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Abstract. We reduce the local limit theorem for a non-compact semisimple
Lie group acting on its symmetric space to establishing that a natural operator
associated to the measure is quasicompact. Under strong Diophantine assumptions
on the underlyingmeasure, we deduce the necessary spectral results for the operator
in question. We thereby give the first examples of finitely supported measures
satisfying such a local limit theorem. Moreover, quantitative error rates for the
local limit theorem are proved under additional assumptions.
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1 Introduction

Let G be a group and μ a probability measure on G. A fundamental problem in the
theory of random walks is to describe the distribution of the product of independent
μ-distributed random elements, in other words to study the measures μ∗n. Local
limit theorems, which establish the existence of a sequence an ∈ R such that anμ

∗n

converges to a limit measure, were studied by many authors. The case where G is
commutative or compact is classical (cf. for instance [Sto65], [IK40]). Breuillard
[Bre05b] and Diaconis–Hough [DH21] considered the Heisenberg group and a
local limit theorem for the Isom(Rd) action on Rd was proved by Varjú [Var15].
For the latter case, under further assumptions on μ, results with strong error terms
were shown by Lindenstrauss–Varjú [LV16]. The reader interested in discrete
groups may consult Lalley’s local limit theorem for the free group [Lal93], which
was extended by Gouëzel [Gou14] to hyperbolic groups.

The above results establish local limit theorems for the various mentioned
settings under weak assumptions on μ. In contrast, the understanding for non-
compact semisimple Lie groups is less developed. The only case where a local
limit theorem is known is by assuming that μ is spread out, i.e., a convolution
power μ∗n for some n ≥ 1 is not singular to the Haar measure. For spread out
measures Bougerol [Bou81] proved in 1981 a local limit theorem that will be
recalled in (1.1).

For a finitely supported measure whose support generates a dense subgroup, the
convolutionsμ∗n become increasingly well-distributed, more and more resembling
a continuous measure. Therefore Bougerol’s theorem is expected to hold. In this
paper we give the first examples of finitely supported measures on semisimple Lie
groups that satisfy Bougerol’s theorem for the Lie group acting on the associated
symmetric space. Indeed, we reduce the question at hand to understanding spectral
properties of a natural operator S0 = S0(μ) associated to μ.

The operator S0 may be viewed as the Fourier transform of the measure μ at 0
and was studied by Bourgain [Bou12] in his construction of a finitely supported
measure on SL2(R) with absolutely continuous Furstenberg measure. Further
results on S0 are due to [BISG17], generalizing [Bou12], as well as [BQ18]. These
results imply the necessary spectral properties for S0 in order to establish local
limit theorems and will be discussed after stating Theorem 1.3. In certain cases,
the necessary results for S0 will also be proved in this paper following closely
Bourgain’s [Bou12] original ideas.

In addition, we deduce quantitative error rates for the local limit theorem
(Theorem 1.2 and Theorem 1.3).
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We proceed with stating Bougerol’s theorem. Recall that a measure μ on G

is said to be non-degenerate whenever the semigroup generated by its support is
dense in G. Let G be a non-compact connected semisimple Lie group with finite
center. For a probability measure μ on G, denote σ = ||λG(μ)||, where λG is the
left regular representation and

λG(μ) =
∫
λG(g) dμ(g).

Furthermore denote by p the number of positive indivisible roots of G and by d the
rank of G (these notions are further discussed in Section 2.1) and write � = 2p + d.
For a non-degenerate and spread out probability measure μ with finite second
moment (defined in (1.2)), Bougerol [Bou81] showed that there is a continuous
function ψ0 on G (depending on μ) such that

(1.1) lim
n→∞

n�/2

σn

∫
f (g) dμ∗n(g) =

∫
f (g)ψ0(g) dmG(g)

for all f ∈ C∞
c (G). The function ψ0 satisfies

μ ∗ψ0 = ψ0 ∗ μ = σψ0.

To introduce further notation, let K be a maximal compact subgroup of G and
denote by X = G/K the associated symmetric space. We recall the definition of
the Furstenberg boundary. Let G = KAN be an Iwasawa decomposition of G as
introduced in Section 2.1. Let M be the centraliser of A in K and write P = MAN.
The Furstenberg boundary of G is defined as � = G/P = K/M. The measure m�

is the pushforward of the Haar probability measure mK onto �.
Denote by ρ0 the Koopman unitary representation of the G action on the

measure space (�,m�), which is also called the 0-principal series representation
(see Section 2.1). For a probability measure μ on G, consider the operator

S0 = ρ0(μ) =
∫
ρ0(g) dμ(g).

In order to state the first theorem, recall that a bounded operator is called quasi-
compact if the essential spectral radius ρess(A) (defined in (2.1)) is strictly less than
the spectral radius.

Let a = Lie(A) and choose a closed Weyl chamber a+. Then for every g ∈ G
denote by κ(g) ∈ a+ the unique element such that g ∈ K exp(κ(g))K. We say that μ
has finite k-th moment for some k ≥ 1 if

(1.2)
∫

|κ(g)|k dμ(g) < ∞.
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Theorem 1.1 (Local limit theorem). Let G be a non-compact connected

semisimple Lie group with finite center. Choose a maximal compact subgroup K
and denote X = G/K. Let μ be a non-degenerate probability measure on G

with finite second moment and assume that S0 = ρ0(μ) is quasicompact.
Write σ = ||λG(μ)|| = ||S0|| and � = 2p + d for p the number of indivisible pos-

itive roots of G and d the rank of G.

Then there is a continuous real-valued function ψ0 on G satisfying

μ ∗ψ0 = ψ0 ∗ μ = σψ0

such that for x0 ∈ X and f ∈ C∞
c (X),

(1.3) lim
n→∞

n�/2

σn

∫
f (g.x0) dμ∗n(g) =

∫
f (g.x0)ψ0(g) dmG(g).

Moreover, the operator S0 has a unique σ-eigenfunction η0 ∈ L2(�) of unit norm
and there exists a unique σ-eigenfunction η′

0 of S∗
0 satisfying 〈η0, η

′
0〉 = 1. Then η0

and η′
0 are positive almost surely and ψ0 is given as ψ0(g) = cμ · 〈η0, ρ0(g)η′

0〉
for cμ > 0 a constant depending on μ.

The only difference between (1.1) and (1.3) is that the latter is only proved
on X. Indeed, the limit function of Bougerol’s theorem arises as in Theorem 1.1
and since a non-degenerate, spread out measureμ satisfies that S0 is quasicompact
(cf.[Bou81, Proposition 2.2.1]), Theorem 1.1 is a generalization of Bougerol’s
theorem on X. We furthermore mention that it is conjectured that (1.1) and
therefore also (1.3) hold for every non-degenerate probability measure (with finite
second moment) on G.

Having stated Theorem 1.1, the question arises to give quantitative error rates
for (1.3). Towards this aim and in order to motivate Theorem1.2, we discussG = R.
Let μ be a non-degenerate measure on R with mean zero and variance σ2 < ∞.
The local limit theorem onR (cf. [Bre92, Section 7.4]) states that

√
nμ∗n → mR√

2πσ2
.

Denote

ηn(x) =
1√

2πσ2
exp

(
− x2

2nσ2

)
.

Using that |μ̂(r)| < 1 for r �= 0 and μ̂(r) =
∫

eirx dμ(x) the Fourier transform
of μ, one can show for f ∈ C∞(R) a smooth function whose Fourier transform is
compactly supported that there is a constant cf = cf (μ) depending on μ and the
support of f̂ such that

(1.4)
√

nμ∗n(f ) =
∫

f (x)ηn(x) dmR(x) + (Oμ(n
−1) + Oμ,f (e

−cf n))||f ||1,
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where the first implied constant depends on μ and the second on μ and the support
of f̂ . The result (1.4) may be referred to as the local central limit theorem as
it implies the local limit theorem as well as the central limit theorem. Using
that | 1√

2πσ2 − ηn(x)| 	σ n−1x2, it follows that

(1.5)
√

nμ∗n(f ) =
1√

2πσ2

∫
f (x) dmR(x) + Oμ(n

−1||f ||∗) + Oμ,f (e
−cf n||f ||1)

for
||f ||∗ =

∫
|f (x)|(1 + x2) dmR(x).

We deduce the same behaviour as (1.5) even with matching error terms for the G
action on its symmetric space under the assumption thatS0 is quasicompact. Choos-
ing a maximal compact subgroup K corresponds to fixing the origin o = eK ∈ X

of X. Denote by dX(·, ·) the distance function induced by a Riemannian metric
on X (for which X is a symmetric space, see (2.10)). In the theorem below we refer
to the Fourier transform of a function f ∈ C∞(X) as discussed in Section 2.1. For
the asymptotic notation used see also Section 2.1.

Theorem 1.2 (Local limit theorem with weak quantitative error rates). With
the notation and assumptions from Theorem 1.1, assume further that μ has finite

fourth moment. Then for f ∈ C∞(X) with compactly supported Fourier transform,
there is a constant cf = cf (μ) > 0 depending on μ and the support of f̂ such that

for n ≥ 1 and all x0 ∈ X,

(1.6)

n�/2

σn

∫
f (g.x0) dμ∗n(g)=

∫
f (g.x0)ψ0(g) dmG(g)

+Oμ(n
−1||f ||∗+n−1dX(x0, o)2||f ||1)+Oμ,f (e

−cf n||f ||1),
where the first implied constant depends on μ, the second on μ and the support
of f̂ and

(1.7) ||f ||∗ =
∫

|f (x)|(1 + dX(x, o)2) dmX(x).

For G = R, it is only possible to give strong error rates for (1.5) if one gains
control over the behaviour of the function |μ̂(r)| as r → ∞ which, as is shown in
[Bre05a] is equivalent to assuming certain Diophantine properties on the support
of μ.

In similar vein, we give strong error rates for (1.6) under a suitable Fourier
decay assumption. The Schwartz space S (X) of the theorem below is defined in
Section 2.1. For r ∈ a∗ denote by ρr the r-principal series representation defined
in (2.14) and write

Sr = ρr(μ).
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Theorem 1.3 (Local limit theorem with strong quantitative error rates). With

the notation and assumptions from Theorem 1.1, assume further that μ has finite
fourth moment and that

(1.8) sup
|r|≥1

||Sr|| < ||S0||.

Then for f ∈ S (X), x0 ∈ X and n ≥ 1,

(1.9)

n�/2

σn

∫
f (g.x0) dμ∗n(g)=

∫
f (g.x0)ψ0(g) dmG(g)

+ Oμ(n
−1||f ||∗ + n−1dX(x0, o)2||f ||1 + e−cn||f ||Hs ),

where c = c(μ) is a constant depending on μ, s = 1
2(dimX + 1), || · ||Hs is the

Sobolev norm (2.18) of degree s and the implied constant depends only on μ.
Moreover, the assumption (1.8) holds whenever μ is spread out or bi-K-invariant

(i.e., μ = mK ∗ μ ∗ mK).

We proceed with discussing spectral properties of the operator S0 and also
related results on absolute continuity of the Furstenberg measure. In order to intro-
duce convenient notation, we recall the definition of almost Diophantine measures
introduced in [BdS16].

Definition 1.4. Let G be a connected Lie group, μ a probability measure
on G and let c1, c2 > 0. The measure μ is called (c1, c2)-almost Diophantine
or simply (c1, c2)-Diophantine if

sup
H<G

μ∗n(Be−c1n (H)) ≤ e−c2n

for sufficiently large n, where

Be−c1n(H) = {g ∈ G : d(g,H) < e−c1n}

and the supremum is taken over all closed connected subgroups H of G.

Almost Diophantine measures are useful in understanding random walks on
compact groups. Generalizing the Bourgain–Gamburd method developed for
SU(2) by [BG08] and for SU(d) in [BG12], it was shown in [BdS16] for K a
compact connected simple Lie group, that a symmetric measure μ is (c1, c2)-
Diophantine for some c1, c2 > 0 if and only if λK(μ) has strong spectral gap
(Definition 3.3), in this setting being equivalent to ||λK(μ)|L2

0(K)||op < 1 for

L2
0(K) = {f ∈ L2(K) : mK(f ) = 0}.
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Indeed, the essential spectral radius of λK(μ) can be bounded in terms of K, c1

and c2. A strong spectral gap of λK(μ) can be used to deduce by using the Fourier
inversion formula on K that for f ∈ C∞(K)

(1.10) |μ∗n(f ) − mK(f )| 	 e−cn||f ||Hs

with c > 0 a constant depending on μ and || · ||Hs a Sobolev norm (2.7) on K

of high enough degree. Without assuming that μ is almost Diophantine, only
weaker results than (1.10) are known. Nonetheless, it is conjectured that every
non-degenerate measure is almost Diophantine. For finitely supported measures it
is established in [BdS16] that non-degenerate symmetric measures with matrices
supported on algebraic entries are almost Diophantine.

For finitely supported measures, most known spectral results for S0 also rely
on the Bourgain–Gamburd method. However, one requires stronger Diophantine
conditions. Indeed, as in contrast to compact groups it is necessary to control the
exponential norm growth of the μ-random walk on G, we have to demand that
the measure is (c1, c2)-Diophantine while being close to the identity in terms of c1

and c2. We therefore introduce the following definition.

Definition 1.5. Let G be a connected Lie group,μ a probability measure on G

and let c1, c2, ε > 0. The measure μ is called (c1, c2, ε)-Diophantine if
(i) μ is (c1 log 1

ε
, c2 log 1

ε
)-Diophantine, i.e., for n large enough,

sup
H<G

μ∗n(Bεc1n(H)) ≤ εc2n.

(ii) supp(μ) ⊂ Bε(e).

We state a result of [BISG17] showing that there is an abundant collection of
examples of (c1, c2, ε)- Diophantine measures for arbitrarily small ε.

Theorem 1.6 ([BISG17, Theorem 3.1]). Let G be a connected simple Lie
group with finite center and adjoint representation Ad : G → GL(g). Let � < G

be a countable dense subgroup and assume that there is a basis of g such that Ad(γ)
is algebraic with respect to that basis for every γ ∈ �.

Then there exist c1, c2 > 0 such that for every ε0 > 0 there is 0 < ε < ε0

and a finitely supported symmetric (c1, c2, ε)-Diophantine probability measure μ
satisfying supp(μ) ⊂ � ∩ Bε.

Using the above defined notion of Diophantine measures, one can establish the
following result on quasicompactness of S0. Together with Theorem1.6, numerous
examples of finitely supported measures satisfying (1.3) are provided.
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Theorem 1.7. Let G be a non-compact connected simple Lie group with finite

center. Let c1, c2 > 0. Then there is ε0 = ε0(G, c1, c2) > 0 depending on G
and c1, c2 > 0, such that every symmetric and (c1, c2, ε)-Diophantine probability

measure μ with ε ≤ ε0 satisfies that S0 = ρ0(μ) is quasicompact. In particular,
Theorem 1.1 and Theorem 1.2 hold for μ.

Theorem 1.7 is a straightforward consequence of the techniques and results
developed in [BISG17] and will be deduced in Section 5.1. Under the additional
assumption that the maximal compact subgroup is semisimple, we offer an alter-
native proof following more closely the method by Bourgain [Bou12], leading to
marginally stronger results (Theorem 5.2). Indeed, using an idea from [LV16], we
simplify Bourgain’s original approach by exploiting that the irreducible represen-
tations of K have high dimension.

We proceed with discussing the Furstenberg measure. Letμ be a measure on G

whose support generates a Zariski dense subgroup. Then the Furstenberg measure
of μ is the unique μ-stationary Borel probability measure νF on the boundary �
(cf. for example [GdM89]). It was initially conjectured by Kaimanovich–Le Prince
[KLP11] that the Furstenberg measure of a finitely supported measure is singular
to the Haar measure m�. However Bourgain [Bou12] and Bárány–Pollicott–Simon
[BPS12] disproved the latter conjecture, with Bourgain [Bou12] giving an explicit
construction while [BPS12] exploited probabilistic methods.

[BQ18] also provide examples of finitely supported measures with absolutely
continuous Furstenberg measure, yet their construction does not lead to results as
versatile as Theorem1.6. It is apparent from their proof that S0 is also quasicompact
for these examples.

A further result of [Bou12] is the construction of finitely supported measures
on SL2(R) satisfying dνF

dm�
∈ Ck(�) for any k ∈ Z≥1. Following Bourgain’s tech-

nique, we also deduce smoothness results for the Furstenberg measure for arbitrary
simple Lie groups.

Theorem 1.8. Let G be a non-compact connected simple Lie group with

finite center. Let c1, c2 > 0 and m ∈ Z≥1. Then there is εm = εm(G, c1, c2) > 0
dependingon G, c1, c2 andm such that every symmetric and (c1, c2, ε)-Diophantine

probability measureμwith ε ≤ εm has absolutely continuous Furstenbergmeasure
with density in Cm(�).

