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Abstract

Thinking LLMs solve complex tasks at the expense of increased compute and
overthinking on simpler problems, while non-thinking LLMs are faster and
cheaper but underthink on harder reasoning problems. This has led to the de-
velopment of separate thinking and non-thinking LLM variants, leaving the onus
of selecting the optimal model for each query on the end user. We intro-
duce OptimalThinkingBench, a unified benchmark that jointly evaluates over-
thinking and underthinking in LLMs and also encourages the development of
optimally-thinking models that balance performance and efficiency. Our bench-
mark comprises two sub-benchmarks: OverthinkingBench, featuring simple
math and general queries in 72 domains, and UnderthinkingBench, contain-
ing 11 challenging reasoning tasks along with harder math problems. Using novel
thinking-adjusted accuracy metrics, we extensively evaluate 33 different think-
ing and non-thinking models and show that no model is able to optimally think
on our benchmark. Thinking models often overthink for hundreds of tokens on
the simplest user queries without improving performance. In contrast, large non-
thinking models underthink, often falling short of much smaller thinking models.
We further explore several methods to encourage optimal thinking, but find that
these approaches often improve on one sub-benchmark at the expense of the other,
highlighting the need for better unified and optimal models in the future. 1

1 Introduction

Users query LLMs across a spectrum of tasks from factual queries to code and math proofs, so a
useful LLM should answer easy questions quickly while spending more time on harder ones for
better accuracy. In the past, LLMs have performed well on easy problems but have underthought
on complex reasoning problems that required step-by-step thinking (Wei et al., 2022). In contrast,
recent “thinking” LLMs (DeepSeek-AI et al., 2025; OpenAI et al., 2024) markedly improved the
latter (Muennighoff et al., 2025; Aggarwal and Welleck, 2025) but at the cost of overthinking on
simple tasks, harming latency, cost, and in some cases even performance (Cuadron et al., 2025;
Chen et al., 2025a; Gema et al., 2025; Liu et al., 2025). Consequently, many state-of-the-art LLMs
have separate thinking and non-thinking variants, forcing end-users to manually decide which
model is best – an unrealistic requirement for optimal accuracy-efficiency trade-off at scale. To
encourage the development of such optimally-thinking models that balance cost and performance,
we introduce a new benchmark called OptimalThinkingBench. It is a combination of two new
sub-benchmarks: OverthinkingBench and UnderthinkingBench that allows us to evaluate and
develop methods for optimal reasoning across a wide variety of domains.

1Code and data is available at https://github.com/facebookresearch/RAM/tree/main/projects/
otb.
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Figure 1: OptimalThinkingBench: A unified benchmark to evaluate overthinking and underthink-
ing in LLMs. OverthinkingBench consists of simpler queries where excessive thinking either
does not improve or occasionally degrades performance. UnderthinkingBench consists of rea-
soning problems where lack of thinking hurts performance.

To first address the challenge of overthinking by thinking models, we introduce
OverthinkingBench, a benchmark containing simple queries where non-thinking models
achieve high accuracy but thinking models yield similar or even lower scores despite generating
hundreds of thinking tokens. We synthetically construct OverthinkingBench with automated
filtering that ensures difficulty control, disambiguation, and answer correctness. It consists of both
general and mathematical questions across more than 72 domains with four distinct answer types.
We then introduce UnderthinkingBench, consisting of 11 challenging reasoning tasks from 6
different domains (games, algorithms, graphs, arithmetic, geometry, and logic) (Stojanovski et al.,
2025), along with 2 competition math benchmarks. It is constructed based on the principle that
for certain questions, no matter how large a non-thinking model is, its performance on complex
reasoning tasks will be lower than that of a much smaller yet thinking model. Taken together, the
synthetic components of both sub-benchmarks allow each to remain dynamic, ensuring that the
data generation recipe can be used to prevent benchmark contamination and evolve with increasing
model competence. See Figure 1 for two example queries from our benchmark.

To track progress on OverthinkingBench, we first propose Overthinking-Adjusted Accuracy
(OAA), a metric that computes sample correctness below a certain thinking budget. We use this
metric to calculate AUCOAA, an overthinking measure computing the area under the OAA curve to
account for a range of such thinking budgets. Our final metric for OptimalThinkingBench is the
F1 score between the overthinking AUCOAA and the underthinking accuracy.

We perform comprehensive evaluations with 33 different models to show that current thinking
models overthink even on simple queries without improving performance, leading to a substantial
drop in user experience and increasing cost. Non-thinking models, on the other hand, underthink
on difficult reasoning problems. Notably, no single model can optimally balance accuracy and
efficiency on our benchmark, highlighting the importance of our benchmark. Finally, we explore
various training-time as well as test-time approaches to optimal thinking that rely on reward
shaping, routers, or deliberate prompting. We also analyze both qualitatively and quantitatively how
models overthink and underthink across different domains and answer types. Our results indicate
that while some of these methods prove to be more effective than others, a significant gap persists,
which motivates the need for better optimally-thinking LLMs in the future.

In summary, our contributions are three-fold: First, we develop OptimalThinkingBench, a single
unified benchmark to simultaneously track the progress of optimally-thinking LLMs for both per-
formance and efficiency. Second, through comprehensive evaluations of 33 different thinking and
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non-thinking LLMs, we show that state-of-the-art models struggle to optimally balance accuracy
and efficiency, leaving a large gap for improvement in future work. Third, we explore and compare
several methods to encourage optimal thinking. Our results show that, while some approaches are
promising, there still exists a significant trade-off between efficient and performant LLMs.

2 Optimal Thinking Benchmark

OptimalThinkingBench consists of two complementary benchmarks designed to evaluate the full
spectrum of LLMs’ thinking behavior. While OverthinkingBench measures excessive computa-
tion on simple queries, UnderthinkingBench quantifies insufficient reasoning on complex tasks.
Together, they provide a unified framework for assessing whether models can adaptively balance
computational cost with task complexity while maintaining accuracy.

2.1 OverthinkingBench

OverthinkingBench consists of two subsets: OvT-Math, focusing on simple math problems and
OvT-General, consisting of general queries across diverse domains and answer types. In particular,
for OvT-Math, we use Level 1 and 2 problems from the MATH dataset (Hendrycks et al., 2021).
For OvT-General, we employ a two-stage pipeline consisting of Constrained Dataset Generation
followed by Dataset Filtering, as illustrated in Figure 5. We follow a fully synthetic dataset creation
recipe to ensure that OverthinkingBench can also be easily extended and/or difficulty adjusted
without human intervention, keeping pace with the rapid progress of LLMs.

Constrained Dataset Generation. Creating a benchmark that covers a wide set of queries, in line
with real-world query distributions, requires diversity. Naively prompting an LLM would primarily
produce degenerate questions that may fail to capture the breadth of user queries (Shypula et al.,
2025). To address this, we use a constrained question generation setup: given a pair of constraints
C = {D,T} where D represents a specific domain and T an answer type, we prompt an LLM L to
generate n question-answer pairs: L(C) → {(qi, ai)}ni=1 where each pair (qi, ai) satisfies the spec-
ified constraints. We source 72 domains, D, that span science (e.g., Mechanics, Quantum Physics),
general knowledge (e.g., Global Facts) from SuperGPQA (Du et al., 2025). Our answer types, T , in-
clude four categories that ensure diverse response formats: (a) numeric answers, (b) multiple-choice
questions (MCQ), (c) one-word or short phrase responses, and (d) open-ended answers.

This approach offers several advantages. First, it ensures coverage across domains and answer types.
Second, the modular constraints enable systematic ablation studies to understand how overthinking
varies with specific domains or answer formats. Third, the generation recipe provides defense
against benchmark contamination, since new questions can be generated while maintaining the same
properties. In our analysis, we also vary the number of options in MCQs from 4 to 12, allowing us
to investigate how distractors affect thinking behavior. The prompt templates are in Appendix C.

Dataset Filtering. Synthetically generated benchmarks require validating answer correctness and
ensuring both question clarity and appropriate difficulty. Since an LLM generates both questions
and answers, filtering becomes essential. Our filtering method takes advantage of the principle that
simple questions should elicit consistently correct responses. Thus, for each generated question qi,
we sample k = 8 responses from a separate LLM L′: L′(qi) → {y1, y2, . . . , yk}.

We retain a question-answer pair (qi, ai) if and only if all the sampled answers from the LLM L′

match the answer ai generated by the LLM L. For answer matching, we use an LLM-as-a-Judge
Ljudge that outputs true only if the two answers agree i.e., a data point is accepted if ∀j ∈ {1, . . . , k} :
Ljudge(qi, ai, yj) = True. The exact prompt for Ljudge is presented in Figure 8.

This recipe ensures three properties: (1) Answer Correctness: The agreement among samples val-
idates the reference answer with a high likelihood. (2) Question Clarity: Consistent responses in-
dicate unambiguous phrasing, since ambiguous questions would lead to divergent interpretations
and answers. (3) Appropriate Difficulty: The requirement for 100% agreement ensures questions
are simple enough that they don’t require extensive reasoning. Questions that pass this filtering
constitute the final OverthinkingBench dataset.
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Final Statistics. For OvT-General, after filtering, we obtain n =1327 high-quality questions,
with approximately 330 questions per answer type and about 18 questions per domain. OvT-Math
consists of 133 questions from Levels 1 and 2 of the MATH dataset.

