλ) = S(x) and prob-
abilities can be computed by marginalization P (x) =
S(x)/

∑
x′∈X S(x′).

2.3 RELATED WORK

There are other models which compute counterfactual prob-
abilities [Xia et al., 2023, Von Kügelgen et al., 2023, Bläser
et al., 2025]. While Causal Bayesian Networks are powerful
and can be transformed into SPNs and back [Zhao et al.,
2015], this transformation from SPNs generally leads to
degenerate3 Bayesian Networks incapable of subsequent
causal inference [Papantonis and Belle, 2020]. However,
a model class extension, as used in this paper, poses a vi-
able candidate for overcoming the problems of using SPNs
for causal inference. Papantonisa and Bellea [2023] in-
troduced an algorithm to transform SPNs into Bayesian
Networks, which simplifies the calculation of interventional
queries. Studying the complexity of counterfactuals, Han
et al. [2022] highlighted that calculating counterfactuals us-
ing circuits is not any more complex than interventional or
observational questions. Huber et al. [2023] consider coun-
terfactuals in circuits by investigating partial identifiability.

1A step established as “abduction” in Pearl [2009].
2Not to be confused with a causal graph, which is also a DAG

but not what is referred to here.
3A bipartite graph in which the actual variables of interest are

not connected is called degenerate.
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Figure 1: Counterfactual SPN. Computation of the counterfactual query arg maxXP (Xdo(¬B)|M,A,B,H) using a cf-SPN.
Information about the observational world (blue box) and the intervention (red box; indicating the intervened upon variables
and their new value) is concatenated and given to a NN, which in turn computes the SPN parameters. The parameterized
SPN can then be evaluated to answer counterfactual questions about a counterfactual world (violet box).

Recent work has used SPNs for generating counterfactu-
als for prediction tasks [Němeček et al., 2025], but they
consider counterfactual predictions from an explainable ar-
tificial intelligence perspective and do not consider a wider
range of counterfactuals for probabilistic problems. Zečević
et al. [2021] introduced interventional SPNs (iSPNs) which
use the same idea of a combined NN and SPN architecture
to allow for interventional queries. Causal circuits have been
shown to help with scaling [Busch et al., 2024].

3 COUNTERFACTUAL SUM-PRODUCT
NETWORKS

Consider the following question based on the plant watering
example: “Given that we know that person B watered the
plant, would the plant still be healthy had person B not
watered the plant?”, i.e., P (Hdo(¬B)|B). The query asks for
the counterfactual value of H under an intervention that sets
B to false, given that B was true in the original world. To
answer this, a model needs to infer the state of A from the
state of B, and incorporate the inferred knowledge about A
into the counterfactual world where B is intervened.

We now propose the Counterfactual Sum-Product Network
(cf-SPN), a tractable probabilistic model capable of answer-
ing counterfactual questions. We use an asterisk (*) to indi-
cate variables of the counterfactual world.

Definition 4. A counterfactual sum-product network (cf-
SPN) is the joint model m(G,D) = g(D∗;ψψψ =
f(D′,G;θθθ)), where g(·) is an SPN, f(·) a non-parametric
function approximator, ψψψ = f(D′,G) are shared parame-
ters of the SPN, D′ ∈ RK×N and D∗ ∈ RK×N are data

matrices with observational and counterfactual values, re-
spectively, and D = (D′,D∗).

G ∈ {0, 1}N×N is the (mutilated) causal graph according
to some intervention do(V∗

j = v∗
j ). We use counterfac-

tual data to train the model, such that the data matrix D ∈
RK×2N contains pairs of observational D′ = {V′

k}Kk ∈
RK×N and counterfactual D∗ = {V∗

k}Kk ∈ RK×N vari-
able settings. This definition assumes complete evidence of
both the observational and the counterfactual world.

Full computation for a cf-SPN is illustrated in Fig. 1. All
original setting variables in the aforementioned example are
set to true, and variable B is intervened with a value of zero.
Both vectors are concatenated and given to the NN, which
outputs the parameters for the SPN ψψψ. The resulting SPN
estimates the distribution of the counterfactual world, such
that all queries to the SPN are of a counterfactual nature.
In our example, the desired probability for H would be 1,
indicating a 100% probability that the plant would still be
healthy. This is correct as A would still have watered the
plant, even if B would have been prevented from doing so.