While writing this paper, the author became aware of [Leq22] who establishes
a similar yet less general result to Theorem 1.8. Since our proof is short and differs
from [Leq22], for instance in introducing Agmon’s inequality (Lemma 5.13) for
compact Lie groups, it is included in this paper.
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We comment on the organization of this paper. After reviewing the necessary
notation and giving an outline of proofs in Section 2, we discuss some preliminary
results in Section 3. Then the local limit theorems Theorem 1.1, Theorem 1.2
and Theorem 1.3 are proved in Section 4. Finally, quasicompactness of S0 and
the Furstenberg measure are discussed in Section 5, establishing Theorem 1.7 and
Theorem 1.8.
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preliminary draft. The author gratefully acknowledges support from the Euro-
pean Research Council (ERC) grant No. 803711 as well as from the CCIMI at
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2 Notation and outline

2.1 Notation. In this section we collect the notations used in this paper.
Throughout this paper, we denote by G a non-compact connected semisim-

ple Lie group with finite center, by K a maximal compact subgroup of G and
write X = G/K for the associated symmetric space.

We use the asymptotic notation X 	 Y or X = O(Y) to denote that |X| ≤ CY
for a constant C > 0 and for sequences Xn and Yn we write Xn = o(Yn) to symbo-
lise |Xn

Yn
| → 0 as n → ∞. If the constant C or the speed of convergence depends on

additional parameters we add subscripts, unless the quantity depends on the fixed
group G in which case we omit additional subscripts for convenience.

Let B be a Banach space and let A : B → B be a bounded operator. Recall
that A is called a Fredholm operator if there exists a bounded operator T such
that TA − Id and AT − Id are compact operators. Denote by spec(A) the spectrum
of A. The essential spectrum specess(A) is defined as the set of complex numbers λ
such that A − λ · Id is not Fredholm. The spectral radius is defined as

ρ(A) = max
λ∈spec(A)

|λ|

and the essential spectral radius as

(2.1) ρess(A) = max
λ∈specess(A)

|λ|,

if ρess(A) �= ∅ and otherwise ρess(A) = 0.
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For a locally compact Hausdorff group H, write mH for a fixed choice of Haar
measure. Whenever H is compact, mH is the Haar probability measure. The
left-regular representation is denoted λH while we write ρH for the right regular
representation.

If μ is a finite measure on H and π : H → U (H ) is a unitary representation,
where H is a Hilbert space and U (H ) the space of unitary operators H → H ,
then

(2.2) π(μ) =
∫
πg dμ(g)

is the operator uniquely characterized by

〈π(μ)v,w〉 =
∫
〈πgv,w〉 dμ(g)

for v,w ∈ H .
For a group H with metric dH, for R > 0 and x ∈ H we will denote

BR(x) = {y ∈ H : dH(y, x) < R}
and abbreviate BR = BR(e) for e ∈ H the identity element. On G we fix a left
invariant metric such that BR(g) = gBR(e). For a closed subset H′ ⊂ H we
define BR(H′) = {h ∈ H : d(h,H′) < R}, where

d(h,H′) = sup
h′∈H′

d(h, h′).

We first fix notation for structure theory on K. Write T for a maximal torus
in K with Lie algebra t and real dual Lie algebra t∗. Let WK be the Weyl group and
we fix a WK-invariant inner product on t, inducing an WK-invariant inner product
on t∗. The set of real roots is denoted as R and we choose a fundamental Weyl
chamber C which we consider as a subset of t∗. The fundamental Weyl chamber
determines a basis S of the real roots and the set of positive roots R+. We denote
by I∗ ⊂ t∗ the set of integral forms. Then (cf. [BtD85, Section 6]) the set C ∩ I∗

parametrizes the irreducible representations of K.
For γ ∈ C ∩ I∗ denote by πγ the associated irreducible unitary representation

of K and by Mγ the span of matrix coefficients of πγ. By the Peter–Weyl Theorem
it holds that

(2.3) L2(K) =
⊕
γ∈C∩I∗

Mγ,

where we used the convention applied throughout this paper that by a direct
sum we denote the closure of the algebraic direct sum of the involved vector
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spaces. For any γ ∈ C ∩ I∗ and an orthonormal basis v1, . . . , vdγ of πγ, we
set χγij(k) = 〈πγ(k)vi, vj〉. Then the set of functions d1/2

γ χ
γ
ij forms an orthonormal

basis of L2(K). For ϕ ∈ L2(K), we set ϕ̂γij = aγij = 〈ϕ, d1/2
γ χ

γ
ij〉. For ϕ ∈ C∞(K) and

all k∈K,

(2.4) ϕ(k) =
∑

γ∈C∩I∗

dγ∑
i,j=1

d1/2
γ aγijχ

γ
ij(k).

We want to group together functions on K that oscillate at roughly the same
rate. Therefore, one defines

(2.5) V0 =
⊕
γ∈C∩I∗

0≤||γ||<1

Mγ and V� =
⊕
γ∈C∩I∗

2�−1≤||γ||<2�

Mγ

for � ≥ 1. The decomposition

(2.6) L2(K) =
⊕
�≥0

V�

is referred to as the Littlewood–Paley decomposition of L2(K). For � ≥ 0 we
denote by P� the orthogonal projection from L2(K) to V�. Therefore any ϕ ∈ L2(K)
can be decomposed as ϕ =

∑
�≥0 P�ϕ. For Littlewood–Paley decompositions on

groups in more general contexts we refer the reader to [MKMSG22].
We finally define Sobolev spaces and Sobolev norms on K. Denote by k

the Lie algebra of K and fix an orthonormal basis X1, . . . ,Xn of k. Then the
Casimir operator given by 
 = −∑n

i=1 Xi ◦ Xi is a central element of the universal
enveloping algebra U(k). For γ ∈ C ∩ I∗ denote by λγ the eigenvalue of 
 acting
on πγ. For s ∈ Z≥0, we define

(2.7)

Hs(K) = {ϕ ∈ L2(K) : λK(
)s/2ϕ ∈ L2(K)}
=
{
ϕ =

∑
γ∈C∩I∗

ϕγ ∈ ⊕
γ∈C∩I∗

Mγ : ||ϕ||2Hs =
∑

γ∈C∩I∗
λs
γ||ϕγ||22 < ∞

}
.

We also need structure theory for G. We take care not to confuse the notation
introduced for the structure theory of K. The Lie algebra of G is denoted as g

and we choose a Cartan decomposition g = k ⊕ a ⊕ n for k the Lie algebra of K.
Denote by a∗ the real dual of a. Let � be the sets of roots, choose a closed Weyl
chamber a+ and let �+ = {r1, . . . , rk} ⊂ a∗ be the system of positive roots. For a
root r ∈ � write m(r) for the multiplicity of r and denote by δ = 1

2

∑
r∈�+ m(r)r

the half sum of the positive roots counted with multiplicities. We fix a norm | · |
on g arising from an Ad-invariant inner product. The latter norm restricts to a and
induces the operator norm on a∗.
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Denote A = exp(a), N = exp(n) and P+ = AN. Then (cf. [Kna02, Chapter VI])
the multiplication map K × A × N → G is a diffeomorphism, giving rise to the
Iwasawa decomposition G = KAN. Write further K : G → K, A : G → A

and N : G → N for the maps induced from the Iwasawa decomposition and the
map H : G → a is defined for g ∈ G as

(2.8) H(g) = logA(g).

Set A+ = exp(a+). Then the Cartan decomposition G = KA+K holds and
denote by κ : G → a+ the map uniquely characterized by g ∈ K exp(κ(g))K. We
furthermore define

(2.9) ||g|| = |κ(g)|.
On the symmetric space X = G/K, one defines the metric dX as

(2.10) dX(g.o, o) = |κ(g)|
for the origin o = K ∈ X and all g ∈ G. Then for g ∈ KA it holds that

|H(g)| = dX(g.o, o) = |κ(g)|.
Recall [Hel78, Exercise B2(iv), Chapter VI] stating that d(a.o, o) ≤ d(an.o, o) for
all a ∈ A and n ∈ N, which follows by applying suitably that the manifolds A.o

and N.o are perpendicular at their unique intersection point o ∈ X. It therefore
holds for all g ∈ G that

(2.11) |H(g)| ≤ |κ(g)| = ||g||.
For each g ∈ G consider the diffeomorphism

αg : K → K, k �→ αg(k) = K(gk).

The map G → Diff(K), g �→ αg defines an action of G on K. Denote by α′
g

the Radon–Nikodym derivative of (αg)∗mK with respect to mK . Then by [Hel84,
Lemma 5.19, I],

(2.12) α′
g(k) =

d(αg)∗mK

dmK
(k) = e−2δH(g−1k).

For r ∈ a∗, we consider the unitary representation ρ+
r : G → L2(K) defined

for g ∈ G and ϕ ∈ L2(K) as

(2.13) (ρ+
r (g)ϕ)(k) = e−(δ+ir)H(g−1k)ϕ(K(g−1k))

with k ∈ K.
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The representation (2.13) is not irreducible in general. In order to make it
irreducible, denote by M the centraliser of A in K and write P = MAN for the
associated minimal parabolic subgroup. The Furstenberg boundary � = G/P

can be identified with K/M and we therefore view functions on � as M-invariant
functions on K. The probability measure m� is the pushforward of mK under the
projection map. For r ∈ a∗ we consider the r-principal series ρr : G → U (L2(�))
defined for g ∈ G and ϕ ∈ L2(�),

(2.14) (ρr(g)ϕ)(ω) = e−(δ+ir)H(g−1ω)ϕ(g−1ω)

for ω ∈ � where we denote by g−1ω the element K(g−1k)M for any representa-
tiveω = kM with k ∈ K and note thatH(g−1ω) does not depend on the representative
of ω (cf. [War72, Section 5.5]). The principal series is irreducible.

The Weyl group WG of G is defined as the group quotient NK(a)/ZK(a), where

NK(a) = {k ∈ K :Ad(k)a ⊂ a}
and

ZK(a) = M = {k ∈ K :ka = ak for all a ∈ A}.

We call a root r ∈ � indivisible if 1
2r is not a root and we order the positive

roots in such a way that r1, . . . , rp are the indivisible roots. For any complex linear
form r on a denote

I(r) =
( p∏
�=1

B
(m(r�)

2
,
〈r, r�〉
〈r�, r�〉

))
·
( k∏
�=p+1

B
(m(r�)

2
,
m(r�/2)

4
+

〈r, r�〉
〈r�, r�〉

))
,

where B(x, y) =
∫ 1
0 tx−1(1 − t)y−1 dt is the Beta function. We further set for r ∈ a∗,

c(r) =
I(ir)
I(δ)

.

The spherical function of parameter r ∈ a∗ is defined as φr(g) = 〈ρr(g)1, 1〉.
Denote by D(G) the set of differential operators on G (see [Hel84, Chapter 2]).
The Harish-Chandra Schwartz space introduced in [HC58] (see further [Wal88,
p. 230]) is defined as

(2.15)
S (G) = {f ∈ C∞(G) :(1 + |H(g)|)�|Df |(g) 	f,D,� φ0(g)

for all D ∈ D(G), � ≥ 0}.
The Schwartz space on X, denoted S (X), is defined as the set of right K-invariant
functions in S (G).
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Recall that a function f on G is called bi-K-invariant or radial if f (k1gk2) = f (g)
for all g ∈ G and k1, k2 ∈ K. For a radial function f ∈ S (G) we denote by ρr(f )
as in (2.2) the operator

∫
f (g)ρr(g) dmG(g). We then define the spherical Fourier

transform as

f̂ (r) = 〈1, ρr(f )1〉 = 〈ρ−r(f )1, 1〉 =
∫

G
f (g)φ−r(g) dmG(g).

Note that for allω ∈ � it holds that f̂ (r) = (ρ−r(f )1)(ω). For all g ∈ G, the spherical
Fourier inversion formula holds,

(2.16) f (g) =
∫
a∗

f̂ (r)φr(g) dνsph(r),

where dνsph(r) = |c(r)|−2dma∗(r) is the spherical Plancharel measure.
We furthermore define for f ∈ S (X), r ∈ a∗ and ω ∈ �,

f̂ (r, ω) = (ρ−r(f )1)(ω) =
∫

G
f (g)(ρ−r(g)1)(ω) dmG(g).

Then it follows by a brief calculation from (2.16), for f ∈ S (X) and g ∈ G, that

(2.17) f (g) =
∫
a∗

∫
�

f̂ (r, ω)(ρr(g)1)(ω) dm�(ω)dνsph(r).

We say that f ∈ S (X) has compactly supported Fourier transform if there is a
constant R > 0 such that f̂ (r, ω) = 0 for |r| ≥ R and ω ∈ �.

We will further need Sobolev spaces and Sobolev norms on X, defined for s ≥ 0
as

Hs(X)=
{

f ∈L2(X) : ||f ||2Hs =
∫
a∗

||f̂ (r, ·)||2L2(�)(1 + |r|2)s dνsph(r) < ∞
}
.(2.18)

It holds that C∞
c (X) ⊂ S (X) ⊂ Hs(X) for all s ≥ 0 (cf. [Hel84, Chapter IV]).

For a probability measure μ on G, we write for r ∈ a∗

(2.19) S+
r = ρ+

r (μ) and Sr = ρr(μ),

using the definition (2.2) for the unitary representations ρ+
r and ρr.

We further use the notation σ = ||S0||. Since MAN is an amenable group, it holds
by [Gui80, Section D] that σ = ||λG(μ)||. If λ(r) ∈ C satisfying |λ(r)| = ρ(Sr) is in
the discrete spectrumof Sr, has geometricmultiplicity one and is the unique element
of spec(Sr) on the circle of radius ρ(Sr), then we denote by ηr ∈ L2(�) the λ(r)-
eigenfunction of Sr with unit norm. Furthermore, if the same properties hold for S∗

r

andλ(r), choose η′
r the S∗

r -eigenfunctionwith eigenvalueλ(r) satisfying 〈η′
r, ηr〉=1,

provided there exists such an η′
r. Then we denote

(2.20) ψμ,r(g) = 〈ηr, ρr(g)η′
r〉

for g ∈ G.
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The operator T0 : L2(�) → L2(�) is defined as

T0ϕ =
∫
ϕ ◦ αg dμ(g)

for ϕ ∈ L2(�), where we equally denote by αg : � → � the map on � induced
by αg : K → K, and

T+
0 : L2(K) → L2(K) defined as T+

0ϕ =
∫
ϕ ◦ αg dμ(g)

for ϕ ∈ L2(K).

2.2 Outline of proofs. For the proof of Theorem 1.1, Theorem 1.2 and
Theorem 1.3 one uses the Fourier inversion formula on X to reduce the question
at hand to spectral problems about the operators Sr. Indeed, by (2.17) it holds
for x0 = h0K ∈ X with h0 ∈ G and f ∈ S (X) that

(2.21)
n�/2

σn

∫
f (g.x0) dμ∗n(g) =

n�/2

σn

∫
a∗

∫
�

f̂ (r, ω)(Sn
rρr(h0)1)(ω) dm�(k)dνsph(r).

One then decomposes (2.21) into high and low frequencies. Namely for δ0 ∈ (0, 1)
small enough depending on μ and for f ∈ S (X),

(2.21) =
n�/2

σn

∫
|r|>δ0

∫
�

f̂ (r, ω)(Sn
rρr(h0)1)(ω) dm�(k)dνsph(r)(2.22)

+
n�/2

σn

∫
|r|≤δ0

∫
�

f̂ (r, ω)(Sn
rρr(h0)1)(ω) dm�(ω)dνsph(r).(2.23)

The following spectral properties of Sr are used to deal with the arising terms:

(1) There are operators E0 and D0 such that

(2.24) S0 = σE0 + D0,

where E0 is a projection to a one-dimensional subspace,E0◦D0 = D0 ◦ E0 = 0
and D0 satisfies ρ(D0) < σ = ||S0||. In Section 3.2 we refer to the prop-
erty (2.24) as strong spectral gap.

(2) For |r| ≤ δ0, the operator Sr has a decomposition as (2.24), i.e.,

(2.25) Sr = λ(r)Er + Dr,

for Er and Dr as in (2.24).
(3) For any r �= 0, ρ(Sr) < σ = ||S0||.
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One deduces (1) from quasicompactness of S0 and by using that S0 is a positive
operator in the sense of Banach lattices (cf. Section 3.2). (2) will follow as
quasicompactness is an open property under certain assumptions (Corollary 3.2)
and (3) by a convexity argument similar to an argument of Conze–Guivarc’h
[CG13]. The necessary spectral properties are proved in Section 4.1.

Properties (1) and (2) will be necessary to deal with low frequencies (2.23),
whereas (3) is used for high frequencies (2.22). However, (3) only allows to
prove a decay for (2.22) either by assuming that f has compactly supported Fourier
transform or by imposing the stronger assumption (sup|r|≥1 ||Sr||) < ||S0|| of The-
orem 1.3. One then deduces Theorem 1.1 and Theorem 1.2 by approximating a
given function f ∈ S (X) with functions whose Fourier transform is compactly
supported.

A novel contribution is the observation that the functions ψμ,r as defined
in (2.20), where |r| ≤ δ0 such that (2.25) holds, satisfy

(2.26)
∫

f · ψμ,r dmG =
∫
�

f̂ (r, ω)(Er1)(ω) dm�(ω)

for f ∈ S (X) (see Lemma 4.4). We further mention that (2.26) may be viewed as
an analogue of the formula

(2.27)
∫

f (x)e−σ2 x2

2 dmR(x) =
1√

2πσ2

∫
f̂ (r)e− r2

2σ2 dmR(r)

on R, where f ∈ S (R) and σ > 0, which is used in the proof of the local limit
theorem on R.

