LOCAL LIMIT THEOREM
FOR RANDOM WALKS ON SYMMETRIC SPACES

By

CONSTANTIN KOGLER*

Abstract. We reduce the local limit theorem for a non-compact semisimple
Lie group acting on its symmetric space to establishing that a natural operator
associated to the measure is quasicompact. Under strong Diophantine assumptions
on the underlying measure, we deduce the necessary spectral results for the operator
in question. We thereby give the first examples of finitely supported measures
satisfying such a local limit theorem. Moreover, quantitative error rates for the
local limit theorem are proved under additional assumptions.
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744 C. KOGLER

1 Introduction

Let G be a group and u a probability measure on G. A fundamental problem in the
theory of random walks is to describe the distribution of the product of independent
u-distributed random elements, in other words to study the measures ¢**. Local
limit theorems, which establish the existence of a sequence a,, € R such that a, x*"
converges to a limit measure, were studied by many authors. The case where G is
commutative or compact is classical (cf. for instance [Sto65], [IK40]). Breuillard
[Bre0O5b] and Diaconis—Hough [DH21] considered the Heisenberg group and a
local limit theorem for the Isom(R?) action on RY was proved by Varji [Varl5].
For the latter case, under further assumptions on u, results with strong error terms
were shown by Lindenstrauss—Varji [LV16]. The reader interested in discrete
groups may consult Lalley’s local limit theorem for the free group [Lal93], which
was extended by Gouézel [Goul4] to hyperbolic groups.

The above results establish local limit theorems for the various mentioned
settings under weak assumptions on y. In contrast, the understanding for non-
compact semisimple Lie groups is less developed. The only case where a local
limit theorem is known is by assuming that x is spread out, i.e., a convolution
power p** for some n > 1 is not singular to the Haar measure. For spread out
measures Bougerol [Bou81] proved in 1981 a local limit theorem that will be
recalled in (1.1).

For a finitely supported measure whose support generates a dense subgroup, the
convolutions u*" become increasingly well-distributed, more and more resembling
a continuous measure. Therefore Bougerol’s theorem is expected to hold. In this
paper we give the first examples of finitely supported measures on semisimple Lie
groups that satisfy Bougerol’s theorem for the Lie group acting on the associated
symmetric space. Indeed, we reduce the question at hand to understanding spectral
properties of a natural operator Sy = So(u) associated to u.

The operator Sy may be viewed as the Fourier transform of the measure y at O
and was studied by Bourgain [Boul2] in his construction of a finitely supported
measure on SL,(R) with absolutely continuous Furstenberg measure. Further
results on Sy are due to [BISG17], generalizing [Boul2], as well as [BQ18]. These
results imply the necessary spectral properties for Sy in order to establish local
limit theorems and will be discussed after stating Theorem 1.3. In certain cases,
the necessary results for Sy will also be proved in this paper following closely
Bourgain’s [Boul2] original ideas.

In addition, we deduce quantitative error rates for the local limit theorem
(Theorem 1.2 and Theorem 1.3).



RANDOM WALKS ON SYMMETRIC SPACES 745

We proceed with stating Bougerol’s theorem. Recall that a measure u on G
is said to be non-degenerate whenever the semigroup generated by its support is
dense in G. Let G be a non-compact connected semisimple Lie group with finite
center. For a probability measure i on G, denote o = ||[Ac(w)||, where As is the
left regular representation and

26(u) = / 26(9) du().

Furthermore denote by p the number of positive indivisible roots of G and by d the
rank of G (these notions are further discussed in Section 2.1) and write £ = 2p +d.
For a non-degenerate and spread out probability measure x4 with finite second
moment (defined in (1.2)), Bougerol [Bou81] showed that there is a continuous
function yp on G (depending on ) such that

2
(1.1) lim !

co o

[r@di@ = [ e dnote)
for all f € C2°(G). The function y satisfies

1% Yo = Yo * [t = 0Yo.

To introduce further notation, let K be a maximal compact subgroup of G and
denote by X = G/K the associated symmetric space. We recall the definition of
the Furstenberg boundary. Let G = KAN be an Iwasawa decomposition of G as
introduced in Section 2.1. Let M be the centraliser of A in K and write P = MAN.
The Furstenberg boundary of G is defined as Q = G/P = K/M. The measure mgq
is the pushforward of the Haar probability measure mg onto Q.

Denote by po the Koopman unitary representation of the G action on the
measure space (£, mg), which is also called the O-principal series representation
(see Section 2.1). For a probability measure x4 on G, consider the operator

So = po(u) = /po(g)dﬂ(g)-

In order to state the first theorem, recall that a bounded operator is called quasi-
compact if the essential spectral radius pess(A) (defined in (2.1)) is strictly less than
the spectral radius.

Let a = Lie(A) and choose a closed Weyl chamber a*. Then for every g € G
denote by x(g) € a* the unique element such that g € K exp(x(g))K. We say that u
has finite k-th moment for some k& > 1 if

(12) [ k@1t dute) < oo.
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Theorem 1.1 (Local limit theorem). Let G be a non-compact connected
semisimple Lie group with finite center. Choose a maximal compact subgroup K
and denote X = G/K. Let u be a non-degenerate probability measure on G
with finite second moment and assume that Sy = po(u) is quasicompact.
Write o = ||Ac()|| = [I1Soll and € = 2p + d for p the number of indivisible pos-
itive roots of G and d the rank of G.

Then there is a continuous real-valued function yo on G satisfying

H*Wo=Wo* U=0Yo
such that for xo € X and f € C°(X),

/2
(13) Jim " [ fean di @) = [ Fexow( dmoto).
Moreover, the operator Sy has a unique c-eigenfunction 1y € L*(Q) of unit norm
and there exists a unique o-eigenfunction nj, of S§ satisfying (no, n) = 1. Then no
and n(, are positive almost surely and yy is given as yo(g) = ¢, - (10, po(&)1)
for c,, > 0 a constant depending on u.

The only difference between (1.1) and (1.3) is that the latter is only proved
on X. Indeed, the limit function of Bougerol’s theorem arises as in Theorem 1.1
and since a non-degenerate, spread out measure u satisfies that Sy is quasicompact
(cf.[Bou81, Proposition 2.2.1]), Theorem 1.1 is a generalization of Bougerol’s
theorem on X. We furthermore mention that it is conjectured that (1.1) and
therefore also (1.3) hold for every non-degenerate probability measure (with finite
second moment) on G.

Having stated Theorem 1.1, the question arises to give quantitative error rates
for (1.3). Towards this aim and in order to motivate Theorem 1.2, we discuss G = R.
Let u be a non-degenerate measure on R with mean zero and variance 6> < co.
The local limit theorem on R (cf. [Bre92, Section 7.4]) states that \/nu*" — ®

V2ra?”

Denote )

W= 1 ex (— . )
" _\/27m'2 P 2no?/’

Using that |z(r)] < 1 for r # 0 and 7i(r) = [ €™ du(x) the Fourier transform
of u, one can show for f € C*°(R) a smooth function whose Fourier transform is
compactly supported that there is a constant ¢y = ¢¢(x) depending on u and the
support of f such that

(14 Jnp() = / FOOM) dmz(x) + (0 (™) + 0 s DIIf 11,
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where the first implied constant depends on ¢ and the second on x and the support
of f The result (1.4) may be referred to as the local central limit theorem as
it implies the local limit theorem as well as the central limit theorem. Using
that | \/2202 — a(x)| <o n~ X2, it follows that

1
(1.5) \/nﬂ*”(f)=\/ZWZ/f(X)dMR(XHOﬂ(n_lllfll*)+Oﬂf(e_cf”lb‘lh)

for

Wl = / PN +x2) dmg ().

We deduce the same behaviour as (1.5) even with matching error terms for the G
action on its symmetric space under the assumption that Sy is quasicompact. Choos-
ing a maximal compact subgroup K corresponds to fixing the origin o = eK € X
of X. Denote by dx(-, -) the distance function induced by a Riemannian metric
on X (for which X is a symmetric space, see (2.10)). In the theorem below we refer
to the Fourier transform of a function f € C*°(X) as discussed in Section 2.1. For
the asymptotic notation used see also Section 2.1.

Theorem 1.2 (Local limit theorem with weak quantitative error rates). With
the notation and assumptions from Theorem 1.1, assume further that p has finite
Sfourth moment. Then for f € C*°(X) with compactly supported Fourier transform,
there is a constant ¢y = c¢;(u) > 0 depending on p and the support of f such that
forn > 1 and all xg € X,

nt/?
o [/ (8X0) du™(8)=[f(g-x0)vo(8) dmc(g)

+0, (0 |f Il +n" " dx (x0, o) I 111)+O0 . p(e™ ™| If111),

where the first implied constant depends on u, the second on u and the support
of f and

(1.6)

(1.7) 1l = / QI+ dx(x, 0)%) dmy ().

For G = R, it is only possible to give strong error rates for (1.5) if one gains
control over the behaviour of the function |z ()| as r — oo which, as is shown in
[BreO5a] is equivalent to assuming certain Diophantine properties on the support
of u.

In similar vein, we give strong error rates for (1.6) under a suitable Fourier
decay assumption. The Schwartz space .#(X) of the theorem below is defined in
Section 2.1. For r € a* denote by p, the r-principal series representation defined
in (2.14) and write

Sy = pr(p).
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Theorem 1.3 (Local limit theorem with strong quantitative error rates). With
the notation and assumptions from Theorem 1.1, assume further that p has finite
fourth moment and that

(1.8) sup [IS:[] < [ISoll-

[r|>1
Then forf € S (X), xo e Xandn > 1,
nt/?
 [fex0di @)= flexowole) dmete)
(1.9) o
+ 0, (Il +n”dx(xo, o) If 111+ e I[f 1la),

where ¢ = c(u) is a constant depending on u, s = ;(dimX + 1), || - |lgs is the
Sobolev norm (2.18) of degree s and the implied constant depends only on u.
Moreover, the assumption (1.8) holds whenever u is spread out or bi-K-invariant

(ie., L =mg * 1 * mg).

We proceed with discussing spectral properties of the operator Sy and also
related results on absolute continuity of the Furstenberg measure. In order to intro-

duce convenient notation, we recall the definition of almost Diophantine measures
introduced in [BdS16].

Definition 1.4. Let G be a connected Lie group, x4 a probability measure
on G and let c;, c; > 0. The measure u is called (c;, ¢;)-almost Diophantine
or simply (cy, ¢;)-Diophantine if

sup u*(Be-ein(H)) < e "
H<G
for sufficiently large n, where
Ben(H)={ge G:d(g,H) <e "}

and the supremum is taken over all closed connected subgroups H of G.

Almost Diophantine measures are useful in understanding random walks on
compact groups. Generalizing the Bourgain—-Gamburd method developed for
SU(2) by [BGO8] and for SU(d) in [BG12], it was shown in [BdS16] for K a
compact connected simple Lie group, that a symmetric measure u is (cy, ¢2)-
Diophantine for some ¢y, c; > 0 if and only if Ax(u) has strong spectral gap
(Definition 3.3), in this setting being equivalent to ||Ax(u)| L3 ©llop < 1 for

LY(K) = {f € L*(K) : mg(f) = 0}.
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Indeed, the essential spectral radius of Ax(x) can be bounded in terms of K, ¢,
and c,. A strong spectral gap of Ax(u) can be used to deduce by using the Fourier
inversion formula on K that for f € C*°(K)

(1.10) | () — mg (D) <K e "f 1l

with ¢ > 0 a constant depending on x and || - |[|gs a Sobolev norm (2.7) on K
of high enough degree. Without assuming that y is almost Diophantine, only
weaker results than (1.10) are known. Nonetheless, it is conjectured that every
non-degenerate measure is almost Diophantine. For finitely supported measures it
is established in [BdS16] that non-degenerate symmetric measures with matrices
supported on algebraic entries are almost Diophantine.

For finitely supported measures, most known spectral results for Sy also rely
on the Bourgain—-Gamburd method. However, one requires stronger Diophantine
conditions. Indeed, as in contrast to compact groups it is necessary to control the
exponential norm growth of the x-random walk on G, we have to demand that
the measure is (c;, ¢;)-Diophantine while being close to the identity in terms of ¢
and c,. We therefore introduce the following definition.

Definition 1.5. Let G be a connected Lie group, u a probability measure on G
and let ¢, ¢z, € > 0. The measure u is called (cy, ¢z, ¢)-Diophantine if
(i) pis (cylog é, ¢ log é)—Diophantine, i.e., for n large enough,

sup 1" (B (H)) < 6.
H<G

(ii) supp(u) C B.(e).

We state a result of [BISG17] showing that there is an abundant collection of
examples of (cy, ¢3, €)- Diophantine measures for arbitrarily small €.

Theorem 1.6 ([BISG17, Theorem 3.1]). Let G be a connected simple Lie
group with finite center and adjoint representation Ad : G —» GL(g). Let ' < G
be a countable dense subgroup and assume that there is a basis of g such that Ad(y)
is algebraic with respect to that basis for every y € T.

Then there exist ci,co > 0 such that for every gy > 0 there is 0 < & < g
and a finitely supported symmetric (ci1, 2, €)-Diophantine probability measure u
satisfying supp(¢) C I' N B,.

Using the above defined notion of Diophantine measures, one can establish the
following result on quasicompactness of Sp. Together with Theorem 1.6, numerous
examples of finitely supported measures satisfying (1.3) are provided.
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Theorem 1.7. Let G be a non-compact connected simple Lie group with finite
center. Let ci,cy > 0. Then there is gy = &9(G, c1,c2) > 0 depending on G
and cy, ¢y > 0, such that every symmetric and (cy, ¢z, €)-Diophantine probability
measure u with ¢ < gy satisfies that Sy = po(u) is quasicompact. In particular,
Theorem 1.1 and Theorem 1.2 hold for .

Theorem 1.7 is a straightforward consequence of the techniques and results
developed in [BISG17] and will be deduced in Section 5.1. Under the additional
assumption that the maximal compact subgroup is semisimple, we offer an alter-
native proof following more closely the method by Bourgain [Boul2], leading to
marginally stronger results (Theorem 5.2). Indeed, using an idea from [LV16], we
simplify Bourgain’s original approach by exploiting that the irreducible represen-
tations of K have high dimension.

