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ABSTRACT

Model Editing(ME)–such as classwise unlearning and structured pruning–is a
nascent field that deals with identifying editable components that, when modified,
significantly change the model’s behaviour, typically requiring fine-tuning to regain
performance. The challenge of model editing increases when dealing with multi-
branch networks(e.g. ResNets) in the data-free regime, where the training data
and the loss function are not available. Identifying editable components is more
difficult in multi-branch networks due to the coupling of individual components
across layers through skip connections. This paper addresses these issues through
the following contributions. First, we hypothesize that in a well-trained model,
there exists a small set of channels, which we call HiFi channels, whose input
contributions strongly correlate with the output feature map of that layer. Finding
such subsets can be naturally posed as an expected reconstruction error problem. To
solve this, we provide an efficient heuristic called RowSum. Second, to understand
how to regain accuracy after editing, we prove, for the first time, an upper bound on
the loss function post-editing in terms of the change in the stored BatchNorm(BN)
statistics. With this result, we derive BNFix, a simple algorithm to restore accuracy
by updating the BN statistics using distributional access to the data distribution.
With these insights, we propose retraining free algorithms for structured pruning
and classwise unlearning, CoBRA-P and CoBRA-U, that identify HiFi components
and retains(structured pruning) or discards(classwise unlearning) them. CoBRA-P
achieves at least 50% larger reduction in FLOPS and at least 10% larger reduction in
parameters for similar drop in accuracy in the training free regime. In the training
regime, for ImageNet, it achieves 60% larger parameter reduction. CoBRA-U
achieves, on average, a 94% reduction in forget-class accuracy with a minimal drop
in remaining class accuracy.1

1 INTRODUCTION

The improved performance of deep learning models on various tasks (Krizhevsky et al., 2012; Ioffe &
Szegedy, 2015; He et al., 2016) has increased their adoption. However, such models may not always
be suitable for direct use in various applications. For instance, a pre-trained classification model
might not run on an edge device without compressing it using a technique such as pruning (Prakash
et al., 2019). We use the term Model Editing to refer to such modifications.
This work focuses on two model editing tasks - pruning and classwise unlearning for vision tasks.
Pruning (LeCun et al., 1989; Hoefler et al., 2021) is one of the methods to improve latencies and
memory requirements of models during inference. Pruning involves discarding "unimportant"
components of a model, such as weights, neurons, or channels. This work focuses on structured
pruning (Luo et al., 2017; Wang et al., 2020b; Shen et al., 2022) that discards entire channels in
Convolution Neural Networks (CNNs) as opposed to unstructured pruning (LeCun et al., 1989; Han
et al., 2015; Tanaka et al., 2020) that discards weights individually. Classwise unlearning (Jia et al.,
2023) refers to the task where the goal is to unlearn training data points of an entire class while
maintaining the predictive performance on remaining classes. Classwise unlearning can be efficiently
performed using pruning (Jia et al., 2023).
Editing tasks such as pruning and classwise unlearning require an understanding of the components

1The code is available at https://anonymous.4open.science/r/cobra-197B
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of a model - such as weights, neurons, or convolutional filters that contribute significantly to its
prediction (Räuker et al., 2023). This becomes more challenging when dealing with modern neural
networks that consist of skip connections (He et al., 2016; Huang et al., 2017) that couple elements
between layers (Liu et al., 2021a; Fang et al., 2023). However, this is not generally addressed
in relevant works (Jia et al., 2023; Ding et al., 2021; Joo et al., 2021; Luo et al., 2017). Editing
algorithms often take a toll on the original task performance and thus rely on retraining to alleviate
this (Luo et al., 2017; Wang et al., 2020b; Jia et al., 2023).

However, retraining requires significant computational resources and access to the loss function &
training set pertaining to the original task. It is not uncommon for the relevant training set & loss
function to be unavailable due to privacy or commercial concerns (Yin et al., 2020), making retraining
more challenging. Most existing works either assume access to data and finetune models (Jia et al.,
2023; Wang et al., 2020b; Shen et al., 2022) or assume the absence of training data and do not
finetune (Narshana et al., 2022; Murti et al., 2022; Tanaka et al., 2020). However, the gap between
the accuracy of data-free and data-driven methods is significant (Hoefler et al., 2021). Thus, it is
important to bridge this gap.
For model editing, this work, similar to Murti et al. (2022), assumes access to samples with similar
distributional properties to that of the training set. For instance, to construct a cat-dog classifier,
a training set could be a large collection of images of cats and dogs taken from a private image
repository, while samples available via distributional access could be the photos of cats and dogs
taken from a personal device. We use this distributional information to study CNNs with Batchnorm
layers (Ioffe & Szegedy, 2015). Batch Normalization, a popular deep learning technique developed
to decrease training time, is used in many successful architectures like ResNets (He et al., 2016),
VGGs (Simonyan & Zisserman, 2015), and MobileNet (Howard, 2017). Existing theoretical analysis
of Batch Normalization has focused on understanding its effect during training (Santurkar et al.,
2018); however, to the best of our knowledge, there has been little insight into its effect on the loss
function during inference upon model perturbation. Towards addressing the challenges presented
above, the following are our contributions:

1. It is important for model editing to understand what components of a well-trained model are
necessary for predictions. To address this, we propose the notion of High-Fidelity(HiFi) compo-
nents, components of the network that contribute significantly to the output of the corresponding
layer. Using this notion, we hypothesize that in each layer of a well-trained model, the set of
HiFi components are responsible for the model’s performance, which we empirically validate in
Section 7. Thus, the problem of model editing boils down to identifying HiFi components.