The outline of the proof of the local limit theorem is concluded. We next
discuss quasicompactness of S0. As in [Bou12] and [BISG17], the main tool are
flattening statements for μ. These results, which will be recalled in Section 3.4,
have as a consequence that for any γ > 0 and x ∈ G,

(2.28) μ∗n(Bδ(x)) 	 δdim G−γ

for δ small enough depending on μ and γ and n �μ,γ log 1
δ
. The property (2.28)

may be referred to as high dimension, since an absolutely continuous measure ν
satisfies ν(Bδ(x)) �ν δ

dimG.
The proof of quasicompactness of S0 comprises two steps. First we will show

that the restricted operator S0|V� has small norm for all � large enough, where V� is
the Littlewood–Paley space introduced in (2.5). The second step is to use the latter
to deduce that S0 restricted to

⊕
�≥L V� has small norm for a suitable L > 0 and

therefore is quasicompact. This exploits the first step and that the spaces V� are
mutually orthogonal. Indeed, since the measure μ in question is supported close
to the identity, the spaces S0V� and V�′ are almost orthogonal too.
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For the first step, one uses that for ϕ ∈ V� the matrix coefficients |〈ρ0(g)ϕ, ϕ〉|
are small on average. Indeed, it is shown in Section 3.5, following [LV16], that

(2.29)
1

mG(BR)

∫
BR

|〈ρ0(g)ϕ, ϕ〉| dmG(g) 	 2−�/2||ϕ||2.

Since μ has high dimension, we are able to use (2.29) to give strong estimates
for 〈S0ϕ, ϕ〉 and therefore conclude a bound on the operator norm of S0|V� .

In order to use (2.29), we ought to control the size of the support of μ∗n while
ensuring thatμ∗n has high dimension (2.28) quickly enough. Analogous to [Bou12]
and [BISG17], this is where the (c1, c2, ε)-Diophantine property comes into play.
Indeed, as ε becomes smaller, a (c1, c2, ε)-Diophantine measure is increasingly
rapidly non-concentrated on subgroups and therefore a strong flattening lemma
applies (Lemma 3.10). The latter holds while the measure is still close to the
identity, which will allow us to conclude the claimed properties for S0.

2.3 Relation to other work. As mentioned in the introduction, the nec-
essary results for S0 are also proved in [BISG17]. The main difference between
[BISG17] and our proof is in the use of a different Littlewood–Paley decomposi-
tion. [BISG17] develop a Littlewood–Paley decomposition on G, which leads to
more general results as they are able to deal with all possible quotients of G, while
we work with the Littlewood–Paley decomposition on K, leading to marginally
stronger results.

For the Isom(Rd) action onRd, a similar representation theoretic decomposition
to (2.17) holds for a suitable family of unitary representations

ρr : Isom(Rd) → U (L2(Sd−1)) for r ∈ R.

In [LV16], a local limit theorem with strong error terms as in Theorem 1.3 is proved
by just assuming that S0 = ρ0(μ) is quasicompact. Indeed they establish (1.8) for
their setting by solely assuming that S0 is quasicompact. It seems reasonable to
believe that the same result may hold for a semisimple Lie group acting on its
symmetric space, yet the proof of [LV16] is not transferable as several properties
only applicable to Isom(Rd) are used.

We further mention that in [Tol00] a Berry–Essen result is shown on G for a
probability measure with a smooth density of compact support.
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3 Preliminary results

3.1 Quasicompact operators. Throughout this section we denote by B

a separable Banach space and the reader may recall the notations introduced in
Section 2.1. A bounded operator A : B → B is called quasicompact if

ρess(A) < ρ(A).

In this secton we show that being quasicompact is an open property. We first state
a useful lemma.

Lemma 3.1. For any bounded operator A : B → B the following properties

hold:

(i) ρess(A) = infU compact ρ(A − U).
(ii) A is quasicompact whenever A∗ is. Moreover,

ρess(A
∗) = ρess(A).

(iii) The set of spectral values of A with modulus > ρess(A) is at most countable

and all of its accumulation points have modulus ρess(A).

Proof. (i) follows as the essential spectral radius is the spectral radius of the
image of A in the Calkin algebra (c.f [BQ16, Appendix, section 2.4]) and (ii) as a
bounded operator is Fredholm whenever its adjoint is ([BQ16, Appendix B, Corol-
lary 2.12]). Finally (iii) is contained in [BQ16, Appendix B, Proposition 2.14]. �

Corollary 3.2. Let An : H → H be a sequence of bounded operators on a

Hilbert spaceH converging in operator norm to a boundedoperatorA : H → H .

If A is quasicompact then so is An for n large enough and there is ε > 0 such that
for n large enough ρess(An) < ρess(A) + ε < ρ(A) − ε < ρ(An).

Proof. By Lemma 3.1(i) for any ε > 0 there is a compact operator U (de-
pending on ε) such that ρ(A − U) < ρess(A) + ε. We choose a small ε > 0 such
that ρess(A) + 2ε < ρ(A) − 2ε. Recall that the spectral radius is upper semi-
continuous and since A is quasicompact, A is a continuity point for the spectral
radius (cf. [New51]). Thus for large enough n it holds that ρ(An−U) < ρ(A−U)+ε
and ρ(A) − 2ε < ρ(An). Then for the above compact operator U,

ρess(An) ≤ ρ(An − U) < ρ(A − U) + ε < ρess(A) + 2ε < ρ(A) − 2ε < ρ(An),

showing the claim upon replacing 2ε by ε. �
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3.2 Strong spectral gap and quasicompact positive operators. We
introduce the following definition of strong spectral gap.

Definition 3.3. Let S : B → B be a bounded operator on a Banach space B.
We say that S has strong spectral gap if there are two operators E,D : B → B

and a decomposition S = λE + D with λ ∈ C satisfying |λ| = ||S|| such that the
following properties are satisfied:

(i) The operator E is a projection onto its image and dim(Im(E)) = 1.
(ii) E ◦ D = D ◦ E = 0.
(iii) ρ(D) < ||S||.

The aim of this section is to prove Corollary 3.5 below on quasicompact op-
erators which are positive in the sense of Banach lattices. We refer to the book
[Sch74] for the definition of a Banach lattice. For the convenience of the reader,
we recall some further definitions from [Sch74].

Let B be a Banach lattice and denote by B+ the set of positive elements. We
write x ≥ y whenever x − y ∈ B+ and further x > y if and only if x − y ∈ B+

and x �= y. We say that the bounded operator A : B → B is positive if A(B+) ⊂ B+,
in notation A ≥ 0. We write A > 0 if Ax > 0 for x > 0.

We furthermore say that the operator A has a strictly positive invariant form
if there is a linear form η that maps vectors > 0 to real numbers > 0 and that is
invariant under A, i.e., η ◦ A = η.

For an element u ∈ B+ we denote by

Iu = {x ∈ B : 0 ≤ |x| ≤ λu for some λ > 0}

the principal ideal generated by u, where as in [Sch74, Definition 1.3, II] we
write |x| = max(x,−x). The element u is called quasi-interior if Iu is dense in B.

A subspace I of B is called an ideal if Iu ⊂ I for all u ∈ I. An operator
A : B → B is referred to as irreducible if the only A-invariant ideals are the trivial
ideals {0} and B.

Theorem 3.4 ([Sch74, V 5.2]). Let B be a Banach lattice and let A : B → B

be a positive irreducible bounded operator > 0 satisfying ρ(A) = 1 and with a

strictly positive invariant form. Then the following properties hold:

(i) 1 is an eigenvalue. The eigenspace of 1 is one-dimensional and spanned by

a quasi-interior element of B+.
(ii) Every eigenvalue λ of A with |λ| = 1 is a root of unity and has a one-

dimensional eigenspace. Moreover, the latter eigenvalues form a group.
(iii) 1 is the unique eigenvalue of A with a positive eigenvector.
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Using Theorem 3.4, we can draw the following corollary:

Corollary 3.5. Let H be a Hilbert lattice (i.e., a Hilbert space endowed with
the structure of a Banach lattice) and let A : H → H be a positive quasicompact

bounded operator> 0 and assume that An are irreducible for every n ≥ 1. Then A

has strong spectral gap.

Proof. Without loss of generality, we may replace A by A/ρ(A) and assume
that ρ(A) = 1. The map

E = lim
λ→1

(λ− 1)R(λ,A)

is the strictly positive projection to the one-dimensional eigenspace of 1,
where R(λ,A) is the resolvent of A at λ (see corollary to [Sch74, Theorem V
5.2]). As the resolvent R(λ,A) commutes with A, so does E. Note moreover
that E gives rise to a strictly positive invariant form. Indeed denote by v0 ∈ H

the (by Theorem 3.4(i)) unique eigenvector of 1 with norm ||v0|| = 1 and con-
sider η(v) = 〈Ev, v0〉 for v ∈ H . Since v0 is positive by Theorem 3.4(iii) it follows
that η is a strictly positive invariant form.

Set D = A − E. Then E ◦ D = D ◦ E = 0 as A commutes with E and we claim
that ρ(D) < 1, which follows if we show that 1 is the unique eigenvalue of A on
the circle of radius 1. To show the latter, if λ is an eigenvalue of A with |λ| = 1 and
eigenvector vλ, then by Theorem 3.4(ii) λ is a root of unity and hence Tnvλ = vλ for
some n > 0. Therefore by Theorem 3.4(i) applied to T and Tn, it follows that vλ
must be the unique positive 1-eigenvector of T and hence λ = 1. �

We return to the operators S0 and S+
0 defined in (2.19).

Lemma 3.6. Let G be a connected semisimple Lie group with finite center and

let μ be a non-degenerate probability measure on G. Then S0 and S+
0 are positive

bounded operators and Sn
0 and (S+

0)
n are irreducible for all n ≥ 1.

Proof. We show that S0 is irreducible and the same argument will apply to Sn
0

and (S+
0)

n for all n ≥ 1 since G is connected. By [Sch74, Proposition 8.3. III], it
suffices to show for any ϕ1, ϕ2 ∈ L2(�) with ϕ1 > 0 and ϕ2 > 0 that 〈S�0ϕ1, ϕ2〉
is > 0 for some � ≥ 1. Indeed, we may reduce to the case where ϕ1 = 1U1

and ϕ2 = 1U2 for U1 and U2 two sets of positive measure. Using that the support
of μ generates a dense subgroup, we may choose � large enough such that the
support of S�01U1 has measure larger that 1 − m�(U2)/2 and therefore

〈S�01U1, 1U2〉 > 0. �
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3.3 Preliminaries on representation theory of compact Lie groups.
Recall the notation introduced in Section 2.1.

For γ ∈ C ∩ I∗, by Schur’s Lemma, the operator πγ(
) acts as a scalar.
For functions on K, the operator λG(
) can be understood as the Laplacian.
Therefore (2.3) is a decomposition into eigenfunctions of the Laplacian and on Mγ

the Laplacian has eigenvalue λγ = πγ(
).

Lemma 3.7. For γ ∈ C ∩ I∗ denote dγ := dimπγ and λγ := πγ(
). Then for γ
large enough it holds that λγ � ||γ||2 and dγ 	 ||γ|||R+| . Moreover, assuming

that K is semisimple, ||γ|| 	 dγ.

Proof. By [Hal15, Lemma 10.6], λγ := πγ(
) = 〈γ + ρ, γ + ρ〉 − 〈ρ, ρ〉,
where ρ = 1

2

∑
α∈R+ α is the sum of positive half roots (notice that the multiplicity

of each root is one; cf. [Hal15, Theorem 7.23]). This easily implies λγ � ||γ||2.
The upper bound on dγ follows by Weyl’s dimension formula:

dγ =
∏
α∈R+

〈α, γ + ρ〉
〈α, ρ〉 ≤

( ∏
α∈R+

||α||
|〈α, ρ〉|

)
||γ + ρ|||R+| 	G ||γ|||R+|

for ||γ|| large enough. For the lower bound we recall that in [dS13], also using the
Weyl dimension formula, it is proved that ||γ|||R+|−p 	 dγ, where p is the number of
maximal elements of R+ that are contained in one hyperplane. If K is semisimple,
the roots span the vector space t∗ and therefore (|R+| − p) ≥ 1. �

Recall the Sobolev spaces defined in (2.7). We deduce a condition for a function
being in Cm(K) under an assumption on the decay of ||P�ϕ||2.

Lemma 3.8. Let m ∈ Z≥0, s > m + 1
2 dimK and let ϕ ∈ L2(K). Assume that

for all � ∈ Z≥0 large enough,

||P�ϕ||2 ≤ 2−(s+1)�.

Then ϕ ∈ Hs(K) ⊂ Cm(K).

Proof. If ϕ =
∑
γ∈C∩I∗ ϕγ, by the assumption for large enough �,

22s�||P�ϕ||22 = 22s�
∑

2�−1≤||γ||<2�

||ϕγ||22 ≤ 2−2�

and hence using Lemma 3.7,∑
γ∈C∩I∗

λs
γ||ϕγ||22 	 ∑

�≥0

22s�
∑

2�−1≤||γ||<2�

||ϕγ||22 	 ∑
�≥0

2−2� < ∞,

showing that ϕ ∈ Hs(K). The inclusion Hs(K) ⊂ Cm(K) follows from the Sobolev
embedding theorem (cf. [Aub98, Theorem 2.10]). �
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3.4 Flattening ofμ∗n. In this sectionwe state strongflattening results from
[BISG17] for (c1, c2, ε)-Diophantine measures. To introduce notation, denote

Pδ =
1Bδ

mG(Bδ)

and for a measure ν and g ∈ G, we note that

(ν ∗ Pδ)(g) =
ν(Bδ(g))
mG(Bδ)

.

We also use the notation νδ = (ν)δ = ν ∗ Pδ.

We first relate the condition that a measure is (c1, c2, ε)-Diophantine to the
assumptions of several theorems in [BISG17].

Lemma 3.9. Let c1, c2, ε > 0 and let μ be a probability measure on G
satisfying supp(μ) ⊂ Bε. Then μ is (c1, c2, ε)-Diophantine if and only if for δ

small enough and n = log 1
δ

c1 log 1
ε

,

sup
H<G

μ∗n(Bδ(H)) ≤ δ
c2
c1 ,

where Bδ(H) = {g ∈ G : d(g,H) < δ} and the supremum is taken over all closed

subgroups of G.

Proof. This follows from the fact that μ is (c1, c2)-Diophantine if and only
if supH<Gμ

∗n(Bδ(H)) ≤ δ
c2
c1 for n = 1

c1
log 1

δ
. �

We state Corollary 4.2 from [BISG17].

Theorem 3.10 (Flattening Lemma, [BISG17, Corollary 4.2]). Let G be a

connected simple Lie groups with finite center. Let c1, c2 > 0. Then for every γ > 0
there is ε0 = ε0(c1, c2, γ) > 0 and C0 = C0(c1, c2, γ) > 0 such that the following

holds:

If 0 < ε < ε0 and μ is a symmetric and (c1, c2, ε)-Diophantine probability
measure on G, then for δ > 0 small enough,

||(μ∗n)δ||2 ≤ δ−γ for any integer n ≥ C0
log 1

δ

log 1
ε

.

3.5 Estimate of averages of matrix coefficients for oscillating func-
tions. In this subsection we prove the following proposition, which is inspired
by [LV16]. We denote BR = {g ∈ G : d(g, e) < R}.
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Proposition 3.11. Let G be a non-compact semisimple Lie group with finite

center and maximal compact subgroup K. Recall the Littlewood–Paley decompo-
sition (2.6) L2(K) =

⊕
�≥0 V� and assume further that K is a semisimple Lie group.

Then for any r ∈ R and � ∈ Z≥1, for ϕ1, ϕ2 ∈ V� ⊂ L2(K),

1
mG(BR)

∫
BR

|〈ρ+
r (g)ϕ1, ϕ2〉| dmG(g) 	 2−�/2||ϕ1||2||ϕ2||2,

where the representation ρ+
r is defined in (2.13).

We recall the following lemma from [LV16].

Lemma 3.12 ([LV16, Proposition 5.1]). Let (π,H ) be a unitary represen-

tation of a compact group K and let D be the minimum of the dimension of all
irreducible representations contained in π. Then for any vectors u, v ∈ H ,(∫

|〈π(g)u, v〉|2 dmK(k)
)1/2

≤ ||u|| ||v||
D1/2 .

If π is irreducible, then Lemma 3.12 follows from Schur’s Lemma (see [Kna02,
Section I.5]). For the general case one decomposes π as a direct sum of irreducible
representations.