We proceed with discussing the Furstenberg measure. Let 4 be a measure on G
whose support generates a Zariski dense subgroup. Then the Furstenberg measure
of u is the unique yu-stationary Borel probability measure vg on the boundary Q
(cf. for example [GAM89]). It was initially conjectured by Kaimanovich—Le Prince
[KLP11] that the Furstenberg measure of a finitely supported measure is singular
to the Haar measure mg. However Bourgain [Boul2] and Barany—Pollicott—Simon
[BPS12] disproved the latter conjecture, with Bourgain [Boul2] giving an explicit
construction while [BPS12] exploited probabilistic methods.

[BQ18] also provide examples of finitely supported measures with absolutely
continuous Furstenberg measure, yet their construction does not lead to results as
versatile as Theorem 1.6. Itis apparent from their proof that Sy is also quasicompact
for these examples.

A further result of [Boul2] is the construction of finitely supported measures
on SL,(R) satisfying j:l; e CK(Q) for any k € Z-. Following Bourgain’s tech-
nique, we also deduce smoothness results for the Furstenberg measure for arbitrary
simple Lie groups.

Theorem 1.8. Let G be a non-compact connected simple Lie group with
finite center. Let ci,cy > 0 and m € Zs,. Then there is ey, = €,(G,c1,c2) > 0
depending on G, c1, c; and m such that every symmetric and (cy, ¢z, €)-Diophantine
probability measure u with ¢ < &, has absolutely continuous Furstenberg measure
with density in C™(Q).

While writing this paper, the author became aware of [Leq22] who establishes
a similar yet less general result to Theorem 1.8. Since our proof is short and differs
from [Leq22], for instance in introducing Agmon’s inequality (Lemma 5.13) for
compact Lie groups, it is included in this paper.
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We comment on the organization of this paper. After reviewing the necessary
notation and giving an outline of proofs in Section 2, we discuss some preliminary
results in Section 3. Then the local limit theorems Theorem 1.1, Theorem 1.2
and Theorem 1.3 are proved in Section 4. Finally, quasicompactness of Sy and
the Furstenberg measure are discussed in Section 5, establishing Theorem 1.7 and
Theorem 1.8.
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2 Notation and outline

2.1 Notation. In this section we collect the notations used in this paper.

Throughout this paper, we denote by G a non-compact connected semisim-
ple Lie group with finite center, by K a maximal compact subgroup of G and
write X = G/K for the associated symmetric space.

We use the asymptotic notation X < Y or X = O(Y) to denote that |X| < CY
for a constant C > 0 and for sequences X,, and Y,, we write X,, = o(Y,) to symbo-
lise |)f, | > 0asn — oo. If the constant C or the speed of convergence depends on
additional parameters we add subscripts, unless the quantity depends on the fixed
group G in which case we omit additional subscripts for convenience.

Let & be a Banach space and let A : %4 — % be a bounded operator. Recall
that A is called a Fredholm operator if there exists a bounded operator 7 such
that TA — Id and AT — 1Id are compact operators. Denote by spec(A) the spectrum
of A. The essential spectrum spec.(A) is defined as the set of complex numbers 1
such that A — A - Id is not Fredholm. The spectral radius is defined as

p(A)= max ||

Aespec(A)

and the essential spectral radius as

2.1 Pess(A) = max |4,
Aespec, (A)

if pess(A) # ) and otherwise pegs(A) = 0.
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For a locally compact Hausdorff group H, write my for a fixed choice of Haar
measure. Whenever H is compact, my is the Haar probability measure. The
left-regular representation is denoted Ay while we write py for the right regular
representation.

If  is a finite measure on H and 7 : H — % (J¢) is a unitary representation,
where .77 is a Hilbert space and % (.7) the space of unitary operators .7 — J¢,
then

2.2) 7(u) = / 7o du(g)

is the operator uniquely characterized by

(m()v, w) = / (g, w) du(g)

forov, w € 2.
For a group H with metric dy, for R > 0 and x € H we will denote

Br(x) ={y € H : du(y, x) < R}

and abbreviate Bg = Bg(e) for e € H the identity element. On G we fix a left
invariant metric such that Bg(g) = gBgr(e). For a closed subset H — H we
define Bg(H') ={h € H : d(h, H') < R}, where
d(h,H") = sup d(h, ).
WeH’

We first fix notation for structure theory on K. Write 7 for a maximal torus
in K with Lie algebra t and real dual Lie algebra t*. Let Wi be the Weyl group and
we fix a Wg-invariant inner product on t, inducing an Wg-invariant inner product
on t*. The set of real roots is denoted as R and we choose a fundamental Weyl
chamber C which we consider as a subset of t*. The fundamental Weyl chamber
determines a basis S of the real roots and the set of positive roots R*. We denote
by I* C t* the set of integral forms. Then (cf. [BtD85, Section 6]) the set C N I*
parametrizes the irreducible representations of K.

For y € C N I* denote by =, the associated irreducible unitary representation
of K and by M, the span of matrix coefficients of z,. By the Peter—Weyl Theorem
it holds that

(2.3) &= & M,
yeCnIr*

where we used the convention applied throughout this paper that by a direct
sum we denote the closure of the algebraic direct sum of the involved vector
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spaces. For any y € C N [* and an orthonormal basis vy, ..., v, of w,, we
set X,-yj(k) = (7, (k)v;, v;). Then the set of functions d;/ 2 lej forms an orthonormal
basis of L>(K). For ¢ € L*(K), we set §0U —a = (o, d;/zxf;> For ¢ € C*°(K) and
allkek,

(2.4) o)=Y ZdW ali (k).

yeCnI* ij=1

We want to group together functions on K that oscillate at roughly the same
rate. Therefore, one defines

(2.5) Vo= B M, and V,= H M,
yeCnr* yeCnI*
O<llyll<1 207 <yl <2

for ¢ > 1. The decomposition

(2.6) K=

0
is referred to as the Littlewood—Paley decomposition of L?(K). For £ > 0 we
denote by P, the orthogonal projection from L?(K) to V,. Therefore any ¢ € L*(K)
can be decomposed as ¢ = ), Pep. For Littlewood—Paley decompositions on
groups in more general contexts we refer the reader to [MKMSG22].

We finally define Sobolev spaces and Sobolev norms on K. Denote by ¢
the Lie algebra of K and fix an orthonormal basis Xi, ..., X, of £&. Then the
Casimir operator given by A = — Y7 | X; o X; is a central element of the universal
enveloping algebra U(¥). For y € C N I* denote by A, the eigenvalue of A acting
on z,. For s € Z3, we define

H'(K) = {p € L*(K) : Ax(0)?p € L*(K)}

@7 {o= % e @ Miloll= X Aol <o},
yeCnI* yeCnI+ yeCni+

We also need structure theory for G. We take care not to confuse the notation
introduced for the structure theory of K. The Lie algebra of G is denoted as g
and we choose a Cartan decomposition g = £ @ a @ n for £ the Lie algebra of K.
Denote by a* the real dual of a. Let X be the sets of roots, choose a closed Weyl
chamber a* and let £* = {ry, ..., r;} C a* be the system of positive roots. For a
root » € X write m(r) for the multiplicity of » and denote by J = ; Y oress m(r)r
the half sum of the positive roots counted with multiplicities. We fix a norm | - |
on g arising from an Ad-invariant inner product. The latter norm restricts to a and
induces the operator norm on a*.
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Denote A = exp(a), N = exp(n) and P* = AN. Then (cf. [Kna02, Chapter VI])
the multiplication map K x A x N — G is a diffeomorphism, giving rise to the
Iwasawa decomposition G = KAN. Write further K : G > K, A : G > A
and N : G —> N for the maps induced from the Iwasawa decomposition and the
map H : G — ais defined for g € G as

(2.8) H(g) = log A(g).

Set A* = exp(a*). Then the Cartan decomposition G = KA*K holds and
denote by x : G — a* the map uniquely characterized by g € K exp(x(g)K. We
furthermore define

(2.9) l1gll = lx(&)l-
On the symmetric space X = G/K, one defines the metric dx as

(2.10) dx(g.0,0) = |k(g)|

for the origin o = K € X and all g € G. Then for g € KA it holds that

|H(g)| = dx(g.0, 0) = |r(g)|.

Recall [Hel78, Exercise B2(iv), Chapter VI] stating that d(a.o, 0) < d(an.o, o) for
all a € A and n € N, which follows by applying suitably that the manifolds A.o
and N.o are perpendicular at their unique intersection point 0 € X. It therefore
holds for all g € G that

(2.11) |H()| < |x()] = IIgll-

For each g € G consider the diffeomorphism
oag: K — K, k> ayk)=K(gk).

The map G — Diff(K), g —> a, defines an action of G on K. Denote by a’g
the Radon—-Nikodym derivative of (a,).mg with respect to mg. Then by [Hel84,
Lemma 5.19, 1],

d(ag)*mk

k) = e 20H@E ')
dme =€

(2.12) (k) =

For r € a*, we consider the unitary representation p : G — L*(K) defined
for g € G and ¢ € L*(K) as

(2.13) (pH(@Qp)(k) = e THHE D (K (g7 k)

with k € K.
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The representation (2.13) is not irreducible in general. In order to make it
irreducible, denote by M the centraliser of A in K and write P = MAN for the
associated minimal parabolic subgroup. The Furstenberg boundary Q = G/P
can be identified with K/M and we therefore view functions on Q as M-invariant
functions on K. The probability measure mg is the pushforward of mg under the
projection map. For r € a* we consider the r-principal series p, : G — % (L*(Q))
defined for g € G and ¢ € L*(Q),

(2.14) (pr(@)p)(@) = e~ @HNHE @) (4= 1))

' the element K(g~'k)M for any representa-

for w € Q where we denote by g~
tive w = kM with k € K and note that H(g~ ') does not depend on the representative
of w (cf. [War72, Section 5.5]). The principal series is irreducible.

The Weyl group W of G is defined as the group quotient Ng(a)/Zk(a), where

Nk(a) ={k € K:Ad(k)a C a}
and

Zg(@)=M ={k € K:ka = ak for all a € A}.

We call a root r € X indivisible if ;r is not a root and we order the positive
roots in such a way that ry, . . ., r, are the indivisible roots. For any complex linear
form r on a denote

1) = @B(m(zm, (r.re) )> _ <¢,ﬁ p("0, M) () )>’

(re, re) pil (re,re)

where B(x, y) = fol #~1(1 — £y~ dt is the Beta function. We further set for r € a*,

_ @)

c(r)= 105

The spherical function of parameter » € a* is defined as ¢,(g) = (p.(2)1, 1).
Denote by 2(G) the set of differential operators on G (see [Hel84, Chapter 2]).
The Harish-Chandra Schwartz space introduced in [HC58] (see further [Wal88,
p- 230]) is defined as

F(G) = {f € CP(G) (1 + [H(®D'IDfI(8) <Krp,e o(8)

(2.15)
forall D € 2(G), ¢ > 0}.

The Schwartz space on X, denoted . (X), is defined as the set of right K-invariant
functions in .(G).
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Recall that a function f on G is called bi-K-invariant or radial if (k1 gk,) = f(g)
for all g € G and ky, k; € K. For a radial function f € .#(G) we denote by p,(f)
as in (2.2) the operator [ f(g)p,(g) dmg(g). We then define the spherical Fourier
transform as

Fi = (1 psH1) = (pr(PH1. 1) = /G F(@)b—r(g) dme(s).

Note that for all w € Q it holds that f(r) = (p—,(f)1)(w). Forall g € G, the spherical
Fourier inversion formula holds,

(2.16) 1@ = [ F0p ) dvan(o.

where dvg,n(r) = |c(r)|~2dmg-(r) is the spherical Plancharel measure.
We furthermore define for f € .(X), r € a* and w € Q,

fr0) = (p_(HD(w) = /G F(@)(p-r() ) (w) dma(g).
Then it follows by a brief calculation from (2.16), for f € .(X) and g € G, that

@.17) 1@ = [ [ 5 0)pe)1)(@) dma(dvan ().

We say that f € (X) has compactly supported Fourier transform if there is a
constant R > 0 such that f(r, w) = 0 for |r| > R and w € Q.

We will further need Sobolev spaces and Sobolev norms on X, defined for s > 0
as

(2.18) HS(X)={feL2(X) AW = / 1V N2 (L+ 177 dvgn(r) < oo}.

It holds that C2°(X) C .(X) C H*(X) for all s > O (cf. [Hel84, Chapter 1V]).
For a probability measure 4 on G, we write for r € a*

(2.19) Sy =p;(u) and S, =p(u),

using the definition (2.2) for the unitary representations p; and p;,.

We further use the notation ¢ = ||Sy||. Since MAN is an amenable group, it holds
by [Gui80, Section D] that o = ||[Ag(w)]|. If A(r) € C satisfying |A(r)| = p(S,) is in
the discrete spectrum of S, has geometric multiplicity one and is the unique element
of spec(S,) on the circle of radius p(S,), then we denote by 7, € L*(Q) the A(r)-
eigenfunction of S, with unit norm. Furthermore, if the same properties hold for S}’
and A(r), choose 7, the S*-eigenfunction with eigenvalue A(r) satisfying (7., n,) =1,
provided there exists such an 7. Then we denote

(2.20) W (Q) = (Nrs (1))

forg € G.
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The operator T : L>(Q) — L*(Q) is defined as
Top = /so o agdu(g)

for ¢ € L?(Q), where we equally denote by o, : Q — € the map on Q induced
by a, : K — K, and

T¢ : L*(K) — L*(K) defined as Tgo = / poagdu(g)

for ¢ € L*(K).

2.2 Outline of proofs. For the proof of Theorem 1.1, Theorem 1.2 and
Theorem 1.3 one uses the Fourier inversion formula on X to reduce the question
at hand to spectral problems about the operators S,. Indeed, by (2.17) it holds
for xog = hyK € X with hp € G and f € .7 (X) that

nt/?

nl/2
2.21) /f(ng)du*”(g) / / Fr, )8y (o) 1)(e) dma(R)dvagn(r).