2. Towards identifying HiFi components in a layer for model editing without access to training data
or the loss function, We use correlation as the measure of similarity between the distribution of
the input channel’s contribution to the output and the distribution of the output. In Section 4, we
show that this choice of similarity naturally connects HiFi components to those with low expected
reconstruction error, a popular saliency measure in pruning. However, this problem is NP-Hard,
and the use of a heuristic called RowSum is required to solve this problem. This enables the
identification of editable components using distributional access.

3. Typically, editing causes a degradation in the model’s performance. To understand the impact of
BatchNorm parameters on this degradation, we derive a connection between the learned parameters
of BatchNorm layers and the loss function. We show that the loss function can be upper bounded
by a quadratic function of the learned parameters of the BatchNorm layer. We state this formally
in Theorem 1. Based on our analysis, we propose Algorithm 2, called BNFix, an algorithm
requiring only distributional access to modify the stored statistics in a BatchNorm layer to reduce
performance degradation due to model editing. We observe an interesting phenomenon, which
we call BN Recall, when applying BNFix as a replacement for retraining using remaining class
examples - applying BNFix on a model whose forget accuracy has significantly fallen using only
remain class samples causes the forget class accuracy to increase significantly.

4. In addition to identifying HiFi components and BNFix, we use fidelity compensation - where
we improve the fidelity of the feature maps via weight rescaling - to design the CoBRA family
of editing algorithms and analyze this improvement in Theorem 2. CoBRA(Correlation-based
editing with Batchnorm Re-Adjustment) is an editing scheme that identifies HiFi components in
each layer of a network to either retain(CoBRA-P) or discard(CoBRA-U), and recovers model
performance by BNFix and weight compensation. Our experiments show that CoBRA-P achieves
at least 50% larger reduction in FLOPS and at least 10% larger reduction in parameters for similar
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(a) How input contributions generate feature maps: (b) Editing models and the role of BatchNorm

Figure 1: Left Image: Each channel of the input features generates an input contribution, which are then
summed to obtain the feature map. Right Image: After editing a layer, feature distributions of subsequent layers
are changed; adjusting BN stats helps address this.

drop in accuracy in the training free regime. In the training regime, for ImageNet, it achieves
60% larger parameter reduction. CoBRA-U achieves, on average, a 94% reduction in forget-class
accuracy with a minimal drop in remain class accuracy.

2 PRELIMINARIES

Notation Let a ∈ Rn denote an n-dimensional vector whose ith element is ai, and B ∈ Rn×m

a matrix with n rows and m columns whose ith row is bi ∈ Rm. For p ∈ N, let [p] = {1, . . . , p}.
For matrices, A,B ∈ Rn×m, we define ⟨A,B⟩ = Tr(A⊤B) and frobenius ∥A∥2F = ⟨A,A⟩.
For tensors A,B ∈ RC×K×K , we define ⟨A,B⟩ =

∑C
i=1⟨Ai,Bi⟩, where Ai, Bi ∈ RK×K and

||A||2 = ⟨A,A⟩. For a vector v, diag(v) is a diagonal matrix whose ith entry is vi. Topp(v) denotes
a function that which returns the indices of the elements in the top pth-percentile of v.

Neural Network Preliminaries Let fθ be a neural network with parameters θ with L layers.
Consider data drawn from a distribution PD, we use X as a random variable drawn from this
distribution. We use Lθ(x) as the loss function evaluated with parameters θ on a point x and
parameters are trained to minimize the expected loss over the distribution. The parameters are
grouped into structural units, such as convolutional filters in CNNs, and are stacked in layers. We
refer to such structures as components of the network. The structures and the operations performed
on the input by these structures form the architecture of the network.

2D Convolution Let the lth layer of a network be a 2D convolution layer with clin input channels
and clout output channels whose weights are Wl ∈ Rclout×c

l
in×k×k, where k is the kernel size. Let the

input to the convolution layer be Φl(x) ∈ Rclin×h
l−1×wl−1

, and the output Yl(x) ∈ Rclout×h
l×wl

,
where hl−1, hl and wl−1, wl represent the heights and widths of the input and output respectively.
The cth output channel, Y l

c is then,

Y l
c (x) =

clin∑
i=1

Φl
i(x) ∗W l

ci =

clin∑
i=1

Al
ci(x) (1)

where ∗ denotes the convolution operation. We say Al
ci(x) ∈ Rhl×wl

is the input contribution of
input channel i to output channel c; this is illustrated in Figure 1a.