Proof of Proposition 3.11. Denote B′
R = BR · K. By left invariance of

the metric, it follows that BR′ ⊂ BR+C for C an absolute constant and therefore
mG(BR′) 	 mG(BR). Using Cauchy–Schwarz and that for k ∈ K the operator ρ+

r (k)
acts as the regular representation, it follows by Lemma 3.12 that∫

BR

|〈ρ+
r (g)ϕ1, ϕ2〉| dmG(g) ≤

∫
B′

R

|〈ρ+
r (g)ϕ1, ϕ2〉| dmG(g)

=
∫

BR′

(∫
K

|〈ρ+
r (k)ϕ1, ρ

+
r (g

−1)ϕ2〉| dmK(k)
)
dmG(g)

≤
∫

BR′

(∫
K

|〈ρ+
r (k)ϕ1, ρ

+
r (g

−1)ϕ2〉|2 dmK(k)
)1/2

dmG(g)

≤ mG(BR′)( min
2�−1≤||γ||<2�

dγ)
−1/2||ϕ1|| ||ϕ2||

	 mG(BR)2−�/2||ϕ1|| ||ϕ2||,
having used in the last line that ||γ|| < dγ from Lemma 3.7 under the assumption
that K is semisimple. �

4 Proof of Local Limit Theorem

We fix throughout a non-compact semisimple Lie group G with finite center. In
this section we prove Theorem 1.1, Theorem 1.2 and Theorem 1.3. The reader
may recall the outline given in Section 2.2.
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In Section 4.1 we prove the necessary spectral properties for the operators Sr.
Then in Section 4.2 we prove the claimed properties of the limit measure and
also deduce (2.26). In Section 4.3 we deal with the high frequency term (2.22)
while in Section 4.4 we establish most of the necessary results to deal with the
low frequency term (2.23). The proof of Theorem 1.2 and Theorem 1.3 is then
completed in Section 4.5, while Theorem 1.1 is deduced in Section 4.6.

4.1 Spectral properties of Sr. In this section we discuss spectral results
for the operators S0 and Sr and the function r �→ ρ(Sr) under the assumption that S0

is quasicompact and using the results developed in Section 3.1 and Section 3.2.
Notice that if μ is non-degenerate and S0 is quasicompact, then by Lemma 3.6 and
Corollary 3.5 the operator S0 has strong spectral gap.

Before stating the first lemma, we mention that |Srη| ≤ S0|η| for all r ∈ a∗

and η ∈ L2(�), which implies ρ(Sr) ≤ ||S0||. Lemma 4.1 is concerned with
improving the latter inequality to ρ(Sr) < ||S0|| under suitable assumptions on μ.

Lemma 4.1. Let μ be a non-degenerate probability measure and assume

that S0 is quasicompact. Then for any non-zero r ∈ a∗,

(4.1) ρ(Sr) < ρ(S0) = ||S0||.
Moreover, for any c2 > c1 > 0 and n large enough depending on c1 and c2,

(4.2) sup
c1≤|r|≤c2

||Sn
r ||

1
n < ||S0||.

Proof. Toprove (4.1), we follow ideas from the proof of [CG13, Theorem3.9].
Fix a non-zero r ∈ a∗. We assume for a contradiction that ρ(Sr) = ρ(S0) and there-
fore there is λ = eiγρ(S0) ∈ spec(Sr) for γ ∈ R. Then (cf. [EW17, Section 12.1])
either λ is in the discrete spectrum or in the approximate spectrum, i.e., there is a
sequence η� ∈ ker(Sr − λ · Id)⊥ with ||η�|| = 1 and

(4.3) lim
�→∞ ||Srη� − λη�|| = 0.

Note that as S0 is quasicompact, ρ(S0) = ||S0||. We first treat the case where λ
is in the discrete spectrum, i.e., that there exists η∈L2(�) such that Srη=λη. Then

||S0|| |η| = |Srη| ≤ S0|η|
and thus || S0|η| || = ||S0|| ||η||. Denote by η0 the ||S0||-eigenfunction of S0 with
unit norm. As S0 has strong spectral gap (by Lemma 3.6 and Corollary 3.5), it
follows that η(ω) = eiθ(ω)η0(ω), for θ : � → R a measurable function and ω ∈ �.
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Then for almost all ω ∈ � and n ≥ 1,∫
e−(δ+ir)H(g−1ω)+iθ(g−1ω)η0(g

−1ω) dμ∗n(g) = (Sn
rη)(ω)

= λnη(ω)

= einγ||S0||neiθ(ω)η0(ω)

= ei(nγ+θ(ω))
∫

e−δH(g−1ω)η0(g
−1ω) dμ∗n(g).

As η0 is a quasi-interior element by Theorem 3.4, it must hold that η0(ω) > 0 for
almost all ω ∈ �. Hence for almost all ω ∈ � and g ∈ supp(μ∗n),

e−i(rH(g−1ω)−θ(g−1ω)+θ(ω)+nγ) = 1.

If r �= 0, for a fixed ω ∈ � and n ≥ 1, we can choose hn ∈ G such
that e−irH(h−1

n ω) = ei(nγ+π) yet ei(θ(h−1
n ω)−θ(ω)) = 1. Indeed, for a representative

ω = kM for k ∈ K, we may choose hn = kank−1 for an element an ∈ A satis-
fying e−irH(a−1

n ) = ei(nγ+π) as then

H(h−1
n k) = H(a−1

n ) and θ(h−1ω) = θ(ω).

We may choose the hn within a bounded region ofG and therefore upon replacing hn

with a subsequence we may assume that hn converges to some element h ∈ G.
Since μ is non-degenerate we can find some n and g ∈ supp(μ∗n) such that g
becomes arbitrarily close to h and hence for n large enough also to hn. This is a
contradiction.

It remains to assume that λ is in the approximate spectrum. Let η� be as in (4.3).
Since 〈Srη�, λη�〉 = 〈Srη� − λη�, λη�〉 + ||S0||2, it follows that

〈Srη�, λη�〉 �→∞−−−→ ||S0||2
and furthermore exploiting |〈Srη�, λη�〉| ≤ 〈S0|η�|, ||S0|| |η�|〉 one concludes that

lim
�→∞〈S0|η�|, ||S0|| |η�|〉 = ||S0||2

and hence ||S0|η�| − ||S0|| |η�| ||2 ≤ 2||S0||2 − 2〈S0|η�|, ||S0|| |η�|〉 �→∞−−−→ 0.
Denote ψ� = |η�| − 〈|η�|, η0〉η0 ∈ 〈η0〉⊥ ⊂ L2(�). Then it holds that

||(S0 − ||S0||)ψ�||2 = ||S0|η�| − ||S0|| |η�| ||2 �→∞−−−→ 0.

Since ψ� in 〈η0〉⊥ and S0 − ||S0|| is invertible on 〈η0〉⊥ it follows that ||ψ�||2 → 0.
Notice that

||ψ�||22 = 1 − 〈|η�|, η0〉2

and hence 〈|η�|, η0〉 → 1 and further |||η�| − η0||2 → 0. Upon replacing � by a
subsequence,we can assume that |η�| convergespointwise to η0 almost everywhere.
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We further note that for all n ≥ 1, 〈Sn
rη�, λ

nη�〉 → ||S0||2n as � → ∞. Indeed
this follows by induction as

〈Sn
rη� − Sn−1

r λη� + Sn−1
r λη�, λ

nη�〉
= 〈Sn−1

r (Srη� − λη�), λ
nη�〉 + ||S0||2〈Sn−1

r η�, λ
n−1η�〉 → ||S0||2n.

Write λ = eiγ||S0|| and η�(ω) = eiθ�(ω)|η�|(ω) for θ� : � → R a measurable
function and ω ∈ �. Notice that 〈Sn

rη�, λ
nη�〉 equals∫ ∫

e−(δ+ir)H(g−1ω)+i(θ�(g−1ω)−θ�(ω)−nγ)||S0||n |η�|(g−1ω)|η�|(ω) dμ∗n(g)dm�(ω)

and on the other hand

〈Sn
0η0, ||S0||nη0〉 =

∫ ∫
e−δH(g−1ω)||S0||nη0(g

−1ω)η0(ω) dμ∗n(g)dm�(ω).

As

〈Sn
rη�, λ

nη�〉 �→∞−−−→ ||S0||2n = 〈Sn
0η0, ||S0||nη0〉

and since almost surely |η�| → η0, we conclude that for almost all g ∈ supp(μ∗n)
and ω ∈ �,

lim
�→∞ ei(rH(g−1ω)−θ�(g−1ω)+θ�(ω)+γ) = 1.

This leads to a contradiction by a similar argument to the case of the discrete
spectrum.

To prove (4.2), we notice that for an operator T on a Hilbert space H with
||T|| ≤ 1, the value of ||Tn|| 1

n for a given n controls ||Tk|| 1
k for any k ≥ n. Indeed

(cf. [Rem]) if k = �n + j for 0 ≤ j ≤ n − 1 then it holds that

(4.4) ||Tk|| 1
k ≤ (||T�n|| 1

�n )
�n
k ||T|| j

k ≤ (||Tn|| 1
n )1− j

k ||T|| j
k .

Therefore for k large enough in terms of n, ||Tk|| 1
k is at most slightly larger

than ||Tn|| 1
n . Assume now for a contradiction that (4.2) does not hold. Then there

is a sequence (ni)i≥1 with ni → ∞ and for each i there is ri with ||Sni
ri
|| 1

ni = ||S0||. As
the set {c1 ≤ |r| ≤ c2} is compact, we may choose a subsequenceof the i such that ri

converges to r ∈ a∗ with c1 ≤ |r| ≤ c2. We arrive at a contradiction as by (4.4),
||Sni

ri
|| 1

ni is at most marginally larger than ||Sn
r || 1

n for ri close enough to r. Indeed,
choose ε > 0 small enough such that ρ(Sr) + 3ε < ||S0|| and fix n large enough
such that ||Sn

r || 1
n ≤ ρ(Sr) + ε. Then for ri close enough to r, ||Sn

ri
|| 1

n ≤ ρ(Sr) + 2ε

and hence by (4.4), choosing i sufficiently large, ||Sni
ri
|| 1

ni ≤ ρ(Sr) + 3ε < ||S0||, a
contradiction to the assumption. �



RANDOM WALKS ON SYMMETRIC SPACES 769

Proposition 4.2. Let μ be a non-degenerate probability measure with finite

second moment and assume that S0 is quasicompact. Then there is δ0 = δ0(μ) > 0
such that for any r ∈ a∗ with |r| ≤ δ0 the operators Sr and S∗

r have strong spectral

gap.

More precisely there is 0 < δ0 < 1 small enough satisfying the following

properties. For |r| ≤ δ0 we can write

(4.5) Sr = λ(r)Er + Dr and S∗
r = λ(r)E∗

r + D∗
r

where λ(r), Er and Dr and equally λ(r),E∗
r and D∗

r satisfy the assumptions of

Definition 3.3, and the following properties hold:

(i) sup|r|≤δ0 ||Dr|| ≤ (1 − c)||S0|| for c = c(μ) > 0.

(ii) ||Er − E0|| 	μ |r|2 and ||E∗
r − E∗

0 || 	μ |r|2 for |r| ≤ δ0.
(iii) Let ηr be the unique λ(r)-eigenfunction of Sr with unit norm. Then for

small enough r there exists a unique λ(r)-eigenfunction η′
r of S∗

r satisfying
〈η′

r, ηr〉 = 1. Then for ϕ ∈ L2(�),

Erϕ = 〈ϕ, η′
r〉ηr.

(iv) Moreover,

||ηr − η0||2 	μ |r|2, and ||η′
r − η′

0|| 	μ |r|2 for |r| ≤ δ0.

Proof. As μ has finite second moment, the directional derivatives of second
order of the family of operators Sr and S∗

r exist. Therefore the function

r �→ ||Sr − S0||

is C2. Since Srϕ = S−rϕ for ϕ ∈ L2(�), it follows by Taylor’s theorem that
||Sr − S0|| 	μ |r|2 for small r. By Corollary 3.2 and Corollary 3.5, S0 has strong
spectral gap and Sr is quasicompact for small r. Equally by Lemma 3.1(ii) and
since

S∗
0 =

∫
ρ0(g

−1) dμ(g)

is a positive operator too, it follows that S∗
0 has strong spectral gap and S∗

r is
quasicompact for small r.

We show that there is δ0, c > 0 small enough such that for |r| ≤ δ0 and two
orthogonal functions of unit norm ϕ1, ϕ2 ∈ L2(�) it must hold for either i = 1
or i = 2 that

(4.6) ||Srϕi||2 ≤ (1 − c)||S0||.
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Indeed, assume for a contradiction that (4.6) does not hold. Then

||S0ϕi||2 ≥ ||Srϕi||2 − ||(Sr − S0)ϕi||2 ≥ (1 − c)λ(0) + Oμ(|r|2) ≥ (1 − 2c)||S0||
for r small enough. For c small enough, as S0 has strong spectral gap and 〈ϕ1,ϕ2〉=0,
the latter is a contradiction.

Therefore we have shown for |r| ≤ δ0 that the λ(r)-eigenspace of Sr is one-
dimensional and on its complement the norm of Sr is bounded by (1 − c)||S0||.
Choose δ0 > 0 in addition small enough such ||S0||(1− c

2 ) < inf|r|≤δ0 λ(r). Denote
by γ1 : S1 → C a smooth parametrization of the closed circle of radius ||S0||(1− c

2 )
around zero and by γ2 : S1 → C a smooth parametrization of the circle of
radius ||S0||c

2 around ||S0||. Consider the operators

(4.7) Pr = − 1
2πi

∫
γ1

R(z, Sr) dz, and Er = − 1
2πi

∫
γ2

R(z, Sr) dz,

for R(z, Sr) = (Sr − z · Id)−1 the resolvent of Sr at z. Then by [Kat95, Chapter 3,
Theorem 6.17], the operators Er and Pr are commuting projections with Id =
Er + Pr and where ker(Pr) = Im(Pr) is the one-dimensional eigenspace of Sr with
eigenvalue λ(r). By setting Dr = SrPr, we therefore have shown that

Sr = Sr(Er + Pr) = λ(r)Er + Dr

has strong spectral gap and that (i) holds.
We claim that the operators Er and Pr are also C2. Indeed by [DS58, Lemma 3,

Chapter VII.6], it holds that whenever ||Sr − S0|| < ||R(z, S0)||−1, then for any z in
the resolvent set of S0 that z is also in the resolvent set for Sr and that

R(z, Sr) = R(z, S0)
∞∑
n=0

(Sr − S0)
nR(z, S0)

n.

Since Sr is C2 it therefore follows that for r small enough R(z, Sr) is also C2 on γ1

and γ2. Thus ||Pr − P0|| 	μ |r|2 and ||Er − E0|| 	μ |r|2 and the claim for E∗
r is

established similarly.
To show (iii), first assume that such an η′

r exists. Then as Erϕ = 〈ϕ,ψ〉ηr for
some ψ ∈ L2(�) with SrEr = ErSr and E2

r = Er it follows that S∗
rψ = λ(r)ψ and

that 〈ηr, ψ〉 = 1, which implies that ψ = η′
r. By the above, it follows that there is a

unique λ(r)-eigenfunction of S∗
r with unit norm for |r| ≤ δ0, yet we need to show

that there exists one with 〈ηr, η
′
r〉 = 1. For r = 0 this holds as both eigenfunctions

are positive almost surely and for small r we apply (iv) (for η′
r with a fixed norm) to

show that there is a λ(r)-eigenfunction η′
r of S∗

r satisfying 〈ηr, η
′
r〉 �= 0 and therefore

upon normalizing η′
r the claim follows.
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To conclude, we show (iv) for ||ηr − η0||2 and note that the same argument
applies to ||η′

r − η′
0||2. The claim is deduced from (ii) by noticing that for δ0 small

enough, ηr = Erη0

||Erη0|| . Indeed,

||Erη0|| = |||Erη0 − η0 + η0|| ≥ ||η0|| − ||(Er − E0)η0|| > 1
2

for δ small enough. To prove (iv), notice

||ηr − η0||2 ≤
∥∥∥ Erη0

||Erη0|| − E0η0

||Erη0||
∥∥∥

2
+
∥∥∥ E0η0

||Erη0|| − η0

∥∥∥
2

	μ ||Er − E0|| +
∣∣∣ 1
||Erη0|| − 1

∣∣∣ 	μ |r|2,

using that 1 = ||E0η0|| and | 1
||Erη0|| − 1| ≤ | ||E0η0||−||Erη0||

||Erη0|| | 	μ ||Er − E0|| 	μ |r|2.
Proposition 4.3. Let μ be a non-degenerate probability measure with finite

second moment and assume that S0 is quasicompact. Then λ(r) is a C2-function
and the Hessian Hλ,0 of λ at 0 is a negative definite sesquilinear form.

Proof. Using the notation of the proof of Proposition 4.2, it holds that

λ(r) =
〈SrErη0, η

′
0〉

〈Erη0, η
′
0〉

and therefore for r small enough it follows that r �→ λ(r) is a C2-function.
For the remainder we follow roughly the proof of [Bou81, Proposition 2.2.7].

To show that Hλ,0 is negative definite, we fix a non-zero element r ∈ a∗ and
prove that the function ξ(t) = λ(tr) has strictly negative second derivative at zero.
Consider the function hn(t) = 〈Dn

trη0, η
′
0〉. As Dn

tr = (Id − Etr)Dn
tr(Id − Etr) it holds

that

|hn(t)| = |〈Dn
tr(Id − Etr)η0, (Id − Etr)

∗η′
0〉|

≤ ||Dtr||n||(Id − Etr)η0|| ||(Id − Etr)
∗η′

0||
≤ ||Dtr||n||(E0 − Etr)η0|| ||(E0 − Etr)

∗η′
0||

≤ ||Dtr||n||(E0 − Etr)|| ||(E∗
0 − E∗

tr)|| 	 ||Dn
rt||t2,

using Proposition 4.2(ii). In particular, using Proposition 4.2(i),

λ(0)−n|hn(t)| 	μ,r t2

for all n ≥ 1 and small t and therefore λ(0)−nh′′
n(0) is bounded for all n ≥ 1 as

otherwise Taylor’s theorem would yield a contradiction.
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As ξ(0) = λ(0) and ξ′(0) = 0, it follows that

(4.8)

d2

d2t

∣∣∣∣
t=0

(λ(0)−n〈Sn
trη0, η0〉)= d2

d2t

∣∣∣∣
t=0

(λ(0)−nξ(t)n〈Etrη0, η0〉+λ(0)−nhn(t))

=nλ(0)−1ξ′′(0) +
d2

d2t

∣∣∣∣
t=0
〈Etrη0, η0〉+λ(0)−nh′′

n(0).