One then decomposes (2.21) into high and low frequencies. Namely for dy € (0, 1)
small enough depending on u and for f € .#(X),

nt/?
(2.22) (2.21) = /l . / Sf(r, @)(S; pr(ho)1)(w) dma(k)dvpn(r)

nt/2
(2.23) " / / Fr, )8, (ho) 1) (@) dme(@)dvagn ().
|r|<do

The following spectral properties of S, are used to deal with the arising terms:
(1) There are operators Ey and Dy such that

(224) So = gEy + Dy,

where E| is a projection to a one-dimensional subspace, EgoDy = Dy o Eyg =0
and Dy satisfies p(Dg) < o = ||Sp||. In Section 3.2 we refer to the prop-
erty (2.24) as strong spectral gap.

(2) For |r| < 6o, the operator S, has a decomposition as (2.24), i.e.,

(2.25) S, = A(F)E, + D,,

for E, and D, as in (2.24).
(3) Forany r #0, p(S,) < o =|Soll-
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One deduces (1) from quasicompactness of Sy and by using that Sy is a positive
operator in the sense of Banach lattices (cf. Section 3.2). (2) will follow as
quasicompactness is an open property under certain assumptions (Corollary 3.2)
and (3) by a convexity argument similar to an argument of Conze—Guivarc’h
[CG13]. The necessary spectral properties are proved in Section 4.1.

Properties (1) and (2) will be necessary to deal with low frequencies (2.23),
whereas (3) is used for high frequencies (2.22). However, (3) only allows to
prove a decay for (2.22) either by assuming that f has compactly supported Fourier
transform or by imposing the stronger assumption (supy,>; [1S:[]) < [|Sol| of The-
orem 1.3. One then deduces Theorem 1.1 and Theorem 1.2 by approximating a
given function f € .#(X) with functions whose Fourier transform is compactly
supported.

A novel contribution is the observation that the functions y, , as defined
in (2.20), where |r| < dy such that (2.25) holds, satisfy

(2.26) / f e Wurdmg = /Q F(r, 0)(E1)(@) dmo(e)

for f € (X) (see Lemma 4.4). We further mention that (2.26) may be viewed as
an analogue of the formula

1
V2mo?
on R, where f € #(R) and ¢ > 0, which is used in the proof of the local limit
theorem on R.

2.27) / F0e% dmp(x) = / Frye 22 dmp(r)

The outline of the proof of the local limit theorem is concluded. We next
discuss quasicompactness of Sy. As in [Boul2] and [BISG17], the main tool are
flattening statements for . These results, which will be recalled in Section 3.4,
have as a consequence that for any y > 0 and x € G,

(2.28) 1" (Bs(x)) K 54O

for 6 small enough depending on x and y and n =, , log ;. The property (2.28)
may be referred to as high dimension, since an absolutely continuous measure v
satisfies v(Bj(x)) =, 04mC,

The proof of quasicompactness of Sy comprises two steps. First we will show
that the restricted operator Sy|y, has small norm for all £ large enough, where V; is
the Littlewood—Paley space introduced in (2.5). The second step is to use the latter
to deduce that S, restricted to @62 1 Ve has small norm for a suitable L > 0 and
therefore is quasicompact. This exploits the first step and that the spaces V, are
mutually orthogonal. Indeed, since the measure x in question is supported close
to the identity, the spaces SoV, and V, are almost orthogonal too.
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For the first step, one uses that for ¢ € V, the matrix coefficients |(po(g)@, ¢)|
are small on average. Indeed, it is shown in Section 3.5, following [LV16], that

1 —¢/2
(2.29) . /B po(er0. 0)1dmat) < 2~ 1lol

Since u has high dimension, we are able to use (2.29) to give strong estimates
for (Sop, @) and therefore conclude a bound on the operator norm of Sy|y, .

In order to use (2.29), we ought to control the size of the support of ¢** while
ensuring that x*" has high dimension (2.28) quickly enough. Analogous to [Boul2]
and [BISG17], this is where the (cy, ¢, €)-Diophantine property comes into play.
Indeed, as ¢ becomes smaller, a (cy, ¢z, €)-Diophantine measure is increasingly
rapidly non-concentrated on subgroups and therefore a strong flattening lemma
applies (Lemma 3.10). The latter holds while the measure is still close to the
identity, which will allow us to conclude the claimed properties for Sy.

2.3 Relation to other work. As mentioned in the introduction, the nec-
essary results for Sy are also proved in [BISG17]. The main difference between
[BISG17] and our proof is in the use of a different Littlewood—Paley decomposi-
tion. [BISG17] develop a Littlewood—Paley decomposition on G, which leads to
more general results as they are able to deal with all possible quotients of G, while
we work with the Littlewood—Paley decomposition on K, leading to marginally
stronger results.

For the Isom(R?) action on R?, a similar representation theoretic decomposition
to (2.17) holds for a suitable family of unitary representations

pr  Isom(RY) — 2 (L*(ST ') forr e R.

In [LV16], alocal limit theorem with strong error terms as in Theorem 1.3 is proved
by just assuming that So = po(u) is quasicompact. Indeed they establish (1.8) for
their setting by solely assuming that Sy is quasicompact. It seems reasonable to
believe that the same result may hold for a semisimple Lie group acting on its
symmetric space, yet the proof of [LV16] is not transferable as several properties
only applicable to Isom(R?) are used.

We further mention that in [TolOO] a Berry—Essen result is shown on G for a
probability measure with a smooth density of compact support.
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3 Preliminary results

3.1 Quasicompact operators. Throughout this section we denote by %4
a separable Banach space and the reader may recall the notations introduced in
Section 2.1. A bounded operator A : Z — £ is called quasicompact if

Pess(A) < p(A).

In this secton we show that being quasicompact is an open property. We first state
a useful lemma.

Lemma 3.1. For any bounded operator A : B — A the following properties
hold:
(1) pess(A) =infy compact ,O(A - 0).
(i) A is quasicompact whenever A* is. Moreover,

Pess (A*) = Pess A).

(iii) The set of spectral values of A with modulus > pess(A) is at most countable
and all of its accumulation points have modulus pess(A).

Proof. (i) follows as the essential spectral radius is the spectral radius of the
image of A in the Calkin algebra (c.f [BQ16, Appendix, section 2.4]) and (ii) as a
bounded operator is Fredholm whenever its adjoint is ([BQ16, Appendix B, Corol-
lary 2.12]). Finally (iii) is contained in [BQ16, Appendix B, Proposition 2.14]. [

Corollary 3.2. Let A, : & — S be a sequence of bounded operators on a
Hilbert space 7€ converging in operator normto a bounded operatorA : 7 — .
If A is quasicompact then so is A,, for n large enough and there is ¢ > 0 such that
Jorn large enough pess(Ap) < pess(A) +& < p(A) — & < p(Ap).

Proof. By Lemma 3.1(i) for any ¢ > O there is a compact operator U (de-
pending on ¢) such that p(A — U) < pess(A) + . We choose a small ¢ > 0 such
that pess(A) + 2¢ < p(A) — 2¢. Recall that the spectral radius is upper semi-
continuous and since A is quasicompact, A is a continuity point for the spectral
radius (cf. [New51]). Thus for large enough n it holds that p(A,—U) < p(A—U)+¢
and p(A) — 2¢ < p(A,). Then for the above compact operator U,

pess(An) =< p(An - U) < P(A - U) te < pess(A) +2¢ < ,O(A) —2e < p(An)a

showing the claim upon replacing 2¢ by e. (]
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3.2 Strong spectral gap and quasicompact positive operators. We
introduce the following definition of strong spectral gap.

Definition 3.3. LetS : Z — % be a bounded operator on a Banach space 4.
We say that S has strong spectral gap if there are two operators E,D :  — A
and a decomposition S = AE + D with 1 € C satisfying |4 = ||S]|| such that the
following properties are satisfied:

(i) The operator E is a projection onto its image and dim(Im(£)) = 1.
(il) EoD=DoE=0.
(ii)) p(D) < |IS]]-

The aim of this section is to prove Corollary 3.5 below on quasicompact op-
erators which are positive in the sense of Banach lattices. We refer to the book
[Sch74] for the definition of a Banach lattice. For the convenience of the reader,
we recall some further definitions from [Sch74].

Let # be a Banach lattice and denote by 4, the set of positive elements. We
write x > y whenever x —y € %, and further x > y if and only if x —y € %,
and x #y. We say that the bounded operator A : & — Zis positive if A(#,) C H.,
in notation A > 0. We write A > 0 if Ax > O forx > 0.

We furthermore say that the operator A has a strictly positive invariant form
if there is a linear form # that maps vectors > 0 to real numbers > 0 and that is
invariant under A, i.e., y 0 A = 1.

For an element u € %, we denote by

I,={xe %:0 < |x| < Au for some 1 > 0}

the principal ideal generated by u, where as in [Sch74, Definition 1.3, II] we
write |x| = max(x, —x). The element u is called quasi-interior if /,, is dense in A.

A subspace I of # is called an ideal if I, C I for all u € I. An operator
A 1 B — A isreferred to as irreducible if the only A-invariant ideals are the trivial
ideals {0} and Z.

Theorem 3.4 ([Sch74,V 5.2]). Let % be a Banach lattice and let A : B — A
be a positive irreducible bounded operator > 0 satisfying p(A) = 1 and with a
strictly positive invariant form. Then the following properties hold:
(1) 1 is an eigenvalue. The eigenspace of 1 is one-dimensional and spanned by
a quasi-interior element of A..
(ii) Every eigenvalue 1 of A with |1 = 1 is a root of unity and has a one-
dimensional eigenspace. Moreover, the latter eigenvalues form a group.
(iii) 1 is the unique eigenvalue of A with a positive eigenvector.
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Using Theorem 3.4, we can draw the following corollary:

Corollary 3.5. Let 7 be a Hilbert lattice (i.e., a Hilbert space endowed with
the structure of a Banach lattice) and let A : 7€ — ¢ be a positive quasicompact
bounded operator > 0 and assume that A" are irreducible for everyn > 1. Then A
has strong spectral gap.

Proof. Without loss of generality, we may replace A by A/p(A) and assume
that p(A) = 1. The map
E =1lim(4A — 1)R(4, A)
=1

is the strictly positive projection to the one-dimensional eigenspace of 1,
where R(Z, A) is the resolvent of A at A (see corollary to [Sch74, Theorem V
5.2]). As the resolvent R(41, A) commutes with A, so does E. Note moreover
that E gives rise to a strictly positive invariant form. Indeed denote by vy € 7
the (by Theorem 3.4(i)) unique eigenvector of 1 with norm ||vg]| = 1 and con-
sider n(v) = (Ev, vg) for v € A . Since v, is positive by Theorem 3.4(iii) it follows
that # is a strictly positive invariant form.

Set D=A—E. Then EoD =D o E =0 as A commutes with £ and we claim
that p(D) < 1, which follows if we show that 1 is the unique eigenvalue of A on
the circle of radius 1. To show the latter, if 4 is an eigenvalue of A with |[1| = 1 and
eigenvector v,, then by Theorem 3.4(ii) A is a root of unity and hence 7"v, = v, for
some n > 0. Therefore by Theorem 3.4(i) applied to T and 7", it follows that v,
must be the unique positive 1-eigenvector of 7" and hence A = 1. (]

We return to the operators Sy and S defined in (2.19).

Lemma 3.6. Let G be a connected semisimple Lie group with finite center and
let u be a non-degenerate probability measure on G. Then Sy and S are positive
bounded operators and S and (S§)" are irreducible for all n > 1.

Proof. We show that Sy is irreducible and the same argument will apply to Sj
and (S§)" for all n > 1 since G is connected. By [Sch74, Proposition 8.3. III], it
suffices to show for any ¢y, 9o € L*(Q) with ¢; > 0 and ¢, > O that (S{e1, ¢2)
is > O for some ¢ > 1. Indeed, we may reduce to the case where ¢; = 1y,
and ¢, = 1y, for U; and U, two sets of positive measure. Using that the support
of u generates a dense subgroup, we may choose ¢ large enough such that the
support of S§1, has measure larger that 1 — mq(U,)/2 and therefore

<S€1U1, 1U2> > 0.
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3.3 Preliminaries on representation theory of compact Lie groups.
Recall the notation introduced in Section 2.1.

For y € C N I*, by Schur’s Lemma, the operator 7,(A) acts as a scalar.
For functions on K, the operator Ag(A) can be understood as the Laplacian.
Therefore (2.3) is a decomposition into eigenfunctions of the Laplacian and on M,
the Laplacian has eigenvalue 1, = 7, (A).

Lemma 3.7. Fory € CNI*denoted, :=dimr, and A, := n,(A). Then for y
large enough it holds that 2, =< lIyl|?> and d, K ||y|||R+| . Moreover, assuming
that K is semisimple, ||y|| < d,.

Proof. By [Hall5, Lemma 10.6], 4, := 7, (&) = (y + p, v + p) — {(p, p),
where p = ; > wer+ @ is the sum of positive half roots (notice that the multiplicity
of each root is one; cf. [Hall5, Theorem 7.23]). This easily implies 4, =< yl1>.
The upper bound on d, follows by Weyl’s dimension formula:

(a,y+p) ( lel| ) R R
d, = < ly + plIFT < 1y|IF
=1L = UL g 1ot el

for ||y]|| large enough. For the lower bound we recall that in [dS13], also using the
Weyl dimension formula, it is proved that ||y||'¥"1=7 < d,,, where p is the number of
maximal elements of R* that are contained in one hyperplane. If K is semisimple,
the roots span the vector space t* and therefore (|[R*| — p) > 1. (|

Recall the Sobolev spaces defined in (2.7). We deduce a condition for a function
being in C"(K) under an assumption on the decay of ||P¢||.