Evaluation Metric. To evaluate models on OverthinkingBench, we track both accuracy and the
number of thinking tokens generated2, ensuring that models produce correct answers without exces-
sive computation. First, for accuracy in OvT-General, we employ the same LLM-as-a-Judge Ljudge
used for dataset filtering to determine the correctness of a model answer yi, for a given question qi
and reference answer ai:

Correctnessi : Ljudge(qi, ai, yi) → {0, 1}
We rely on an LLM for correctness judgment because model responses on OverthinkingBench
have diverse answer formats that preclude exact matching. For OvT-Math, we use mathematical
answer matching using the math-verify tool (Kydlı́ček). Next, using this correctness criterion, we
propose Overthinking-Adjusted Accuracy (OAAt), a unified metric to track a model’s accuracy
when using fewer than t thinking tokens:

OAAt =
1

n

n∑
i=1

(Correctnessi · I(ThinkTokensi < t))
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Figure 2: Visualization of AUCOAA metric show-
ing Overthinking-Adjusted Accuracy (OAAt) versus
thinking token threshold t. We illustrate with three
model types: a Non-thinking model (red) achieves
constant 70% accuracy from t=0; an Overthinking
model (orange) overthinks even on simple problems,
decreasing AUCOAA; and an Optimal Thinking model
(blue) thinks fast on simple problems while spending
more compute on harder problems, achieving better
AUCOAA. Shaded areas represent AUCOAA values. The
ranking: AUCoptimal

OAA > AUCnon-think
OAA > AUCoverthink

OAA .

However, selecting the threshold t
presents a challenge, as a small threshold
would cause most thinking models to
score 0, while a large threshold would not
penalize overthinking. Thus, as an aggre-
gated metric, we report the area under the
OAAt curve, where the x-axis represents
the threshold of thinking tokens t and the
y-axis represents the corresponding OAAt

score. The metric is calculated as:

AUCOAA =

∫ tmax

0

OAAt

tmax
dt ≈

tmax∑
t=0

OAAt

tmax

(1)

where tmax denotes a pre-defined maxi-
mum number of thinking tokens. Our pro-
posed metric has several key properties
and advantages: (1) Maximum and min-
imum values are comparable to accuracy,
making it interpretable and easy to mea-
sure progress with. (2) Models achieve
high scores by simultaneously using mini-
mal tokens (ideally 0) and answering cor-
rectly. (3) Both failure cases, where mod-
els either do not think but generate incorrect answers or generate correct answers but think a lot, will
obtain low scores. (4) Despite the integral form, the metric is easily computable since token counts
are fixed for each response, reducing the equation to a single term rather than integration. Figure 2
provides a visual illustration of AUCOAA.

2.2 UnderthinkingBench

UnderthinkingBench is constructed based on a core principle that no matter how large a non-
thinking model is, its performance on complex reasoning tasks will be lower than that of a much
smaller thinking model. In other words, it evaluates how necessary “thinking” (via chain-of-thought
token generation) is to solve a problem.

Dataset Generation. To operationalize this principle, similar to OverthinkingBench, we again
consider different domains of reasoning problems, moving beyond just math. In particular, we start

2We count tokens explicitly marked for thinking for each model (e.g., tokens between < think > tags).
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with 100 different reasoning tasks from Reasoning Gym (Stojanovski et al., 2025) and 4 standard
math benchmarks. We evaluate the performance of a small thinking model P think

small and a large non-
thinking model Pnon−think

large for each task. We retain only tasks where P think
small − Pnon−think

large > λ,
with threshold λ = 0.1. This selection criterion yields: (1) UT-Reasoning – a collection of 11
reasoning task types across 6 categories: games, algorithms, graphs, arithmetic, geometry, and logic
and (2) UT-Math, consisting of competition-level math benchmarks AIME’25 (Art of Problem Solv-
ing, 2025) and HMMT’25 (Balunović et al., 2025). Table 5 in the Appendix presents the complete
list of tasks from UT-Reasoning. For each of these tasks, we procedurally generate questions,
allowing us to track progress of underthinking in two model types: (1) Non-thinking models may
achieve low accuracy because they cannot generate sufficiently long and correct CoTs. (2) Think-
ing models may rely on heuristics and underthink on the problems, leading to incorrect answers.
The procedural generation enables creation of new questions with increasing complexity to prevent
benchmark contamination and to keep up with improving model capabilities.

Final Statistics. We generate 550 questions for UT-Reasoning, with 50 questions for each of the
11 types of reasoning tasks. UT-Math consists 60 questions from AIME’25 and HMMT’25 exams.

Evaluation Metric. UnderthinkingBench tests the model’s ability to generate correct answers to
complex reasoning tasks without constraining thinking tokens. We use the task-specific program-
matic verifiers provided by Reasoning Gym. In particular, for each sample, we extract the model’s
final answer from the last \\boxed{} in its output and pass it to the task’s verifier, which checks
correctness against the problem instance via code execution. For example, in the maze shortest-path
task, the verifier simulates the proposed path to check for its validity and compares its length to an
algorithmically computed optimal solution. For UT-Math we use answer match based on the math-
verify tool (Kydlı́ček). Our final score is the macro average across the reasoning and math subsets.

2.3 Evaluation Metric of OptimalThikingBench

The goal of OptimalThinkingBench is to track progress through a single unified metric, since
overthinking and underthinking are two sides of the same problem. To standardize evaluation across
both benchmarks, we combine AUCOAA from OverthinkingBench and accuracy Accut from
UnderthinkingBench into a single F1 score: F otb

1 = 2 · AUCOAA·Accut
AUCOAA+Accut

Overall, a model scoring
high on OptimalThinkingBench must avoid overthinking on simple problems and underthinking
on complex ones. This metric ensures that models must perform well on both benchmarks simulta-
neously to achieve high scores, as F1 tends to be closer to the lower of the two component metrics.

3 Experiments

3.1 Experimental Setup

For generating questions (L), filtering (L′), and evaluation (Ljudge), we use the same LLM: Llama-4-
Maverick with different prompts listed in Appendix C. For evaluation, we set the maximum number
of thinking tokens tmax = 1000 in Equation 1. We create UnderthinkingBench using Qwen3-
1.7B as the thinking model and Qwen3-235B-A22B as the non-thinking model. We evaluate 33
different open-source and proprietary models with varying model sizes, and different families. For
hybrid models, we evaluate them in both thinking and non-thinking modes. We compare models on
the complete OptimalThinkingBench using F otb

1 metric. Full details are in Appendix B.

3.2 Main Results with Thinking and Non-Thinking Models

In Table 1, we show the performance of 20 representative models on OptimalThinkingBench with
full results for all 33 models in Table 6 (Appendix D). Our evaluation reveals the following key
findings on the state of current thinking and non-thinking LLMs.

Models fail to achieve optimal balance between accuracy and efficiency. Comparing our pri-
mary F otb

1 metric, we observe that o3 achieves the best performance on OptimalThinkingBench
at 71.1%. Among the open-weight models, the best results are obtained by the GPT-OSS-120B
model at 68.3%, representing a 3-point gap compared to the best closed-weight model. Apart
from GPT-OSS, all other open-weight models score below 50% on our benchmark. Overall, no
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Table 1: Main results on OptimalThinkingBench comparing open/closed thinking/non-thinking
models based on accuracy, thinking tokens, and our proposed metrics. The main metrics for over,
under, and optimal-thinking are AUCOAA, accuracy, and F otb

1 respectively. These metrics are bolded
for the best performing model in each of the four categories. † = Hybrid models evaluated in either
thinking or non-thinking mode. *Only thinking tokens are counted.

Model OptimalThinkingBench
OverthinkingBench UnderthinkingBench

F otb
1 ↑ Accuracy (%) ↑ Tokens* ↓ AUCOAA ↑ Accuracy (%) ↑ Tokens ↓

Open Non-Thinking Models

Llama-4-Scout 19.1 95.0 0 95.0 10.6 904
Llama-4-Maverick 27.9 95.7 0 95.7 16.3 993
Qwen2.5-7B 9.6 93.6 0 93.6 5.1 1370
Qwen2.5-72B 19.0 96.3 0 96.3 10.5 1174
Qwen3-1.7B† 12.9 89.0 0 88.8 6.9 1943
Qwen3-8B† 24.5 95.9 0 95.8 14.0 2223
Qwen3-235B-A22B† 31.7 96.9 0 96.7 18.9 1501

Closed Non-Thinking Models

Sonnet-4† 48.3 97.4 0 97.4 32.1 2229
GPT-4o 17.8 95.3 0 95.3 9.8 694
GPT-4.1 35.4 97.1 0 97.1 21.7 1846

Open Thinking Models

Magistral-Small-2506 11.2 95.7 3303 6.4 42.9 16788
R1-Distill-Llama-8B 20.7 93.2 1307 21.7 19.8 11113
Qwen3-1.7B† 24.2 93.8 1519 20.6 29.2 13072
Qwen3-8B† 24.3 98.1 1588 16.3 47.7 13858
R1-0528-Qwen3-8B 28.8 96.6 1926 24.2 35.7 15610
Qwen3-235B-A22B† 23.2 98.3 1632 14.6 55.5 12057
GPT-OSS-20B 57.3 97.1 467 72.7 47.3 8937
GPT-OSS-120B 68.3 97.1 154 83.3 57.9 4968

Closed Thinking Models

Sonnet-4† 64.2 99.3 706 71.3 58.3 14035
o3 71.1 97.5 235 78.6 65.0 6273

current model effectively balances efficiency and reasoning capability because they either do well
on OverthinkingBench or UnderthinkingBench but not on both at the same time. This gap
demonstrates substantial room for improvement in developing unified models (particularly with open
recipes and weights) that can adaptively adjust their computational effort based on task complexity.