Note that d2

d2t |t=0〈Etrη0, η0〉 is also bounded as by Proposition 4.2,

|〈Etrη0, η0〉| 	μ,r 1 + t2.

We finally consider the functions fn(t) = λ(0)−n〈Sn
trη0, η0〉 for n ≥ 1. We

claim that the function fn(t) is positive definite. Indeed, for t1, . . . , tm ∈ R

and α1, . . . , αm ∈ C,

λ(0)n
∑
k,�

αkα�fn(tk − t�)

=
∑
k,�

〈Sn
(tk−t�)rαkη0, α�η0〉

=
∑
k,�

∫
αkα�e

−i(tk−t�)rH(g−1k)e−δH(g−1k)η0(g
−1.k)η0(k) dμ(g)dm�(k)

=
∫ ∣∣∣∣∑

k

e−itkrH(g−1k)αk

∣∣∣∣2e−δH(g−1k)η0(g
−1.k)η0(k) dμ(g)dm�(k),

which is positive as η0 ≥ 0. Therefore by Bochner’s theorem and since fn(0) = 1
one may expresses fn as the Fourier transform of a real-valued random variable Xn,
i.e., fn(t) =

∫
eitx dμXn(x). Denote by vn = −if ′

n(0) the expected value of Xn and
by σ2

n = −f ′′
n (0) its variance. For any given c > 0 we notice that P[|Xn−vn|<c]→0

as n → ∞ since by Lemma 4.1 it holds that fn(t) → 0 for t �= 0 as n → ∞ and
therefore μn weakly converges to the zero measure. Applying Chebyschev’s
inequality,

1 − σ2
n

c2 ≤ 1 − P[|Xn − vn| ≥ c] = P[|Xn − vn| < c] → 0

and hence σ2
n ≥ c2/2 for any large enough n. Thus f ′′

n (0) → −∞ which by (4.8)
can only happen if ξ′′(0) < 0. This concludes the proof. �

4.2 The limit measure. In this section we establish the claimed properties
of the functions ψμ,r as stated in (2.26). A multiple of ψμ,0 is the limit function of
Theorem 1.1.

Themain lemmaof this sectionmay be viewed as aLie group analogue of (2.27).
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Lemma 4.4. Let μ and δ0 ∈ (0, 1) be as in Proposition 4.2. Denote

for |r| ≤ δ0 by ηr the unique λ(r)-eigenfunction of Sr with unit norm and by η′
r the

S∗
r -eigenfunction with eigenvalue λ(r) satisfying 〈η′

r, ηr〉 = 1. Then the continuous

function

(4.9) ψμ,r(g) = 〈ηr, ρr(g)η′
r〉

satisfies μ ∗ ψμ,r = ψμ,r ∗ μ = λ(r)ψμ,r. Moreover, for any f ∈ S (X) and h ∈ G,

(4.10)
∫

f · ρG(h)ψμ,r dmG =
∫
�

f̂ (r, ω)(Erρr(h
−1)1)(ω) dm�(ω),

where ρG is the right regular representation of G and we view f as a right K-

invariant eigenfunction on G.

Proof. The relation (4.10) follows as for f ∈ S (X) and h ∈ G,∫
f · ρG(h)ψμ,r dmG = 〈ηr, ρr(f )ρr(h)η′

r〉
= 〈ηr, ρr(f )ρr(mK)ρr(h)η′

r〉
= 〈ηr, ρr(f )〈η′

r, ρr(h
−1)1〉1〉

= 〈〈ρr(h
−1)1, η′

r〉ηr, ρr(f )1〉
=
∫
�

f̂ (r, ω)(Erρr(h
−1)1)(ω) dm�(ω),

having used in the last line that f̂ (r, k) = ρ−r(f )(1) = ρr(f )(1).
To show that μ ∗ψμ,r = λ(r)ψμ,r, we calculate for g ∈ G

(μ ∗ψμ,r)(g) =
∫
ψμ,r(h

−1g) dμ(h)

= 〈ηr, S
∗
rρr(g)η′

r〉
= 〈Srηr, ρr(g)η′

r〉 = λ(r)ψμ,r(g).

A similar argument shows that ψμ,r ∗ μ = λ(r)ψμ,r.
For later reference we show the following lemma.

Lemma 4.5. Let μ be a non-degenerate probability measure on G with finite

second moment and assume that S0 is quasicompact. Denote by δ0 the constant
obtained from Proposition 4.2. Then for |r| ≤ δ0 with δ0 small enough, and g ∈ G,

(4.11) |ψμ,r(g) − ψμ,0(g)| 	 |r|(1 + ||g||).
Moreover, for |r| ≤ δ0 and g ∈ G,

(4.12)
∣∣∣ψμ,r(g) + ψμ,−r(g)

2
− ψμ,0(g)

∣∣∣ 	 |r|2(1 + ||g||2).
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Proof. Observe that

|ψμ,r(g) − ψμ,0(g)| = |〈ηr, ρr(g)η′
r〉 − 〈η0, ρ0(g)η′

0〉|
= |〈ρr(g

−1)ηr, η
′
r〉 − 〈ρ0(g

−1)η0, η
′
0〉|

≤ |〈ρr(g
−1)ηr, η

′
r − η′

0〉| + |〈ρr(g
−1)ηr − ρ0(g

−1)η0, η
′
0〉|

	μ ||η′
r − η′

0||2 + ||(ρr(g
−1) − ρ0(g

−1))η0||2.
Thus in order to prove (4.11), by using Proposition 4.2(iii) it suffices to deal
with ||(ρr(g−1) − ρ0(g−1))η0||2. One calculates that for g ∈ G and ω ∈ �,

(4.13)
|(ρr(g

−1) − ρ0(g
−1))η0(ω)| = |(e−irH(gω) − 1)||e−δH(gω)η0(gω)|

	 |r| ||g|| |e−δH(gω)η0(gω)|.
Equation (4.11) therefore follows by squaring the latter term, integrating over� and
using that ||ρ0(g)η0||2 = ||η0||2 = 1. For (4.12) one performs the same calculation
and notices that∣∣∣(ρr(g) + ρ−r(g)

2
− ρ0(g)

)
η0(ω)

∣∣∣ = |(cos(rH(g−1ω)) − 1)||e−δH(g−1ω)η0(g
−1ω)|.

Then (4.12) follows by using that |(cos(rH(g−1ω)) − 1)| 	 |r|2||g||2. �

4.3 High frequency estimate. For a Schwartz function f ∈ S (X), we
say that the Fourier transform f̂ : a×K → C has compact support if there is R ≥ 0
such that f̂ (r, ω) = 0 for r ≥ R and all ω ∈ �. In this section with make no
notational difference between a function f ∈ S (X) and its G-lift. We first prove a
preliminary lemma on the Fourier transform.

Lemma 4.6. For f ∈ S (X),

||f̂ (r, ·)||L2(�) ≤ ||f ||1.
Proof. We calculate for r ∈ a and ω ∈ � that

|f̂ (r, ω)|2 =

∣∣∣∣ ∫
G

f (g)(ρ−r(g)1)(ω) dmG(g)

∣∣∣∣2
≤

∣∣∣∣ ∫
G

|f (g)| |(ρ−r(g)1)(ω)| dmG(g)
∣∣∣∣2

≤
∣∣∣∣ ∫

G
|f (g)| |(ρ0(g)1)(ω)| dmG(g)

∣∣∣∣2.
Set f1 = |f |

||f ||1 so that it follows that

|f̂ (r, ω)|2 ≤ ||f ||21 ·
∣∣∣∣ ∫

G
(ρ0(g)1)(ω) f1(g) dmG(g)

∣∣∣∣2.
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Recall that if X is a random variable on a probability space then by Jensen’s
inequality E[X]2 ≤ E[X2]. By construction f1dmG is a probability measure and
hence it follows that

|f̂ (r, ω)|2 ≤ ||f ||21
∫

G
(ρ0(g)1)(ω)2 f1(g) dmG(g)

≤ ||f ||21
∫

G

d(αg)∗m�

dm�
(ω) f1(g) dmG(g).

Thus we conclude that

||f̂ (r, ·)||22 ≤ ||f ||21
∫

G

(∫
�

d(αg)∗m�

dm�
(ω) dm�(ω)

)
f1(g) dmG(g)

≤ ||f ||21. �

Lemma 4.7. Let μ be a non-degenerate probability measure on G, assume

that S0 is quasicompact and let δ0 ∈ (0, 1) be the constant from Proposition 4.2.
Let R ≥ 1 and let f ∈ S (X) be a Schwartz function whose Fourier transform

satisfies f̂ (r, ω) = 0 for all |r| ≥ R and ω ∈ �. Then there is cR = cR(μ) > 0
depending on μ and R such that for n ≥ 1,∣∣∣∣n�/2σn

∫
|r|≥δ0

∫
�

f̂ (r, ω) (Sn
rρr(h0)1)(ω) dm�(ω)dνsph(r)

∣∣∣∣ 	μ RdimXe−cRn||f ||1.

Proof. Choose R such that f̂ (r, ω) = 0 for r ≥ R and ω ∈ �. Then using
Cauchy–Schwarz and Lemma 4.1,∣∣∣∣n�/2σn

∫
δ0≤|r|≤R

∫
�
f̂ (r, ω) (Sn

rρr(h0)1)(ω) dm�(ω)dνsph(r)

∣∣∣∣
≤ n�/2

σn

∫
δ0≤|r|≤R

||f̂ (r, ·)||L2(�)||Sn
rρr(h0)1||2 dνsph(r)

≤ n�/2

σn
sup

δ0≤|r|≤R
||Sn

r ||
∫

1≤|r|≤R
||f̂ (r, ·)||L2(�) dνsph(r)

≤ e−cRn
∫
δ0≤|r|≤R

||f̂ (r, ·)||L2(�) dνsph(r)

	μ e−cRn||f ||1
∫

|r|≤R
|c(r)|−2 dma∗(r)

	μ e−cRn||f ||1
∫

|r|≤R
(1 + |r|dimN) dma∗(r) 	μ RdimXe−cRn||f ||1,

using (4.2) in order to choose a constant cR > 0 depending on μ and R such
that ( n�/2

σn supδ0≤|r|≤R ||Sn
r ||) ≤ e−cRn for n large enough and [Hel84, Chapter IV,

Proposition 7.2], asserting that |c(r)|−2 	 1 + |r|dimN for any r ∈ a∗ �
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Towards proving Theorem 1.3, we strengthen Lemma 4.7 under strong assump-
tions on ||Sr||.

Lemma 4.8. Let μ be a non-degenerate probability measure on G. Assume
that S0 is quasicompact and that (sup|r|≥1 ||Sr||) < ||S0||. Let δ0 be the constant

from Proposition 4.2. Then for f ∈ S (X), s > 1
2 dimX and n ≥ 1,∣∣∣∣n�/2σn

∫
|r|≥δ0

∫
�

f̂ (r, ω) (Sn
rρr(h0)1)(ω) dm�(ω)dνsph(r)

∣∣∣∣ 	μ,s e−cn||f ||Hs .

Proof. The left-hand side of the claimed equation is bounded by

n�/2

σn

∫
|r|≥δ0

||f̂ (r, ·)||L2(�)||Sn
rρr(h0)1||2 dνsph(r)

≤ e−cn
∫

|r|≥δ0
||f̂ (r, ·)||L2(�)|r|s|r|−s dνsph(r)

≤ e−cn

√∫
|r|≥δ0

|r|−2s dνsph(r)

√∫
|r|≥δ0

||f̂ (r, ·)||2L2(�)|r|2s dνsph(r)

	δ0,s e−cn||f ||Hs ,

for n large enough and choosing s sufficiently large such that
∫
|r|≥1 |r|−2s dνsph(r) is

bounded. Indeed, by [Hel84, Chapter IV, Proposition 7.2], it holds
that |c(r)|−2 	 1 + |r|dimN for any r ∈ a∗ and therefore |c(r)|−2 	δ0 |r|dimN

for |r| ≥ δ0. Thus∫
|r|≥δ0

|r|−2s dνsph(r) 	δ0

∫
|r|≥δ0

|r|dimN−2s dma∗(r)

and the latter term is < ∞ whenever dimN − 2s < − dimA. �

4.4 Low frequency estimate. Throughout this section we assume that S0

is quasicompact and denote by δ0 ∈ (0, 1) the constant from Proposition 4.2. In this
section we deal with some preliminary estimates for the frequency range |r| ≤ δ0.
We recall that by Proposition 4.2 for |r| ≤ δ0 we have a decomposition

Sr = λ(r)Er + Dr,

where Er and Dr satisfy the properties of Definition 3.3. We first show that we can
ignore the contribution of Dr.

Lemma 4.9. Letμ be a non-degenerate probability measure on G and assume

that S0 is quasicompact. There exists a constant c > 0 depending on μ such that
for all f ∈ S (X) and h0 ∈ G,∣∣∣∣n�/2σn

∫
|r|≤δ0

∫
�

f̂ (r, ω)(Dn
rρr(h0)1)(ω) dm�(ω)dνsph(r)

∣∣∣∣ 	 ||f ||1e−cn.
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Proof. Using Proposition 4.2, we deduce n�/2

σn sup|r|≤δ0 ||Dn
rρr(h0)1|| 	 e−cn

for c > 0 a constant depending on μ. Using Cauchy–Schwarz the term in question
is bounded by

n�/2

σn

∫
|r|≤δ0

||f̂ (r, ·)||L2(�) ||Dn
rρr(h0)1||2 dνsph(r).

The lemma follows as ||f̂ (r, ·)||L2(�) ≤ ||f ||1 by Lemma 4.6 and by estimat-
ing

∫
|r|≤δ0 1 dνsph(r) 	 1 since δ0 ≤ 1. �

Therefore, up to an exponential error term, we only need to deal with

(4.14)
n�/2

σn

∫
|r|≤δ0

λ(r)n
∫
�

f̂ (r, ω)(Erρr(h0)1)(ω) dm�(ω)dνsph(r).

Recall that � = 2p + d for d the rank of G, where the rank is defined as the real
dimension of a. We therefore may rewrite (4.14) by replacing r by r√

n as

(4.15)

np

σn

∫
|r|≤δ0√n

λ
( r√

n

)n∣∣∣c( r√
n

)∣∣∣−2

×
∫
�

f̂
( r√

n
, ω

)
(E r√

n
ρ r√

n
(h0)1)(ω) dm�(ω)dma∗(r).

Towards proving the local limit theorem, we first replace λ(r/
√

n)n

σn by a suitable
function. Before doing so we give some elementary calculative results.

Lemma 4.10. The following inequalities hold:

(i) For any A,B ∈ R,

|eA − eB| ≤ |A − B|max{eA, eB}.
(ii) For any c > 0, r �= 0 and n ≥ 1,

ne−cnr2 ≤ 2
c
e−cnr2/2r−2.

Proof. For the first inequality, by assuming without loss of generality
that A ≥ B we deduce that |eA − eB| ≤ eA|1 − eB−A| and hence reduce to showing
that |1 − eB−A| ≤ |A − B|. For this we use that ex ≥ 1 + x and hence as B − A is
negative,

|1 − eB−A| = 1 − eB−A ≤ −(B − A) = |A − B|.
For the second inequality we apply the observation that e−x ≤ 1

x to deduce that

ne−cnr2/2 ≤n
2

cnr2
=

2
cr2

which implies the claim by multiplication with e−cnr2/2. �
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Lemma 4.11. Assume that μ has finite fourth moment. There are con-

stants c2, c∗ > 0 and a positive definite sesquilinear form Q on a such that
for |r| ≤ δ0, ∣∣∣λ(r)n

σn
− e−c2nQ(r,r)

∣∣∣ 	μ e−c∗n|r|2 |r|2.

In particular, for |r| ≤ δ0
√

n,

∣∣∣λ(r/√n)n

σn
− e−c2Q(r,r)

∣∣∣ 	μ n−1e−c∗|r|2 |r|2.

Proof. As in the proof of Proposition 4.3 one shows that λ(r) is C4 if μ has
finite fourth moment. Indeed, by conducting a Taylor expansion of λ, for small r,

λ(r) = λ(0) − Q(r, r) + OG(|r|4),

where Q(r, r) = −Hλ,0(r, r)/2 for Hλ,0 the Hessian of λ at 0. By Proposition 4.3
the sesquilinear form Q is positive definite. Moreover, we may choose for
small enough r a constant c∗ > 0 such that |λ(r)| ≤ λ(0)(1 − c∗|r|2). Using
that ln(1 + x) ≤ x, it therefore follows that

n ln
(λ(r)
λ(0)

)
≤ −c∗n|r|2.

Throughout, set c2 = 1
λ(0) and choose c∗ ≤ c2. Then

max{e−c2nQ(r,r), en ln( λ(r)λ(0) )} ≤ e−c∗n|r|2 .

