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Abstract

The Bin Packing Problem (BPP) is a well-established combinatorial optimization (CO)
problem. Since it has many applications in our daily life, e.g. logistics and resource allo-
cation, people are seeking efficient bin packing algorithms. On the other hand, researchers
have been making constant advances in machine learning (ML), which is famous for its
efficiency. In this article, we first formulate BPP, introducing its variants and practical con-
straints. Then, a comprehensive survey on ML for multi-dimensional BPP is provided. We
further collect some public benchmarks of 3D BPP, and evaluate some online methods on
the Cutting Stock Dataset. Finally, we share our perspective on challenges and future direc-
tions in BPP. To the best of our knowledge, this is the first systematic review of ML-related
methods for BPP.

1 Introduction

With the boom in e-commerce in recent years, logistics is playing a more and more important role in our
daily life. An indispensable part of logistics is packing packages into a container or pallet. Traditionally,
this task is done by workers, which results in sub-optimal packing configurations. To obtain more compact
layouts as well as reduce the cost of packing, the industry is pursuing efficient bin packing algorithms to
replace workers with intelligent robotic arms.

As a typical case in combinatorial optimization (CO), the Bin Packing Problem (BPP) has been studied
for a long time. Early research can date back to the 1970s (Johnson, 1973; 1974; Coffman et al., 1978a).
Like other problems in CO, BPP is well-known to be NP-hard (Garey & Johnson, 1979), indicating that
no polynomial time algorithm is currently known for BPP. Due to the tremendous search space in BPP,
especially for the 3D version, which is encountered most in reality, we can never apply the exact method
(Martello & Vigo, 1998; Martello et al., 2000) to solve this problem within an acceptable time.

In addition to logistics, BPP has other practical applications. Coffman et al. (1978b) extend BPP into mul-
tiprocessor scheduling, where the first-fit-increasing algorithm is proposed to find a near-optimal scheduling
configuration quickly. Song et al. (2013) model the resource allocating problem in cloud computing as BPP.
Concretely, each server is viewed as a bin and each virtual machine as an item. Then, a relaxed online bin
packing algorithm is proposed to achieve good performance compared with existing work. Besides, Eliiyi
& ELIIYI (2009) mention more applications in the supply chain, including the stock cutting or trim loss
problem, project scheduling, financial budgeting, etc. The idea of BPP can be integrated into all these areas
with certain adaptations.

On the other hand, the past decade witnessed an explosion in machine learning (ML), especially for deep
learning (DL). Since AlexNet (Krizhevsky et al., 2012) won first place by a wide margin in ILSVRC
2012 (Deng et al., 2009), various convolutional neural networks (CNNs) have been proposed to achieve
better performance. Other ML techniques like graph neural networks (GNNs) and reinforcement learning
(RL) have also made impressive progress in recent years. Nowadays, these techniques can be adopted in a
large number of fields, e.g. medicine, computer vision, and autonomous driving.

1



Under review as submission to TMLR

Action: 

Current Layout

Online BPPItem Sequence

Current State Geometric Representation

1

2 3

Tree Representation packed node
placement node

Placing Candidates
Force Analysis gravity force

supporting force

Stability Check

Item
Selection

Offline BPP
Item Set

corner point
extreme point

O X

7 7 7 5 5 4 4

7 7 7 5 5 4 4

7 7 7 5 5 4 4

7 7 7 5 5 0 0

5 5 5 5 5 0 0

0 0 0 0

0 0 0 0 0 00

0 0 0

Y

Height Map

EMS1

EMS3
EMS2

Convex Hull convex hull
center point
projected center

Policy: State: 

Reward: Update  to 

Figure 1: A typical pipeline of ML-related methods for 3D BPP. We derive the geometric representation of
the current state, determine placing candidates, and check the stability before placing an item. ML-related
methods usually encode rich geometric representations of the current state while traditional ones tend to
evaluate it by simple man-made rules which cannot precisely estimate its value and lack generalizability. In
modern scenes, the action of placing an item from the conveyor belt into the bin is conducted by a robotic
arm rather than a worker.

Owing to the rapid development in ML and the imperative need for efficient bin packing algorithms, it is
natural for us to try applying ML techniques to BPP. This approach has several advantages over traditional
search-based methods:

Efficiency. ML techniques often involve matrix multiplication and convolution, which can be computed
in parallel on GPUs efficiently, while traditional methods rely on CPUs to execute iterative and serial
operations, which can hardly exploit the computational power of GPUs. Moreover, the runtime of many
traditional methods rises exponentially with the growth of the problem scale, but the additional overhead of
ML techniques is much smaller due to parallel computation on GPUs.