Batch Normalization during inference Let the lth layer of a neural network be a a BatchNorm
layer with dimension m whose input is yl(x) ∈ Rm, parameterized by two stored statistics, mean
µ ∈ Rm and standard deviation σ ∈ Rm, and two learned parameters, shift β ∈ Rm and scale
γ ∈ Rm. The cth output of the layer during inference, vl(x) ∈ Rm, is given by

vl(x) = Gzl(x) + β where zlc(x) =
ylc(x)− µc

σc
(2)

where G = diag(γ). The stored statistics are meant to estimate the mean and standard deviation of
yl(X) from the training data. Additional details are in Appendix C.

3
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3 THE PROBLEM OF EDITING WELL-TRAINED MODELS WITHOUT TRAINING
DATA

Model editing refers to techniques that selectively change the model parameters to modify its statistical
behaviour (Jia et al., 2023; Santurkar et al., 2021; Shah et al., 2024), motivated by issues such as
privacy and GDPR regulations (Bourtoule et al., 2021; Nguyen et al., 2022). Editing encompasses a
wide variety of tasks, including debiasing (Jain et al., 2022), selective unlearning (Golatkar et al.,
2020), network scrubbing (Kurmanji et al., 2024), and lifelong learning (Sahoo et al., 2024; Golkar
et al., 2019). Recently, component attribution - that is, identifying components responsible for
predictions - has gained traction for model unlearning (Shah et al., 2024; Wang et al., 2022; Kodge
et al.). However, it is challenging to use model editing without the loss function and training
data (Shah et al., 2024), as well as for analyzing models with complex interconnections (Narshana
et al., 2022; Liu et al., 2021a). Extensive related work is cited in Appendix A. In this section we
formalize the problem of Model Editing via pruning.

What is Model Editing? Consider the model fθ0 , and let Di, i ∈ [M ] be conditional data
distributions, such as classes. Our goal is to edit the model by removing entire components. That is,
given the weights of the well-trained model θ0, we edit θ0 to θE = θ0 − θ⋆, where θ⋆ ∈ SB := {θ ∈
Rd : count(fθ0−θ) = B} ⊂ Rd by editing the parameters of at most Ctotal −B components, where
Ctotal is the total number of components in the network (i.e., convolutional filters) by solving

θ⋆ = argmin
θ∈SB

∑
i

EX∼Di [αi (Lθ0−θ(X)− Lθ(X))] , (Edit)

where αi ∈ R are multipliers to weight tasks, depending on whether we want the model to increase
the loss or decrease it on the corresponding distribution Di. While a variety of tasks can be classified
as model editing (Shah et al., 2024); in this work, we address the problems of structured pruning
and classwise unlearning.

Structured Pruning, in the setting of equation Edit, is when M = 1, and α1 = 1. Thus, we write
θ⋆ = argmin

θ∈SB

EX∼D [(Lθ0−θ(X)− Lθ(X))] , (Prune)

Classwise unlearning involves removing the model’s ability to make accurate predictions on a chosen
class, called the forget class with distribution Df , while maintaining the statistical performance on
the remaining classes - called the remain classes, with distributionDr. In the setting of equation Edit,
we have M = 2, D1 = Df , D2 = Dr, α1 = −1 and α2 = κ > 0. Solving this problem ensures
that the loss on Df increases, while the loss on Dr decreases, with κ penalizing the extent to which
EX∼Df

[Lθ0−θ(X)] is allowed to increase. We write this as

θ⋆ = argmin
θ∈SB

EX∼Dr [κ (Lθ0−θ(X)− Lθ(X))]− EX∼Df
[Lθ0−θ(X)− Lθ(X)] . (Forget)

Challenges in editing models without the training data or loss function? Unlike works such as Jia
et al. (2023) and the references therein, fine-tuning or retraining the model is not possible in this
setting. Thus to effectively edit the behavior of a network, it is necessary to identify the components
that are responsible for making predictions. These can be characterized as components which when
modified, significantly change the behaviour of the network. The key challenge is thus:
Problem Statement: Solve equation Prune or equation Forget without access to original
training data and loss function which was used to obtain θ0.

It is well known that pruning or perturbing a large number of components significantly affects
statistical performance (Hoefler et al., 2021). Thus, it is necessary to identify a small subset of
editable components; components which are editable can be removed to aid an editing task. In
the case of pruning, components that have no effect on the performance of the model are editable,
whereas for model unlearning, components required only for the prediction of the forget class are
editable. We use this insight to pursue the stated problem and develop algorithms to address it.

4 INDENTIFYING EDITABLE COMPONENTS THROUGH HIFI COMPONENTS

As stated in the previous section, editing well-trained models without access to the training data or
loss function requires identifying components that have a disproportionate impact on the models’s

4
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predictive performance. In this section, we propose the notion of High-Fidelity (HiFi) components,
and hypothesize that HiFi components are what govern a model’s predictive performance. We
empirically validate our hypothesis and provide a template for model editing algorithms derived from
it.