Using Lemma 4.10(i) it follows that

∣∣∣λ(r)n
λ(0)n

− e−c2nQ(r,r)
∣∣∣ = |en ln( λ(r)λ(0) ) − e−c2nQ(r,r)|

≤ max{e−c2nQ(r,r), en ln( λ(r)λ(0) )}
∣∣∣n ln

(λ(r)
λ(0)

)
+ c2nQ(r, r)

∣∣∣
	 e−c∗nQ(r,r)n|r|4
	 e−c∗nQ(r,r)|r|2,

by using Lemma 4.10(ii) in the last line by changing the constant c∗. �
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Recall by the definition of the c-function that

(4.16)

|c(r)|−2 =
1

I(δ)

( p∏
�=1

∣∣∣B(m(ri)
2
,

i〈r, r�〉
〈r�, r�〉

)∣∣∣)−2

×
( k∏
�=p+1

∣∣∣B(m(r�)
2

,
m(r�/2)

4
+

i〈r, r�〉
〈r�, r�〉

)∣∣∣)−2

=
1

I(δ)

( p∏
�=1

|�(m(r�)
2 + i〈r,r�〉

〈r�,r�〉 )|2
|�(m(r�)

2 )|2|�( i〈r,r�〉
〈r�,r�〉 )|2

)

×
( k∏
�=p+1

|�(m(r�)
2 + m(r�/2)

4 + i〈r,r�〉
〈r�,r�〉 )|2

|�(m(r�)
2 )|2|�(m(r�/2)

4 + i〈r,r�〉
〈r�,r�〉 )|2

)
,

where B(x, y) =
∫ 1
0 tx−1(1 − t)y−1 dt is the Beta function satisfying

B(x, y) =
�(x)�(y)
�(x + y)

.

Lemma4.12. There is a constant cG depending only onG such that for |r|≤δ0,

|c(r)|−2 = cG

p∏
�=1

|〈r, r�〉|2 + O(|r|2).

In particular, for |r| ≤ δ0
√

n,∣∣∣∣np
∣∣∣c( r√

n

)∣∣∣−2 − cG

p∏
�=1

|〈r, r�〉|2
∣∣∣∣ 	 n−1|r|2.

Proof. As the singularities of the � function are at 0,−1,−2, . . . and �(z)
behaves around 0 like 1

z , it holds that | 1
|�(ix)2 |−x2| 	 x4 and |�( n

2+ix)2−�( n
2 )

2| 	 x2.
Therefore,

∣∣∣ |�(m(r�)
2 + i〈r,r�〉

〈r�,r�〉 )|2
|�(m(r�)

2 )|2|�( i〈r,r�〉
〈r�,r�〉 )|2

− |�(m(r�)
2 )| |〈r, r�〉|2

|�(m(r�)
2 )|2 |〈r�, r�〉|2

∣∣∣ 	 |r|2

and similarly

∣∣∣ |�(m(r�)
2 + m(r�/2)

4 + i〈r,r�〉
〈r�,r�〉 )|2

|�(m(r�)
2 )|2|�(m(r�/2)

4 + i〈r,r�〉
〈r�,r�〉 )|2

− |�(m(r�)
2 + m(r�/2)

4 )|2
|�(m(r�)

2 )|2|�(m(r�/2)
4 )|2

∣∣∣ 	 |r|2.

Using these two estimates in (4.16) the lemma follows for a suitable constant cG.�
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Denote by

γ(r) = cGe−c2Q(r,r)
p∏
�=1

|〈r, r�〉|2

for cG the constant from Lemma 4.12. We then may draw the following corollary.

Corollary 4.13. Assume that μ has finite fourth moment. For |r| ≤ δ0
√

n

and c′ > 0 a constant depending on μ,∣∣∣np

σn
λ
( r√

n

)n∣∣∣c( r√
n

)∣∣∣−2 − γ(r)
∣∣∣ 	μ n−1e−c′ |r|2 .

Proof. Combining Lemma 4.11 andLemma 4.12, for a suitable constant c′>0,

∣∣∣np

σn
λ
( r√

n

)n∣∣∣c( r√
n

)∣∣∣−2 − γ(r)
∣∣∣ ≤

∣∣∣λ( r√
n )

n

σn
− e−c2Q(r,r)

∣∣∣∣∣∣npc
( r√

n

)−2∣∣∣
+
∣∣∣∣np

∣∣∣c( r√
n

)∣∣∣−2 − cG

p∏
�=1

|〈r, r�〉|2
∣∣∣∣e−c2Q(r,r)

	μ n−1e−c′|r|2 ,

using that |c( r√
n )|−2 − γ(r)| 	μ |r|O(1) which equally follows by Lemma 4.12. �

4.5 Proof of Theorem 1.2 and Theorem 1.3. Throughout this section
assume that μ has finite fourth moment. We are now in a suitable position to
prove Theorem 1.2 and Theorem 1.3. Let f ∈ S (X). Recall that we expressed
in (2.21) the term in question n�/2

σn

∫
f (g.x0) dμ∗n(g) for x0 = h0K by using the

Fourier inversion formula as

n�/2

σn

∫
a∗

∫
�

f̂ (r, ω)(Sn
rρr(h0)1)(ω) dm�(ω)dνsph(r).

The latter term is decomposed into the high frequency (2.22) and low frequen-
cy (2.23) component for δ0 ∈ (0, 1) small enough such that Lemma 4.2 holds.
Under the assumption sup|r|≥1 ||Sr||, the high frequency term (2.22) is dealt with
by Lemma 4.8 collecting an error term of size Oμ(e−cn||f ||Hs ) for s = 1

2(dimX +1).
Without this assumption, one requires that the Fourier transform of f is compactly
supported yielding, by Lemma 4.7, an error term of size Oμ,f (e−cf n||f ||1).

For the low frequency term, one applies Lemma 4.9, thereby collecting an
error term of size Oμ(e−cn||f ||1). It remains to deal with (4.14), which after the
substitution r to n√

r is of the form (4.15). Using Lemma 5.9 and Corollary 4.13,
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we arrive at the term∫
|r|≤δ0√n

γ(r)
∫
�

f̂
( r√

n
,ω

)
(E r√

n
ρ r√

n
(h)1)(ω) dm�(ω)dma∗(r)

=
∫

f (g)ρG(h−1)
(∫

|r|≤δ0√n
γ(r)ψμ, r√

n
(g) dma∗(r)

)
dmG(g)

admitting an additional error term of size

	μ n−1||f ||1
∫

|r|≤δ0√n
e−c′ |r|2 dma∗(r) 	μ n−1||f ||1,

using that the latter integral converges.
We define for n ≥ 1 the continuous real-valued functions on G,

ψn(g) =
∫

|r|≤δ0√n
γ(r)ψμ, r√

n
(g) dma∗(r)

and

ψ0(g) = cμ ·ψμ,0(g) for cμ =
∫

r∈a∗
γ(r) dma∗(r).

While ψμ, r√
n

is not necessarily real-valued, the function ψn is as ψμ, r√
n

= ψμ,− r√
n

and the definition of ψn is invariant under r �→ −r.
We have so far collected a total error of size

Oμ(n
−1||f ||1 + e−cn||f ||Hs )

under the assumption sup|r|≥1 ||Sr|| < ||S0|| and for f ∈ S (X) and

Oμ(n
−1||f ||1) + Oμ,f (e

−cf n||f ||1)
without the latter assumption yet requiring that the Fourier transform of f has
compact support. To conclude the proof, we show the following lemma:

Lemma 4.14. For g ∈ G and n ≥ 1,

|ψn(g) − ψ0(g)| 	μ n−1(1 + ||g||2).

Proof. Since γ(r) 	μ e−c′ |r|2 for a suitable constant c′ it follows that

|ψμ,0(g)|
∫

|r|>δ0√n
γ(r) dma∗(r)

decays exponentially fast in n (using that |ψμ,0(g)| = |〈η0, ρ0(g)η′
0〉| 	μ 1) and

therefore we need to deal with

(4.17)

∣∣∣∣ψn(g) −
∫

|r|≤δ0√n
γ(r)ψμ,0(g) dma∗(r)

∣∣∣∣.
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By Lemma 4.5 it holds that

∣∣∣ψμ, r√
n
(g) + ψμ,− r√

n
(g)

2
− ψμ,0(g)

∣∣∣ 	μ n−1|r|2(1 + ||g||2)

and therefore using again that γ(r) 	μ e−c∗|r|2 and as the defining integral of ψn is
invariant under replacing r by −r,

(4.17) 	
∫

|r|≤δ0√n
γ(r)|ψμ, r√

n
(g) − ψμ,0(g)| dma∗(r)

	μ n−1(1 + ||g||2)
∫

|r|≤δ0√n
γ(r)|r|2 dma∗(r)

	μ n−1(1 + ||g||2).
�

Recall that we have defined

||f ||∗ =
∫

|f (x)|(1 + dX(x, o)2) dmX(x) =
∫

|f (g)|(1 + ||g||2) dmG(g),

where we make no notational difference between f and its lift to G. To conclude
the proof of (1.6) and (1.9) we estimate∣∣∣∣ ∫ f (g.x0)ψn(g) dmG(g) −

∫
f (g.x0)ψ0(g) dmG(g)

∣∣∣∣
≤

∫
|f (g)||ψn(gh−1

0 ) −ψ0(gh−1
0 )| dmG(g)

	μ n−1
∫

|f (g)|(1 + ||gh−1
0 ||2) dmG(g)

	μ n−1
∫

|f (g)|(1 + ||g||2 + ||h0||2) dmG(g)

	μ n−1||f ||∗ + n−1dX(x0, o)2||f ||1,

having used in the penultimate line that ||gh−1
0 || ≤ ||g|| + ||h−1

0 || by [BQ16, Corol-
lary 7.20] as G is connected. This concludes the proof of Theorem 1.2 and of (1.9).
The final claim of Theorem 1.3 is proved in the following lemma:

Lemma 4.15. Let G be a non-compact connected semisimple Lie group with
finite center and let μ be a non-degenerate probability measure on G with finite

second moment. Assume that μ satisfies one of the following properties:

(i) μ is spread out.

(ii) μ is bi-K-invariant, i.e., mK ∗ μ ∗ mK.

Then S0 is quasicompact and (sup|r|≥1 ||Sr||) < ||S0||.
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Proof. The claim of the lemma was established for spread out measures in
[Bou81, Section 2.2]. It remains to treat the case where μ is bi-K-invariant. Note
that as Sr = ρr(mK) ∗ Sr ∗ ρr(mK) it holds that Sr1� = λ(r)1� and Sr〈1�〉⊥ = {0}
and therefore λ(r) =

∫
φr(g) dμ(g). The claim now follows as φr(g) → 0 (cf.,

for example, [FM21, Appendix A]) for fixed g ∈ G\K and r → ∞ and using
that μ(G\K) > 0 as μ is non-degenerate. �

4.6 Proof of Theorem 1.1.

Lemma 4.16. Let G andμ be as in Theorem 1.1. Let f ∈ S (X) be a Schwartz

function whose Fourier transform is compactly supported. Then

lim
n→∞

n�/2

σn

∫
f (g.x0) dμ∗n(g) =

∫
f (g.x0)ψ0(g) dmG(g).

Proof. The proof is as that of Theorem 1.3 expect that we cannot use Lem-
ma 4.11. Revising the argument of Lemma 4.11, it follows that for the positive
definite quadratic form Q from Lemma 4.11, under the assumption that μ has
finite second moment, it holds that λ(r) = λ(0) − Q(r, r) + o(|r|2) and therefore
for |r| ≤ δ0

√
n,

lim
n→∞

λ(r/
√

n)n

σn
= e−c2Q(r,r) and

λ(r/
√

n)n

σn
	 ec′|r|2

for a suitable constant c′ > 0. Similarly to Lemma 4.13,

lim
n→∞

np

σn
λ
( r√

n

)n∣∣∣c( r√
n

)∣∣∣−2
= γ(r).

Arguing as in the proof of Theorem 1.2, it therefore follows by dominated conver-
gence that

lim
n→∞

n�/2

σn

∫
f (g.x0) dμ∗n(g) = lim

n→∞ (4.14)

=
∫

r∈a∗
γ(r)

∫
�

f̂ (0, ω)(E0ρ0(h0)1)(ω) dm�(ω)dma∗(r)

=
∫

f (g.x0)ψ0(g) dmG(g). �

Lemma 4.17. Let f ∈ S (X). Then

lim sup
n→∞

∣∣∣∣n�/2σn

∫
f (g.x0) dμ∗n(g)

∣∣∣∣ 	 ||f ||1,

where the implied constant depends only on G.
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Proof. One may reduce to functions f ≥ 0. By covering the latter function
suitably by a linear combination of characteristic functions, it suffices to show the
claim for f = 1Bε(x) with ε > 0 small and x ∈ X. By [And04, Theorem 5.7] there
is a positive function h ∈ S (X), whose Fourier transform has compact support,
satisfying 1Bε(x) ≤ h and ||h||1 	 volX(Bε). The lemma follows by applying
Lemma 4.16 to h. �

Proof of Theorem 1.1. Let δ� ∈ S (X) be an approximation to the identity
on G that is bi-K-invariant and whose Fourier transformhas compact support. Such
functions exist by choosing a sequenceω� of smooth bi-K-invariant approximations
to the identity that are supported on smaller and smaller balls around e ∈ G.
As a Schwartz function is characterized by its Fourier transform, it suffices to
determine δ̂�. Indeed one may choose δ̂� to be equal to ω̂� in a sufficiently large
ball around the identity and to decay to zero rapidly outside of it. One then readily
checks that δ� satisfies the required properties.

Then for f ∈ S (X), it holds for r ∈ a∗ and k ∈ � that

f̂ ∗ δ�(r, k) = (ρ−r(f ∗ δ�)1)(k) = (ρ−r(f )ρ−r(δ�)1)(k) = f̂ (r, k)δ̂�(r).

Therefore the Fourier transform of f ∗ δ� has compact support.
Combining Corollary 4.16 and Lemma 4.17, for f ∈ S (X),

n�/2

σn

∫
f (g.x0) dμ∗n(g)

=
n�/2

σn

∫
(f ∗ δ�)(g.x0) dμ∗n(g) +

n�/2

σn

∫
(f − f ∗ δ�)(g.x0) dμ∗n(g)

=
∫

f (g.x0)ψ0(g) dmG(g) + Oμ(||f − f ∗ δ�||1) + of,�(1)

having usedLemma4.17 and that | ∫ (f−f∗δ�)(g)ψ0(gh−1
0 ) dmG(g)| 	μ ||f−f∗δ�||1

as ψ0 is bounded. The claim follows by choosing � sufficiently slowly increasing
in n. �

5 Quasicompactness of S0

In this section we discuss how to establish quasicompactness of S0 under strong
Diophantine assumption. The reader may recall the Littlewood–Paley decomposi-
tion L2(K) =

⊕
�≥0 V� (see (2.6)), where the space of functions V� can be pictured

as oscillating with frequency 2�. The main result of this section states that under
suitable assumptions, the operator S0 has small norm on the space of functions
with high enough oscillations.
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Recall that we denoted by ρ+
0 the Koopman representation induced by the G

action on K, which contains the zero principal series ρ0 as a subrepresentation and
write S+

0 = ρ+
0(μ). Instead of considering S0, we study S+

0 , which leads to stronger
statements.

Theorem 5.1. Let G be a non-compact connected simple Lie group with finite

center. For c1, c2 > 0 there exists ε0 = ε0(c1, c2) > 0 such that the following holds.
For any 0 < ε < ε0 and any symmetric and (c1, c2, ε)-Diophantine probability

measure μ there is L = L(c1, c2) ∈ Z≥1 such that for ϕ ∈ ⊕
�≥L V�,

(5.1) ||S+
0ϕ||2 ≤ 1

4
||ϕ||2.

Theorem 5.1 will be deduced in Section 5.1 using results and ideas from
[BISG17], thereby exploiting that the measureμ has high dimension (2.28) as well
as a Littlewood–Paley decomposition and a mixing inequality on G. Under the
additional assumption that K is semisimple, one may instead follow Bourgain’s
[Bou12] original ideas and improve (5.1).

Theorem 5.2. Let G be a non-compact connected simple Lie group with
finite center and maximal compact subgroup K. Assume that K is semisimple.

For c1, c2 > 0 there exists ε0 = ε0(c1, c2) > 0 such that the following holds:
For any 0 < ε < ε0 and any symmetric and (c1, c2, ε)-Diophantine probability

measure μ there is L = L(c1, c2) ∈ Z≥1 such that for ϕ ∈ ⊕
�≥L V�,

(5.2) ||S+
0ϕ||2 ≤ εOc1 ,c2 (1)||ϕ||2.

The proof of Theorem 5.2 was exposed in Section 2.2. As in [BISG17] we
exploit that μ has high dimension, yet we work with the Littlewood–Paley de-
composition on K and use that the averages of matrix coefficients of V� are small
(Proposition 3.11). From these results, one may easily deduce that S0 and S+

0 are
quasicompact, therefore also implying Theorem 1.7.

Corollary 5.3. Let G be a non-compact connected simple Lie group with finite
center and maximal compact groupK. For c1, c2 > 0 there exists ε0 = ε0(c1, c2)>0
such that the following holds. For any 0 < ε < ε0 and any symmetric and
(c1, c2, ε)-Diophantine probability measure μ, the operators S0 and S+

0 are quasi-

compact.