Lemma 3.8. Letm € Z>o, s > m+ ; dim K and let ¢ € L*(K). Assume that
forall € € Zsg large enough,

1Peol], < 270D
Then ¢ € H*(K) C C"(K).
Proof. Ifp = Zyem 1+ ©, by the assumption for large enough ¢,

2 NPepll3 =20 Y lgylls <27
20Tyl <2f
and hence using Lemma 3.7,
D AllelE <220 30 lpliE <Y 27 < oo,

yeCnI* >0 20-1 <l <2¢ £>0

showing that ¢ € H*(K). The inclusion H*(K) c C"(K) follows from the Sobolev
embedding theorem (cf. [Aub98, Theorem 2.10]). ]
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3.4 Flattening of 1*'. Inthis section we state strong flattening results from
[BISG17] for (cy, ¢z, €)-Diophantine measures. To introduce notation, denote

mg(Bs)

and for a measure v and g € G, we note that

v(Bs(g))
mg(Bs)

Ps

(v Ps)(g) =

We also use the notation vs = (V)5 = v * Py.
We first relate the condition that a measure is (cj, ¢z, €)-Diophantine to the
assumptions of several theorems in [BISG17].

Lemma 3.9. Let ¢,c3,¢ > 0 and let u be a probability measure on G
satisfying supp(u) C B.. Then u is (ci, c2, €)-Diophantine if and only if for o

log }

small enough and n = 1
cilog

sup 1™ (Bs(H)) < 61,

H<G
where Bs(H) = {g € G : d(g, H) < 6} and the supremum is taken over all closed
subgroups of G.

Proof. This follows from the fact that u is (c¢y, cz)-Diophantine if and only
P
if supy g u™(Bs(H)) < 0« forn = Cll log (15. O

We state Corollary 4.2 from [BISG17].

Theorem 3.10 (Flattening Lemma, [BISG17, Corollary 4.2]). Let G be a
connected simple Lie groups with finite center. Let ¢y, c; > 0. Then foreveryy > 0
there is gy = go(cy, c2,7) > 0 and Cy = Cy(cy, 2, y) > 0 such that the following
holds:

If 0 < ¢ < gy and p is a symmetric and (cy, ¢z, €)-Diophantine probability
measure on G, then for 6 > 0 small enough,

log L
I(™slla < 677 for any integer n > coloi s,
&

3.5 Estimate of averages of matrix coefficients for oscillating func-
tions. In this subsection we prove the following proposition, which is inspired
by [LV16]. We denote Bg = {g € G : d(g, ¢) < R}.
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Proposition 3.11. Let G be a non-compact semisimple Lie group with finite
center and maximal compact subgroup K. Recall the Littlewood—Paley decompo-
sition (2.6) L>(K) = D0 Ve and assume further that K is a semisimple Lie group.
Then for any r € R and € € 71, for g1, 92 € V; C L*(K),

1 + —t2
[Py (&)e1, ¢2)| dmg(g) K 277 ||p1ll2ll@2112,
mg(BR) Ja,

where the representation p} is defined in (2.13).
We recall the following lemma from [LV16].
Lemma 3.12 ([LV16, Proposition 5.1]). Let (z, 5¢) be a unitary represen-

tation of a compact group K and let D be the minimum of the dimension of all
irreducible representations contained in . Then for any vectors u, v € F,
1/2
([1a@u vPanao) < I

If 7 is irreducible, then Lemma 3.12 follows from Schur’s Lemma (see [Kna02,
Section 1.5]). For the general case one decomposes 7 as a direct sum of irreducible
representations.

Proof of Proposition 3.11. Denote By = B - K. By left invariance of
the metric, it follows that Bp C Bg.c for C an absolute constant and therefore
mg(Br) < mg(Bg). Using Cauchy—Schwarz and that for k € K the operator p; (k)
acts as the regular representation, it follows by Lemma 3.12 that

/ ()01, 92)| dma(g) < / 0! ()01, 92)] dmc(s)
Br B,
- / ( / |<p:(k>qo1,pt(g—‘)¢2>|dmk<k)>dmc<g>
By \JK

1/2
< / < / |<p:<k>¢1,p:(g—1)¢2>|2dm1<<k)) dm(g)
By \JK

< mg(Bg min  d,)"?
< mo(Br)(,_min  d)"Pllpl g

< maBr2™ gl g2l

having used in the last line that [|y|| < d, from Lemma 3.7 under the assumption
that K is semisimple. O

4 Proof of Local Limit Theorem

We fix throughout a non-compact semisimple Lie group G with finite center. In
this section we prove Theorem 1.1, Theorem 1.2 and Theorem 1.3. The reader
may recall the outline given in Section 2.2.
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In Section 4.1 we prove the necessary spectral properties for the operators S,.
Then in Section 4.2 we prove the claimed properties of the limit measure and
also deduce (2.26). In Section 4.3 we deal with the high frequency term (2.22)
while in Section 4.4 we establish most of the necessary results to deal with the
low frequency term (2.23). The proof of Theorem 1.2 and Theorem 1.3 is then
completed in Section 4.5, while Theorem 1.1 is deduced in Section 4.6.

4.1 Spectral properties of S,. In this section we discuss spectral results
for the operators Sy and S, and the function r — p(S,) under the assumption that Sy
is quasicompact and using the results developed in Section 3.1 and Section 3.2.
Notice that if ¢ is non-degenerate and Sy is quasicompact, then by Lemma 3.6 and
Corollary 3.5 the operator Sy has strong spectral gap.

Before stating the first lemma, we mention that |S,#| < Sp|#| for all r € a*
and # € L*(Q), which implies p(S,) < ||So||. Lemma 4.1 is concerned with
improving the latter inequality to p(S,) < ||So|| under suitable assumptions on .

Lemma 4.1. Let u be a non-degenerate probability measure and assume
that Sy is quasicompact. Then for any non-zeror € a*,

4.1 p(Sr) < p(So) = [ISoll.
Moreover, for any c; > c¢; > 0 and n large enough depending on c| and c,,

(4.2) sup [IS71I» < 11Soll.
ca<lrl<e
Proof. Toprove(4.1), we follow ideas from the proof of [CG13, Theorem 3.9].
Fix a non-zero r € a*. We assume for a contradiction that p(S,) = p(Sp) and there-
fore there is 4 = € p(Sy) € spec(S,) for y € R. Then (cf. [EW17, Section 12.1])
either 4 is in the discrete spectrum or in the approximate spectrum, i.e., there is a
sequence 7, € ker(S, — A - Id)* with ||#,]] = 1 and

(4.3) lim [|S,77¢ — Anel| = 0.
{— 00

Note that as Sy is quasicompact, p(Sp) = ||So||. We first treat the case where 4
is in the discrete spectrum, i.e., that there exists # € L*(Q) such that S,#=17. Then

Soll 17l = 1Srnl < Solnl

and thus || Sol#| || = 1|Sol| [|17]]- Denote by #g the ||Sp||-eigenfunction of Sy with
unit norm. As Sy has strong spectral gap (by Lemma 3.6 and Corollary 3.5), it
follows that 7(w) = @ no(w), for & : Q — R a measurable function and @ € Q.
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Then for almost allw € Q andn > 1,

[ ) () = (St

= A"n(w)

= e™||So| "™ no(w)
= /0D / eTHE O (g™ ) dpa™(g).

As 19 is a quasi-interior element by Theorem 3.4, it must hold that 7y(w) > O for
almost all w € Q. Hence for almost all ® € Q and g € supp(u*"),

oirH(E™ )= o) rny) _ |

If r # 0, for a fixed w € Q and n > 1, we can choose h, € G such
that e~ H"'®) = i+ yer @i@h'@)~0@) = 1 Indeed, for a representative
w =kM for k € K, we may choose h, = ka,k~' for an element a, € A satis-
fying e~ = ¢i+7) 4 then

H'k)=H(a;") and 0(h ') = 0(w).

We may choose the /,, within a bounded region of G and therefore upon replacing #,,
with a subsequence we may assume that /, converges to some element 2 € G.
Since u is non-degenerate we can find some n and g € supp(u*") such that g
becomes arbitrarily close to 4 and hence for n large enough also to #,. This is a
contradiction.

It remains to assume that 4 is in the approximate spectrum. Let 7, be as in (4.3).
Since (S,7¢, Ane) = (Syne — Ane, Ane) + [|So]|?, it follows that

{—o00
(Sne, Ane) —— 11Soll?
and furthermore exploiting [(S,7,, 177¢)| < (Sol7el, [1Sol| |7¢]) one concludes that
lim (Solnel, 1101l 17¢1) = 11Sol]?
{—o00

{—00
and hence ||Sol7¢| — [1Soll 17el 117 < 2[1S0l1* — 2(Sol#nel, 11Soll [7¢]) — 0.
Denote w; = |n¢| — {|n¢l, no)no € (no)* € L*(Q). Then it holds that

{— o0
[1(So — [1SolDwell2 = [1Solnel — [1Soll 17¢l [l2 —— 0.
Since ; in (50)* and So — ||So|| is invertible on (9) it follows that ||y||» — O.
Notice that
well3 = 1= (el n0)?

and hence (|n¢|, 7o) — 1 and further |||7¢| — 7o|| — 0. Upon replacing £ by a
subsequence, we can assume that |#,| converges pointwise to 7 almost everywhere.
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We further note that for all n > 1, (S"5,, A"5,) — ||So]|*" as £ — oo. Indeed
this follows by induction as

(Stne — S ane + S Ane, A ne)
= (S'NSrme — Ane), 2" ne) + USolIP (S e, 2 L iie) — 11Sol1*"

Write 1 = €”||So|| and n,(w) = € @|y,|(w) for §; : @ — R a measurable
function and w € Q. Notice that (S"#,, A"#5,) equals

/ / ¢ OHNH(ET 1O =0 @)= 10| |1 (g™ )| | (@) d e *"(8)dmex(w)
and on the other hand

<SSno,nSbu"no>:=/fJ/e‘”H@‘%”HSbn"no<g—1a»no«u>du*"(g»hng(a».

{— o0
(S™0e, 2"ne) —— 1150l 1> = (San0, 1150l " 10)

and since almost surely |7,| — 79, we conclude that for almost all g € supp(u*")
and w € Q,

lim e/ CHE ™ @) =0:(g o)+0r(@)+y) — 1
{—o00

This leads to a contradiction by a similar argument to the case of the discrete
spectrum.

To prove (4.2), we notice that for an operator 7 on a Hilbert space .7 with
[IT]| < 1, the value of ||T”||:lr for a given n controls ||Tk||11c for any k > n. Indeed
(cf. [Rem]) if k = ¢n +j for 0 < j < n — 1 then it holds that

1 1 _tn j 1 oq_J J
(4.4) UTE < (1T ) TN E < (T 5| T

Therefore for k large enough in terms of n, ||T kllflc is at most slightly larger
than ||T"|| ». Assume now for a contradiction that (4.2) does not hold. Then there
is a sequence (n;);>; with n; — oo and for each i there is r; with ||S;’l_i||"1i =|[Sol|- As
theset{c; < |r| < c¢,}iscompact, we may choose a subsequence of the i such that 7;
converges to » € a* with ¢; < |r| < ¢;. We arrive at a contradiction as by (4.4),
||S;‘;‘||"li is at most marginally larger than ||S;’||; for r; close enough to r. Indeed,
choose ¢ > 0 small enough such that p(S,) + 3¢ < ||So|| and fix n large enough
such that ||S£’||rlz < p(S,) + &. Then for r; close enough to r, ||S£’i||5z < p(S,) +2¢
and hence by (4.4), choosing i sufficiently large, ||S’;;'||”lf < p(S;) +3¢e < ||Sol], a
contradiction to the assumption. (]
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Proposition 4.2. Let u be a non-degenerate probability measure with finite
second moment and assume that Sy is quasicompact. Then there is o9 = dp(u) > 0
such that for any r € a* with |r| < dy the operators S, and S} have strong spectral
gap.

More precisely there is 0 < 0y < 1 small enough satisfying the following

properties. For |r| < dy we can write
4.5) S, =A(ME,+D, and S:=ArE;+D;

where A(r), E, and D, and equally A(r), E} and D} satisfy the assumptions of
Definition 3.3, and the following properties hold:
() supy s 1011 < (1 = ONISoll for ¢ = c(u) > 0,
(i) 11E, — Eoll <, |rl* and ||E; — Ejl| <, |r|? for |r| < do.
(iii) Let n, be the unique A(r)-eigenfunction of S, with unit norm. Then for
small enough r there exists a unique A(r)-eigenfunction n,. of S; satisfying
(. 1) = 1. Then for p € LX(),

E.p={p, 1)1,

(iv) Moreover,
11— molla Ko PP, and |y, — noll KL 17l for || < .

Proof. As u has finite second moment, the directional derivatives of second
order of the family of operators S, and S} exist. Therefore the function

r = IS, = Soll

is C2. Since S,p = S_,p for ¢ € L*(Q), it follows by Taylor’s theorem that
[1S, — Soll Ku |r|? for small r. By Corollary 3.2 and Corollary 3.5, Sy has strong
spectral gap and S, is quasicompact for small . Equally by Lemma 3.1(ii) and
since

%=/m@”mmg

is a positive operator too, it follows that S has strong spectral gap and S} is
quasicompact for small 7.

We show that there is dg, ¢ > 0 small enough such that for |r| < Jy and two
orthogonal functions of unit norm ¢, ¢, € L*(Q) it must hold for either i = 1
or i =2 that

(4.6) 1Sr@ill2 < (1 = o)llSoll
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Indeed, assume for a contradiction that (4.6) does not hold. Then
11So@ill2 > [1S,@ill2 — 1S, = So)@ill2 > (1 — )A(0) + O, (Ir*) = (1 = 20)]ISol|

for rsmall enough. For ¢ small enough, as Sy has strong spectral gap and (p1,¢,) =0,
the latter is a contradiction.