4.1 WHICH FEATURES ARE DISTRIBUTIONALLY SIMILAR TO THE OUTPUT FEATURES?

We provide the empirical observation that in many layers of deep networks, there are only a few
filters for which the input contribution distribution is similar to that of the output distribution. In
Figure 2, we show the relative reconstruction error after removing filters from a selection of layers
of a ResNet50 trained on CIFAR10 - we use the expected reconstruction error as a measure of
distributional similarity. We see that in well-trained models, a small subset of filters - between 5% and
up to 30% of the number of filters in the layer - generate input contributions that are distributionally
similar to the aggregate feature maps. This observation motivates us to edit models by identifying
those components whose input contributions are distributionally similar to the feature maps. We call
such components High Fidelity (HiFi) components, which we define in the sequel.

(a) Reconstruction error for layer 1, block 0,
conv 2.

(b) Reconstruction error for layer 4, block 2,
conv 2

Figure 2: Comparision of the fidelity scores of two different layers

4.2 HIGH FIDELITY COMPONENTS AND THE FIDELITY SCORE

Suppose Y l+1(X) is the feature map generated by layer l + 1, and suppose Al+1
i (X) is the ith input

contribution, as defined in equation 1. We say the i-th component in layer l is a high-fidelity (HiFi)
component if the distribution of the input contribution Al+1

i (X), Dl+1
i in layer l + 1 is similar to

the distribution of Y l+1(X), Dl+1. HiFi components are those with input contributions that can
reconstruct the aggregate feature map2. To capture this, we analyze the dissimilarity between the
distributions of Ŷ l+1(X) = Y l+1(X)−EX

[
Y l+1(X)

]
and Âl+1

i (X) = Al+1
i (X)−EX

[
Al+1

i (X)
]
.

We define FS(i), a Fidelity score that measures the similarity between an input contribution and the
aggregate feature map, below.

FS(i) = DIS(D̂l+1, D̂l+1
i ) =

EX

[
∥Ŷ l+1(X)− βiÂ

l+1
i (X)∥2

]
EX

[
∥Ŷ l+1(X)∥2

]


1
2

(3)

where βi = EX

[
⟨Ŷ l+1(X), Âl+1

i (X)⟩
]
EX

[
∥Âl+1

i (X)∥
]−2

In the above definition, the smaller the value of DIS(D̂l+1, D̂l+1
i ) (or higher the value of βi) is, better

the reconstructability of Y in the mean-square sense. Furthermore, note that we can apply equation 3
on a channel-by-channel basis by considering the distributions of a single output feature map in a
layer; we add an the additional subscript c to indicate that the feature map (and the input contribution)
are generated by the cth component in the layer. In well-trained models we often observe that a small
number of components have relatively lower DIS scores than the rest. Identifying such components is
key to understanding the statistical behavior of model outputs, and hence will be the most critical
insight for the subsequent development of our algorithms.

2This motivates the name HiFi components: Components whose sum can accurately reconstruct the output
with Hi-Fidelity

5
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The Role of βi and RowSum: βi is a variant of the Tensor correlation between the input contribu-
tion Al+1

i and the feature map Y l+1. Furthermore, we can show that

DIS(D̂l+1, D̂l+1
i )2 = EX

[
∥Ŷ l+1(X)∥2 − β2

i ∥Âl+1
i (X)∥2

]
/EX

[
∥Ŷ l+1(X)∥2

]
(4)

highlights the relation between FS(i) and βi - if ∥Âl+1
i (X)∥ is roughly equivalent for all i, then FS(i)

is low when βi is large. Thus, a heuristic for identifying HiFi components is finding components
for which βi is large. Moreoever, note that βi can be written as the sum of the elements of the row
of a matrix, motivating the naming of the heuristic RowSum. Specifically, βiEX

[
∥Âl+1

i (X)∥2
]
=∑

j Qij , where Qij = EX

[
⟨Âl+1

i , Âl+1
j ⟩

]
. We examine this in greater detail in Appendix E, along

with an examination of the reconstruction error after the BatchNorm layers. Based on our empirical
observations that a small subset of components in well-trained models generate input contributions
that are distributionally similar to the feature maps, we now state the main hypothesis of our work.
We validate our hypothesis empirically in Section 7.

Hypothesis 1. Suppose we have a well-trained model with parametersW = (W1, · · · ,WL). We
hypothesize that the HiFi components of this model contribute most to the predictions of the model,
and those components that are not high fidelity can be discarded without affecting the performance
of the model.

Algorithm 1: Model Editing by Iden-
tifying HiFi Channels
Input: Model fθ0 with layer indices [L], layerwise

budgets {Bl}l∈[L], data distributionsD1,
Df ,Dr

Output: Edited model fθE
for l ∈ [L] do

Compute FS(i) using equation 3 onD,Df ,
Dr

Determine which components to edit
Recover accuracy onD

Using HiFi Components for Model Editing Hypothe-
sis 1 states that only the HiFi components - a small subset
of the components in a layer - are responsible for the
model’s predictions. Thus, it facilitates model editing as
the distributional similarity between input contributions
and aggregate feature maps, as measured using equation 3,
can be used as a surrogate for the impact of removing that
component on the loss function. Thus, leveraging this
hypothesis, we can either prune the HiFi components to
increase the loss (for instance, for classwise unlearning
tasks), or retain them to ensure the loss remains low (for
instance, for structured pruning). We provide a generic
algorithmic recipe for model editing using HiFi components, specialized for the tasks of classwise
unlearning and structured pruning in Algorithm 1; these are discussed in greater detail in Section 6.