Proof. As ||S0|| = ||S+
0 || (by [Gui80, Section D]) and since ρ+

0 is a subrep-
resentation of ρ0, it suffices to show that S+

0 is quasicompact. By Lemma 3.1,
the estimate (5.1) implies that ρess(S+

0) ≤ 1
4 . As for ε > 0 small enough,

||√α′
g − 1||∞ 	 |δ| ||g|| 	 εO(1) for g ∈ Bε, it holds that ||S+

0 || ≥ 1 − εO(1)

and hence the claim follows. �
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We next explain how to deduce from (5.1) that the Furstenberg measure is
absolutely continuous. Given a non-degenerate probability measure, we study the
operator

T0 : L2(�) → L2(�), ϕ �→ T0ϕ =
∫
ϕ ◦ αg dμ(g).

As we discuss in the proof of Corollary 5.4, it is shown in [BQ18] that if
ρess(T0) < 1, then the Furstenberg measure of μ is absolutely continuous. The
following corollary is also necessary to establish Theorem 1.8:

Corollary 5.4. Let G be a non-compact connected simple Lie group with
maximal compact subgroup K. For c1, c2 > 0 there exists ε0 = ε0(c1, c2) > 0
such that the following holds. For any 0 < ε < ε0 and any symmetric and
(c1, c2, ε)-Diophantine probability measure μ there is L = L(c1, c2) ∈ Z≥1 such

that

(5.3) ||T0ϕ||2 ≤ 1
2
||ϕ||2 for ϕ ∈

(
L2(�) ∩ ⊕

�≥L

V�

)
.

Then ρess(T0) < 1 and the Furstenberg measure of μ is absolutely continuous.

Proof. Using as in the proof of Corollary 5.3 that

||√α′
g − 1||∞ 	 |δ| ||g|| 	 εO(1)

for g ∈ Bε and ε > 0 small enough, it follows that ||S0 − T0|| ≤ εO(1). There-
fore (5.3) is implied by (5.2). By Lemma 3.1 we hence conclude that ρess(T0) < 1.

We finally review the argument from [BQ18] to show that the Furstenberg
measure of μ is absolutely continuous under the assumption that ρess(T0) < 1.
Indeed as T01 = 1, it follows that 1 is in the discrete spectrum of T0. If ρess(T0) < 1,
one furthermore concludes (cf. [BQ18, Fact 2.3]) that 1 is in the discrete spectrum
of the adjoint operator T∗

0 and therefore there is a function ψF ∈ L2(�) satisfying
T∗

0ψF = ψF. One then readily checks that ψFdm� is a μ-stationary measure and
thus by uniqueness of the Furstenberg measure it holds that dνF = ψFdmK . �

We comment on the organization of this section. Theorem 5.1 is proved in
Section 5.1. The proof of Theorem 5.2 comprises two steps. In Section 5.2 we
first establish, using the flattening results from Theorem 3.10, that S+

0 |V� has small
operator norm. In Section 5.3 we complete the proof of Theorem 5.2 by using
that S+

0V� and V�′ are almost orthogonal. Finally in Section 5.4 we show how to
deduce that the Furstenberg measure has a Cm(K) density.
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5.1 Proof of Theorem 5.1. Write T+
0 ϕ =

∫
ϕ ◦ αg dμ(g) for ϕ ∈ L2(K).

Since ||S+
0 − T+

0 || ≤ εO(1), as argued in the proof of Corollary 5.4, in order to prove
Theorem 5.1 it suffices to show that

(5.4) ||T+
0 ϕ||2 ≤ 1

8
||ϕ||2

for ϕ ∈ ⊕
�≥L V� and L = L(c1, c2).

We proceed similarly to the proof of [BISG17, Corollary C]. Indeed, we reduce
the problem at hand to studying the regular representation on L2(G). One then
uses the following result of [BISG17], which may be considered as their core
technical contribution, which uses that μ has high dimension as well as a novel
Littlewood–Paley decomposition and a mixing inequality on G. We rephrase their
result using the notion of (c1, c2, ε)-Diophantine measures.

To introduce notation, for a measurable subset B ⊂ G we consider the norm

||f ||2L2(B) =
∫

B
|f (g)|2 dmG.

Theorem 5.5 ([BISG17, Theorem 6.7]). Let G be a connected simple Lie

group with finite center and B ⊂ G a measurable set with compact closure. Let

c1, c2 > 0. Then there is ε0 = ε0(B, c1, c2) > 0 such that the following holds.
For any 0 < ε < ε0 and any symmetric and (c1, c2, ε)-Diophantine probability

measure μ there is a finite-dimensional subspace VB ⊂ L2(B) such that

||λG(μ)|(VB)⊥||op,L2(B) ≤ εOB,c1 ,c2 (1).

In order to apply Theorem 5.5, we use the following lemma, which is inspired
by the proof of [BISG17, Corollary C]. Denote by πK : G → K = G/P+ the natural
projection.

Lemma 5.6. Denote B = {g ∈ G : |κ(g)| ≤ c} for c > 0. For small
enough c > 0 there is a constant D > 1 depending on G and c > 0 such for

all ϕ ∈ L2(K),

(5.5) D−1||ϕ||L2(K) ≤ ||ϕ ◦ πK||L2(B) ≤ D||ϕ||L2(K).

Proof. Recall that we denote P+ = AN. By [BdlHV08, Theorem B.1.4] there
is a continuous function ρ : G → R>0 such that

(5.6)
∫

G
f (g)ρ(g) dmG(g) =

∫
K

∫
P+

f (kp) dmP(p)dmK(k)

for all f ∈ L1(G) with compact support. It moreover holds that α′
g(xP

+) = ρ(gx)
ρ(x)

for all x, g ∈ G. For c small enough 0 < ρ(g) < 1 for all g ∈ B and therefore
infg∈B |1 − ρ(g)| > 0. We choose the constant D′ such that

sup
g∈B

|1 − ρ(g)| ≤ D′.



788 C. KOGLER

We then calculate for ϕ1, ϕ2 ∈ L2(K), using (5.6),

|mG(B)〈ϕ1, ϕ2〉L2(K) − 〈ϕ1 ◦ πK, ϕ2 ◦ πK〉L2(B)|
≤
∣∣∣∣ ∫

K

∫
P+
ϕ1(k)ϕ2(k)1B(p) dmP(p)dmK(k) −

∫
1B(g)ϕ1(πK(g))ϕ2(πK(g))dmG(g)

∣∣∣∣
≤
∣∣∣∣ ∫

B
ϕ1(πK(g))ϕ2(πK(g))(1 − ρ(g)) dmG(g)

∣∣∣∣
≤||ϕ1 ◦ πK||L2(B)

√∫
B
|ϕ2(πK(g))|2 |1 − ρ(g)|2 dmG(g)

≤D′||ϕ1 ◦ πK||L2(B)||ϕ2 ◦ πK||L2(B).

By a similar argument we may also estimate the latter term by

mG(B)D′||ϕ1||L2(K)||ϕ2||L2(K).

Setting ϕ = ϕ1 = ϕ2 the claim is readily implied by choosing D suitably in terms
of D′ and mG(B). �

Throughout the following denote by B = {g ∈ G : |κ(g)| ≤ c} a set from
Lemma 5.6 such that (5.5) holds. We are now in a suitable position to apply
Theorem 5.5. Indeed for ϕ ∈ L2(K) it holds by (5.5) that

(5.7) ||T0ϕ||L2(K) ≤ D||(T0ϕ) ◦ πK ||L2(B) = D||λG(μ)(ϕ ◦ πK)||L2(B).

Let VB ⊂ L2(B) be the finite-dimensional subspace of Theorem 5.5. We then may
choose L large enough such that if ϕ ∈ ⊕

�≥L V� then

(5.8) ||ϕ ◦ πK − (ϕ ◦ πK)(VB)⊥||L2(B) ≤ 1
16D2 ||ϕ ◦ πK||L2(B),

where (ϕ ◦ πK)(VB)⊥ is the projection of ϕ ◦ πK onto (VB)⊥. Indeed this follows
using (5.6) and that VB is finite-dimensional.

We conclude using Theorem 5.5, (5.5), (5.7) and (5.8):

||T0ϕ||L2(K) ≤D||λG(μ)(ϕ ◦ πK)||L2(B)

≤D||λG(μ)(ϕ ◦ πK−(ϕ ◦ πK)(VB)⊥)||L2(B) + D||λG(μ)(ϕ ◦ πK)(VB)⊥||L2(B)

≤ 1
16D

||ϕ ◦ πK||L2(B) + DεOc1 ,c2 (1)||ϕ ◦ πK||L2(B)

≤
( 1

16
+ D2εOc1 ,c2 (1)

)
||ϕ||L2(K),

showing (5.4) by choosing ε small enough in terms of c1 and c2. The proof of
Theorem 5.1 is complete.



RANDOM WALKS ON SYMMETRIC SPACES 789

5.2 Operator norm estimate for S+
0 on V�. In this section we prove the

following proposition:

Proposition 5.7. For c1, c2 > 0 there exists ε0 = ε0(G, c1, c2) > 0 such
that the following holds. For any 0 < ε < ε0 and any symmetric and (c1, c2, ε)-
Diophantine probability measure μ, there is L = L(G, c1, c2) ∈ Z≥1 such
that ||S+

0 |V� ||op ≤ εOc1 ,c2 (1) for � ≥ L.

Recall that as introduced in Section 3.4,

Pδ =
1Bδ

mG(Bδ)
.

For the proof of Proposition 5.7, one estimates by the triangle inequality for n ≥ 1
and ϕ ∈ V�,

(5.9) ||(S+
0)

nϕ||2 ≤ ||(S+
0)

nϕ− ρ+
0(μ

∗n ∗ Pδ)ϕ||2 + ||ρ+
0(μ

∗n ∗ Pδ)ϕ||2.

We aim to show that (5.9) is very small for a suitably chosen n and δ. For the first
term of (5.9), we use that the Lipschitz constant of ϕ is � ||γ||O(1). Therefore, a
δ-perturbation of (S+

0)
nϕ = ρ+

0(μ
∗n)ϕ is small provided we choose δ miniscule in

terms of �.
The second term of (5.9) is dealt with by using that μ has high dimension.

Indeed by Lemma 3.10 it will follow that μ∗n ∗ Pδ has small || · ||∞-norm for n
chosen in terms of δ. This will allow us to compare ||ρ+

0(μ
∗n∗Pδ)ϕ||2 to the average

estimate of matrix coefficients

1
mG(BR)

∫
BR

|〈ρ+
0(g)ϕ, ϕ〉| dmG(g) 	 2−�/2||ϕ||2.

that was discussed in Section 3.5.
We proceedwith some preliminary lemmas used in the proof of Proposition 5.7.

First, we estimate how much ρ+
0(g)ϕ differs from ϕ, given that ϕ ∈ V� and g ∈ Bδ.

Lemma 5.8. Fix � ≥ 0. Then for ϕ ∈ V� and 0 < δ 	 2−�, it holds for g ∈ Bδ
that

||ρ+
0(g)ϕ− ϕ||2 	 eO(1)�δO(1)||ϕ||2.

Proof. We first fix γ ∈ C ∩ I∗ and denote, as usual, by πγ the associated
irreducible representation and let v1, . . . , vn ∈ πγ be an orthonormal basis of the
representation space of πγ. For k ∈ Bδ in K for δ small enough, it holds by [dS13,
Lemma 3.1] that ||πγ(k) − Idπγ ||op 	 dK(k, e)||γ||. Indeed, upon conjugation,
we can assume that k is inside the maximal torus T of K and hence we can
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write k = eX for X ∈ t = Lie(T) with ||X|| 	 dK(k, e). With these assumptions,
the eigenvalues of πγ(k) − Idπγ can be calculated as eγ

′(X) − 1 for γ′ the weights
of πγ. Choosing δ 	 2−�, and therefore having |γ′(X)| 	 1, we can bound
maxγ′ |eγ′(X) − 1| 	 maxγ′ |γ′(X)| 	 dK(g, e)||γ||, showing the claim.

Denote by ψ the matrix coefficient k �→ √
dπ〈πγ(k)vi, vj〉, satisfying ||ψ||2 = 1.

We first show that ||ρ+
0(g)ψ− ψ||2 	 δO(1)||γ||O(1) for g ∈ Bδ. Indeed, using as in

the proof of Corollary 5.3 that ||√α′
g(k) − 1||∞ 	 δO(1) and Lemma 3.7,

|(ρ+
0(g)ψ)(k) − ψ(k)| = |(√α′

g(k) − 1)ψ(g−1.k)| + |ψ(g−1.k) − ψ(k)|
	 δO(1)|ψ(g−1.k)| +

√
dπ||πγ(g−1.k) − πγ(k)||op

	 δO(1)|ψ(g−1.k)| + δO(1)||γ||O(1),

which implies the claim using |ψ(g−1.k)| ≤ |ψ(g−1.k) − ψ(k)| + |ψ(k)|.
To prove the lemma, denote by (ψi)i∈I an orthonormal basis of V� with functions

as in the previous paragraph. Then |I| 	 eO(1)� and for ϕ ∈ V� we decom-
pose ϕ =

∑
i∈I aiψi, implying using Cauchy–Schwarz

||ρ+
0(g)ϕ− ϕ||2 ≤ ∑

i∈I

|ai| ||ρ+
0(g)ψ− ψ||2 	 eO(1)�δO(1)||ϕ||2. �

We next show how to compare π(ν)ϕ with π(ν ∗ Pδ)ϕ for a suitable vector ϕ
and a unitary representation π and probability measure ν.

Lemma 5.9. Let (π,H ) be a unitary representation of G and let δ > 0.
Fix ϕ ∈ H . Assume that ||π(g)ϕ − ϕ|| ≤ Cδ||ϕ|| for all g ∈ Bδ and Cδ > 0 a

constant. Then for any probability measure ν,

||π(ν)ϕ− π(ν ∗ Pδ)ϕ|| ≤ Cδ||ϕ||.
Proof. Using Fubini’s theorem and that 1Bδ(g)(h) = 1Bδ(h)(g),

π(ν)ϕ =
∫

1
mG(Bδ(e))

(∫
1Bδ(g)(h)π(g)ϕ dmG(h)

)
dν(g)

=
∫

1
mG(Bδ(e))

(∫
Bδ(h)

π(g)ϕ dν(g)
)
dmG(h).

Furthermore, by the assumption and using that Bδ(h) = hBδ(e) (the metric on G is
left invariant),∥∥∥∥ ∫

Bδ(h)
π(g)ϕ dν(g) − ν(Bδ(h)) · π(h)ϕ

∥∥∥∥ ≤
∫

Bδ(h)
||(π(g) − π(h))ϕ|| dν(g)

≤
∫

Bδ(h)
||π(h)(π(h−1g) − Id)ϕ|| dν(g)

≤ ν(Bδ(h))Cδ||ϕ||.
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Finally, as (ν ∗ Pδ)(h) = ν(Bδ (h))
mG(Bδ(e))

,

||π(ν)ϕ− π(ν ∗ Pδ)ϕ||
=
∥∥∥∥ ∫ 1

mG(Bδ(e))

(∫
Bδ(h)

π(g)ϕ dν(g)
)
dmG(h) −

∫
π(h)ϕ (ν ∗ Pδ)(h) dmG(h)

∥∥∥∥
≤

∫
1

mG(Bδ(e))

∥∥∥∥ ∫
Bδ(h)

π(g)ϕ dν(g) − ν(Bδ(h)) · π(h)ϕ
∥∥∥∥dmG(h)

≤ Cδ||ϕ|| ·
∫

ν(Bδ(h))
mG(Bδ(e))

dmG(h) = Cδ||ϕ||,

using in the last line that by Fubini’s theorem
∫

ν(Bδ (h))
mG(Bδ(e))

dmG(h) = 1 as ν is a
probability measure. �

Proof of Proposition 5.7. Let γ > 0 be a fixed constant to be determined
later. Then by Proposition 3.10 there is ε0 = ε0(c1, c2) > 0 and C0 = C0(c1, c2) > 0

such that for δ > 0 small enough it holds that ||(μ∗n)δ||2 ≤ δ−γ for any n ≥ C0
log 1

δ

log 1
ε

and
(μ∗n)δ = μ∗n ∗ Pδ.

Let ϕ ∈ V� with ||ϕ||2 = 1. Then by the triangle inequality,

||(S+
0)

nϕ||2 ≤ ||(S+
0)

nϕ− ρ+
0(μ

∗n ∗ Pδ)ϕ||2 + ||ρ+
0(μ

∗n ∗ Pδ)ϕ||2.
The first term can be estimated using Lemma 5.8 and Lemma 5.9 as

||(S+
0)

nϕ− ρ+
0(μ

∗n ∗ Pδ)ϕ||2 	 eO(1)�δO(1)

assuming that δ 	 2−�. For the second term, first notice that by applying Cauchy–
Schwarz it follows that ||(μ∗n)δ ∗ (μ∗n)δ||∞ ≤ ||(μ∗n)δ||22. Then with Theorem 3.10
and Proposition 3.11,

||ρ+
0(μ

∗n ∗ Pδ)ϕ||22 = 〈ρ+
0(μ

∗n ∗ Pδ ∗ μ∗n ∗ Pδ)ϕ, ϕ〉
≤

∫
|〈ρ+

0(g)ϕ, ϕ〉| ((μ∗n)δ ∗ (μ∗n)δ)(g) dmG(g)

≤ δ−2γ
∫

B4nε

|〈ρ+
0(g)ϕ, ϕ〉| dmG(g)

	 δ−2γmG(B4nε)e
−O(1)� ≤ δ−2γeO(1)nεe−O(1)�.