Most thinking models exhibit severe overthinking on simple queries. On OverthinkingBench,
all thinking models generate at least 100 thinking tokens for simple queries, with most models
generating more than 1300 tokens. This is reflected in the AUCOAA scores that are much lower than
the corresponding raw accuracy numbers. The best-performing open and closed thinking models
are GPT-OSS-120B and o3, generating 154 and 235 tokens respectively. However, other models
such as Qwen3 utilize between 1373-1632 tokens, while Magistral utilizes over 3300 tokens. Since
most queries in this benchmark are simple questions such as “If a steel rod is 1 meter long, what is
its length in centimeters?”, the unnecessary computation severely penalizes their AUCOAA scores,
highlighting increased cost and reduced utility for users. In contrast, non-thinking models achieve
much higher AUCOAA scores, matching their raw accuracies.

Thinking models, however, show substantial gains on complex reasoning. Despite over-
thinking on simple queries, thinking models are much better than non-thinking models on
UnderthinkingBench. o3 obtains the highest accuracy on UnderthinkingBench at 65.0%, fol-
lowed by GPT-OSS-120B at 57.9%. Analyzing models that operate in hybrid mode, all Qwen3
models score at or below 20% accuracy in non-thinking mode, with Qwen3-32B achieving only
14.9%. However, when these same models operate in thinking mode, their performance increases
significantly. For example, Qwen3-14B’s accuracy in thinking mode increases from 14% to 52.4%,
representing a 38.4% improvement. This pattern also holds for other hybrid models.

3.3 Methods for Improving Optimal Thinking

Given that all models exhibit a trade-off between performance and efficiency, we now explore dif-
ferent approaches to encourage optimal thinking in models. These include: (1) methods for efficient
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Table 2: Results comparing different methods for improving optimal thinking on our benchmark.
We evaluate on both OverthinkingBench and UnderthinkingBench to understand how methods
developed to reduce overthinking impact underthinking.

Method OptimalThinkingBench
OverthinkingBench UnderthinkingBench

F otb
1 ↑ Accuracy (%) ↑ Tokens ↓ AUCOAA ↑ Accuracy (%) ↑ Tokens ↓

R1-Distill-Qwen-7B 24.5 91.5 1172 25.4 23.6 11763
+ VeriThinker (Chen et al., 2025b) 27.4 (+2.9) 91.9 (+0.4) 689 (-41%) 46.2 (+20.8) 19.4 (-4.2) 5954 (-49%)

+ SB-DS 24.3 (-0.2) 82.2 (-9.3) 110 (-91%) 73.9 (+48.5) 14.5 (-9.1) 3155 (-73%)

+ L1 (Aggarwal and Welleck, 2025) 20.8 (-3.7) 91.1 (-0.4) 1037 (-12%) 19.9 (-5.5) 21.8 (-1.8) 2853 (-76%)

+ AdaptThink (Zhang et al., 2025a) 38.3 (+13.8) 90.8 (-0.7) 211 (-82%) 77.2 (+51.8) 25.4 (+1.8) 10224 (-13%)

Qwen3-8B 24.3 98.1 1588 16.3 47.7 13858
+ Model Merging (Wu et al., 2025) 38.2 (+13.9) 97.6 (-0.5) 1024 (-36%) 32.4 (+16.1) 46.5 (-1.2) 11738 (-15%)

+ L1 (Aggarwal and Welleck, 2025) 28.5 (+4.2) 97.5 (-0.6) 867 (-45%) 24.2 (+7.9) 34.6 (-13.1) 4867 (-65%)

Table 3: Comparison of a state-of-the-art router (that routes between non-thinking and thinking
modes based on question difficulty) with an oracle router on Qwen3 to encourage optimal thinking.

Method OptimalThinkingBench
OverthinkingBench UnderthinkingBench

F otb
1 ↑ Accuracy (%) ↑ Tokens ↓ AUCOAA ↑ Accuracy (%) ↑ Tokens ↓

Qwen3 (Avg) 24.3 97.0 1544 17.1 45.9 24074
Qwen3-NonThink (Avg) 23.7 94.5 0 94.5 13.7 3545
w/ Trained Router 46.9 (+20.4%) 95.9 876 55.2 41.7 22238
w/ Oracle Router 61.2 94.5 0 94.5 45.9 24074

reasoning that mitigate overthinking, (2) routing between thinking and non-thinking modes based
on the question difficulty, and (3) explicitly prompting models to not overthink or underthink.

Efficient reasoning methods reduce overthinking but also affect performance. Our first ap-
proach toward improving optimal thinking is to mitigate overthinking in thinking models using
recently proposed methods for efficient reasoning. We test five such methods implemented with
two kinds of thinking models, as shown in Table 2.3 They are based on the following concepts 1.
Length-based Reward Shaping: L1 and AdaptThink (Aggarwal and Welleck, 2025; Zhang et al.,
2025a) primarily modify the reward function during RL training to include an additional length term
along with original correctness reward. 2. Model Merging: This method (Wu et al., 2025) merges
weights of two different models with different output length distributions, to enable short CoT on
simple and long CoT on complex questions. 3. Auxiliary Task Training: VeriThinker (Chen et al.,
2025b) shows that training for verification task leads to more efficient reasoning.

Generally, these methods reduce token usage in the range of 12% to 91% on OverthinkingBench.
However, on UnderthinkingBench, there is a clear decrease in accuracy (of up to 13%) in 5
out of these 6 model-method combinations compared to their base versions,. This results in 2
out of these 6 configurations underperforming on the overall F otb

1 score, indicating that efficiency
gains come at the cost of reasoning capability. The only exception is AdaptThink that improves
on UnderthinkingBench and significantly reduces thinking tokens on OverthinkingBench, al-
though at the expense of a small drop in accuracy (0.7%). For example, R1-Distill-Qwen-7B
achieves 24.5 F otb

1 score, but with L1, this drops to 20.8% despite some token reduction (from
1172 to 1037 tokens on OverthinkingBench).

Recall that OptimalThinkingBench contains non-math subsets of data and interestingly, we find
that even when there are efficiency gains from these methods, they are often less pronounced for
non-math tasks (e.g., 37% instead of 82% with AdaptThink), highlighting that training for efficient
math reasoning may not always generalize to other domains (Table 7 and Appendix D).

Question-difficulty based routing helps optimality but still has a large gap to the oracle router.
Our next approach is to leverage a router model that uses non-thinking mode for simple questions
and thinking mode for complex questions. We evaluate an open-source router (Tran et al., 2025)
on Qwen3 models (that support hybrid modes), comparing against both the best individual mode
performance and an oracle router that always selects the optimal mode. This trained router is a
publicly available state-of-the-art model that is prompted to classify queries as simple or complex,
using which we route to non-thinking or thinking mode, respectively. We also evaluate against an
oracle router that chooses the non-thinking mode for OverthinkingBench and the thinking mode

3We directly evaluate these models from HuggingFace, without retraining them.
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Table 4: Results comparing different prompt variations to encourage optimal thinking.

Method OptimalThinkingBench
OverthinkingBench UnderthinkingBench

F otb
1 ↑ Accuracy (%) ↑ Tokens ↓ AUCOAA ↑ Accuracy (%) ↑ Tokens ↓

Standard 26.3 96.7 1493 19.4 43.1 13207
Step-by-Step 18.3 (-8.0) 96.4 (-0.3) 1638 (+10%) 12.0 (-7.4) 43.2 (+0.1) 13580 (+3%)

Don’t Overthink 34.0 (+7.7) 96.7 (+0.0) 1147 (-23%) 29.5 (+10.1) 42.0 (-1.1) 12424 (-6%)
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Figure 3: Comparison of overthinking metrics on OvT-Math and OvT-General. Math questions
invoke greater overthinking than general-domain ones.

for UnderthinkingBench. Table 3 shows the results aggregated across different Qwen3 models
(full results in Appendix D). While the model-based router improves upon the best individual mode
by 20.4%, it still falls significantly short of the result obtained by an oracle router, with gap ranging
around 15%. These results suggest that while routing techniques may provide benefits in specific
scenarios, developing effective routers for general unified reasoning remains an open challenge.

Explicitly Prompting Models. Next, we explore whether models can be explicitly prompted to
think optimally. In particular, we use the following prompt suffixes: 1.) Don’t Overthink: We ex-
plicitly prompt models to not overthink. 2.) Let’s think step-by-step: This is a standard prompt suf-
fix, often used in real-world queries to encourage models to think step-by-step (Kojima et al., 2022).
Table 4 shows the results of different prompt variations on OverthinkingBench macro-averaged
across Qwen3 models (with full results in Table 9). First, encouragingly on OverthinkingBench,
we find that prompting models to not overthink leads to a consistent drop in tokens used (on average
by 23%), without impacting accuracy. In contrast, prompting models to “Think step-by-step” leads
to a small drop in accuracy across all Qwen models, while importantly, increasing thinking length
by roughly 10%. This suggests that the colloquial prompt suffix further aggravates overthinking
for simple queries with thinking models. Overall, these results point to the fact that the amount of
thinking in LLMs can vary noticeably based on the exact prompts being used. We hope that our
benchmark generally encourages further explorations of all these training-time and inference-time
strategies of optimal thinking in future models.