5 BNFIX: AN ALTERNATIVE TO RETRAINING BY RESETTING BN STATISTICS

In this section, we analyze BatchNorm1D in single branch networks during inference and how
the change in distribution due to editing affects the relationship between the loss and BatchNorm
parameters. Using this, we derive an algorithm to correct stored statistics after editing. This update
has been previously employed in pruning literature (Frantar et al., 2022), but to the best of our
knowledge, this is the first work to provide theoretical basis to the update in a distributional setting.

Analysis of BatchNorm at Inference BatchNorm at inference shifts the distribution of the inter-
mediate representation at the output of a layer to have mean β and standard deviation γ. These are
parameters of the model which are minimize a loss function L as described in Section 2 .We use the
following fact to analyze the loss in terms of the intermediate representation at the output of a layer.

Fact 1 (Stochastic Mean Value theorem). Let f be a twice differentiable real valued function from
Rd to R and Hf (x) be the Hessian at any x ∈ Rd. For any point c ∈ Rd and a multivariate random
variable X ∈ Rd with finite second order moments, there exists a random variate t ∈ (0, 1) such that

f(X + c) = f(c) +∇f(c)⊤X+
1

2
X⊤Hf (c+ tX)X

For a proof, see Corollary 2 in Yang & Zhou (2021). Though for the case discussed here the above
fact suffices, but one could potentially use similar facts which can be deduced from other techniques
such as Delta Method (Benichou & Gail, 1989) or obtain a result on the expectation such as (Massey

6
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& Whitt, 1993). Using the optimality of the learned parameters of BatchNorm and Fact 1, we make
some assumptions on the first and second-order derivatives on the loss for a well trained model in
terms of the learned parameters of BatchNorm layers.

A.1 For a well-trained model ∇L(β) = 0, the gradient with respect to the shift parameter is
zero.

A.2 For a fixed G and any β, we can bound the eigenvalues of the hessian with a constant K
for all inputs. Formally, ∥HL(GZ + β)∥2 ≤ K for all random variables Z ∈ Rd such that
E(Z2

i ) = 1, E(Zi) = 0 for all β ∈ Rd. Here, the norm is the spectral norm of a matrix.

The assumptions A.1 and A.2 capture the model’s “well-trained-ness” on the objective function L and
follow from the first and second-order necessary conditions of optimality. We note that A.1 would
not hold if the input distribution to the network was different from that of the training distribution.
The constant K captures the smoothness of the loss function with respect to the parameter β and
subsumes the effect of the rest of the network, which may contain more linear and non linear layers.
Equipped with these assumptions about well-trained models, we derive a bound on the average loss
over the learned distribution in terms of the learned parameters of the BatchNorm layer. With the
observation that E[V (X)] = β, the term L (E[V (X)]) = L(β) reflects the loss of the averaged
intermediate representation.
Lemma 1 (Loss of a well trained model expressed with BatchNorm). Consider a model that satisfies
assumptions 5. We can express an upper bound on the expected loss during inference in terms of the
statistics of the output of the BatchNorm layer V (X) ∈ Rm.

|E[L(V (X))]− L(β)| ≤ K

2
||γ||2 (5)

proof sketch. We prove this with fact 1 and using the statistics of V (X). A full proof of Lemma 1
can be found in D.1.

Algorithm 2: BNFix
Input :Batch Norm Layer l with m channels,

datasetD = {Xi}Ni=1
for c ∈ [m] do

µl
c← 1

N

∑N
b=1 Y l

c (Xb);

σ2(l)
c ←

∑N
b=1

(Y l
c (Xb)−µl

c)
2

N−1 ;

How Editing affects BatchNorm We now study how
editing affects the statistics of the output of the batch norm
layer and the loss. Using lemma 1, we analyse the effect
on the objective L due to the change in the intermediate
distribution to state Theorem 1. It shows that the loss is
upper bounded by a quadratic function of the difference
of the mean of the distribution and ratio of the variances.
This allows us to qualitatively measure the effect of the
shift in distribution on the loss function.
Theorem 1. Let the lthlayer of a network be a BatchNorm layer as described in 2 with stored data
statistics µc and σ2

c . Editing components of preceeding layers causes a change in the distribution
of the intermediate representation to some Y (p)(X), with modified moments µ(p) and (σ(p))2. The

output of BatchNorm after editing is then, V(p) = GZ(p) + β where Z(p) =
Y (p)
c (X)−µc

σc
. Then,

|E[L(V(p)(X))]− L(β)| ≤ K

2

 d∑
i=1

γ2
i

(σ
(p)
i

σi

)2

+

(
µ
(p)
i − µi

σi

)2
 (6)

proof sketch. We prove this result using the properties of normalization and apply Lemma 1. The
full proof of this theorem can be found in D.1.