Let n be a power of 2 satisfying n � C0
log 1

δ

log 1
ε

. Then by using that S+
0 is self-adjoint,

it follows by induction on k with 2k = n that ||(S+
0)ϕ||n2 ≤ ||(S+

0)
nϕ||2. Therefore it

follows for δ 	 2−� that

||S+
0 |V� ||op ≤ D

1
n max{e σ1�

n δ
σ2
n , δ−

γ
n e− σ3�

n },
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forD, σ1, σ2, σ3>0 absolute constants. We choose δ = e−max{1, 2σ1
σ2

}� so that δ	2−�

and e
σ1�
n δ

σ2
n ≤ e− σ1�

n . We furthermore set

γ =
σ3

2 max{1, 2σ1
σ2

}

and therefore δ−
γ
n e− σ3�

n = e− σ3�
2n . With these choices,

||S+
0 |V� ||op ≤ D

1
n e−O(1) �n .

In addition, we make � large enough in terms of c1 and c2 such that δ becomes
small enough for Proposition 3.10 to hold. To conclude, it holds by construction

that �n �c1,c2 log 1
ε

and therefore e−O(1) �n = εOc1 ,c2 (1) and similarly D
1
n = ε−

Oc1 ,c2 (1)

� , so
choosing � additionally larger than a further constant depending on c1 and c2, the
claim follows. �

5.3 Proof of Theorem 5.2. Having established that ||S+
0 |V� ||op is small

for L ≥ L(c1, c2), we aim to convert this to an estimate that ||S+
0 |⊕�≥L V� ||op is also

small. We use that the spaces S+
0V� and V�′ are almost orthogonal for � �= �′ as

shown in Lemma 5.11.
The Lie algebra of K is denoted k and we also write λK for the Lie algebra

representation induced by the regular representation λK on K. Indeed, for a smooth
function ϕ on K the function (λK(X)ϕ)(k) = limt→0

1
t (ϕ(e

−tXk) − ϕ(k)) with X ∈ k

and k ∈ K is the directional derivative of ϕ in the direction −X.
As in [Bou12], we use an argument based on partial integration to show thatS+

0V�
and V�′ are almost orthogonal. For a general manifold there is no suitable partial
integration formula. However, for compact Lie groups we overcome this issue by
exploiting that the Laplacian acts as a scalar on functions on L2(K) induced by
the representation πγ. Indeed, for a fixed orthonormal basis X1, . . . ,XdimK of k

recall that the Casimir element is defined as 
 = −∑
i Xi ◦ Xi. We then use as

replacement to partial integration that

(5.10) 〈ϕ1, λK(
)ϕ2〉 =
∑

i

〈λK(−Xi)ϕ1, λK(Xi)ϕ2〉.

In order to give a suitable estimate for (5.10), we first analyse ||λK(X)ϕ||2 for X ∈ k.

Lemma 5.10. Let � ≥ 0 and ε > 0. Then for ϕ ∈ V�, g ∈ Bε and X ∈ k of

unit norm,

||λK(X)ϕ||2 	 2�||ϕ|| and ||λK(X)(ρ+
0(g)ϕ)||2 	 (1 + O(εO(1)))2�||ϕ||2.
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Proof. Without loss of generality we assume that X ∈ t. Fix γ ∈ C ∩ I∗. The
eigenvalues of the operator πγ(etX) − Id can be calculated as etγ′(X) − 1 for γ′ the
various weights of the representation πγ. Therefore the operator

πγ(X) = lim
t→0

1
t
(πγ(e

tX) − Id)

has eigenvalues γ′(X). Let v1, . . . , vn be an orthonormal basis of eigenvectors
of πγ(X). Then the functions

ψ(k) =
√

dγ〈πγ(k)vi, vj〉 for k ∈ K

satisfy (λK(X)ψ)(k) =
√

dγ〈πγ(k)vi, πγ(X)vj〉 = (γ′(X)ψ)(k). The first claim follows
as ||γ′(X)|| 	 ||γ|| ≤ 2� and by decomposing the function ϕ as a sum of functions
of the form ψ.

For the second claim recall that ρ+
0(g)ϕ =

√
α′

g · (ϕ ◦ αg) and therefore

(5.11) λK(X)(ρ+
0(g)ϕ) = (λK(X)

√
α′

g) · (ϕ ◦ αg) +
√
α′

g · λK(X)(ϕ ◦ αg).

To deal with the first term of (5.11), since α′
g is a smooth polynomial perturbation

of the identity, it follows that ||λK(X)
√
α′

g||∞ ≤ (1 + O(εO(1))) and furthermore
using integration by substitution, ||ϕ ◦ αg||2 	 (1 + O(εO(1)))||ϕ||2. For the sec-
ond term of (5.11), we use the chain rule and the first step to conclude that
||λK(X)(ϕ ◦ αg)||2 	 (1 + O(εO(1)))2�||ϕ||2, completing the proof of the lemma. �

We now apply (5.10) to prove the following lemma.

Lemma 5.11. For ϕ�1 ∈ V�1 and ϕ�2 ∈ V�2 with �1 �= �2 and g ∈ Bε,

|〈ρ+
0(g)ϕ�1, ϕ�2〉| 	 (1 + O(εO(1)))2−|�1−�2|||ϕ�1 ||2||ϕ�2 ||2.

Proof. Without loss of generality we assume that �2 > �1. Denote byψ ∈ V�2

the function such that λK(
)ψ = ϕ�2 . Then by Lemma 3.7, ||ψ||2 	 2−2�2 ||ϕ�2 ||2.
Using then (5.10) and Lemma 5.10,

|〈ρ+
0(g)ϕ�1, ϕ�2〉| = |〈ρ+

0(g)ϕ�1, λK(
)ψ〉|
=
∣∣∣∣∑

i

〈λK(−Xi)ρ
+
0(g)ϕ�1, λK(Xi)ψ〉

∣∣∣∣
≤ ∑

i

||λK(−Xi)(ρ
+
0(g)ϕ�1)|| ||λK(Xi)ψ||

	 (1 + O(εO(1)))2�1+�2 ||ϕ�1 ||2||ψ||2
	 (1 + O(εO(1)))2�1−�2 ||ϕ�1 ||2||ϕ�2 ||2. �
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We conclude this section by proving Theorem5.2 by combining Proposition 5.7
and Lemma 5.11.

Proof of Theorem 5.2. By Proposition 5.7, there is ε0 = ε0(c1, c2) > 0
and L = L(c1, c2) ∈ Z≥1 such that ||S+

0 |V� ||op ≤ εOc1 ,c2 (1) for � ≥ L. Let ϕ ∈ ⊕
�≥L V�

and let N ≥ 1 to be determined later. Then

||S+
0ϕ||22 ≤ ∑

�,�′≥L

|〈S+
0π�ϕ, S

+
0π�′ϕ〉|

=
∑

|�−�′ |≤N

|〈S+
0π�ϕ, S

+
0π�′ϕ〉| +

∑
|�−�′ |>N

|〈S+
0π�ϕ, S

+
0π�′ϕ〉|,

where both of the sums are with �, �′ ≥ L. For the first of these two terms one uses
the conclusion of Proposition 5.7,∑

|�−�′ |≤N

||S+
0π�ϕ|| ||S+

0π�′ϕ|| ≤ N
∑
�≥L

||S+
0π�ϕ||22 ≤ NεOc1 ,c2 (1)||ϕ||22.

Lemma 5.11 is used to bound the second term:∑
|�−�′ |>N

|〈S+
0π�ϕ, S

+
0π�′ϕ〉| 	 ∑

|�−�′ |>N

2−|�−�′ |||π�ϕ|| ||π�′ϕ||

	 ∑
|�−�′ |>N

2−|�−�′ |||π�ϕ||22

	 2−N
∑
�≥L

||π�ϕ||22 = 2−N ||ϕ||22.

Therefore it follows that ||S+
0ϕ||2 ≤ √

NεOc1 ,c2 (1) + 2−N||ϕ||2. Setting N = log 1
ε

implies the claim of the theorem. �

5.4 Smoothness of the Furstenberg measure. In this section we prove
Theorem 1.8, which we restate here for convenience of the reader.

Theorem 5.12 (Theorem 1.8). Let G be a non-compact connected simple

Lie group with finite center. Let c1, c2 > 0 and m ∈ Z≥1. Then there is
εm = εm(G, c1, c2) > 0 depending on G, c1, c2 and m such that every symmet-

ric and (c1, c2, ε)-Diophantine probability measure μ with ε ≤ εm has absolutely
continuous Furstenberg measure with density in Cm(�).

By Corollary 5.4, we know that the Furtstenberg measure is absolutely continu-
ous if we choose εm small enough, i.e., there isψF ∈ L2(�) such that dνF = ψFdm�.
In order to prove Theorem 1.8, we use the smoothness condition from Lemma 3.8
for ψF. Indeed, for P� the projection from L2(K) to V�, it suffices to show that

||P�ψF||2 ≤ 2−(s+1)�

for s > m + 1
2 dimK and � large enough.
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By the characterization of the Furstenberg measure, for any n ≥ 1 it holds
that νF = μ∗n ∗ νF and therefore for ϕ ∈ L2(K),

(5.12)
|〈ψF, ϕ〉| =

∣∣∣∣ ∫ ϕ dνF

∣∣∣∣ =
∣∣∣∣ ∫ ∫

ϕ(g.k) dμ∗n(g)dνF(k)
∣∣∣∣

≤
∥∥∥∥ ∫ ϕ ◦ αg dμ∗n(g)

∥∥∥∥∞
.

We thus study the L∞-norm of the function

�n = Tn
0ϕ =

∫
ϕ ◦ αg dμ∗n(g).

We will use Corollary 5.4 to give L2-estimates of �n. In order to convert these
estimates to an L∞-bound, we use Agmon’s inequality (cf. [Agm65, Chapter 13]),
which we introduce for compact Lie groups.

Lemma 5.13 (Agmon’s inequality for compact Lie groups). Let K be a com-

pact Lie group. Then there is t ∈ Z≥2 depending on K such that for any ϕ ∈ C∞(K),

||ϕ||∞ 	 ||ϕ||1/22 ||ϕ||1/2Ht .

Proof. For M ∈ R>0 to be determined, we group together the contribution of
the representations with ||γ|| ≤ M and ||γ|| > 0. Indeed, by (2.4), for k ∈ K,

ϕ(k) =
∑

γ∈C∩I∗

dγ∑
i,j=1

d1/2
γ aγijχ

γ
ij(k)

=
∑

||γ||≤M

dγ∑
i,j=1

d1/2
γ aγijχ

γ
ij(k) +

∑
||γ||>M

dγ∑
i,j=1

d1/2
γ aγijχ

γ
ij(k)

=
∑

||γ||≤M

dγ∑
i,j=1

d1/2
γ aγijχ

γ
ij(k) +

∑
||γ||>M

dγ∑
i,j=1

λt
γλ

−t
γ d1/2

γ aγijχ
γ
ij(k),

where in the last line we multiplied the second term by 1 = λt
γλ

−t
γ for some t ∈ Z≥0.

By Cauchy–Schwarz and using Lemma 3.7, the first term can be bounded by

||ϕ||2
√ ∑

||γ||≤M,i,j

dγ 	 MC||ϕ||2,

where C is a constant depending on K. For the second term, we choose t large
enough such that √ ∑

||γ||>M,i,j

λ−2t
γ dγ 	 M−C.

Again using Cauchy–Schwarz, the second term is bounded by M−C||ϕ||Ht . The
claim is implied by setting M = ( ||ϕ||Ht

||ϕ||2 )1/2C. �
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Lemma 5.14. For ϕ ∈ V� set �n = Tn
0ϕ. Let γ ∈ C ∩ I∗ and r ∈ Z≥1. Then it

holds for �̂n(γ) = πγ(�n) that

||�̂n(γ)||op 	r 2O(1)�−r�(1 + ε)O(1)nr||γ||O(1)r||ϕ||2.
Proof. Let v1, . . . , vdγ be an orthonormal basis of πγ. Then

(5.13)

||�̂n(γ)||op ≤ dγ sup
1≤i≤dγ

||�̂(γ)vi||

≤ dγ sup
1≤i,j≤dγ

|〈�̂(γ)vi, vj〉|

= dγ sup
1≤i,j≤dγ

|〈�n, χ
γ
ij〉|

≤ dγ sup
g∈supp(μ∗n)

1≤i,j≤dγ

|〈ϕ ◦ αg, χ
γ
ij〉|.

Notice, further, that for g ∈ Bε and also γ′ ∈ C ∩ I∗ and 1 ≤ i′, j′ ≤ dγ,

|〈χγ′
i′j′ ◦ αg, χ

γ
ij〉| =

λr
γ

λr
γ

|〈χγ′
i′j′ ◦ αg, χ

γ
ij〉|

=
1
λr
γ

|〈χγ′
i′j′ ◦ αg, λK(
)rχγij〉|

≤ 1
λr
γ

∑
i1,...,ir

|〈λ(−Xi1 ) · · ·λ(−Xir )χ
γ′
i′j′ ◦ αg, λ(Xi1 ) · · ·λ(Xir)χ

γ
ij〉|

	r λ
−r
γ (1 + ε)O(1)nr||γ′||r ||γ||r

	r (1 + ε)O(1)nr||γ′||r ||γ||−r

where for the penultimate line one argues as in Lemma 5.10 and in the last line we
use Lemma 3.7. Similarly, it holds that |〈χγ′

i′j′ ◦αg, χ
γ
ij〉| 	r (1+ε)O(1)nr||γ′||−r ||γ||r.

Then using the decomposition

ϕ =
∑

2�−1≤||γ′ ||<2�

dγ∑
i′,j′=1

d1/2
γ′ aγ

′
i′j′χ

γ′
i′j′

we conclude that

|〈ϕ ◦ αg, χ
γ
ij〉| ≤ ∑

γ′,i′,j′
d1/2
γ′ |aγ′

i′j′ | |〈χγ
′

i′j′ ◦ αg, χ
γ
ij〉|

≤ 2O(1)�||ϕ||2 sup
γ′,i′,j′

|〈χγ′
i′j′ ◦ αg, χ

γ
ij〉|

	r 2O(1)�−r�(1 + ε)O(1)nr||γ||r||ϕ||2.
This implies the claim by (5.13) and using Lemma 3.7.
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Proof of Theorem 1.8. Let ϕ ∈ V� be of unit norm and write �n = Tn
0ϕ. It

suffices to prove for ε < εm and some n ≥ 1 that

(5.14) ||�n||∞ ≤ 2−(s+1)�,

where s is a constant depending on G and m. Indeed, if (5.14) holds, then by
(5.12),

||P�ψF||2 	 2O(1)�2−(s+1)�,

which satisfies the smoothness condition from Lemma 3.8 for s large enough
depending on G and m.

We will use Agmon’s inequality to prove (5.14). Notice first that for the
fixed t ∈ Z≥2 from Lemma 5.13,

||�n||Ht = ||λK(
)t/2�n||2
≤ sup

g∈suppμ∗n
||λK(
)t/2(ϕ ◦ αg)||∞

≤ ||λK(
)t/2ϕ||∞(1 + ε)O(1)n ≤ 2A�,

for an absolte constant A and where we choose n = 1
10E2ε

� for E2 a fixed constant
to be determined later.

We next bound ||�n||2. In order to do so, we decompose �n into a low and
high frequency part:

�n = �(1)
n +�(2)

n where�(1)
n =

∑
||γ||≤L(c1,c1)

dγ∑
i,j

d1/2
γ (̂�n)

γ

ijχ
γ
ij.

Then for n ≥ 1, exploiting Corollary 5.4,

(5.15)
||�n||2 ≤

∥∥∥∥ ∫ �(1)
n−1 ◦ αg dμ(g)

∥∥∥∥∞
+
∥∥∥∥ ∫ �(2)

n−1 ◦ αg dμ(g)
∥∥∥∥

2

≤ ||�(1)
n−1||∞ +

1
2
||�(2)

n−1||2.
Using Lemma 5.14, it follows for all m ≤ n and r ≥ 1 that

||�(1)
m ||∞ 	r 2O(1)�−r�(1 + ε)O(1)nrL(c1, c2)

O(1)r||ϕ||2.
Iterating (5.15), there are absolute constants E1,E2,E3 ≥ 1 such that

||�n||2 	r (n2E1�−r�(1 + ε)E2nrL(c1, c2)
E3r + 2−n)||ϕ||2.

By Lemma 5.13, it therefore follows that

||�n||∞ 	r (n2(E1+A)�−r�(1 + ε)E2nrL(c1, c2)
E3r + 2−n)||ϕ||2.
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Setting the parameters suitably, the proof is concluded. Indeed, choose for
instance

r = 2(s + 1) + E1 + A + 100

and n = 1
10E2ε

�. For s large enough and choosing ε small enough in terms of r

and s, the claim (5.14) holds for large � (depending on s and ε). �
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