Therefore we have shown for |r| < Jy that the A(r)-eigenspace of S, is one-
dimensional and on its complement the norm of S, is bounded by (1 — ¢)||Sol|-
Choose dp > 0 in addition small enough such [|So||[(1 — 5) < infj; <5 A(r). Denote
by 71 : S! — C a smooth parametrization of the closed circle of radius ||So||(1 — 5)
around zero and by y, : S! — C a smooth parametrization of the circle of

[1Solle
2

radius around ||Sy||. Consider the operators

1 1
@7  P=—_" / R S)dz, and E =— / R, S, dz,
2mi Jy, 2mi J,,

for R(z, S;) = (S, — z - Id)~! the resolvent of S, at z. Then by [Kat95, Chapter 3,
Theorem 6.17], the operators E, and P, are commuting projections with Id =
E, + P, and where ker(P,) = Im(P,) is the one-dimensional eigenspace of S, with
eigenvalue A(r). By setting D, = S, P,, we therefore have shown that

S, = SAE, + P,) = A(PE, + D,

has strong spectral gap and that (i) holds.

We claim that the operators E, and P, are also C2. Indeed by [DS58, Lemma 3,
Chapter VIL6], it holds that whenever ||S, — So|| < ||R(z, So)||~", then for any z in
the resolvent set of Sy that z is also in the resolvent set for S, and that

R(z, S;) =Rz, S0) > _(S; — So)"R(z, So)".
n=0

Since S, is C? it therefore follows that for  small enough R(z, S,) is also C? on y,
and y,. Thus ||P, — Pol| <, |r|* and ||E, — Eo|| <, |r|* and the claim for E* is
established similarly.

To show (iii), first assume that such an 7, exists. Then as E,¢ = (¢, y)#, for
some y € L*(Q) with S,E, = E,.S, and Ef = E, it follows that STy = A(r)y and
that (7, w) = 1, which implies that y = 7. By the above, it follows that there is a
unique A(r)-eigenfunction of S} with unit norm for |r| < Jp, yet we need to show
that there exists one with (#,, ,.) = 1. For r = 0 this holds as both eigenfunctions
are positive almost surely and for small r we apply (iv) (for #,. with a fixed norm) to
show that there is a A(r)-eigenfunction 7, of S} satisfying (7,, #,.) % 0 and therefore
upon normalizing #, the claim follows.
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To conclude, we show (iv) for ||, — noll2 and note that the same argument
applies to ||, — 776| |. The claim is deduced from (ii) by noticing that for dy small
enough, 7, = I E . Indeed,

1
HErnoll = 11Erno = 10 + noll = ol = 1ICE- = Eo)nol| >

for 0 small enough. To prove (iv), notice

Eomno Eono
17, = ol < .+,

st = |
Moot~ E il e~ "

< l1E; = Eoll + — 1] <, IrP,

‘ [1En0ll

. 1 E —||E,
using that 1 = ||Egnol| and [, ! — 1] < [MFml=Enll) « IE, — Egll <, 7.

Proposition 4.3. Let u be a non-degenerate probability measure with finite
second moment and assume that Sy is quasicompact. Then A(r) is a C?-function
and the Hessian H, o of A at 0 is a negative definite sesquilinear form.

Proof. Using the notation of the proof of Proposition 4.2, it holds that

<SVE77]09 7]6>

A =
(r) <Er o, 776>

and therefore for r small enough it follows that r — A(r) is a C>-function.

For the remainder we follow roughly the proof of [Bou81, Proposition 2.2.7].
To show that H,  is negative definite, we fix a non-zero element r € a* and
prove that the function &(#) = A(¢r) has strictly negative second derivative at zero.
Consider the function h,(r) = (D},no, 1;). As D). = (Id — E;,)D}.(I1d — E,,) it holds
that

17D = (D7, (1d — Ey)no, (Id — E;)* 1)
< 1D |I"1Ad — E)nmol| 11(Id — Ex)* 1ol
< D |I"I(Eo = Ex)noll [I(Eo — Eu)* 1ol
< 1D I"I(Eo — EDINIEG — EDI| < D12,
using Proposition 4.2(ii). In particular, using Proposition 4.2(i),

20) " (0] Ko 1

for all n > 1 and small ¢ and therefore 1(0)~"%,,(0) is bounded for all n > 1 as
otherwise Taylor’s theorem would yield a contradiction.
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As £(0) = A(0) and &'(0) = 0, it follows that

2 2
ag) HO S n0)= o,

(A0)" @) (Ewrino, 10)+4(0)™"hu(1))
t=0

—1 zn d2
=ni (0O + O

(Eirn0, 10)+A(0)"h;(0).
=0

Note that 5; i=0(Ei10, 10) is also bounded as by Proposition 4.2,

|<Elr’703 }70>| <</1’r l + t2.

We finally consider the functions f,(r) = A(0)7"(Skno, o) for n > 1. We
claim that the function f,(¢) is positive definite. Indeed, for #,...,7, € R
anday,...,a, €C,

200> "arofulte — te)
kot
= Z<S?tk—tr)rak770’ a[”0>
K
=2 /“ka[e_i(tk_")’H(g_lk)e_éH(g_lk)ﬂo(g_l.k)ﬂo(k) du(g)dma(k)
K

_: —1
=/ Ze ityrH(g k)OCk

k
which is positive as 79 > 0. Therefore by Bochner’s theorem and since f,(0) = 1

2
e~ MO8~ k)no(k) du(g)dma(k),

one may expresses f, as the Fourier transform of a real-valued random variable X,,,
ie., fu(t) = [ e~ du x,(x). Denote by v, = —if,(0) the expected value of X,, and
by 0,21 = —f,/(0) its variance. For any givenc¢ > 0 we notice that P[| X, —v,| <c]— 0
as n — oo since by Lemma 4.1 it holds that f,,(#) — 0 for ¢ #0 as n — oo and
therefore u, weakly converges to the zero measure. Applying Chebyschev’s
inequality,
o2
11— C; S1T—=PlX, —v4]l 2c]=P[|Xy—0v4]l <c]— 0

and hence 2 > ¢?/2 for any large enough n. Thus f(0) — —oo which by (4.8)
can only happen if £”(0) < 0. This concludes the proof. O

4.2 Thelimit measure. In this section we establish the claimed properties
of the functions vy, , as stated in (2.26). A multiple of v, ¢ is the limit function of
Theorem 1.1.

The main lemma of this section may be viewed as a Lie group analogue of (2.27).
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Lemma 4.4. Let u and o9 € (0,1) be as in Proposition 4.2. Denote
for |r| < 8o by 3, the unique A(r)-eigenfunction of S, with unit norm and by 1, the
St-eigenfunction with eigenvalue A(r) satisfying (1., n,) = 1. Then the continuous
function

(4.9) Viur(8) = (s pr()y)
satisfies (L% W, = Wy r * U = Ar)Wy . Moreover, for any f € #(X) and h € G,

(4.10) / I Py rdme = /Q F( 0)(Ep (™) 1)(e) dma(w),

where pg is the right regular representation of G and we view f as a right K-
invariant eigenfunction on G.

Proof. The relation (4.10) follows as for f € .(X) and h € G,

/ - pety W dme = (17, oo pr(hYL)

= (Nr, pr(H)pr(mg) p(h)7,.)
= (12 pr(N){(1)» pr(R™H1)T)
= ((p,(h™ D1, 1)y, pr(H1)

- /Q 7o, ) Evpy (™) D(@) dimoo),

having used in the last line thatﬂr, k) = p_.(H)() = p,(HH(1).
To show that 1 * v, . = A(r)y,, ,, we calculate for g € G

(U * (g = / (W' g) du(h)
= (1, S; p(n,)
= <Sr7]ra Pr(g)ﬂ/r> = A(r) '/’,u,r(g)-

A similar argument shows that y,, . * u = A(Ny, .
For later reference we show the following lemma.

Lemma 4.5. Let u be a non-degenerate probability measure on G with finite
second moment and assume that Sy is quasicompact. Denote by oy the constant
obtained from Proposition 4.2. Then for |r| < oy with &y small enough, and g € G,
(4.11) [, (8) = Wu0(@] K [r|(1+Ig]D)-

Moreover, for |r| < dy and g € G,

4.12) "’“”(g);“’”"’(g) — o) < 1P+ 1lglP).
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Proof. Observe that

[V u.r(8) = Wi 0(| = (11> p()1) — (105 Po()10)]
= {pr (g™ 1) = (pole™ o, o)
< Wpr(g™ e 11, = o)1 + 1{pr(g™ e = po(g™ 0, 7o)
L 1, = moll2 + 11(or(g™") = polg™ Mol 2

Thus in order to prove (4.11), by using Proposition 4.2(iii) it suffices to deal
with [[(p,(g™") = po(g~))7ol|2. One calculates that for g € G and € Q,

1(pr (&™) — polg™ Nno(@)]| = (e — 1)[|e™HE o (gew)|

(4.13) .
< |l ligll le € po(ga)l.

Equation (4.11) therefore follows by squaring the latter term, integrating over €2 and
using that || po(g)70ll2 = ||#ol]2 = 1. For (4.12) one performs the same calculation
and notices that

&)+ p-r(8)
Kp g+2p g

Then (4.12) follows by using that |(cos(rH(g™'w)) — 1)| < |r|?|Igl|>. O

- Po(g)) no(a))‘ = |(cos(rH(g" 'w)) — 1)||€_‘5H(g71“’)770(g_1a))|,

4.3 High frequency estimate. For a Schwartz function f € . (X), we
say that the Fourier transform f :a x K — C has compact support if there is R > 0
such that f(r, w) =0 for r > R and all w € Q. In this section with make no
notational difference between a function f € .(X) and its G-lift. We first prove a
preliminary lemma on the Fourier transform.

Lemma 4.6. Forf € ./(X),
W Iz < 11N

Proof. We calculate for r € a and w € Q that
2

I (r, )2

‘ /G F©)(P-r()))(@) dmc(g)

2

IN

‘ /G [F( @1 (p-r (&) (@)| dmc(g)

2
< .

/G @1 1(po(e) (@) dmee)

Set f1 = so that it follows that

f1
11
2

[F(r )* < |If117 - ‘/G(po(g)l)(w)ﬁ(g) dmg(g)
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Recall that if X is a random variable on a probability space then by Jensen’s
inequality E[X]*> < E[X?]. By construction fidmg is a probability measure and
hence it follows that

o )P < W11 / (po() (@) fi(g) dm(g)
d(ay).
< 1A / (‘fj) ™M () f(g) dmo(g).

Thus we conclude that

N d «
1Fe B < 1117 /G ( /Q (O;‘ij 9 (4 )dmg(a))>f1(g)dmc(g)

< IIf113. O

Lemma 4.7. Let u be a non-degenerate probability measure on G, assume
that Sy is quasicompact and let dy € (0, 1) be the constant from Proposition 4.2.
Let R > 1 and let f € #(X) be a Schwartz function whose Fourier transform
satisfies ﬁn w) =0 forall |[r| > Rand w € Q. Then there is cg = cp(u) > 0
depending on u and R such that for n > 1,

<<,u Rdimxe—c‘Rnlv‘Hl .

Wi/
/|r|>é /f(r Cl)) (Srpr(ho)l)(a)) de(w)stph(}’)

Proof. Choose R such that f(r, w) = 0 for r > R and w € Q. Then using
Cauchy—Schwarz and Lemma 4.1,

Wl R
) / / Fr, ) (S py(ho) D)(@) dime(@)dvagn(r)
o do<|r|I<R JQ
nl/2 ~
<" / G Mz 1" 0(io) 2 dvspn(r)
0" Joo<|rI<R
% R
<™ sup 17l 10 iz dvipn(r)
0" S<Irl<R 1<|r|<R

IA

emeun /5 1 iz dvspn(r)
o<|r|<R

L e / ()™ dmqg-(r)

[rI<R
S WA [ (A1) g (1) < R A

[rI<R
using (4.2) in order to choose a constant cg > 0 depending on x and R such
that (";,/,2 sup;,<ii<r |IS711) < €7 for n large enough and [Hel84, Chapter IV,
Proposition 7.2], asserting that |c(r)] 7> < 1 + ||V for any r € a* (|
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Towards proving Theorem 1.3, we strengthen Lemma 4.7 under strong assump-
tions on [|S,]|.

Lemma 4.8. Let u be a non-degenerate probability measure on G. Assume
that Sy is quasicompact and that (sup,, > |[S;|]) < |ISol|. Let do be the constant
Jfrom Proposition 4.2. Then for f € ./ (X), s > % dimX andn > 1,

) R
" /| o |70 (S20,00)1)(@) dma @] € €l

Proof. The left-hand side of the claimed equation is bounded by

nt/?

0-}’!

/|| ) W 2@ 1S5 pr (o) 112 dvgpn(r)
r|=0o

< e / G Ml |17 dvagn(r)
|r|>do

< e / 1F|=25 dvgn(F) / 173 )1 oy P12 dvgn ()
|r|>do |r|>do

<<5[),S e_cnlv‘”H“'a

for n large enough and choosing s sufficiently large such that flrlzl [7]725 dvgpn(r) is
bounded. Indeed, by [Hel84, Chapter IV, Proposition 7.2], it holds
that |c(r)| 72 < 1+ |r]%™" for any r € a* and therefore |c(r)|™> <5, [r|4™V
for |r| > &p. Thus
[ ) < [ 1 dge )
|r|>do |r|>do

and the latter term is < oo whenever dim N — 25 < — dimA. O

4.4 Low frequency estimate. Throughout this section we assume that Sy
is quasicompact and denote by dy € (0, 1) the constant from Proposition 4.2. In this
section we deal with some preliminary estimates for the frequency range |r| < Jo.
We recall that by Proposition 4.2 for |r| < dy we have a decomposition

S, = A(NE, + D,,

where E, and D, satisfy the properties of Definition 3.3. We first show that we can
ignore the contribution of D,.

Lemma4.9. Let u be a non-degenerate probability measure on G and assume
that Sy is quasicompact. There exists a constant ¢ > 0 depending on u such that
forall f € (X) and hy € G,
nt/?

O-Vl

/ / Fer, &) (D! p(ho) 1)(@) dm(@)dven(r)| < |1f]11e~".
|r|<dp J Q
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Proof. Using Proposition 4.2, we deduce ”;/nz Supy,i<g, 107 pr(ho) 1] < e™"
for ¢ > 0 a constant depending on x. Using Cauchy—Schwarz the term in question
is bounded by

nt/? N
/l M 2@ 11D pr(ho) 12 dvspn(r).