Based on Theorem 1, we observe that updating stored statistics to represent the new moments of the
intermediate representations after editing, i.e., setting µi = µ

(p)
i and σi = σ

(p)
i , restores the upper

bound on the loss function to Lemma 1. However, the bound suggests that only channels for which
the coefficient of γ2

i in equation 6 is greater than 1 should be updated to decrease the upper bound.
We study this in Appendix B.9 and emperically show that updating the statistics of all channels leads
to larger accuracy recovery in the case of pruning. Algorithm 2 shows the update procedure for the
stored statistics of a single batch norm layer. This gradient-free procedure does not require training
samples and can be implimented using a small number of samples obtained from distributional access.
In Appendix B.2, we display the effectiveness of the algorithm on a simple synthetic task.
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6 MODEL EDITING THROUGH CORRELATION STRUCTURE OF COMPLEX
INTERCONNECTIONS

Algorithm 3: Compute HiFi channels
over Coupled channels
Input: Model, keepRatio p, SamplesD = {Xi}Ni=1
Output: HiFi channels
Function ComputeHiFiSet(Coupled Channels CC,
p,D):

for layer l ∈ CC do
for o ∈ Cl

out do
Compute Rl

o according to Equation
RowSum;

Hl
o ← Topp(R

l
o);

return
⋃

l,o∈[Cl
out]

Hl
o;

A key challenge in applying the HiFi hypothesis 4
is identify HiFi components across groups of inter-
connected layers in complex networks. We propose
Algorithm 3 to identify HiFi components over all
layers in a DFC to extend the HiFi hypothesis to
networks with complex interconnections.

Computational cost of Algorithm 3. Let N be the
number of data points used to estimate the saliency
and M l be the complexity of computing the input
contribution at layer l for a single sample in a DFC
with m layers. The complexity to compute the set
of HiFi channels for an output channel of a layer is,
tlsal = O(NM lCl

ind
l). To select the HiFi compo-

nents for the DFC, the top p elements for each layer
and output channel in the DFC are collected, this costs O(

∑m
l=1 C

l
out(C

l
in logC

l
in + tlsal)). We

compare this with the BGSC algorithm (Narshana et al., 2022) which has a quadratic dependence on
the number of layers in the network, as opposed to the proposed work which is linear in the number
of layers.

Fidelity Compensation by Weight Rescaling In order to improve the model’s performance without
fine-tuning, we propose a distributional approach to modifying the weights to regain accuracy, by
modifying the weights of layer l+1 after pruning layer l (similarly, we can modify the weights of feed
out layers after pruning the feed-in layers of a DFC). Unlike prior work which modifies the weights
of entire filters with a single parameter (Xie et al., 2021; Halabi et al., 2022), our result modifies the
weights of individual convolutional kernels, thereby granting a more fine-grained approach to weight
compensation. First, we define the reconstruction error as follows.

REl+1
c (v) = E[∥Y l+1

c (X)−
∑

i∈[Cin]

viΦ
l
i(X)W l+1

ci ∥
2] (7)

where v ∈ RCin . With this definition, we state the solution to the post-pruning fidelity compensation
problem, and the reconstruction error improvement in Theorem 2.

Theorem 2. Let sl ∈ {0, 1}Cin = [1K ;0Cin−K ], where 1K is a vector of K ones, and 0Cin−K is a
vector of Cin −K zeros; we ignore the subscripts for brevity in the sequel. Define δc ∈ RCin such
that δci = 0 when si = 0. We solve Ŵ l+1

ci = δ̂l+1
ci W l+1

ci , where δ
l+1

ci = [δ̂l+1
ci ;0Cin−K ] that satisfies

δ̂l+1
c = argmin

δc∈RK

REl
c([δ, 0]) = P−1c pc and

REl
c(s

l)− REl
c(δ

l+1

Cin
)

REl
c(s

l)
≤ 1− ∥1− δ

l+1

ci ∥2

κ(Ql+1
c )(Cin −K)

(8)

where δ⋆c is a vector containing the optimal values of δci, Qc,ij = E
[
(W l+1

cj )⊤Φj(X)⊤Φi(X)W l+1
ci

]
,

Pc,ij = Qc,ij and pc,i = E
[
(Y l+1

c )⊤Φl
i(X)W l+1

ci

]
when si, sj = 1, and κ(Qc,ij) denotes the

condition number of Qc,ij .

Based on the RowSum heuristic, fidelity compensation scheme 6, and BNFix 5, following the recipe
of 1, we develop, CoBRA(Correlation based editing with Batchnorm Re-Adjustment), a model
editing framework for pruning and classwise forgetting. We provide the key components of our
proposed pruning and unlearning algorithm. Detailed algorithms are presented in Appendix B.11.

CoBRA-P. Compute: Compute HiFi channels using Algorithm 3 using distributional samples. De-
termine: Retain HiFi components Recover: Compute weight compensation according to equation 8
and perform BNFix using distributional samples.

CoBRA-U. Compute: Compute HiFi channels using Algorithm 3 using distributional samples from
the forget class. Determine: Discard HiFi components Recover: Compute weight compensation
according to equation 8 and perform BNFix using distributional samples of the remain class.

8
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7 EXPERIMENTS

In this section, we present experimental validation of our method on pruning and class unlearning
tasks for CNNs with complex interconnections like ResNets to answer the following questions.

(Q1) HiFi Hypothesis. Is it true that there is a small set of High-fidelity channels in a well-trained
network?