3.4 Analysis of Overthinking and Underthinking

Analysis of Math vs General Domain. Figure 3 compares different metrics on OvT-Math and
OvT-General with 4 representative models. Interestingly, while models achieve higher accuracy
on OvT-Math than in OvT-General, the latter also results in much higher overthinking. This result
is specifically striking for GPT-OSS-20B which thinks ten times more on Math, even though these
questions are relatively simple. This shows that optimizing overthinking for a specific domain may
not generalize to other domains and hence may not enhance overall optimal thinking in LLMs.

Analysis by Question Domain and Answer Types. We analyze how overthinking varies across dif-
ferent question characteristics for OvT-General (full analysis in Appendix D.2). Figure 4a shows
thinking token usage across domains sorted by average thinking length. Models generate signif-
icantly more tokens for STEM domains (Engineering, Economics) compared to History, yet this
increased thinking shows no correlation with accuracy (Spearman ρ = −0.46, p > 0.05) or perfor-
mance improvements over non-thinking counterparts (ρ = 0.29, p > 0.05), demonstrating models
cannot adaptively adjust thinking based on domain complexity. Moreover, Figure 4b shows how
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(a) Thinking tokens across problem domains. (b) Thinking tokens across answer types.

answer types affect thinking: while models use comparable tokens for MCQ and open-ended ques-
tions, they consume substantially more for numeric questions. Crucially, unlike OvT-Math, these
numeric questions are often simple facts, yet they trigger extensive overthinking without accuracy
benefits in 4/5 models tested. This is likely because of the emphasis of post-training on mathematical
tasks that causes models to conflate numerical tokens with computational complexity. Additionally,
Figure 10 demonstrates that adding completely irrelevant MCQ distractors in questions causes near-
linear increase in overthinking (42 tokens per option, R2 = 0.94). These patterns reveal that current
models may be relying on superficial cues (domain keywords, numerical tokens, option count) rather
than actual task complexity when allocating computational resources.

Qualitative Analysis. We qualitatively examine failure modes in both sub-benchmarks using sta-
tistically significant examples obtained by generating 128 responses per model and selecting cases
where performance differences are robust (Full details in Appendix D.4). Examples 1, 2, and 3
demonstrate a recurring overthinking pattern: models initially identify correct answers but sub-
sequently overthink, introducing conflicting information or flawed reasoning that leads to incorrect
conclusions. Conversely, Examples 4 and 5 reveal underthinking behavior where non-thinking mod-
els rely on heuristics without verification—claiming to use algorithms like BFS while actually taking
the first plausible path without systematic exploration or validation. These patterns illustrate how
overthinking creates unnecessary confusion while underthinking omits essential verification steps.

4 Related Work

Recent works have analyzed overthinking and underthinking in LLMs across various domains
including adversarial, tool-use, math, and unanswerable queries (Sui et al., 2025; Wang et al.,
2025b; Chen et al., 2025a; Kumar et al., 2025; Cuadron et al., 2025; Song and Zheng, 2025; Zhao
et al., 2025; Kirichenko et al., 2025; Liu et al., 2025; TSB, 2025). However, these studies treat
overthinking and underthinking in isolation on specific benchmarks. Further, existing works on
efficient reasoning primarily target overthinking through RL-based length penalties (Aggarwal
and Welleck, 2025; Arora and Zanette, 2025; Yi et al., 2025; Zhang et al., 2025a), verification
training (Chen et al., 2025b), early exit strategies (Yang et al., 2025; Jiang et al., 2025), or
inference-time interventions (Wang et al., 2025a). Others address underthinking by forcing longer
generation through decoding time interventions (Muennighoff et al., 2025; Jin et al., 2025). How-
ever, these typically rely on disparate evaluation setups and use their own unique metrics to measure
overthinking or underthinking, making fair comparison across approaches difficult and hindering
systematic progress. In contrast, OptimalThinkingBench provides the first unified benchmark
with standardized metrics for both overthinking and underthinking, making evaluation more
standardized and enabling fair comparison between these methods. It spans several general and
reasoning domains (including math) and reveals that optimizing for one of over and underthinking
typically degrades the other. We refer readers to Appendix A for a more detailed related work.
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5 Conclusion

We proposed OptimalThinkingBench, a new benchmark to jointly measure overthinking and un-
derthinking in LLMs. Our benchmark consists of two sub-benchmarks, spanning math and general-
domain questions in 72 domains, with four answer types, and belonging to diverse reasoning tasks.
Through a combined efficiency-adjusted accuracy metric and multiple sub-metrics, we evaluated 33
state-of-the-art thinking and non-thinking models and showed that no model is able to optimally
balance performance and efficiency on our benchmark. We also explored different methods to en-
courage such optimal thinking which only rarely resulted in improvements, highlighting the need
for better unified and optimally-thinking LLMs in the future. OptimalThinkingBench is designed
to evolve with increasing model competence, providing a tunable method to benchmark the optimal
thinking performance of new models.
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A Detailed Related Work

Overthinking and Underthinking in LLMs. Several recent works have analyzed the issues of
both overthinking and underthinking in LLMs (Sui et al., 2025; Wang et al., 2025b; Chen et al.,
2025a; Saha et al., 2024; Zhang et al., 2025b; Pu et al., 2025). Notably, these analyses span ad-
versarial (Kumar et al., 2025), tool-use (Cuadron et al., 2025), math (Song and Zheng, 2025; Zhao
et al., 2025; Su et al., 2025; Wang et al., 2025b) and unanswerable (Kirichenko et al., 2025) queries.
Furthermore, Liu et al. (2025) show that chain-of-thought can hurt performance in tasks where de-
liberation hurts performance in humans. Additionally, a very recent concurrent blog post introduces
a benchmark and discusses the problem of token efficiency in thinking models (TSB, 2025). Many
of these studies have treated overthinking and underthinking in isolation, without unified metrics,
often on different and specialized benchmarks, which has hindered the ability to effectively track
progress toward optimal thinking in LLMs. OptimalThinkingBench addresses this issue by provid-
ing a unified benchmark and metrics, thereby demonstrating that independently optimizing models
for overthinking or underthinking results in improvements in only one of these at the expense of the
other.

Methods for Addressing Overthinking and Underthinking. A large body of prior work has
explored reducing overthinking in models with efficient reasoning methods (Arora and Zanette,
2025; Kang et al., 2024; Fang et al., 2025). For instance, Aggarwal and Welleck (2025); Arora
and Zanette (2025); Yi et al. (2025); Zhang et al. (2025a) modify reinforcement learning objec-
tives, VeriThinker (Chen et al., 2025b) trains models on verification tasks, Yang et al. (2025);
Jiang et al. (2025) develop early exit methods, and Wang et al. (2025a) propose a simple infer-
ence time intervention. However, these methods have almost universally focused on math and code
domains, neglecting the vast proportion of general user queries (Handa et al., 2025). Similarly,
past works have improved underthinking by forcefully adding tokens when the model is about to
stop generation (Muennighoff et al., 2025; Jin et al., 2025). Furthermore, they typically rely on
disparate evaluation setups and use their own unique metrics to measure overthinking or under-
thinking, making fair comparison across approaches difficult and hindering systematic progress.
OptimalThinkingBench addresses this gap by providing a unified interface (with benchmarks and
metrics) to study both overthinking and underthinking. This makes evaluation more standardized
and enables fair comparison between these methods. Using this evaluation setup, we compare sev-
eral of these past methods to show that while existing efficient reasoning methods improve over-
thinking, they often also degrade underthinking.

B Experimental Setup

B.1 OptimalThinkingBench Creation

For generating questions (L), filtering (L′), and evaluation (Ljudge), we use the same LLM: Llama-
4-Maverick with different prompts listed in Appendix C. For OverthinkingBench, we use 72
different domains, 4 different answer types, and for each (domain, answer type) pair, we generate a
maximum of 5 questions. For filtering, we sample 8 responses for each question. We use temperature
= 0.6 and top p = 1.0. For evaluation, we set the maximum number of thinking tokens tmax = 1000
in Equation 1. In creating UnderthinkingBench, we set the threshold λ = 0.3 and use Qwen3-
1.7B as the thinking model and Qwen3-235B-A22B as the non-thinking model.

B.2 Model Evaluation

We evaluate 33 different open-source and proprietary models on OptimalThinkingBench, with
varying model sizes, and different families. For hybrid models, we evaluate them in both think-
ing and non-thinking modes. We compare models on the complete OptimalThinkingBench
based on our F otb

1 metric. In addition, for each model, we report the number of think-
ing tokens, accuracy, and AUCOAA for OverthinkingBench, and accuracy, complete output
tokens for UnderthinkingBench. We report complete output tokens, because answers for
UnderthinkingBench are typically only a few tokens, and it is well-studied that even chain-of-
thought tokens outside of thinking tags contribute to higher performance. All evaluations are per-
formed over 8 seeds, and consistent temperature sampling of 0.6.
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Figure 5: Generation recipe of OverthinkingBench (Step 1 and 2) and evaluation recipe of models
on OverthinkingBench (Step 3). We follow a generation and filtering pipeline to generate and
verify the questions and answer correctness. We evaluate model outputs on this benchmark based
on the number of tokens used (overthinking) and answer correctness, using an LLM-as-a-Judge
verifier.

C Prompts and Additional Details of OptimalThinkingBench

This section consists of all prompts used throughout OverthinkingBench for data generation, fil-
tering, and evaluation.