0" Jiri<d

The lemma follows as |U”A(r, Mz < IlfIlh by Lemma 4.6 and by estimat-
ing f|r|§(50 1 dvgpn(r) < 1 since dy < 1. 0

Therefore, up to an exponential error term, we only need to deal with

nt/2 R
(4.14) ) / Ay / Fer, ) (E,pr(ho) ))(@) dma(@)dvan(r).
o |r|<do Q

Recall that ¢ = 2p + d for d the rank of G, where the rank is defined as the real
dimension of a. We therefore may rewrite (4.14) by replacing r by

o L ) (0

< [ F( s @) E 1 (V@) dma(o)dme: (7).

r

n as

(4.15)

Towards proving the local limit theorem, we first replace 'WCT ‘n/”)n by a suitable

function. Before doing so we give some elementary calculative results.

Lemma 4.10. The following inequalities hold:
(i) Forany A,B € R,

le* — e8| < |A — Bl max{¢”, €P).
(i1)) Foranyc > 0,r #0andn > 1,

2 2 o _
cnrt cnr /2r 2.

ne e

Proof. For the first inequality, by assuming without loss of generality
that A > B we deduce that |e* — €®| < e?|1 — ¢®74| and hence reduce to showing
that |1 — ¢#~4| < |A — B|. For this we use that ¢* > 1 + x and hence as B — A is
negative,

N—ef A =1-e#*<—-(B-A)=]A-B|
For the second inequality we apply the observation that e™ < )1( to deduce that

—cnr2/2 <n 2 2

ne =
cnr?  cr?

which implies the claim by multiplication with e /2, (|
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Lemma 4.11. Assume that u has finite fourth moment. There are con-
stants ¢y, c* > 0 and a positive definite sesquilinear form Q on a such that
for |r| < do,

‘l(r)" _ e—Can(r,r)

2
o <<,u e ¢ nlr| |r|2‘

In particular, for |r| < do\/n,

} A/ 0t

w2
<<Iu n le C |r| |r|2.
o

Proof. As in the proof of Proposition 4.3 one shows that A(r) is C* if u has
finite fourth moment. Indeed, by conducting a Taylor expansion of 4, for small r,

Ar) = 2(0) = Q(r, 1) + Oc(Ir[),

where Q(r, r) = —H, o(r, r)/2 for H, o the Hessian of A at 0. By Proposition 4.3
the sesquilinear form Q is positive definite. Moreover, we may choose for
small enough r a constant ¢, > 0 such that [A(r)] < A(0)(1 — c*|r|*). Using
that In(1 + x) < x, it therefore follows that

nln (jég) < —c*n|r|?.

Throughout, set ¢, = and choose ¢* < ¢;. Then

1
2(0)

max{e=¢m2un gnnGEN < p=etnlrf

Using Lemma 4.10(i) it follows that

A(r)" — p—C2nQr)
2(0)"

A(r))

nln( 20)

= e _ e—Can(r,r)|

Ar i
< max{ e—can(r,r)’ e”ln(i{oz)}‘nln ( (}")) + O, 1)
4(0)
<L e~

& e—c*nQ(;’,r)lrlZ’

by using Lemma 4.10(ii) in the last line by changing the constant c*. (]
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Recall by the definition of the c-function that
_ 1 L m(r;) ir, re) -2
2 — B 1 >
le(r)] 1(5)<H‘ ( 2 (g, r€>)‘>

(KH ‘B(m(rf) m(ri/Z) ir, rg>)D_2

L (re, 7o)

m(re) i(rr, 2
1(fIIN ‘+”;N )
ROV TP

r( r(

(4.16)

k m(re) | m(re/2) | i{rre) )2

><<H TR+ +<rer()| )
(r¢) (re/2) i(rr

ipr ITCPSOPITCME 4 (72

where B(x, y) = fol ~1(1 — t)’~! dt is the Beta function satisfying

F@)I()
Fx+y)

Lemmad.12. Thereis a constant cg depending only on G such that for |r| < do,

B(x,y) =

14
le()I™* = cg [ 1{r re) P + O(Ir).
=1
In particular, for |r| < do/n,

(I =TT

< n A

Proof. As the singularities of the I" function are at 0, —1, —2, ... and I'(z)
behaves around 0 like l,it holds that | |F(i1)c)2| —x?| < x*and |[T(G+ix)?—T(5)*] < x2.
Therefore,

‘ |1—~(m(r[) + r;';[[ )|2 ~ lr(m(rg))l |<}" rf ‘<<| |
IFCGPITGEDE TSP e, r)P
and similarly
m(re) m(r /2) . inre) y2 2
TS0+ 07+ 4 :, N | N o < WP

| s
|r<"’<;’>>| |r<”’<’f/2> P ITCSOPITC )1

Using these two estimates in (4.16) the lemma follows for a suitable constant cg.[



780 C. KOGLER

Denote by

p
y(r) = cge™ 0 [T 10 re) 2
t=1

for ¢ the constant from Lemma 4.12. We then may draw the following corollary.

Corollary 4.13. Assume that p has finite fourth moment. For |r| < dy\/n
and ¢’ > 0 a constant depending on u,

n? ro\”"

‘o‘”l(\/n)

Proof. Combining Lemma4.11 and Lemma4.12, for a suitable constant ¢’ > 0,

p i( r )n _

o () | e )|
o' \\/n o" Vn

p
P r ‘_2 _ 2
n ‘C(\/n) chKr, re)|

—1_—c|r?
& nleI,

r -2 -1 _C/IrIZ
C(\/n)‘ y(r)‘ L, n e .

_ e—CzQ(rJ)

()| =] =

+ e_CZQ(VJ)

using that |c( \;n)l_2 — (Nl K, |r|°D which equally follows by Lemma 4.12. [J

4.5 Proof of Theorem 1.2 and Theorem 1.3. Throughout this section
assume that x4 has finite fourth moment. We are now in a suitable position to
prove Theorem 1.2 and Theorem 1.3. Let f € #(X). Recall that we expressed
in (2.21) the term in question ”;f,z [ f(g-x0) du*"(g) for xo = hoK by using the
Fourier inversion formula as

nt/?

O-n

[ | xStp D@ dmato)dgno).

The latter term is decomposed into the high frequency (2.22) and low frequen-
cy (2.23) component for dy € (0, 1) small enough such that Lemma 4.2 holds.
Under the assumption supy,i~; [|S||, the high frequency term (2.22) is dealt with
by Lemma 4.8 collecting an error term of size O, (e™"||f||ns) for s = %(dimX +1).
Without this assumption, one requires that the Fourier transform of f is compactly
supported yielding, by Lemma 4.7, an error term of size O, s(e=“"|[f||1).

For the low frequency term, one applies Lemma 4.9, thereby collecting an
error term of size O,(e”"||f[[1). It remains to deal with (4.14), which after the

n

substitution r to Jr is of the form (4.15). Using Lemma 5.9 and Corollary 4.13,
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we arrive at the term

~ T
/|r|g(so¢n 7 /Qf ( v “’) (E ;. p ; (WD(@) dmo(w)dme-(r)

-/ f(g)pc(h_‘)< [ vowg@ dmu»(r)) dmo(g)
[r|<doy/n

admitting an additional error term of size

— — 2 _
Ly n 1IU”Ill/|| o eV dmg-(r) <, n7If
r|<op\/n

using that the latter integral converges.
We define for n > 1 the continuous real-valued functions on G,

wn(8) = / YW, 5 (8) dmq-(r)
[r|<dov/n
and

wo(g) = Cu - l//,u,O(g) for Cu =/ y(r) dmg:(r).
rea*

While Wu. !, is not necessarily real-valued, the function y,, is as Y, = V-
and the definition of y,, is invariant under r — —r.
We have so far collected a total error of size

O™ If 1y + e[l
under the assumption supy,;-; |1S/]| < [|Sol| and for /' € (X)) and
O, (n[If11) + Oy e " [If 1)

without the latter assumption yet requiring that the Fourier transform of f has
compact support. To conclude the proof, we show the following lemma:

Lemma4.14. Forge Gandn > 1,
lwa(g) — wo(@)l <. n™' (1 +11gl1%).

Proof. Since y(r) <, eI for a suitable constant ¢’ it follows that

[w.,0(8)l y(r) dmg:(r)
|r|>d0+/n

decays exponentially fast in n (using that |y, o(g)| = (70, po(&)7n5)| <K, 1) and
therefore we need to deal with

(4.17) ‘Wn(g)— /H iy Y)Y u,0(8) dmg:(r)|.
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By Lemma 4.5 it holds that

‘ Yu. ;. (&) + Wy 1 (&)

5 — wu0(@)| < n7 PP+ gl

and therefore using again that y(r) <, e~ and as the defining integral of y,, is
invariant under replacing r by —r,

4.17) € iy YO, 7 (&) = Wu0(@)] dma-(r)
r{<oov/n

< n 1+ gl YO r|* dme-(r)

|r|<dov/n

<, N+ 1glP).

Recall that we have defined
Wl = / I+ dx(x, 0)%) dmy(x) = / F@I(L+ 1181 dmeg),

where we make no notational difference between f and its lift to G. To conclude
the proof of (1.6) and (1.9) we estimate

‘ / F(g.x0) walg) dmo(g) — / Flgxo)vo(e) de(g)‘
< / @Il walghs ) — wolghy D] dma(s)
<un”! / F@IA + llghy ' 117 dmo(g)

L n! / F@IL + IglI* + [1hol|?) dma(g)
L n N + 1 dx (0, 00 1If 111

having used in the penultimate line that ||gh51 I <llgll+ ||h5l || by [BQ16, Corol-
lary 7.20] as G is connected. This concludes the proof of Theorem 1.2 and of (1.9).
The final claim of Theorem 1.3 is proved in the following lemma:

Lemma 4.15. Let G be a non-compact connected semisimple Lie group with
finite center and let u be a non-degenerate probability measure on G with finite
second moment. Assume that u satisfies one of the following properties:

(1) u is spread out.
(i1) wu is bi-K-invariant, i.e., mg * u * mg.

Then S is quasicompact and (supj,;>1 |1S-[) < 1Soll-
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Proof. The claim of the lemma was established for spread out measures in
[Bou81, Section 2.2]. It remains to treat the case where u is bi-K-invariant. Note
that as S, = p,(mg) * S, * p,(my) it holds that S,1q = A(r)1g and S,{1g)* = {0}
and therefore A(r) = [ ¢,(g)du(g). The claim now follows as ¢,(g) — 0 (cf.,
for example, [FM21, Appendix A]) for fixed g € G\K and r — oo and using
that u(G\K) > 0 as u is non-degenerate. (]

4.6 Proof of Theorem 1.1.

Lemma 4.16. Let G and u be as in Theorem 1.1. Let f € .#(X) be a Schwartz
function whose Fourier transform is compactly supported. Then

nt/?

lim / Flgxo) du(g) = / Fgx0)vo(g) dme(s).

n—oo g’

Proof. The proof is as that of Theorem 1.3 expect that we cannot use Lem-
ma 4.11. Revising the argument of Lemma 4.11, it follows that for the positive
definite quadratic form Q from Lemma 4.11, under the assumption that x4 has
finite second moment, it holds that A(r) = A(0) — Q(#, r) + o(|r|?) and therefore
for |r| < do/n,

111’11 i(}’/\n/n) - e_CZQ(rJ) and j‘(r/\n/n) < ec/lrlz

n—oo o o

for a suitable constant ¢’ > 0. Similarly to Lemma 4.13,

tim 22, () =70

Arguing as in the proof of Theorem 1.2, it therefore follows by dominated conver-

gence that
. n[/2 .
Jim " [ e due) = tim @.14)

= / (@) /Q £(0, )(Eopo(ho) 1) () dma(e)dma:(r)

- / £(8.x0)wo(g) dm(). 0

Lemma 4.17. Let f € .S (X). Then

. nt/?
lim sup

n
n— 00 o

/ f(g-xO)dﬂ*”(g)‘ < 1l

where the implied constant depends only on G.
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Proof. One may reduce to functions f > 0. By covering the latter function
suitably by a linear combination of characteristic functions, it suffices to show the
claim for f = 1p () with & > O small and x € X. By [And04, Theorem 5.7] there
is a positive function & € . (X), whose Fourier transform has compact support,
satisfying 1p (y < & and ||h]||; < volx(B;). The lemma follows by applying

Lemma 4.16 to h. O

Proof of Theorem 1.1. Letd, € .(X) be an approximation to the identity
on G that is bi-K-invariant and whose Fourier transform has compact support. Such
functions exist by choosing a sequence w, of smooth bi-K-invariant approximations
to the identity that are supported on smaller and smaller balls around e € G.
As a Schwartz function is characterized by its Fourier transform, it suffices to
determine &;. Indeed one may choose 5; to be equal to @y in a sufficiently large
ball around the identity and to decay to zero rapidly outside of it. One then readily
checks that o, satisfies the required properties.

Then for f € ./(X), it holds for r € a* and k € Q that

Fx0u(r k) = (p_(F % 81K = (p_r(F)p—r(8) 1)(K) = F(r, K)u(r).

Therefore the Fourier transform of f = J; has compact support.
Combining Corollary 4.16 and Lemma 4.17, for f € .(X),

)2
" [fexdn@
(03

nt/?

O-n

/2
" " /(f * 0¢)(g.X0) dp™"(g) + /(f — [ * 0¢)(g.x0) du™"(g)
o

/f(g-xO)l//o(g) dme(g) + Ou(Ilf —f * dcll1) + ope(1)

having used Lemma4.17 and that | [(f—fJ,)(g) wo(ghgl) dmg(g)| <K, I =f*o¢lli
as yy is bounded. The claim follows by choosing ¢ sufficiently slowly increasing
in n. =

S5 Quasicompactness of S,

In this section we discuss how to establish quasicompactness of Sy under strong
Diophantine assumption. The reader may recall the Littlewood—Paley decomposi-
tion L*(K) = @ ¢=0 Ve (see (2.6)), where the space of functions V; can be pictured
as oscillating with frequency 2¢. The main result of this section states that under
suitable assumptions, the operator Sp has small norm on the space of functions
with high enough oscillations.
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Recall that we denoted by p{ the Koopman representation induced by the G
action on K, which contains the zero principal series pg as a subrepresentation and
write S§ = pj(u). Instead of considering Sy, we study S{, which leads to stronger
statements.