Data-driven characteristic. With the development of computing power and simulation platforms, one can
easily generate extensive data from different distributions, and train ML models in a simulation environment
similar to reality. During training, these models can explore the patterns in the data, and also interact with
the simulation environment to achieve better performance.

Less reliance on domain knowledge. Traditional methods require experts to determine an explicit
strategy, e.g. score function, to compare one solution with another, whereas learning-based methods do that
in a much more implicit way by its internal mechanism, e.g. neural network, which is trained by data.

Actually, there are already a number of studies on combining ML with CO problems, e.g. Travelling Salesman
Problem (TSP). Vinyals et al. (2015) propose a new architecture named Pointer Net, which leverages the
attention mechanism as a pointer to the input sequence. The pointer will select a member of the input
sequence as an output at each step and finally produce a permutation of the input sequence. More examples
of the incorporation of ML and CO can be found in recent surveys (Bengio et al., 2021; Yan et al., 2020;
Mazyavkina et al., 2021). However, these surveys cast limited sight on learning for BPP, to say nothing of
a systematic review on that. Hence, unlike previous surveys on BPP, which investigate the traditional or
heuristic methods (Christensen et al., 2017; Coffman et al., 2013), this survey will shed light on ML-related
ones and put forward some future directions. We can briefly divide existing bin packing algorithms into
three classes: traditional, learning-based, and hybrid.
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2 Preliminaries

In this section, we introduce the Bin Packing Problem (BPP) and its variants. In the meantime, we give a
brief overview of traditional methods and practical constraints in this problem.

min γ

s.t.



δi1 + δi2 + δi3 + δi4 + δi5 + δi6 = 1 (1a)
lij + lji + uij + uji + bij + bji + cij + cji = 1 (1b)
xi − xj + L · (lij − cij − cji) ≤ L − l′

i (1c)
yi − yj + W · (uij − cij − cji) ≤ W − w′

i (1d)
zi − zj + H · (bij − cij − cji) ≤ H − h′

i (1e)
(lij + lji + uij + uji + bij + bji)(Γ − 1) + γi − γj + cijΓ ≤ Γ − 1 (1f)
0 ≤ xi ≤ L − l′

i (1g)
0 ≤ yi ≤ W − w′

i (1h)
0 ≤ zi ≤ H − h′

i (1i)
0 < γi ≤ γ ≤ Γ (1j)
l′
i = δi1li + δi2li + δi3wi + δi4wi + δi5hi + δi6hi (1k)

w′
i = δi1wi + δi2hi + δi3li + δi4hi + δi5li + δi6wi (1l)

h′
i = δi1hi + δi2wi + δi3hi + δi4li + δi5wi + δi6li (1m)

δi1, δi2, δi3, δi4, δi5, δi6 ∈ {0, 1} (1n)
γi, γ ∈ Z (1o)
lij , uij , bij , cij ∈ {0, 1} (1p)

(1)

2.1 Problem Formulation

In general, BPP can be categorized into 1D, 2D, and 3D BPP by the dimension of the items to be packed.
In the logistics industry, 3D BPP is the most common problem. Consequently, we will introduce 3D BPP
in detail. The other two forms can be reasoned by analogy.

Typically, a set of cuboid items with their length (li), width (wi), and height (hi) is given. Then, we need to
pack all these items into one or multiple homogeneous cuboid bins. Each bin’s measurements are (L, W, H),
representing its length, width, and height respectively. It’s worth noting that the objective varies according
to practical needs. For convenience, we suppose that the objective is to minimize the number of used bins.
We denote (xi, yi, zi) as the left-bottom-back corner of item i and (0, 0, 0) as the left-bottom-back corner of
the bin. Then, BPP can be formulated as Equation 1.

Constraints 1a, 1g to 1o are subject to i = 1, . . . , n and others subject to i, j = 1, . . . , n, i ̸= j. δi· means
the orientation of item i because there are 6 orientations leading to different permutations of measurements.
γi means which bin item i is inside and Γ means the number of usable bins. (lij , uij , bij) indicates whether
item i is to the left, under and back of item j. cij indicates whether the bin number of item i is less than
that of item j. (l′

i, w′
i, h′

i) indicates the measurements of item i after rotation defined by δi·.

Constraints 1c to 1e ensure that any two items will not overlap and Constraints 1g to 1j guarantee that
every item is inside exactly one bin.

A small example is shown in Figure 2. We can see that none of the colored items reaches outside the bin
and that any two items do not overlap. Hence, it is a valid solution to this problem instance.
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Figure 2: A simple example of 3D BPP. Four items with size (5, 5, 5) (green), (4, 2, 5) (red), (3, 3, 3) (blue)
and (5, 3, 3) (yellow) are given. After certain rotations, they are placed in a (10, 10, 10) cuboid bin sketched
by black lines. The green item with measurements (5, 5, 5) (after rotated) is located at (0, 0, 0). The red
item with measurements (5, 2, 4) is located at (5, 0, 0). The blue item with measurements (3, 3, 3) is located
at (1, 6, 0). The yellow item with measurements (3, 5, 3) is located at (1, 1, 5).