C.1 Question Generation

The core prompt for generating simple and general questions across diverse domains and answer
types is shown in Figure 7. This prompt is designed to elicit questions that should require minimal
reasoning tokens while maintaining diversity across domains and answer formats.
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Figure 6: Generation recipe of UnderthinkingBench (Step 1) and evaluation recipe of models
on UnderthinkingBench (Step 2). We follow a generation and filtering pipeline to first generate
and then check for reasoning tasks that particularly benefit from thinking (by leveraging the dif-
ference between a small thinking model and a large non-thinking model). We evaluate models on
UnderthinkingBench using accuracy computed with a code-based verifier.

C.2 Answer Format Specifications

OverthinkingBench supports four distinct answer types, each with specific constraints to ensure
sound evaluation. The format specifications are provided as template substitutions in the main gen-
eration prompt.

C.3 LLM-as-a-Judge Verification

Once the model generates the answer, we first extract the answer within the last \\boxed{} in its
output, using a regular expression. The answer is then passed to the LLM-as-a-Judge. If \\boxed{}
is not found, we provide the complete output (excluding the reasoning trace) to the LLM-as-a-Judge.
The verification prompt for the LLM-as-a-Judge is shown in Figure 8.
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Main prompt for generating OverthinkingBench questions
Suppose I have this problem. So basically there are these recent models
that are called reasoning models, and the idea is that if you increase
the inference compute, in the sense that if they generate longer chain of
thoughts, the accuracy increases. However, one big challenge with them
is that they sometimes overthink, spending a lot of compute even on simple
questions, results in reduced utility for user, as it takes a lot of time
generating long thinking. A simple question could be 2+2, and the model is
expected to answer immediately.

In order to evaluate this behavior I plan to propose OverthinkingBench. The
idea is simple, this benchmark would contain some very simple questions, where
model is not expected to think for more than 10 to 20 tokens, and sometimes
0 tokens to answer them. The accuracy would mostly be 100% because the
questions would be simple, and our evaluation would be average tokens used,
standard deviation, or thinking violations (how many times thinking was > 20
tokens).

Now I want you to make prompts for such a dataset. Note that distribution of
prompts should be similar to standard benchmarks for Large language models.
Simple questions, although of varying difficulty, varying domains, varying
types. Your goal is to create 50 such prompts. Diversity along different
dimensions is expected.

OUTPUT FORMAT: output json, List[dict], where dict contains two keys:
"Question", "Answer category"

Domains: I will give you the following domains, and you are expected to
generate some simple (not at all tough) questions. This is to ensure the
benchmark contains real world queries. The questions can be straightforward
factual questions, require some very basic multi-hop reasoning, or some very
basic math questions.

{question format}

Here are the {len(domains)} domains:
{domains}

For each domain create 5 questions.

Figure 7: Main prompt for constructing the OvT-General subset of OverthinkingBench.

Prompt specification for numeric answer questions
Additionally answer to every question should be a numeric value, that can be
matched to gold answer. However, the answer to the question should be clear.
Answer in similar json format.

## Important: Make sure questions have 1 clear numerical answer with no
ambiguity or any potential similar or nearby answer.

For example, a bad question would be: ‘‘How many people are affected by
diabetes worldwide in millions?’’ This is a bad question, because the number
keeps on changing every year, is based on estimate and therefore answers could
vary. Do not output such questions.

C.4 Domain Coverage

OverthinkingBench spans 72 distinct domains to ensure comprehensive coverage of real-world
query distributions. These domains are sourced from SuperGPQA and are shown in Figure 9.

C.5 Additional Details of UnderthinkingBench

UnderthinkingBench utilizes existing challenging reasoning tasks from the Reasoning Gym
framework. Rather than using custom prompts, we leverage 11 pre-defined reasoning task types
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Prompt specification for multiple choice questions
Additionally every question will be MCQ, with only one correct option
and total of {num options} options, of which clearly 1 is correct without
ambiguity. Answer in similar json format.

Prompt specification for short answer questions
Additionally answer to every question should be a short answer such as single
word or phrase, that can be matched to gold answer. However, the answer to
the question should be clear. Answer in similar json format.

Prompt specification for long answer questions
Additionally answer to every question should be a long answer such as a
paragraph, that will be judged by a separate LLM as judge against the
reference answer. However, the answer to the question should be clear without
ambiguity. Answer in similar json format.

LLM-as-a-Judge prompt for answer verification

User: ### Question: {question}

### Ground Truth Answer: {ground truth}

### Student Answer: {student answer}

For the above question, please verify if the student’s answer is equivalent to
the ground truth answer.

Do not solve the question by yourself; just check if the student’s answer is
equivalent to the ground truth answer.

If the student’s answer is correct, output ‘‘Final Decision: Yes’’. If the
student’s answer is incorrect, output ‘‘Final Decision: No’’.

Assistant:

Figure 8: LLM-as-a-Judge Answer Verification Prompt.

with specific parameter configurations. Table 5 provides an overview of all tasks along with their
categories and descriptions.

Each reasoning task generates 50 instances, resulting in a total of 550 challenging problems that
require substantial computational effort to solve correctly. The tasks span six domains: games
(maze, knight swap, puzzle 24, tsumego), algorithms (ab, letter counting), graphs (quantum locks),
arithmetic (bitwise arithmetic, fraction simplification), geometry (advanced geometry) and logic
(propositional logic).

D Additional Results and Analyses

D.1 Methods for Improving Optimal Thinking

Full results on 33 models are shown in Table 6.

This section contains the full results for the methods mentioned in the main paper.

Results for efficiency-based methods on the non-math subsets are shown in Table 7. Results for
router based methods are in Table 8. Results for prompt based methods are in Table 9.
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Complete list of 72 domains used in OverthinkingBench Creation
Electronic Science and Technology, Philosophy, Traditional Chinese Medicine,
Applied Economics, Mathematics, Physics, Clinical Medicine, Computer Science
and Technology, Information and Communication Engineering, Control Science
and Engineering, Theoretical Economics, Law, History, Basic Medicine,
Education, Materials Science and Engineering, Electrical Engineering, Systems
Science, Power Engineering and Engineering Thermophysics, Military Science,
Biology, Business Administration, Language and Literature, Public Health and
Preventive Medicine, Political Science, Chemistry, Hydraulic Engineering,
Chemical Engineering and Technology, Pharmacy, Geography, Art Studies,
Architecture, Forestry Engineering, Public Administration, Oceanography,
Journalism and Communication, Nuclear Science and Technology, Weapon Science
and Technology, Naval Architecture and Ocean Engineering, Environmental
Science and Engineering, Transportation Engineering, Geology, Physical
Oceanography, Musicology, Stomatology, Aquaculture, Mechanical Engineering,
Aeronautical and Astronautical Science and Technology, Civil Engineering,
Mechanics, Petroleum and Natural Gas Engineering, Sociology, Food Science
and Engineering, Agricultural Engineering, Surveying and Mapping Science
and Technology, Metallurgical Engineering, Library Information and Archival
Management, Mining Engineering, Astronomy, Geological Resources and Geological
Engineering, Atmospheric Science, Optical Engineering, Animal Husbandry,
Geophysics, Crop Science, Management Science and Engineering, Psychology,
Forestry, Textile Science and Engineering, Veterinary Medicine, Instrument
Science and Technology, Physical Education

Figure 9: List of all domains used in OverthinkingBench.

Table 5: Reasoning tasks and configurations for underthinking benchmark.
Reasoning Task Category Description
ab Algorithmic Pattern recognition in sequences
Letter Counting Algorithmic Count specific letters in given text

Bitwise Arithmetic Arithmetic Execute bitwise operations on binary numbers
Fraction Simplification Arithmetic Simplify fractions to their lowest terms

Quantum Locks Graphs Find shortest sequence to reach correct value

Maze Games Navigate through the maze to reach destination
Knight Swap Games Swap all positions of black knights with white knights
Puzzle 24 Games Use four numbers to make 24 with operations
Tsumego Games Solve Go game tactical problems

Advanced Geometry Geometry Solve advanced geometry problems

Propositional Logic Logic Infer correct conclusions from given premises

D.2 Overthinking Analysis

Analysis by Answer Types. In Table 10 we evaluate hybrid models like Qwen3 and compare their
accuracy differences between thinking and non-thinking modes across four answer types from our
OverthinkingBench. Qwen3 allows switching between the two modes through its chat templates.
Results where thinking statistically improves performance are marked in green, while statistically
significant degradations are marked in red (p < 0.05). Overall, in the context of our benchmark, we
find limited evidence that overthinking significantly harms performance in Qwen3 hybrid models
across most answer types. However, thinking definitely reduces user utility due to increased latency.
When comparing with previous-generation models (Qwen2.5-Instruct), we see clear accuracy drop
for non-thinking models in numeric mode despite similar or smaller model sizes, suggesting that
adding thinking capabilities to hybrid models might have compromised non-thinking mode perfor-
mance.

Analysis by Question Domains. Figure 4a shows thinking token usage across different domains
and model families, sorted by average thinking length with the highest domains at the top. The
trends suggest that models generate more thinking tokens for STEM domains such as Science and
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Table 6: Main results on OptimalThinkingBench comparing open/closed thinking/non-thinking
models. We also show individual results for OverthinkingBench and UnderthinkingBench,
reporting accuracy, thinking tokens, and our proposed metrics. The main metrics for over, under,
and optimal-thinking are AUCOAA, accuracy, and F otb

1 respectively. These metrics are bolded for the
best performing model in each of the four categories. † = Hybrid models evaluated in either thinking
or non-thinking mode.