Theorem 5.1. Let G be a non-compact connected simple Lie group with finite
center. Forcy, cy > O there exists ey = eo(cy, c2) > 0 such that the following holds.
For any 0 < ¢ < g9 and any symmetric and (cy, ¢z, €)-Diophantine probability
measure y there is L = L(cy, ¢3) € Z> such that for ¢ € @QL Ve,

1
(5.1 1S50ll2 < UGS
Theorem 5.1 will be deduced in Section 5.1 using results and ideas from
[BISG17], thereby exploiting that the measure x has high dimension (2.28) as well
as a Littlewood—Paley decomposition and a mixing inequality on G. Under the
additional assumption that K is semisimple, one may instead follow Bourgain’s

[Boul?2] original ideas and improve (5.1).

Theorem 5.2. Let G be a non-compact connected simple Lie group with
finite center and maximal compact subgroup K. Assume that K is semisimple.
For cy,cy > 0 there exists ¢y = go(c1,c2) > 0 such that the following holds:
For any 0 < ¢ < gg and any symmetric and (cy, ¢z, €)-Diophantine probability
measure y there is L = L(cy, ¢3) € Z> such that for ¢ € @521‘ Ve,

(5.2) 1S59ll2 < £%=Dllp] 2.

The proof of Theorem 5.2 was exposed in Section 2.2. As in [BISG17] we
exploit that ¢ has high dimension, yet we work with the Littlewood—Paley de-
composition on K and use that the averages of matrix coefficients of V; are small
(Proposition 3.11). From these results, one may easily deduce that Sy and S§ are
quasicompact, therefore also implying Theorem 1.7.

Corollary 5.3. Let G be a non-compact connected simple Lie group with finite
center and maximal compact group K. Forcy, c; > Qthere exists ¢y = go(cy, c2) >0
such that the following holds. For any 0 < & < gy and any symmetric and
(c1, ¢2, €)-Diophantine probability measure i, the operators Sy and S are quasi-
compact.

Proof. As [|Sol| = [IS§]| (by [Gui80, Section D]) and since pg is a subrep-
resentation of py, it suffices to show that S is quasicompact. By Lemma 3.1,
the estimate (5.1) implies that pee(S§) < ‘1‘. As for ¢ > 0 small enough,
/e, — Uleo < 101118l < €%V for g € By, it holds that [|S5|| > 1 — &%

and hence the claim follows. O
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We next explain how to deduce from (5.1) that the Furstenberg measure is
absolutely continuous. Given a non-degenerate probability measure, we study the
operator

Ty : L*(Q) = L*(Q), ¢+ Top= /so o agdu(g).

As we discuss in the proof of Corollary 5.4, it is shown in [BQ18] that if
Pess(To) < 1, then the Furstenberg measure of u is absolutely continuous. The
following corollary is also necessary to establish Theorem 1.8:

Corollary 5.4. Let G be a non-compact connected simple Lie group with
maximal compact subgroup K. For ci,cy > 0 there exists ey = go(cy,c2) > 0
such that the following holds. For any 0 < & < g9 and any symmetric and
(c1, ¢2, €)-Diophantine probability measure u there is L = L(cy, c2) € Zsy such
that

1
(5.3) ITogll> < S llgll2 for g € (Lz(szm@w).

{>L

Then pess(To) < 1 and the Furstenberg measure of u is absolutely continuous.

Proof. Using as in the proof of Corollary 5.3 that
/o, — Uloo < 101 1] < 870

for g € B, and ¢ > 0 small enough, it follows that ||Sy — Tp|| < €°?). There-
fore (5.3) is implied by (5.2). By Lemma 3.1 we hence conclude that pess(7Ty) < 1.

We finally review the argument from [BQ18] to show that the Furstenberg
measure of u is absolutely continuous under the assumption that pe(7p) < 1.
Indeed as Ty1 = 1, it follows that 1 is in the discrete spectrum of Ty. If pess(To) < 1,
one furthermore concludes (cf. [BQ18, Fact 2.3]) that 1 is in the discrete spectrum
of the adjoint operator 7;; and therefore there is a function yg € L*(Q) satisfying
Ty wr = wr. One then readily checks that wrdmg is a u-stationary measure and
thus by uniqueness of the Furstenberg measure it holds that dvg = yrdmg. (]

We comment on the organization of this section. Theorem 5.1 is proved in
Section 5.1. The proof of Theorem 5.2 comprises two steps. In Section 5.2 we
first establish, using the flattening results from Theorem 3.10, that S|y, has small
operator norm. In Section 5.3 we complete the proof of Theorem 5.2 by using
that S;V, and V, are almost orthogonal. Finally in Section 5.4 we show how to
deduce that the Furstenberg measure has a C"(K) density.
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5.1 Proof of Theorem 5.1. Write T{¢p = [ ¢ o azdu(g) for ¢ € L*(K).
Since [|S§ — T|| < €%, as argued in the proof of Corollary 5.4, in order to prove
Theorem 5.1 it suffices to show that

1
(5.4) 75 ell2 < gl11l2

forp e @521‘ Veand L = L(cy, ¢2).

We proceed similarly to the proof of [BISG17, Corollary C]. Indeed, we reduce
the problem at hand to studying the regular representation on L?>(G). One then
uses the following result of [BISG17], which may be considered as their core
technical contribution, which uses that x# has high dimension as well as a novel
Littlewood—Paley decomposition and a mixing inequality on G. We rephrase their
result using the notion of (cy, ¢z, €)-Diophantine measures.

To introduce notation, for a measurable subset B C G we consider the norm

111220 = /B (@) dmg.

Theorem 5.5 ([BISG17, Theorem 6.7]). Let G be a connected simple Lie
group with finite center and B C G a measurable set with compact closure. Let
c1,cy > 0. Then there is g9 = eo(B, c1,c2) > 0 such that the following holds.
For any 0 < ¢ < g9 and any symmetric and (cy, ¢z, €)-Diophantine probability

measure u there is a finite-dimensional subspace Vz C L*(B) such that

OB,c;,e, (1
A6 vyt Hop,r2p) < €75 2,

In order to apply Theorem 5.5, we use the following lemma, which is inspired
by the proof of [BISG17, Corollary C]. Denote by g : G — K = G/P" the natural
projection.

Lemma 5.6. Denote B = {g € G : |k(g)| < ¢} for ¢ > 0. For small

enough ¢ > 0 there is a constant D > 1 depending on G and ¢ > 0 such for
all p € L*(K),

(5.5 D_1||§0||L2(1<) < llgomkllzg < Dllollx-

Proof. Recall that we denote P* = AN. By [BAIHVO0S8, Theorem B.1.4] there
is a continuous function p : G — R. ¢ such that

(5.6) [ @@ amat) = [ [ o) ampoimeo

for all f € L'(G) with compact support. It moreover holds that a;(xPJr) = ’;ffxx))

for all x, g € G. For ¢ small enough 0 < p(g) < 1 for all g € B and therefore
infoep |1 — p(g)| > 0. We choose the constant D’ such that

sup |1 — p(g)l < D"
geB
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We then calculate for ¢y, 9> € L*>(K), using (5.6),

Imc(B){p1, 92)12() — (@1 0 Tk, 92 0 Tk ) 125

/K /P 01(O)p2(k)15(p) dmp(p)dmy (k) — / 15(8)¢1(mk ()92 k(8)) dmc(g)

<

<

/B p1(mx(@)pa(wg(g)(1 — p(g)) dmc(g)‘

<llg1o ﬂKIILz(f;)\//B lp2(mk (@)1 11 — p(&)I* dmc(g)

<D'||p1 o mkll2myll@2 © wkll12B).-

By a similar argument we may also estimate the latter term by

ma(B)D'[|p1 || 2a0 192 12x) -

Setting ¢ = @ = @, the claim is readily implied by choosing D suitably in terms
of D' and mg(B). O

Throughout the following denote by B = {g € G : |k(g)| < c} a set from
Lemma 5.6 such that (5.5) holds. We are now in a suitable position to apply
Theorem 5.5. Indeed for ¢ € L*(K) it holds by (5.5) that

(5.7 Topll2x) < DI(Top) o wgll2m) = DllAc(u)(@ o mi)ll2s)-

Let Vp C L*(B) be the finite-dimensional subspace of Theorem 5.5. We then may
choose L large enough such thatif ¢ € @,.; V¢ then

1
(5.8) lpomx — (@ omr)vyrllg < 16D2 [lg o wkll2(B)>

where (¢ o )y, is the projection of ¢ o mx onto (Vp)t. Indeed this follows
using (5.6) and that Vp is finite-dimensional.
We conclude using Theorem 5.5, (5.5), (5.7) and (5.8):

Topll 2y <DllAc(u)(@ o w)ll 2
<D||Ac(u)(@ o g — (¢ o w) vy 2wy + Dl Ac(u)(@ © wr) vy 2 s
< ' ipo 2 + De%r2 V) |p o k|l 12
— 16D
1
< (g + D% D) llpllizg0,

showing (5.4) by choosing ¢ small enough in terms of ¢; and ¢;. The proof of
Theorem 5.1 is complete.
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5.2 Operator norm estimate for S; on V,. In this section we prove the
following proposition:

Proposition 5.7. For c¢1,c; > 0 there exists ¢y = €9(G, c1,c2) > 0 such
that the following holds. For any 0 < & < gy and any symmetric and (c1, ¢, €)-
Diophantine probability measure u, there is L = L(G,c1,c) € Zs) such
that ||Sg|v,|lop < €%12W for € > L.

Recall that as introduced in Section 3.4,

_ 13,
mg(Bs)
For the proof of Proposition 5.7, one estimates by the triangle inequality forn > 1
and ¢ € Vg,
(5.9 (S5 pll2 < 11655 e — po(u™ = Po)plla + |1 pg (™ * Po)gll>.

We aim to show that (5.9) is very small for a suitably chosen n and J. For the first
term of (5.9), we use that the Lipschitz constant of ¢ is =< [|y||°". Therefore, a
o-perturbation of (S3)"¢ = pj(u*")¢ is small provided we choose J miniscule in
terms of £.

The second term of (5.9) is dealt with by using that x has high dimension.
Indeed by Lemma 3.10 it will follow that 4*" % Ps has small || - ||c-norm for n
chosen in terms of 6. This will allow us to compare ||pj(1*" * Ps)p||» to the average
estimate of matrix coefficients

(), 0)| dm < 272 )
me(Be) BRI<po(g)¢ 9)| dmg(g) lloll2

that was discussed in Section 3.5.
We proceed with some preliminary lemmas used in the proof of Proposition 5.7.
First, we estimate how much p{(g)¢ differs from ¢, given that ¢ € V; and g € B;.

Lemma 5.8. Fix{ > 0. Thenforp € V,and0 < 6 < 27¢, it holds for g € B
that

1195 (2)p — ll2 < P %D |g]]s.

Proof. We first fix y € C N I* and denote, as usual, by 7, the associated
irreducible representation and let vy, ..., v, € 7, be an orthonormal basis of the
representation space of 7,. For k € B;s in K for ¢ small enough, it holds by [dS13,
Lemma 3.1] that ||z,(k) — 1dg, |lop <K dk(k, e)||y]|. Indeed, upon conjugation,
we can assume that k is inside the maximal torus 7 of K and hence we can
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write k = X for X € t = Lie(T) with ||X|| <« dk(k, ). With these assumptions,
the eigenvalues of m,(k) — Id,, can be calculated as ¢’'® — 1 for y’ the weights
of m,. Choosing ¢ K 27¢, and therefore having |y (X)| < 1, we can bound
max, |e”® — 1| <« max, |y’ (X)| < dk(g, e)||y]|, showing the claim.

Denote by y the matrix coefficient k — +/d, (7, (k)v;, v;), satisfying || y||, = 1.
We first show that ||p{(g)y — vll» < 0°M11911°D for g € B;. Indeed, using as in
the proof of Corollary 5.3 that ||, /e, (k) — 1||cc < 5°!) and Lemma 3.7,

[(p5(©)¥)k) = w(k)| = (/e (k) = Dy (g™ Rl + lw(g™" k) — (k)]
< 3"Vl ol + Vdallm, (7" k) = m,(K)llop
< Dy(g™ ol +7VIy)17D,

which implies the claim using |w(g~'.k)| < |w(g~'.k) — w(k)| + |w(k)|.
To prove the lemma, denote by (;);c; an orthonormal basis of V, with functions

o1)¢

as in the previous paragraph. Then |I| K e and for ¢ € V, we decom-

pose ¢ =Y ., a;y;, implying using Cauchy—Schwarz

llp5(@e — ol < Y _lail llpg@)y — vl < e?V6Vlgll. 0

iel
We next show how to compare 7 (v)p with 7(v * Ps)e for a suitable vector ¢
and a unitary representation 7z and probability measure v.

Lemma 5.9. Let (n, 7) be a unitary representation of G and let 6 > O.
Fix o € . Assume that ||n(g)p — ¢|| < Csllpl|| for all g € Bs and Cs > 0 a

constant. Then for any probability measure v,
[lz(W)p — (v * Ps)pl| < Cslloll.