2.2 Problem Variants

Generally, the Bin Packing Problem is divided into two classes: online and offline, according to our prior
knowledge about items to come (refer to Figure 1 for illustration). Besides, there are a variety of practical
constraints we need to take into account when applying bin packing algorithms to real-world settings.

Online BPP. It lays the restriction that one can only know the information of the current item to be
packed, and must pack items in an unknown sequence. This setting is common in assembly lines, where
workers make an instant decision when accessing the item. Without the knowledge of subsequent items, we
can hardly obtain the global optimal solution. Instead, we tend to seek a local optimal solution, following
some heuristic strategy.

Researchers put emphasis on the easiest 1D BPP at the early stage. Next-fit, first-fit and best-fit (Johnson,
1973) are among the most popular methods for 1D online BPP. The ideas are quite simple. Next-fit tries to
pack the current item into the current bin. If the bin cannot contain the item, it will close the current bin
and open a new bin for the item. First-fit can be viewed as an improved version of next-fit because it will
not close the previous bins. Instead, the current item will be packed into the lowest indexed bin that can
contain the item. Only when none of the non-empty bins can contain the item will a new bin be opened.
Best-fit revises first-fit by packing the current item into the bin with the least remaining space.

The heuristics above can help determine which bin to select but the placing location remains unsolved in
BPP with higher dimension. For 2D BPP, Jakobs (1996) design the bottom-left (BL) heuristic that shifts
the current item from the top as far as possible to the bottom and then as far as possible to the left. Hopper
& Turton (1999) point out that Jakobs’s algorithm may cause big vacancy in the layout. Thus, they propose
the bottom-left-fill (BLF) heuristic to mitigate the problem. Berkey & Wang (1987) build levels splitting
the rectangular bin. Therefore, each level is regarded as a 1D bin, and 1D heuristics can be used. Similarly,
these heuristics can be adapted to 3D BPP. For instance, Deepest Bottom Left with Fill (DBLF) (Karabulut
& İnceoğlu, 2004) and Bottom-Left-Back-Fill (BLBF) (Tiwari et al., 2008) are tailored versions for 3D BPP
by considering shift along Z axis.

To evaluate a packing algorithm A, researchers have introduced the asymptotic performance ratio (Seiden,
2002) as:

R∞
A = lim sup

n→∞
sup

σ

{
costA(σ)
cost(σ) | cost(σ) = n

}
, (2)
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where σ denotes the item sequence and cost(σ) the minimum possible number of used bins. It proves that
the ratios for next-fit, first-fit, and best-fit are 2, 1.7, and 1.7, respectively (Johnson et al., 1974; Coffman
et al., 1984), which implies the obvious sub-optimality of traditional methods.

Placing Candidates. The aforementioned methods like BLF merely consider one placing candidate. To
obtain a more compact layout, it needs to involve more placing candidates. Since the space is continuous,
we cannot enumerate all points. To reduce the search space and maintain the performance, heuristics for
computing placing candidates are designed. Martello et al. (2000) select corner points from the layout. All
points that no placed item has some part right of or above or in front of can form an outer space. Then,
the border splitting the outer space and items is defined as “envelope". Points where the slope of “envelope"
changes from vertical to horizontal are the so-called corner points. Crainic et al. (2008) propose the concept
of extreme points. When an item with size (l′

i, w′
i, h′

i) after rotated is placed at (xi, yi, zi), point (xi +l′
i, yi, zi)

will be projected along Y and Z axis onto the nearest item or wall. Similar projection of point (xi, yi +w′
i, zi)

and point (xi, yi, zi +h′
i) can be inferred with ease. The projection points are the new extreme points. Empty

maximal-space (EMS) is introduced to BPP in (Gonçalves & Resende, 2013). Here EMS denotes the largest
empty orthogonal spaces available for filling with items. Then, corners of EMS can be viewed as placing
candidates. Refer to Figure 1 for comparison.

Offline BPP. It provides us with the information of all items to be packed and the full manipulation of item
sequence. Since we may determine the sequence items come in, we can obtain a globally optimal solution
theoretically. Chen et al. (1995) formulate the 3D BPP as a mixed-integer programming (MIP) model.
Subsequently, it can be solved by commercial solvers like Gurobi (Gurobi Optimization, LLC, 2023) and
CPLEX (Cplex, 2009). Martello et al. (2000) have described an exact branch-and-bound algorithm for 3D
BPP. They first assign items to different bins through a main branching tree. Then, the branch-and-bound
algorithm is used to determine the placing locations. Pruning happens when items belonging to a bin cannot
be packed in it or the total volume will not improve even if we make full use of the remaining space.