Model OptimalThinkingBench
OverthinkingBench UnderthinkingBench

F otb
1 ↑ Accuracy (%) ↑ Tokens ↓ AUCOAA ↑ Accuracy (%) ↑ Tokens ↓

Open Non-Thinking Models

Mistral-Small-3.2-24B-2506 16.6 94.3 0 94.3 9.1 4307
Llama-3.1-8B 6.6 85.1 0 85.1 3.5 3811
Llama-3.3-70B 16.1 92.8 0 92.8 8.8 1812
Llama-4-Scout 19.1 95.0 0 95.0 10.6 904
Llama-4-Maverick 27.9 95.7 0 95.7 16.3 993
Qwen2.5-7B 9.6 93.6 0 93.6 5.1 1370
Qwen2.5-Math-7B 8.4 80.7 0 80.7 4.4 1273
Qwen2.5-72B 19.0 96.3 0 96.3 10.5 1174
Qwen2.5-Math-72B 15.1 91.8 0 91.8 8.2 1010
Qwen3-1.7B† 12.9 89.0 0 88.8 6.9 1943
Qwen3-8B† 24.5 95.9 0 95.8 14.0 2223
Qwen3-14B† 24.5 96.7 0 96.6 14.0 1585
Qwen3-32B† 25.8 96.3 0 96.2 14.9 1423
Qwen3-235B-A22B† 31.7 96.9 0 96.7 18.9 1501

Closed Non-Thinking Models

Sonnet-4† 48.3 97.4 0 97.4 32.1 2229
GPT-4o 17.8 95.3 0 95.3 9.8 694
GPT-4.1 35.4 97.1 0 97.1 21.7 1846

Open Thinking Models

Magistral-Small-2506 11.2 95.7 3303 6.4 42.9 16788
R1-Distill-1.5B 13.3 80.5 1466 15.2 11.8 13025
DeepScaleR-1.5B-Preview 18.8 82.7 1022 23.3 15.8 8617
R1-Distill-7B 24.5 91.5 1172 25.4 23.6 11763
R1-Distill-Llama-8B 20.7 93.2 1307 21.7 19.8 11113
Qwen3-1.7B† 24.2 93.8 1519 20.6 29.2 13072
Qwen3-8B† 24.3 98.1 1588 16.3 47.7 13858
R1-0528-Qwen3-8B 28.8 96.6 1926 24.2 35.7 15610
Qwen3-14B† 30.3 98.3 1373 21.3 52.4 12691
Qwen3-32B† 25.4 97.9 1415 16.9 51.0 12652
Qwen3-235B-A22B† 23.2 98.3 1632 14.6 55.5 12057
Hunyuan-A13B 47.1 96.7 615 52.2 42.9 12103
GPT-OSS-20B 57.3 97.1 467 72.7 47.3 8937
GPT-OSS-120B 68.3 97.1 154 83.3 57.9 4968

Closed Thinking Models

Sonnet-4† 64.2 99.3 706 71.3 58.3 14035
O3 71.1 97.5 235 78.6 65.0 6273

Engineering, compared to domains like History. Interestingly, this occurs despite models achieving
similar accuracy across these domains (Spearman ρ = −0.46 and p = 0.1 > 0.05), with little corre-
lation between domain type and correctness. Furthermore, when examining accuracy improvements
over their non-thinking counterparts, we do not find any statistically significant correlation between
increased thinking and performance delta (Spearman ρ = 0.29 and p = 0.33 > 0.05). These results
highlight that models cannot flexibly adjust their thinking based on the question domain, resulting
in more overthinking in specific domains than in others.

Analysis by Answer Types. In Figure 4b, we analyze how answer types affect the amount of
thinking. All models show similar behavior: they use comparable token counts for MCQ and open-
ended questions while consuming substantially more tokens for numeric questions. Interestingly,
unlike OvT-Math, numeric questions in OvT-General are primarily fact based (See Appendix sub-
section D.4 for examples). A potential reason for this difference could be due to the increased
computational complexity demanded by the numeric questions. However, as shown in Appendix
subsection D.2, we evaluate the accuracy of 5 different models and find no statistically significant
difference in accuracy compared to non-thinking models for the numeric domain in 4 out of 5 cases.
This finding suggests that mathematical tokens in prompts trigger more extensive thinking (possibly
because of the heavy reliance on mathematical tasks in post-training), regardless of the underlying
complexity of the questions.
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Table 7: Results comparing different methods for improving optimal thinking on our benchmark.
We evaluate on both OverthinkingBench and UnderthinkingBench to understand how methods
developed to reduce overthinking impact underthinking and viseversa.

Method OptimalThinkingBench
OverthinkingBench UnderthinkingBench

F otb
1 ↑ Accuracy (%) ↑ Tokens ↓ AUCOAA ↑ Accuracy (%) ↑ Tokens ↓

R1-Distill-Qwen-7B 22.8 85.1 562 44.9 15.2 17967
+ VeriThinker (Chen et al., 2025b) 15.2 (-7.5) 85.9 (+0.8) 430 (-24%) 61.5 (+16.6) 8.7 (-6.6) 2070 (-88%)

+ SB-DS 18.7 (-4.1) 83.6 (-1.5) 180 (-68%) 70.5 (+25.6) 10.8 (-4.5) 3598 (-80%)

+ L1 (Aggarwal and Welleck, 2025) 24.3 (+1.5) 84.8 (-0.3) 562 (+0%) 39.1 (-5.7) 17.6 (+2.3) 3494 (-81%)

+ AdaptThink (Zhang et al., 2025a) 27.3 (+4.5) 85.4 (+0.2) 356 (-37%) 61.4 (+16.5) 17.5 (+2.3) 17176 (-4%)

Qwen3-8B 34.7 96.3 854 30.5 40.3 19505
+ Model Merging (Wu et al., 2025) 41.6 (+6.9) 96.0 (-0.3) 553 (-35%) 50.9 (+20.4) 35.1 (-5.2) 15569 (-20%)

+ L1 (Aggarwal and Welleck, 2025) 34.8 (+0.1) 95.9 (-0.4) 560 (-34%) 42.5 (+12.0) 29.5 (-10.9) 5814 (-70%)

Table 8: Comparison of a state-of-the-art router model (that routes between non-thinking and think-
ing modes based on question difficulty) with an oracle router on Qwen3 family of models to encour-
age optimal thinking.

Method OptimalThinkingBench
OverthinkingBench UnderthinkingBench

F otb
1 ↑ Accuracy (%) ↑ Tokens ↓ AUCOAA ↑ Accuracy (%) ↑ Tokens ↓

Qwen3-1.7B 24.2 93.8 1521 20.6 29.2 26143
Qwen3-1.7B-NonThink 12.9 89.0 0 89.0 6.9 3886
w/ Trained Router 35.1 (+10.9%) 91.3 860 53.6 26.1 24283
Oracle Router 43.9 89.0 0 89.0 29.2 26143

Qwen3-8B 24.3 98.1 1587 16.3 47.7 27716
Qwen3-8B-NonThink 24.5 95.9 0 95.9 14.0 4447
w/ Trained Router 49.1 (+24.6%) 97.6 900 56.0 43.8 25077
Oracle Router 63.7 95.9 0 95.9 47.7 27716

Qwen3-32B 25.4 97.9 1423 16.9 51.0 25304
Qwen3-32B-NonThink 25.8 96.3 0 96.3 14.9 2846
w/ Trained Router 50.5 (+24.7%) 97.2 815 55.8 46.1 22901
Oracle Router 66.6 96.3 0 96.3 51.0 25304

Qwen3-235B-A22B 23.2 98.3 1643 14.6 55.5 17133
Qwen3-235B-A22B-NonThink 31.7 96.9 0 96.9 18.9 3002
w/ Trained Router 53.0 (+21.3%) 97.6 929 55.5 50.8 16691
Oracle Router 70.5 96.9 0 96.9 55.5 17133

Figure 10: Results showing how amount of overthinking varies with the number of options for
multiple choice questions. Despite most options being distractors, there is almost a linear increase
in overthinking with an increasing number of options.

Analysis by Number of Distractors in MCQs. Finally, in Figure 10, we analyze how overthinking
varies with the number of options for multiple choice questions. The figure shows the average num-
ber of thinking tokens versus the number of multiple-choice questions averaged across all 5 Qwen3
models. In particular, we augment the original multiple-choice questions in OverthinkingBench
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Table 9: Results comparing different prompt variations on OptimalThinkingBench to encourage
optimal thinking.