(Q2) Effectiveness of CoBRA-P. Does CoBRA-P result in better accuracy-sparsity tradeoff com-
pared to other data-free algorithms?

(Q3) BNFix replace retraining. How does BNFix fare against fine-tuning using synthetic samples
when pruning models?

(Q4) CoBRA-U for unlearning. Is classwise unlearning, as posed by Jia et al. (2023), feasible
without fine-tuning? If yes, how does CoBRA-U fare against their method?

(Q5) Total Recall of BN. What role do batch norm statistics play in class forgetting, and how can
BNFix help in recovering accuracy?

Datasets and architectures. We perform experiments on models including ResNet50/101 and
VGG19 trained on CIFAR10/100 and ImageNet datasets.
Distributional Access. As a proxy for distributional access to data in CIFAR10/100 experiments, we
use samples that are synthetically generated using image generation models. Details of synthetically
generated samples are available in Appendix B.1. For ImageNet experiments, we use the test split,
which contains 100,000 images without labels to identify HiFi channels. Note that test split, as
suggested by the name, is not used to evaluate the performance of ImageNet models. For pruning
experiments on ImageNet, we perform full retraining instead of BNFix.
CoBRA Hyperparameters. We discuss the hyperparameters used for CoBRA-P/U in Appendix B.10
Validating HiFi hypothesis. To answer (Q1), we compute the reconstruction error described in
equation 3 for 3 different untrained and trained models on CIFAR10 using 1000 samples from
the CIFAR10 validation set. We present these sorted values averaged across different trained and
untrained models for every layer in Appendix B.12. We make several observations based on these
results. First, for most layers, there is a diversity of scores in trained models compared to untrained
models, where the scores of all the channels in untrained models are concentrated around a single
value. Second, in trained models, there is a small subset of channels, typically less than 10%, which
have fidelity scores less than 1. Thus, this validates the HiFi hypothesis, answering (Q1)

7.1 PRUNING EXPERIMENTS: EXPLORING (Q2) AND (Q3)

Baselines. To compare the performance of CoBRA-P against other data-free methods, we compare
against DFPC (Narshana et al., 2022), a state-of-the-art data-free structured pruning algorithm
for networks with complex interconnections. To gauge the efficacy of BNFix against retraining
with distributional access, we compare against L2-norm-based structured pruning, which computes
grouped saliencies for a coupled channel based on the L2 norm of the weights of its filters. We train
the model obtained with L2 norm-based structured pruning using the synthetic set for comparison.
To the best of our knowledge, these are the only baselines addressing structured pruning of coupled
channels in the data free regime.
Training details. Details of pre-trained networks and post-training are given in Appendix B.4.
Results of Pruning Experiments. Table 1 presents the results of pruning experiments on ResNet-50.
We observe that for a similar drop in accuracy in the training-free regime, we gain at least 50%
larger reduction in FLOPS and at least 10% larger reduction in parameters. In the training regime, we
observe that for similar drop in accuracy, CoBRA-P obtains 60% fewer parameters. To answer (Q2),
we find that CoBRA-P, for most cases, results in better accuracy-vs-sparsity tradeoff when compared
to other data-free algorithms. To answer (Q3), BNFix is able to outperform fine-tuning in some
cases using synthetic samples. While in a few cases, it does not, it still leads to a reasonably good
performance when compared to no-finetuning.

7.2 FORGETTING EXPERIMENTS: EXPLORING (Q4) AND (Q5)

Metrics. We report the forget and retain accuracy averaged across 10 classes of the CIFAR10 dataset.
Additional details. Experiments with VGG-19 architecture are present in Appendix B.7 where we

9
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Dataset Algorithm Acc.(%) RF RP

CIFAR10

Unpruned 94.99 1x 1x
DFPC (Narshana et al., 2022) 90.25 1.46x 2.07x
L2 15.91 4.07x 4.71x
L2 w/ ST 90.12 4.07x 4.71x
CoBRA-P(n) 92.64 1.74x 1.64x
CoBRA-P 91.02 4.07x 5.36x

CIFAR100

Unpruned 78.85 1x 1x
DFPC 70.31 1.27x 1.22x
L2 16.77 1.93x 1.40x
L2 w/ ST 73.83 1.93x 1.40x
CoBRA-P(n) 72.96 1.40x 1.10x
CoBRA-P 70.93 1.93x 1.38x

ImageNet

Unpruned 76.1 1x 1x
ThiNet (Luo et al., 2017) 71.6 3.46x 2.95x
GReg-2 (Wang et al., 2021) 73.9 3.02x 2.31x
OTO (Chen et al., 2021) 74.7 2.86x 2.81x
DFPC 73.8 3.46x 2.65x
CoBRA-P 73.25 3.60x 4.46x

Table 1: Experiments of CoBRA-P on CIFAR10, CIFAR100 and
ImageNet compared with baselines for ResNet-50. ST=Synthetic
Training, training using synthetic samples. CoBRA(n) is the
CoBRA algorithm without using BNFix or Weight compensation.
RF=relative FLOP reduction, RP=relative parameter reduction