The drawback of the MIP model and the exact algorithm is their high time complexity. When the scale
of problems is large, they cannot generate satisfactory solutions within a reasonable time (Wu et al., 2010;
Laterre et al., 2019). Hence, researchers have been exploring another way out. BPP can be viewed as a
grouping problem (Falkenauer et al., 1992). They augment the standard genetic operator with a group part
so that crossover, mutation, and inversion operators fit this grouping problem. Inspired by the Dominance
Criterion (Martello & Toth, 1990), Falkenauer (1996) further improve the above Grouping Genetic Algorithm
(GGA) and propose hybrid GGA.

Many other traditional search-based methods are also incorporated. Guided Local Search (GLS) is used
in (Faroe et al., 2003). At each step, GLS guides the current layout to its neighbor, where one item is
reallocated in the original bin or another. The iteration stops when the local minimum of the objective
function is found. The work (Li et al., 2018) based on Monte-Carlo Tree Search (MCTS) utilizes the
selection, expansion, simulation, and backpropagation to explore states leading to high volume utilization.
Besides, a Top-K table is designed to prune the tree. Starting from an initial solution, Lodi et al. (1999) try
to remove a bin and transfer items inside to other bins with tabu search (Glover & Laguna, 1998). Though
these methods accelerate the searching process to some extent, they may still fail to meet realistic needs in
a limited time.

Misc. There are other variants of BPP, which can be seen as derivatives of online BPP or offline BPP. For
example, some scenes require that the items are first picked out from a bin, and then packed into another
(Hu et al., 2020; Tanaka et al., 2020). Verma et al. (2020) enhance online BPP by providing the information
of several upcoming items.

2.3 Practical Constraints

In reality, there is a wide range of practical constraints we need to consider when dealing with BPP. For
example, when a robotic arm is used to place items, the algorithm should guide the arm to avoid collisions.
Bortfeldt & Wäscher (2013) carefully investigate practical constraints existing in a variant of 3D BPP,
i.e. Container Loading Problem (CLP). They classify constraints into container-related ones, item-related
ones, cargo-related ones, positioning ones, and load-related ones, each of which contains more fine-grained
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Table 1: Comparison between different learning-based methods. CNN and attention mechanism are the two
most popular modules while stepwise form overwhelms terminal one in reward function in case of sparse
reward. Various state representations, stability check methods, and RL skills are applied in these works.
Note that space utilization represents a set of metrics concerned with how well the placements make use of
the bin space. Abbreviations: actor-critic (AC) (Konda & Tsitsiklis, 1999), generalized advantage estimation
(GAE) (Schulman et al., 2015), proximal policy optimization (PPO) (Chung et al., 2014), actor critic using
Kronecker-factored trust region (ACKTR) (Wu et al., 2017), prioritized oversampling (PO) (Zhang et al.,
2021), and advantage actor-critic (A2C) (Mnih et al., 2016).

Approach Problem type Dimension Module State Reward Optimization objective Stability check RL skill
Li et al. (2020) offline 3D attention item information stepwise space utilization none AC + GAE

Zhao et al. (2021) online 3D CNN height map + item size stepwise space utilization supporting area
+ corner support AC

Tanaka et al. (2020) misc. 3D FCN height map stepwise space utilization supporting area PPO

Hu et al. (2020) misc. 2D + 3D CNN + GRU +
attention

precedence graph
+ height map + item size terminal space utilization

+ stable ratio convex hull AC

Zhao et al. (2022) online 3D CNN height map + item size
+ feasibility mask stepwise space utilization convex hull

+ force analysis ACKTR

Zhang et al. (2021) offline 3D CNN + attention item size + frontier terminal space utilization none PO

Jiang et al. (2021b) offline 3D CNN + attention item information
+ height map stepwise space utilization none A2C + GAE

restrictions, e.g. stability, weight distribution, orientation, and weight limit. Among all these constraints,
stability may be the most significant in bin packing applications. Stability ensures every item can remain
static against gravity throughout the whole packing process. Otherwise, toppling down may occur, which can
damage items or hurt people, causing huge economic losses and safety hazards in the industry. Nevertheless,
the complexity of the stability problem increases in proportion to the number of items because of the hardness
of modeling.

Efforts made to tackle the stability problem can be broadly classified into two types: i) intuitive methods
(Gzara et al., 2020; Laterre et al., 2019; Zhao et al., 2021) either use the supporting area or firm support
at particular points, e.g. the center point or corners, to check the stability. A wiser criterion may be to
judge whether the center of mass is within the convex hull of supporting points (Ramos et al., 2016a); ii)
theoretical methods (Ramos et al., 2016b) check stability by verifying whether each item satisfies the force
and moment balance condition derived from Newton’s laws while Wang & Hauser (2019) also take friction
into consideration. Comparison is shown in Figure 1. Though the stability problem is of great importance
to practical BPP, most works either neglect this problem or model it in a very simple way, which hinders
their practical usage.