Method OptimalThinkingBench
OverthinkingBench UnderthinkingBench

F otb
1 ↑ Accuracy (%) ↑ Tokens ↓ AUCOAA ↑ Accuracy (%) ↑ Tokens ↓

Qwen3-1.7B

Standard 24.2 93.8 1519 20.6 29.2 13072
Step-by-Step 19.5 (-4.7) 93.9 (+0.1) 1620 (+7%) 14.6 (-6.0) 29.4 (+0.2) 13261 (+1%)

Don’t Overthink 28.8 (+4.6) 94.2 (+0.4) 1156 (-24%) 30.4 (+9.8) 27.4 (-1.8) 12183 (-7%)

Only Answer 30.8 (+6.6) 93.9 (+0.1) 1131 (-25%) 32.4 (+11.8) 29.3 (+0.1) 12236 (-6%)

Qwen3-8B

Standard 24.3 98.1 1588 16.3 47.7 13858
Step-by-Step 15.6 (-8.7) 97.4 (-0.7) 1766 (+11%) 9.4 (-6.9) 47.3 (-0.4) 14400 (+4%)

Don’t Overthink 34.0 (+9.7) 97.8 (-0.3) 1233 (-22%) 26.8 (+10.5) 46.4 (-1.3) 13030 (-6%)

Only Answer 36.8 (+12.5) 98.1 1247 (-21%) 29.7 (+13.4) 48.4 (+0.7) 13149 (-5%)

Qwen3-14B

Standard 30.3 98.3 1373 21.3 52.4 12691
Step-by-Step 19.8 (-10.5) 97.9 (-0.4) 1529 (+11%) 12.1 (-9.2) 53.0 (+0.6) 13078 (+3%)

Don’t Overthink 39.2 (+8.9) 98.1 (-0.2) 1051 (-23%) 31.4 (+10.1) 52.1 (-0.3) 12058 (-5%)

Only Answer 42.3 (+12.0) 97.9 (-0.4) 955 (-30%) 35.7 (+14.4) 51.8 (-0.6) 11817 (-7%)

Table 10: Delta accuracy between thinking and non-thinking mode for different models and an-
swer types. Values show delta accuracy (%). Dark green indicates statistically significant positive
changes, red indicates statistically significant negative changes (p < 0.05).

Model MCQ Numeric Open-ended Open-ended-long Average
Qwen3-1.7B 2.2% 4.5% 4.7% 3.5% 3.7%
Qwen3-8B 0.8% 2.3% 1.0% -0.5% 0.9%
Qwen3-14B 0.0% 0.9% 0.9% -0.3% 0.4%
Qwen3-32B -0.2% 1.0% -0.9% -0.3% -0.1%
Qwen3-235B-A22B -1.1% 1.6% 0.1% 0.3% 0.2%

vs Qwen2.5-7B

Qwen3-8B-nonthink 0.8% -0.0% 2.6% 1.4% 1.2%

vs Qwen2.5-72B

Qwen3-32B-nonthink 0.2% 2.8% 1.0% -0.5% -0.5%
Qwen3-235B-A22B-nonthink 0.5% 2.1% 1.0% -0.6% -0.3%

by adding completely irrelevant options in the questions. Interestingly, despite being completely
irrelevant, we see a clear rise in thinking tokens with an increasing number of options. In particular,
we see an almost linear (R2 = 0.94) increase of 42 tokens per option, indicating how irrelevant
distractors can lead to overthinking in models.
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Figure 11: Results for how overthinking and accuracy vary with changing model size for Qwen3
family of models.

D.3 How Scaling Model Size affects Overthinking?

We examine how overthinking varies with model sizes across the Qwen3 family of models on
OvT-General. The results reveal that while there is no clear trend, thinking token usage gener-
ally increases with model size, despite accuracy remaining relatively constant across models from
8B onwards. Specifically, thinking tokens increase from 750 tokens (1.7B) to 950 tokens (235B),
while accuracy fluctuates between 86.1% and 86.8% for models 8B and larger. The increased think-
ing does not translate to improved performance, as all models starting from 8B parameters achieve
similar accuracies. This suggests that larger models may be exhibiting unnecessary verbosity in
their reasoning without corresponding performance benefits, highlighting an area for optimization
in model training or inference procedures.

D.4 Qualitative Analysis of Overthinking and Underthinking

In this section, we qualitatively compare how overthinking could hurt performance on
OverthinkingBench and how non-thinking models can underthink and rely on heuristics in
UnderthinkingBench. However, to compare two models of similar accuracy, naively selecting
questions where model A does better than model B is not appropriate due to the stochastic nature
of models. For a fair comparison, we generate 128 responses for each model and only consider
situations where the performance difference is statistically significant. In Examples 1, 2, and 3, we
show three instances where overthinking by models leads to an incorrect answer. In particular, we
notice a common phenomenon where the model initially comes up with the correct answer but then
overthinks either because of conflicting information or incorrect reasoning. In Examples 4 and 5, we
show cases where non-thinking models underthink. In one such case the model says that it would
use BFS; however, it declared its first attempt as the correct one, without any self-verification or
exploration of other solutions.
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Example 1: Overthinking

Question: What is the name of the layer in the atmosphere that protects the Earth from UV
radiation?

Model Thinking Process:
Alright, the question is asking about the layer in the atmosphere that protects the
Earth from UV radiation. I know that the Earth’s atmosphere has several layers,
and one of them is responsible for absorbing and blocking harmful UV rays.
First, I recall the layers of the atmosphere from the surface outward: 1. Troposphere
2. Stratosphere 3. Mesosphere 4. Thermosphere 5. Exosphere
Now, which one of these is responsible for protecting Earth from UV radiation? I
remember that the ozone layer is important for this, but the ozone layer is part of
a specific atmospheric layer.
I think the ozone layer is located in the stratosphere. But I’m not entirely sure, so
I recall that the stratosphere is the second layer from the surface, and it’s where
the ozone layer resides. The ozone layer absorbs most of the Sun’s harmful UV
radiation, protecting life on Earth.
But just to be sure, I recall that the ozone layer is in the lower part of the
stratosphere. So, the stratosphere is the layer that contains the ozone layer,
which protects Earth from UV radiation.
But wait, is the stratosphere itself the protector, or is it specifically the ozone
layer within the stratosphere? The question asks for the name of the layer
in the atmosphere, not the specific component (ozone). So, the layer is the
stratosphere.
[. . . truncated . . . ]
But, I recall that sometimes people refer to the ozone layer itself as the pro-
tective layer. However, the question specifies ”the layer in the atmosphere,”
and the ozone layer is a part of the stratosphere. But in common terminology,
people might say the ozone layer is the protective layer. But the ozone layer
isn’t one of the main atmospheric layers (troposphere, stratosphere, etc.), it’s
a region within the stratosphere.
[. . . truncated . . . ]
But, I think I might be confusing the terminology. The ozone layer is part of
the stratosphere, but the stratosphere as a whole is not solely responsible for
protecting from UV radiation—it’s the ozone within it. However, the question
asks for the layer in the atmosphere, not the specific component. So, the strato-
sphere is the layer that contains the ozone layer, which protects Earth from UV
radiation.
[. . . truncated . . . ]
After all this thinking, I conclude that the correct answer is the stratosphere, because
it is the atmospheric layer that contains the ozone layer, which protects Earth from
UV radiation.

Final Response:
The layer in the atmosphere that protects the Earth from UV radiation is
the stratosphere, as it contains the ozone layer which absorbs and scatters
the harmful UV rays.

Answer: Stratosphere

Evaluation: × Incorrect
Expected Answer: Ozone Layer
Analysis: The model demonstrates clear overthinking behavior by repeatedly second-
guessing itself and going in circles about whether the answer should be ”stratosphere” or
”ozone layer.” The model initially had the correct knowledge that the ozone layer pro-
tects from UV radiation, but the excessive deliberation led to an incorrect final answer due to
confusion over terminology distinctions.
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Example 2: Overthinking with Wrong Conclusion

Question: Which pop star is known for her hit song ’Thank U, Next’?

Model Thinking Process:
Okay, so I need to figure out which pop star is known for the hit song ”Thank U,
Next.” Let me start by recalling what I know about this song. I think it’s a recent hit,
maybe from the past few years. The title ”Thank U, Next” sounds familiar, maybe
from a music video or some awards show.
First, I should remember if there’s a female artist associated with this song. The
name ”Thank U, Next” might be a bit of a play on words, maybe referencing a
previous song or artist. Wait, there’s a song called ”Thank You, Next” by a pop
artist. Let me think... I recall that Lady Gaga had a song called ”Thank You, Next,”
but I’m not sure if that’s the same. Wait, no, maybe it’s another artist.
[. . . truncated . . . ]
Wait, I remember that Ariana Grande had a song called ”Thank U, Next.” Let
me check that. No, actually, I think the song is by a different artist. Oh! Maybe
it’s by a singer named Megan Thee Stallion? No, I think that’s more about her
”Don’t Stop” or something else.
Wait, I’m getting confused. Let me try to recall. There’s a song that was a
big hit in 2018, and the artist is a female pop star. The song ”Thank U, Next”
was written by a singer who also had hits like ”Hello” and ”All I Want.” Wait, that
sounds like Adele, but she didn’t have a song with that title.
Hold on, maybe it’s by the singer who had a song called ”Love Me Like You” and
”Back to Black.” No, that’s Amy Winehouse.
Wait, I think the answer is Lady Gaga. She had a song called ”Thank You,
Next.” But I’m not sure. Alternatively, maybe it’s by a newer artist.
Wait, I think I remember that the song ”Thank U, Next” was released by a pop star
named Ariana Grande. Wait, no, Ariana’s song is called ”Thank U, Next.” Let me
check my memory.
Wait, no, I think the correct answer is that the song ”Thank U, Next” is by
the pop star Lady Gaga. But I’m not 100% sure. Alternatively, maybe it’s by
someone else.
[. . . truncated . . . ]
Wait, another approach: The song ”Thank U, Next” was a number one hit in
the US. The artist is a pop star who had previous hits. Let me think of the artist
who had a song called ”Poker Face” and ”Bad Romance.” That’s Lady Gaga. So
if she had a song called ”Thank U, Next,” that would make sense.
Wait, but I’ve heard that the song ”Thank U, Next” is actually by a different artist.
Maybe it’s by someone like Ariana Grande?
I think I need to make a decision here. Based on what I remember, the song
”Thank U, Next” is by Lady Gaga. So the answer is Lady Gaga.