Proof. Using Fubini’s theorem and that 15, (1) = 15,1 (8),

(V) < / 10 (W7()p de(h)) dv(g)

1
- / mg(Bs(e))

1
= d d) h).
/mG(Bb‘(e))</B(5(h) (&) U(g)) me(h)

Furthermore, by the assumption and using that Bs(h) = hBs(e) (the metric on G is
left invariant),

/ 7(8)p dv(g) — v(Bs(h)) - w(h)p
Bs(h)

< / () — (M)l | dv(g)
Bs(h)

IA

/ ()" g) — 1d)gl] dv(e)
Bs(h)

IA

V(Bs(h)Cslloll.
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. 5(h
Finally, as (v * Ps)(h) = n‘;éf 1)35;(3)))’

[lz(W)p — z(v * Py)gl|

1
N maiaien L, m@wdnte) ama = [ o iy dmein)|

w(g)p dv(g) — v(Bs(h)) - n(h)qude(h)

= / mG(Ba(e>>‘ /

Bs(h)
V(Bs(h))
< Cilioll - [ dmg(h) = Cslloll,
P ] meBater) Y
using in the last line that by Fubini’s theorem [ ,:él(ggy(‘g) dmg(h) = 1 asvis a
probability measure. (]

Proof of Proposition 5.7. Lety > 0 be a fixed constant to be determined
later. Then by Proposition 3.10 there is g = g¢(cy, ¢2) > 0and Cy = Cy(cy, cz) > 0
such that for 6 > 0 small enough it holds that ||(¢*")s|]> < 677 forany n > Cy 1°g )
and

(s = p™" * Ps.

Let ¢ € V, with ||¢||; = 1. Then by the triangle inequality,
(S5 pll2 < 11655 e — po(u™ * Po)plla + |1 pg (™ * Po)gll>.
The first term can be estimated using Lemma 5.8 and Lemma 5.9 as
1S5Y"0 = Py (™ % Po)plla < 7300

assuming that 5 < 27¢. For the second term, first notice that by applying Cauchy—
Schwarz it follows that ||(x*)s * (14™)s]loo < 1]1(1t™)s] |§. Then with Theorem 3.10
and Proposition 3.11,

g™ = Ps)pll5 = (p§(u™" * Ps* u™ * Ps)g, @)
< / 120, o) (1™ * (1™)s)(g) dmes(g)

<5 / P50, 9] dime(g)

& 5 me(Baye)e O < §72700Wmz =00

Let n be a power of 2 satisfying n < C01 o8 ’ . Then by using that Sj is self-adjoint,

it follows by induction on k with 28 = n that HSHell5 < 11055) ¢l]2. Therefore it
follows for 6 < 27 that

+ o1t o y _ o3t
”S |Vg||0p < D” max{e n 5 5 ne” n }’
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—max{l,2

7]
for D, 01, 02, 03 > 0 absolute constants. We choose d = e » 1 50 that ok2t

ot _op _”l[
ande » 0 < e~ » . We furthermore set

03

7T 2max(1,27)

_y _o3t _ a3t . .
and therefore 6" ne™ » = e~ 2» . With these choices,

1 ¢
[1S51v,llop < Dne™ %D,

In addition, we make ¢ large enough in terms of ¢; and c; such that J becomes
small enough for Proposition 3.10 to hold. To conclude, it holds by construction

, Ocy ey (D)

that ¢ <., ., log ! and therefore e=0M: = g% and similarly D» =&~ ¢, s0
n > &

choosing ¢ additionally larger than a further constant depending on ¢; and ¢;, the

claim follows. O

5.3 Proof of Theorem 5.2. Having established that ||S§|v,||op is small
for L > L(cy, ¢2), we aim to convert this to an estimate that |[S§|g,., v, |lop is also
small. We use that the spaces SV, and V, are almost orthogonaf for € # ¢’ as
shown in Lemma 5.11.

The Lie algebra of K is denoted ¢ and we also write Ax for the Lie algebra
representation induced by the regular representation 1x on K. Indeed, for a smooth
function ¢ on K the function (Ax(X)@)(k) = lim,_,¢ :((o(e_txk) — @(k)) with X € ¢
and k € K is the directional derivative of ¢ in the direction —X.

Asin [Boul2], we use an argument based on partial integration to show that S5V,
and Vp are almost orthogonal. For a general manifold there is no suitable partial
integration formula. However, for compact Lie groups we overcome this issue by
exploiting that the Laplacian acts as a scalar on functions on L?(K) induced by
the representation z,. Indeed, for a fixed orthonormal basis X, ..., Xgimg of £
recall that the Casimir element is defined as A = — )", X; o X;. We then use as
replacement to partial integration that

(5.10) (p1, Ak (D)) =D (A (—=XD)p1, Ak(X)p2).

i
In order to give a suitable estimate for (5.10), we first analyse ||1x(X)p]|, for X € ¢.

Lemma 5.10. Let £ > 0 and ¢ > 0. Then for p € Vo, g € B, and X € € of

unit norm,

12kl < 2ol and 12X (p5(@P)ll2 <K (1+ 0" D)2 o]l
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Proof. Without loss of generality we assume that X € t. Fix y € C N [*. The
eigenvalues of the operator ny(etx) — 1d can be calculated as 7™ — 1 for y’ the
various weights of the representation z,. Therefore the operator

o1
m,(X) = lim _ (7,(¢"™) — 1d)

has eigenvalues y’(X). Let vy, ..., v, be an orthonormal basis of eigenvectors
of 7, (X). Then the functions

w(k) = \/dy(n'y(k)v,-, vj) forkeK

satisfy (Axk(X)p)(k) = \/d, (7, (k)v;, 7,(X)v;) = (y'(X)w)(k). The first claim follows
as ||7’(X)|| < |ly7]] < 2¢ and by decomposing the function ¢ as a sum of functions
of the form y.

For the second claim recall that p(g)¢ = \/oc’g - (¢ o a,) and therefore

(5.11) AkX)(po(®)p) = Ak (X) /o) - (9 0 ag) + \Jory - Ax(X)(@ 0 ).

To deal with the first term of (5.11), since a’g is a smooth polynomial perturbation

of the identity, it follows that ||}LK(X)\/0z’g||OO < (1 + 0(°M)) and furthermore
using integration by substitution, ||¢ o a,|l» K (1 + O(?1))||p|l,. For the sec-
ond term of (5.11), we use the chain rule and the first step to conclude that
[12kX)(@ 0 agllr < (1 + 0(?D))2%|¢]|2, completing the proof of the lemma. [J

We now apply (5.10) to prove the following lemma.

Lemma 5.11. For ¢, € Vy, and ¢;, € Vi, with €, # €, and g € B,,
1(p5(@)0e,> pe,)] < (1 +0E?DN271CN g |10, 2

Proof. Without loss of generality we assume that £, > £,. Denote by w € V,
the function such that Ax(A)w = ¢;,. Then by Lemma 3.7, || w2 < 272||¢q, |-
Using then (5.10) and Lemma 5.10,

|<p3(g)¢l’|a §052>| = |<p3(g)¢l’|a iK(A)l//N
= ‘ > Ak (=X)p5(@)pe,, Ak (X))
< Y A (=X @pe ) A XDy

& (1+ 0PN 207 g, |1 w 2
< 1+ 0EN2572 g, [allpe, - 0
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We conclude this section by proving Theorem 5.2 by combining Proposition 5.7
and Lemma 5.11.

Proof of Theorem 5.2. By Proposition 5.7, there is gy = go(c1, c2) > 0
and L = L(cy, ¢3) € Z such that [|S§ly, [lop < €%12 for€ > L. Letp € @, Ve
and let N > 1 to be determined later. Then

IS5ell3 < > 1Simep, Symep)]

,0'>L
= Y Semep. Ssmep)l+ > [(Semee, S§mep)l,
|e—C'|<N [e=¢1>N

where both of the sums are with €, ¢’ > L. For the first of these two terms one uses
the conclusion of Proposition 5.7,
2 Oc, o (1 2
> ISszeoll 1IS5meell < N 1Simepll; < Ne@ra®llg| 3.
[6—¢'|<N =L
Lemma 5.11 is used to bound the second term:

ST USSmep, Ssaep)l < Y 271 gl 1mepl]
[e—C'|>N |6—C'|>N

< Y 271 Nzpl3
|t—='|>N

L 27N lmeolls = 27V lpll5.
>L
Therefore it follows that [|S5pll> < VNe%12® +2-N||g||,. Setting N = log !
implies the claim of the theorem. g

5.4 Smoothness of the Furstenberg measure. In this section we prove
Theorem 1.8, which we restate here for convenience of the reader.

Theorem 5.12 (Theorem 1.8). Let G be a non-compact connected simple
Lie group with finite center. Let ci,c; > 0 and m € Zs,. Then there is
em = en(G, c1,cz) > 0 depending on G, cy,cy and m such that every symmet-
ric and (c1, ca, €)-Diophantine probability measure u with ¢ < &,, has absolutely
continuous Furstenberg measure with density in C™ ().

By Corollary 5.4, we know that the Furtstenberg measure is absolutely continu-
ous if we choose ¢, small enough, i.e., there is yp € L*(Q) such that dvg = wrdmg.
In order to prove Theorem 1.8, we use the smoothness condition from Lemma 3.8

for yr. Indeed, for P, the projection from L?(K) to V,, it suffices to show that
[|Peyrll < 27600

fors > m+ ) dimK and ¢ large enough.
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By the characterization of the Furstenberg measure, for any n > 1 it holds
that vg = ™" * vg and therefore for ¢ € L*(K),

‘/ﬁﬂdVF
H/qooagdﬂ*”(g)H

We thus study the L*°-norm of the function

D, =Ty = /go oagdu™(g).

[{wE, 9)]

= ‘//go(g.k) du*"(g)dve(k)
(5.12)

IN

We will use Corollary 5.4 to give L*-estimates of ®,. In order to convert these
estimates to an L*°-bound, we use Agmon’s inequality (cf. [Agm65, Chapter 13]),
which we introduce for compact Lie groups.

Lemma 5.13 (Agmon’s inequality for compact Lie groups). Let K be a com-
pact Lie group. Thenthereist € Zs, depending on K such that for any ¢ € C*°(K),

1/2 1/2

lolleo K Mol Mol

Proof. For M € R. to be determined, we group together the contribution of
the representations with ||y|| < M and ||y|| > O. Indeed, by (2.4), for k € K,

pk)= > de al k)

yeCﬂI*lJ_
=D Zd” Ak + D de al (k)
||y||<Mz] 1 ||y||>Mz] 1

12, —1g1/2,
= > Zd Ak + D Zi d,*aj k),
[IylI<M i,j=1 [IylI>M i,j=1

where in the last line we multiplied the second term by 1 = 24" for some 7 € Zxo.
By Cauchy—Schwarz and using Lemma 3.7, the first term can be bounded by

||§0||2\/ S dy < MClglla,

yll<M,i.j

where C is a constant depending on K. For the second term, we choose ¢ large
enough such that
> i¥d, < M€
[I711>M,i.j

Again using Cauchy—Schwarz, the second term is bounded by M~C||¢||;:. The

lelyr)l/zc_ 0

claim is implied by setting M = (Illwllz
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Lemma 5.14. Forp € Vyset ®, =T§p. Lety € CNI* andr € Zsy. Then it
holds for ®,(y) = m,(®,) that

HDa(Nlop K 27D+ £)0D|9] 12D ] .
Proof. Letoy,...,vq be an orthonormal basis of 7,. Then

D, (PDlop < dy sup || D)0

1<i<d,

<d, sup [(®(p)v;, ;)]

1<i,j<d,

5.13
(5-13) =d, sup |(®,, ]|
I<ij<d,

<d, sup [{poag xjl.
gesupp(u™")
1<ij<d,
Notice, further, that for g € B, andalsoy’ e CNI*and 1 <7,j <d,,

r

/ i /
|<Xiy/j/ O dg, X;J;H = i,}j |<le/j/ O Og, Xz);>|
Y

| ,
= [l 0 ags Ak(D) 1)1

1 ’
=D DRIPICO DENVICS AP/ IVIe AREVIe AV

Vi, ir

L 25T+ )P D |1 1yl
< L+ DYyl
where for the penultimate line one argues as in Lemma 5.10 and in the last line we

use Lemma 3.7. Similarly, it holds that |<le] oayg, )(l-yj)l < (1+)2Dm 1177 9]
Then using the decomposition

d,
— 12 o
Q= E E d,;"ap Xy

201 <y <20 757'=1
we conclude that
y 12, y 7 7
Ko oag, xi)l < > d al | 1{xhy o ag. X
VLN

ot '
< 29V jglly sup |(xh; © og. x})]
,y/’l'/’j/

< 290 W+ %DMy o2

This implies the claim by (5.13) and using Lemma 3.7.
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Proof of Theorem 1.8. Let ¢ € V; be of unit norm and write ®, = Tje. It
suffices to prove for ¢ < ¢, and some n > 1 that

(5.14) [| @]l < 270HDE

where s is a constant depending on G and m. Indeed, if (5.14) holds, then by
(5.12),
1Peyr|la < 200D27C+DE

which satisfies the smoothness condition from Lemma 3.8 for s large enough
depending on G and m.

We will use Agmon’s inequality to prove (5.14). Notice first that for the
fixed t € Z>, from Lemma 5.13,

[ @ullar = [12k(A) 2D, l12

< sup |[Ak(D)*(p o ay)llso
gesuppu*”

< A& (D) plloo(1 + )0 < 24¢

for an absolte constant A and where we choose n = ¢ for E, a fixed constant

1
10E28
to be determined later.

We next bound ||®,|[,. In order to do so, we decompose @, into a low and

high frequency part:

d,
1 2 1 125 N
®, =0V +d?  where ®) = Z Zdy/ (CD,,)U)(,-Z.
[IyllI<L(ci,c1) i

Then for n > 1, exploiting Corollary 5.4,

Pall2 <

/cD;‘_)]oagdﬂ(g)H + /cpff_)loagdﬂ(g)

(5.15) 2

< 119,210 + ;llCDf_)lIlz-
Using Lemma 5.14, it follows for all m < n and r > 1 that
1D 1o <5 270714+ )V Lier, )7l .
Iterating (5.15), there are absolute constants E;, E,, E3 > 1 such that
1Dull2 < (257 (L + &) Licr, €)™ + 27 lgl 2.
By Lemma 5.13, it therefore follows that

1@ulloo r (2EVTTE(L 4+ )P L1, )7 + 279l 2.
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Setting the parameters suitably, the proof is concluded. Indeed, choose for

instance

r=2(s+1)+E +A+100
and n = 10}5285 . For s large enough and choosing ¢ small enough in terms of r
and s, the claim (5.14) holds for large ¢ (depending on s and ¢). ]
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