3 Machine Learning for the Bin Packing Problem

Although heuristics mentioned in Section 2 speed up the searching process, they still cannot find a good
enough solution within a reasonable time when the problem scale increases because those methods tend to
fall into a local optimum. Another concern is that expert knowledge, which counts for traditional methods,
is sometimes hard to obtain. Therefore, ML has been introduced into BPP. In this section, we will make a
literature review on learning-based and hybrid methods. The former represents methods that only leverage
ML techniques to accomplish all tasks in BPP while the latter refers to methods infusing ML skills with
conventional heuristics. To the best of our knowledge, only a little existing research has been conducted
on ML for BPP. We list almost all the ML-related methods in Table 1 and 2. Obviously, 3D BPP receives
the most attention due to its practical value. All listed methods exploit an RL framework while reserving
differences in model configuration. The high-level view of the RL framework is provided in Figure 1. The
current state st consists of the current layout and current item. In each iteration, the agent picks the best
action at according to its policy π. Actions failing to pass the stability check are excluded from π. Then,
the state st is updated to st+1, and the reward rt is calculated. We assume the readers are knowledgeable
about the basic concepts in recent deep nets, while we refer to (Goodfellow et al., 2016) for some preliminary
concepts.

6



Under review as submission to TMLR

3.1 Learning-Based Methods

Learning-based methods have been applied to different forms of BPP, i.e. online, offline, and miscellaneous
versions.

Models for Online BPP. Zhao et al. (2021) discretize the 2D space and introduce an L × W height map
to record the maximum height on each grid. The size of the current item is expanded into an L × W × 3
tensor and encoded together with the height map by a CNN. Then, a CNN predicts the probability of each
action whilst another CNN eliminates illegal actions. Later, they extend their work in three aspects (Zhao
et al., 2022): i) utilize a stacking tree to check stability according to static equilibrium analysis, raising both
accuracy and efficiency; ii) decompose the actor network into three serial components to reduce the action
space; iii) design a specialized reward function to encourage the robotic arm to place items from far to near,
aiming for collision-free trajectories.

Models for Offline BPP. Generally, offline BPP can be decomposed into three sub-actions: item selection,
orientation selection, and position selection, done either successively or concurrently. The problem can be
regarded as a Markov Decision Process (MDP) if they are done concurrently. Otherwise, the last two steps
are not strict MDP because they are conditioned on previous sub-actions. To address this problem, Li et al.
(2020) utilize the prediction of the last sub-action as a conditional query for the current attention-based
decoder to formulate a strict MDP. However, a potential weakness in this work is its neglect of the geometric
representation of placed items.

Frontier, a front-view variant of the height map, is adopted as the geometric representation (Zhang et al.,
2021). They reduce the action space by only inferring orientation and Y coordinate with state embeddings
and also propose prioritized oversampling to learn on hard examples again. Experiments show that they
achieve state-of-the-art performance in offline 3D BPP.

Models for Miscellaneous Scenes. A more complicated scene is studied in (Tanaka et al., 2020): items
must be transferred from a bin to a tote. They first parameterize both bin and tote as height maps with shape
LB × WB and LT × WT . Then, two maps are expanded and concatenated into an LB × WB × LT × WT × 2
tensor as the input of a fully convolutional network (FCN) (Long et al., 2015). Finally, the network will
output the probability of each action. Though they demonstrate that simultaneous planning for item picking
and placing outperforms individual one, the action space becomes prohibitively large when the sizes of the
bin and tote increase.

Hu et al. (2020) focus on a similar transportation scene. Different from (Tanaka et al., 2020), they utilize
a precedence graph to describe the picking dependency among items, which makes clear how to pick up a
particular item. At each step, the encoder encodes size information and the precedence graph of several
items. Then, with the height map and attention module, the decoder infers the next item to pack and its
orientation. The packing location is determined by a GRU.

3.2 Hybrid Methods

Machine learning skills are so versatile and flexible that they can easily coordinate with conventional heuris-
tics. Existing works on BPP mainly focus on the following three directions:

Combining RL with the Packing Heuristic (PH). Inspired by (Bello et al., 2016; Vinyals et al., 2015),
Hu et al. (2017) are the first to introduce the pointer mechanism along with RL to BPP. Specifically, they
select items with pointer and leave orientation and position selection to an EMS-based heuristic. Later,
Duan et al. (2018) also include orientation selection in the learning architecture by adding an intra-attention
module. Moreover, they employ a multi-task framework to mitigate the imbalance among the three training
procedures.