Proposition 1. Assuming autonomy and invariance, a cf-
SPN m(G,D) is able to identify any counterfactual (L3)
distribution PM(V∗

i = v∗
i |V′ = v′, do(V∗

j = v∗
j )), per-

mitted by a SCM M through counterfactuals, with knowl-
edge of the mutilated graphG∗, the original world variables
v′ ∈ D′ generated from the original SCM, and correspond-
ing counterfactual data v∗ ∈ D∗ by modelling the distribu-

tion PMV′=v′
do(Vi=vi)(V∗

i = v∗
i |V′

j = v′
j).

Proof. Let M := ⟨V,U,F, PU⟩ be the observational
SCM. From the do-calculus [Pearl, 2009], we know that
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Figure 2: Watering Experiment. cf-SPN predictions (blue lines) match the ground truth (bars) without any noticeable error.
With information about the original world, counterfactual statements can be made reliably even about single instances.

PM(V∗
i = v∗

i | do(V∗
j = v∗

j )) = P
Mdo(V′

j
=v′

j
)(V∗

i =

v∗
i |V∗

j = v∗
j ). The counterfactual SCM MV′=v′

do(Vi=vi)
:=

⟨V,U, F̃, PV′=v′

U ⟩ is equal to the interventional SCM
Mdo(Vi=vi) := ⟨V,U, F̃, PU⟩ if PV′=v′

U = PU. For the
specific sample V′ = v′, we have PU(U|V′ = v′) =
PV′=v′

U . It remains to be shown that an SPN can learn
the joint probability distribution P (V∗), which follows
from Poon and Domingos [2011].

Note that counterfactual data is required for training a cf-
SPN. This is generally unobtainable, as it is generally impos-
sible to directly “measure” values from the counterfactual
outcome. This situation can be addressed in multiple ways.
First, our model shows that SPNs are capable of answering
counterfactual queries if the correct model is given, illus-
trating the potential of the proposed approach for domain-
specific, expert-engineered models. Second, as shown in
other works (e.g. Xia et al. [2023]), it is sometimes possible
to calculate counterfactuals when only being provided with
information from the lower rungs of the causal ladder.

4 EXPERIMENTS

We revisit the watering example to explain how the cf-SPN
functions. The root variable U is true 50% of the time, and
all other variables M,A,B, and H follow from it determin-
istically. The input to the NN of our cf-SPN consists of the
intervention information (i.e., both the intervention target
variable and the intervention value to be set) and a single
configuration of the original world variables. The model
is trained using counterfactual data by providing instances
where the original world, the counterfactual world, and the
intervention that distinguishes between them are known.

Figure 2 shows results for an intervention on variable B.

Because we use Gaussian leaves within the SPN, the model
predicts continuous probability densities. We plot the den-
sities in the range of [−0.5, 1.5] (lines) while displaying
the ground truth as discrete values (bars). For Figure 2a, all
variables in the original world are set to false and –without
an intervention– the counterfactual world is identical to
the original world. When specifying an intervention on B,
which sets it to 1, the cf-SPN infers thatH = 1 is the correct
counterfactual outcome. An intervention on B indicates that
person B is set to water the plant, independent of getting the
message M or A watering the plant. The predictions of the
cf-SPN for M or A are therefore kept correctly unaltered.

Figure 2b follows the same type of setup but averaged over
1000 different original world instances with a 50% chance
of an intervention do(B = 1). Without interventions, U
(and thus all other variables) would have been set to 0 and
1 half of the time. However, considering the average distri-
bution over 1000 samples, H is set to 1 more often. This is
because the intervention on B introduces a new possibility
for H being 1, namely the scenario where U (and there-
fore H) would have been set to zero, but the counterfactual
intervention on B sets B, and therefore H , to 1.

5 CONCLUSION

We introduced cf-SPNs, tractable probabilistic models ca-
pable of computing counterfactual probabilities. We have
shown that cf-SPNs are able to successfully make predic-
tions for counterfactual questions. While our current model
requires training on counterfactual data, one could try to uti-
lize different information, for example, by including domain
knowledge or counterfactual samples gained from human
experts. Another challenge when applying these models is
scalability and expressiveness for more difficult problems
with a large number of variables.
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