Final Response:
The song ”Thank U, Next” is a well-known hit that was released in 2018.
It is associated with the pop star Lady Gaga, who is recognized for her
powerful vocals, iconic music videos, and a string of successful hits such
as Poker Face, Bad Romance, and Just Dance. The song was a signifi-
cant success, reaching number one on the Billboard Hot 100 and receiving
widespread acclaim for its emotional depth and lyrical honesty.

Answer: Lady Gaga

Evaluation: × Incorrect
Expected Answer: Ariana Grande
Analysis: The model shows severe overthinking behavior and confusion between artists.
It correctly identified Ariana Grande initially but then incorrectly attributed Lady Gaga’s
other hits to this song. The model’s excessive deliberation and self-doubt led it away from
the correct answer despite having the right information early in its reasoning process.
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Example 3: Overthinking with Conflicting Information

Question: What is the number of time zones in Russia?

Model Thinking Process:
Okay, so I need to figure out how many time zones Russia has. Let me start by
recalling what I know. Russia is a huge country, spanning a lot of east-west
distance. I remember that time zones are generally based on longitudinal di-
visions, with each time zone roughly covering 15 degrees of longitude, which
corresponds to one hour.
First, I think Russia is in the northern hemisphere, and it’s located between Europe
and Asia. I know that the country is so large that it crosses multiple time zones. But
how many exactly?
Wait, I think I’ve heard that Russia has 11 time zones. But I’m not entirely
sure. Let me try to remember or think through the details. The main time zone
in Russia is Moscow Time, which is UTC+3. But then there’s also other zones.
For example, there’s Yekaterinburg Time (UTC+5), Omsk Time (UTC+6),
Krasnoyarsk Time (UTC+7), Irkutsk Time (UTC+8), Yakutsk Time (UTC+9),
Vladivostok Time (UTC+10), and Magadan Time (UTC+11). That’s like 7 time
zones. But wait, I thought there were 11. Maybe there are more?
[. . . truncated . . . ]
That’s 9. But I thought there were 11. Wait, maybe there are more splits. Let
me check. Oh, I think there’s also the time zone in the Far East, but maybe some
of these zones are split further? Or maybe I’m mixing up with other countries.
Alternatively, perhaps the answer is 11, but I need to confirm. Let me think
about the history. Russia used to have more time zones, but some were merged.
For example, in 2014, they reduced the number of time zones from 11 to 9.
Wait, but in 2014, they actually changed the time zones, reducing the number. So
maybe the current number is 9. But I need to be careful here.
[. . . truncated . . . ]
But some sources say 11. Maybe the confusion comes from the fact that before
2014, there were more. Let me check my memory. In 2014, Russia reduced the
number of time zones from 11 to 9 by merging some. So the current number is 9.
However, there’s a possibility that some sources still refer to the old number. But
according to recent information, it’s 9. But I need to be sure.
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Example 3: Overthinking with Conflicting Information (continued)

Model Thinking Process:
Wait, another way to think: the country spans from the western part (UTC+3)
to the eastern part (UTC+12), which is a difference of 9 hours. Since each time
zone is 1 hour, that would be 9 time zones. But wait, the difference between
UTC+3 and UTC+12 is 9 hours, so that would mean 9 time zones. But earlier
I thought there were 11.
[. . . truncated . . . ]
Wait, this is getting too confusing. Alternatively, perhaps the answer is that Russia
currently has 11 time zones, but some sources might say 9 or 10. However, accord-
ing to recent information, after the 2014 adjustments, Russia has 9 time zones.
I think the commonly accepted answer is that Russia has 11 time zones, but due
to the 2014 changes, some sources say 9 or 10. However, the correct answer is
11, as the country spans from UTC+2 to UTC+12, which is 10 time zones, but
including Kaliningrad as UTC+2, it’s 11.
Therefore, despite the 2014 changes, the number of time zones in Russia is
11. However, some sources might say 9 or 10 due to the adjustments. But the
correct answer is 11.

Final Response:
Russia spans a vast territory across multiple longitudinal regions, leading
to a significant number of time zones. Historically, the country had 11 time
zones, which stretched from UTC+2 (Kaliningrad, an exclave in the west)
to UTC+12 (Kamchatka, in the far east).
However, in 2014, Russia implemented a major reform to reduce the num-
ber of time zones from 11 to 9. This involved merging some of the previ-
ously distinct time zones.
Despite this reduction, the total number of time zones currently recognized
in Russia is 9.
Answer: 9

Evaluation: × Incorrect
Expected Answer: 11
Analysis: The model demonstrates extensive deliberation and conflicting information pro-
cessing. While it correctly mentions the 2014 time zone reforms, it gets confused between
historical and current numbers. The model shows classic overthinking by going back and
forth between 9 and 11, ultimately providing an inconsistent conclusion (claiming 11 is cor-
rect but answering 9). The correct answer is 11 time zones as of current Russian law.
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Example 4: Underthinking in Pathfinding

Question: Find the shortest path from * to the destination in the grid (output as sequence of
directions):

X X O O O O *
X O X X O X O
X H X O O O O
X O O X O O X
O O O O O O X

where H represents the destination point

Model Thinking Process:
We are given a grid and need to find the shortest path from the start point (*) to the
destination point (H), moving only through open cells (O), and not passing through
blocked cells (X). Movement is allowed in four directions: up, down, left, right.
Let me locate the start (*) and destination (H) points in the grid. - Start (*) is
at position (0, 6) - Destination (H) is at position (2, 1)
I need to use BFS to find the shortest path. Let me just trace a path quickly.
BFS proceeds as follows: - From (0,6) → (1,6) (down) - From (1,6) → (2,6)
(down) - From (2,6) → (2,5) (left) - From (2,5) → (2,4) (left) - From (2,4) →
(2,3) (left) - From (2,3) → (2,2) (left) - From (2,2) → (2,1) (left)
So the direction sequence is: down down left left left left left

Final Response:
We are given a grid and need to find the shortest path from the start point
(*) to the destination point (H), moving only through open cells (O).
Step 1: Find Start and Destination - Start (*) is at position (0, 6) - Destina-
tion (H) is at position (2, 1)
Step 2: BFS to Find the Shortest Path BFS proceeds as follows: - From
(0,6) → (1,6) (down) - From (1,6) → (2,6) (down) - From (2,6) → (2,5)
(left) - From (2,5) → (2,4) (left) - From (2,4) → (2,3) (left) - From (2,3) →
(2,2) (left) - From (2,2) → (2,1) (left)
Answer: down down left left left left left

Evaluation: × Incorrect
Expected Answer: down down left left down down left left left up up
Analysis: The model shows classic underthinking behavior by claiming to use BFS but
never actually implementing or verifying it. It assumes a path exists without checking cell
validity and follows the first viable route without exploring alternatives. The model skips
systematic exploration and doesn’t verify the optimality of its solution.
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Example 5: Underthinking in Arithmetic

Question: Solve: ((0xe293 * 0xcd5d) + (0xd7b7 + 0x2442))

Model Thinking Process:
I need to solve ((0xe293 * 0xcd5d) + (0xd7b7 + 0x2442)). I’ll just convert to
decimal, do the arithmetic, and convert back.
Step 1: Compute 0xe293 * 0xcd5d Convert both values to decimal: - 0xe293 in
hex = 57987 in decimal - 0xcd5d in hex = 52573 in decimal
Now compute the product: 57987 × 52573 = 3050347251
Convert back to hexadecimal: 3050347251 in hex = 0x74b1f51f
Step 2: Compute 0xd7b7 + 0x2442 Convert both values to decimal: - 0xd7b7 =
54695 - 0x2442 = 9282
Add them: 54695 + 9282 = 63977
Convert back to hexadecimal: 63977 in hex = 0xf9d1
Step 3: Add the two results Now add: 0x74b1f51f + 0xf9d1 = 0x74b2eef0

Final Response:
To solve the expression: ((0xe293 * 0xcd5d) + (0xd7b7 + 0x2442))
We will compute each part step by step using hexadecimal arithmetic.
Step 1: Compute 0xe293 * 0xcd5d Convert both values to decimal: -
0xe293 in hex = 57987 in decimal - 0xcd5d in hex = 52573 in decimal
Now compute the product: 57987 × 52573 = 3050347251 Convert back to
hexadecimal: 3050347251 in hex = 0x74b1f51f
Step 2: Compute 0xd7b7 + 0x2442 Convert both values to decimal: -
0xd7b7 = 54695 - 0x2442 = 9282
Add them: 54695 + 9282 = 63977 Convert back to hexadecimal: 63977 in
hex = 0xf9d1
Step 3: Add the two results Now add: 0x74b1f51f + 0xf9d1 = 0x74b2eef0

Answer: 0x74b2eef0

Evaluation: × Incorrect
Expected Answer: 0xb5c30260
Analysis: The model demonstrates insufficient verification of its calculations. It doesn’t
double-check the decimal conversions, leading to a cascade of errors. The initial conver-
sions for ‘0xe293‘ (which is ‘58003‘) and ‘0xd7b7‘ (which is ‘55223‘) are incorrect. This
reliance on unverified intermediate steps leads to an incorrect final result. A careful recalcu-
lation would have shown the correct answer should be ‘0xb5c30260‘.
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