A critical point in ML-related methods is how to represent the bin state. It is hard for learning models
to understand the geometric representation with mere positions and sizes of placed items, so researchers
make efforts to enrich this representation. Despite the popularity and concision of the height map as the
geometric representation, it ignores the mutual spatial relationship among placed items and receives criticism
against discrete solution space. (Zhao & Xu, 2022) tackles this by viewing each placed item and each placing
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Table 2: Comparison between different hybrid methods. Different from Table 1, hybrid methods mainly focus
on offline BPP, in which additional variable, i.e. item sequence, needs to be resolved. Other meaningful
objectives, e.g. surface area and bin quantity, are considered in this domain. One notable defect is lack of
stability check, which restricts their practicality. Abbreviation: policy gradient (PG) (Sutton et al., 1999),
beam search (BS), deep Q-network (DQN) (Mnih et al., 2013), constraint programming (CP), prioritized
experience replay (PER) (Schaul et al., 2015), and neural network (NN).

Approach Problem type Dimension Module State Reward Optimization objective Stability check RL skill

Hu et al. (2017) offline 3D pointer mechanism +
packing heuristic (PH) item size terminal surface area none PG + BS

Duan et al. (2018) offline 3D pointer mechanism +
intra-attention + PH item size terminal surface area none PPO

Verma et al. (2020) misc. 3D DNN + PH
height map
+ border encoding
+ placement vector

stepwise bin quantity none DQN

Cai et al. (2019) offline 1D simulated annealing item assignment stepwise bin quantity none PPO
Laterre et al. (2019) offline 2D + 3D DNN + MCTS item information terminal surface area center support self-play
Goyal & Deng (2020) offline 3D CNN + PH voxel representation stepwise space utilization none PPO

Jiang et al. (2021a) offline 3D CNN + attention +
CP

item information
+ height map stepwise space utilization none A2C + GAE

Zhao & Xu (2022) online 3D pointer mechanism +
GATs + PH

item information
+ placement vector stepwise space utilization convex hull +

force analysis ACKTR

Puche & Lee (2022) online 3D CNN + MCTS height map + item size stepwise space utilization supporting area
+ corner support PER

Yang et al. (2023) online 3D CNN item size
+ voxel grid stepwise space utilization supporting area +

NN prediction PPO

candidate as a tree node (shown in Figure 1). Hence, relative position relations are embedded in edges.
They further encode the tree with graph attention networks (GATs) (Veličković et al., 2017) and select a
heuristic placing candidate in continuous solution space with the pointer mechanism. Results show that this
method achieves state-of-the-art performance in online 3D BPP. Yang et al. (2023) represent the current
layout as the 3D voxel grid to capture the wasted space. A neural network trained with recorded data is
used to predict the stability of layouts. Besides, they propose an unpacking heuristic to unpack placed items
to further improve space utilization.

Instead of the pointer mechanism, Goyal & Deng (2020) exploit a CNN and its Softmax operator to select
items, followed by the BLBF heuristic to determine orientation and position as aforementioned. Another
way is to propose placements with a packing heuristic and choose the best from them with respect to each
placement’s value estimated by RL (Verma et al., 2020). The advantage of combining RL with the packing
heuristic is reducing the search space of RL because RL is only responsible for partial tasks in BPP.

Combining RL with the Heuristic Search. Heuristic search can provide the RL agent with additional
reward signals, thus speeding up the training process. The exploration nature of heuristic search also helps
to improve performance. Cai et al. (2019) initialize a complete assignment randomly. Then the RL agent
swaps items to generate an initial solution, followed by further optimization steps conducted by simulated
annealing. MCTS is used to execute expansion and simulation on a selected initial packing configuration
(Laterre et al., 2019). The state transitions are stored along with a ranked reward computed by comparing
current and recent performance. Subsequently, the network is updated with these records. Such a self-play
manner can encourage the agent to keep surpassing itself. Puche & Lee (2022) harness MCTS with rollouts
to form a model-based method. They augment the data with rotation and flip transformations, and train
the agent with prioritized experience replay (Schaul et al., 2015). Jiang et al. (2021a) integrate RL with
a constraint programming (CP) solver for better solutions. They set orientation and position as decision
variables and apply a branch-and-bound algorithm to them, during which the RL agent will decide on their
values at each step in CP.

Combining SL with the Heuristic. Besides RL, Supervised Learning (SL) can also be fused with BPP.
Mao et al. (2017) extract features of items and bins manually. According to these features, the most suitable
heuristic to pack items is selected by a neural network, which is trained with real-world logistics orders. Chu
& Lin (2019) pretrain a CNN with labeled data generated by heuristic methods and fine-tune it through
RL. Duan et al. (2018) treat the current best solution as ground truth to train the orientation selection
module with the help of a hill-climbing algorithm. To reduce the action space, Jiang et al. (2021a) infer
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Table 3: The bin size and ranges of item sizes in (Martello et al., 2000).

Class Bin size (L, W, H) Item Length Item Width Item Height
1 (100,100,100) [1, L/2] [2W/3, W ] [2H/3, H]
2 (100,100,100) [2L/3, L] [2W/3, W ] [1, H/2]
3 (100,100,100) [2L/3, L] [1, W/2] [2H/3, H]
4 (100,100,100) [L/2, L] [W/2, W ] [H/2, H]
5 (100,100,100) [1, L/2] [1, W/2] [1, H/2]
6 (10,10,10) [1, 10] [1, 10] [1, 10]
7 (40,40,40) [1, 35] [1, 35] [1, 35]
8 (100,100,100) [1, 100] [1, 100] [1, 100]

an action embedding instead. Then, an approximate function trained via SL will map the embedding to a
position. Zhu et al. (2021) train a pruning network with historical branching choices to guide the tree search
for potentially valuable states. Although SL accelerates the training, the accessibility or quality of training
data usually remains a problem, hindering its applicability.

4 Benchmarks

When talking about benchmarks in BPP, one may refer to the BPP library BPPLIB (Delorme et al.,
2018). However, it only contains 1D BPP instances, which are inconsistent with the realistic scenes. Public
benchmarks in 3D BPP are relatively scarce and short of cognition. Since researchers are inclined to test their
algorithms on their self-made datasets, it is difficult for us to compare different algorithms’ performance. To
facilitate future research, we introduce three comparatively well-developed benchmark datasets and a virtual
environment below.

Random Dataset (RD). An early dataset can be traced back to (Martello et al., 2000), which contains
altogether 9 classes of random instances. The first 8 classes uniformly sample instances from corresponding
size ranges respectively while instances in the last class are generated by cutting three bins into small parts
recursively. The distribution of RD1 is completely set by simple rules, so it may not reflect the real-world
situation. The information of the first 8 classes is listed in Table 3.

Synthetic Industrial Dataset (SID). Elhedhli et al. (2019) realize the aforementioned distribution issue,
so they analyze some statistics, i.e. item volumes, item repetitions, height-width ratio, and depth-width
ratio, of industrial data. Then, they utilize the closest pre-defined distribution to approximate the true one.
It is proved that SID2 is not significantly different from the real-life dataset. Hence, models trained on this
artificial dataset may generalize well to realistic scenes.

Cutting Stock Dataset (CSD). Akin to the ninth class in RD, CSD3 is generated by cutting the bin
into items of pre-defined 64 types (Zhao et al., 2021). Then, these items are reordered either by their Z
coordinates or stacking dependency: before an item’s enqueueing, all of its supporting items should be added
to the sequence. Hence, CSD has a remarkable advantage over RD and SID: the achievable upper bound
of occupancy rate (i.e. ratio of placed items’ total volume to bin volume) is 100%. Such property gives
researchers an intuitive view of how well their algorithms perform.

PackIt. PackIt4 (Goyal & Deng, 2020) is a benchmark and virtual environment for geometric plan-
ning. This task can be regarded as a special 3D offline BPP, where items have irregular shapes, collected
from ShapeNet (Chang et al., 2015), other than cuboids. Besides, an interactive environment based on
Unity (Goldstone, 2009) is built for training the RL agent and physical simulation. For convenience, PackIt

1http://hjemmesider.diku.dk/~pisinger/codes.html
2https://github.com/Wadaboa/3d-bpp
3https://github.com/alexfrom0815/Online-3D-BPP-DRL
4https://github.com/princeton-vl/PackIt
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also provides a heuristic-based and a hybrid model, mentioned in Section 3.2, as baselines for researchers to
compare their algorithms with. Some details of the environment are listed as follows:

Tasks: i) Selecting an item to pack; ii) Selecting its rotation; iii) Selecting packing position for the rotated
item;

Reward: The ratio of the current placed item’s volume to the total volume of all items in a sample.

Metrics: i) Average cumulative reward across all samples in the dataset; ii) Percentage of samples in the
dataset achieving a cumulative reward not less than a given threshold.

5 Experiments

Since most methods tune their methods on different datasets, we only test four online methods on the
Cutting Stock Dataset described in Section 4. PCT (Zhao & Xu, 2022) and BPPDRL (Zhao et al., 2021)
are ML-related methods, while OnlineBPH (Ha et al., 2017) and 3DBP5 are heuristic methods with superior
performance.

As shown in Table 4, PCT outperforms OnlineBPH and 3DBP in space utilization by a large margin, whether
stability is guaranteed or not. Also, the time cost of PCT is close to heuristic methods. Hence, ML-related
methods have the potential to be applied in reality. We do not compare ML-related methods with commercial
solvers, because the item information is given in sequence and instant decisions should be made in 3D online
BPP. Therefore, it cannot be solved by MIP.

Table 4: Performance of different methods. The space utilization rate (Util.) and time cost per item are
listed for comparison.

Method With stability Without stability
Util. Time (s) Util. Time (s)

PCT 0.753 2.32 × 10−2 0.828 6.65 × 10−3

BPPDRL 0.660 1.34 × 10−2 / /
OnlineBPH 0.627 1.85 × 10−2 0.672 1.12 × 10−2

3DBP / / 0.689 1.54 × 10−3

6 Challenges and Future Directions

Existing research on ML for BPP has manifested its potential. A large part of it achieves competitive or even
better performance than traditional methods in a shorter running time. Also, the data-driven characteristic
and less reliance on domain knowledge of ML are appealing. Unfortunately, there are still challenges before
applying these ML-related methods to practice. In this section, we will discuss underlying challenges and
future directions in this promising field.

Practical Feasibility. As shown in Table 1 and 2, more than half of the ML-related methods neglect the
physical stability problem, which is probably the most significant factor weakening their practical feasibil-
ity. In real-life scenes like logistics, 3D BPP should be treated as a Constrained Markov Decision Process
(CMDP) (Altman, 1999) rather than MDP. This will bring some trouble because standard ML cannot guar-
antee to engender a solution satisfying such hard constraints. Zhao et al. (2021) and Yang et al. (2023)
leverage a neural network to predict actions leading to stable layouts. Hu et al. (2020) integrate stability
into the reward function. These two methods reduce the probability of instability, but they still cannot
eliminate it. Some works (Zhao et al., 2022; Zhao & Xu, 2022; Tanaka et al., 2020; Laterre et al., 2019)
model the stability constraint and directly mask out actions leading to unstable layouts before sampling.
Other constraints can also be satisfied through such a method if modeled accurately, but it may lead to
instability in training. Another concern is the reachability of the robotic arm. Due to the degree of freedom

5https://github.com/jerry800416/3D-bin-packing
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and arm length, some placements cannot be realized. Worse still, to avoid collisions, industries prefer to
place items from a tilted angle rather than in a top-down direction, which means middle positions lower than
surroundings are harder to reach. Sometimes, modeling such hard constraints is non-trivial. A potential so-
lution is to train the RL agent with a physics engine, e.g. Bullet or MuJoCo, so the agent will automatically
know whether it violates constraints and does backpropagation on this signal. More insights on handling
CMDP problems can be found in (Liu et al., 2021). In reality, the offline algorithm should be able to replan
in case items come in a sequence different from the schedule due to random errors in the assembly line. A
simple solution is to combine offline algorithms with online ones so that an instant decision will be made by
online algorithms when errors occur.

Demand for Datasets. Despite the existence of a few public datasets mentioned in Section 4, they lack
enough popularity owing to loss of integrity or authenticity. Consequently, an authoritative 3D BPP dataset
is in need for further research. (See the significance of ImageNet to the object recognition field.) On the
other hand, information about the item size alone is insufficient for practical use. In the logistics industry,
extra prior knowledge, e.g. item weight, weight distribution and fragility, can be as vital as size. Motivated
by this, we believe collecting an elaborate industrial dataset will pave the way for practical applications of
ML-related methods. In addition, we can augment the dataset with a virtual environment or theoretical
criteria, e.g. inverse kinematics and force analysis, to inform us whether a certain placement is viable.

Selection of Learning Architectures. In recent years, GNN has been applied in several CO fields, e.g.
TSP and minimum spanning trees (MST), due to their inherent graph structure. Likewise, we can represent
the topological structure of placed items in the bin as a directed graph. Various types of GNN (Wu et al.,
2020) can then be used to extract features from the graph. Among methods mentioned in Section 3, only
Zhao & Xu (2022) leverage the graph structure in BPP. Therefore, there is still much space to explore.

Imitation learning may be another wise choice when we have access to packing data from experienced workers
in the industry. With expert demonstrations, we can approximate the expert’s reward function and train
our agent through methods like inverse reinforcement learning (Abbeel & Ng, 2004).

7 Conclusion

This article first gives a brief overview of BPP and traditional solvers. Then a systematic review of ML-
related methods for multi-dimensional BPP is provided, especially on 3D BPP which is an emerging topic
in ML research with vital practical importance. The advantages of ML-related methods include efficiency,
data-driven characteristic, and less reliance on domain knowledge. Also, public benchmarks in 3D BPP are
summarized, and empirical evaluation on 3D online BPP is conducted. Finally, we discuss challenges and
future directions in this field to stimulate future study and industrial applications.
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