Algorithm FA(%) RA. PR

- 94.99 94.99 -
Jia et al. (2023) 5.54 99.11 -

CoBRA-U(0.003)(no BNFix) 4.22 91.131 1.0M
CoBRA-U(0.003) 90.61 90.629 1.0M

CoBRA-U(0.2) 20.90 78.786 3.63M

Table 2: Class forgetting on CIFAR10 with ResNet-50. CoBRA-
U(p) indicates the hyperparameter for Algorithm 3. For p =
0.003, we only prune the last 12 convolution layers and for the
last 30 convolution layers for p = 0.2. FA=Forget Accuracy,
RA = Remain Accuracy, PR=Parameters removed

make similar observations.
Results of Class-Unlearning Experiments. We report the results of our algorithm in Table 2 and
Table 5. To answer (Q4), we observe that it is possible to perform unlearning even without finetuning
to retain performance on the forgotten class. However, we also make the observation that it is possible
to recover the accuracy of a forgotten class by updating the batch norm statistics by using only
samples from the remaining class. We call this phenomenon the BN Recall. Thus, answering (Q5), it
is necessary to modify the stored statistics in BN layers to truly forget class information.

7.3 DISCUSSION OF EMPIRICAL RESULTS.

In this section, we empirically answer questions (Q1) to (Q5). With (Q1), we show that the for each
layer of a network, there exists a small set of High-Fidelity channels that contribute to the performance
of the network. To answer (Q2), we conclude that CoBRA-P, for most cases, leads to a better sparsity
vs. accuracy tradeoff against baseline data-free algorithms by at least 50% larger reduction in FLOPs.
We also find, to answer (Q3), that BNFix sometimes results in better performance as compared to
fine-tuning when using synthetic samples. However, BNFix is always better than no-finetuning. With
reference to (Q4), we find that it is possible to perform unlearning even without finetuning to retain
performance on the forgotten class. In trying to answer (Q5), we observe that when only remain class
samples are for BNFix, it causes a significant increase in forget class performance.

8 CONCLUSION

In this paper, we study model editing in the setting where both training data and loss functions are
not available, a setting not studied before. Our main contributions are algorithms devised through
correlation analysis of Hifi-components- introduced for the first time here- for both Pruning Complex
networks and Class Forgetting. We highlight the importance of BatchNorm statistics, which when
updated, yields predictions which can be as good as those obtained from a retrained network. We
provide both empirical evidence as well as a formal explaination. The results obtained here, specially
those related to identifying Hi-fi components, can open doors to new research avenues useful for
understanding Deep Networks. One direction for future work is to use different measures of similarity
between distributions, including moment matching, Wasserstein distances, and other divergences.
Limitations: The techniques proposed in this work are effective when the number of classes is less
than the width of the network. This may be especially true for unlearning tasks, which implicitly
requires that each class is learned by disjoint set of filters.
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APPENDIX

This appendix is organised as follows:

1. Appendix A contains details of related work

2. Appendix B contains additional experimental details

3. Appendix C contains details about BatchNorm

4. Appendix D contains derivations and proofs not presented in the main body.

A RELATED WORK

A.1 MODEL EDITING

In this subsection, we discuss model editing, which refers to techniques by which model parameters
are perturbed in order to change or influence the statistical performance of the model. A variety of
tasks fall under this umbrella, including pruning, model unlearning Shah et al. (2024), debiasing
Santurkar et al. (2021), and continual learning Sahoo et al. (2024).

A.1.1 EDITING CLASSIFIERS

Interpreting and editing classifier models is an active area of research, motivated by problems such
as subclass stratification (wherein subgroups within classes of a dataset can exhibit significantly
different statistical performance)Sohoni et al. (2020) and debiasing Santurkar et al. (2021); Jain et al.
(2022); Shah et al. (2024). The methods proposed in the latter works are of particular interest. In
Jain et al. (2022), CLIP embeddings are used to find “failure directions” between samples upon
which the model succeeds and those on which the model fails using an SVM; these “directions”
are then used to design a variety of interventions in the weight space. In Santurkar et al. (2021),
classifier prediction rules are edited by using learned rank-1 updates on a subset of layers of a DNN.
Most pertinently, in Shah et al. (2024), an exhaustive approach to component attribution is used,
and a variety of tasks including classwise unlearning, debiasing, editing individual predictions, and
improving subpopulation robustness.

In the sequel, we discuss other methods that show that model unlearning can also be achieved via
model editing.

A.1.2 EDITING OTHER MODELS

Model editing, while of interest to classifier models, has gained more interest in generative modeling.
For instance, component editing and pruning have been successfully applied to model editing tasks
in GANsLi et al. (2024); Seo et al. (2024) and diffusion models Yang et al. (2024), particularly for
unlearning tasks.

A.2 MACHINE UNLEARNING

In this subsection, we provide a detailed literature survey on machine unlearning, both with and
without model editing. Machine unlearning assumes that a model f(·) is given, trained on a dataset
D. The dataset is then partitioned into Dr (i.e. the retain or remember set) and Df (the forget set).
The goal of machine unlearning is to minimize the accuracy on Df while maintaining the accuracy
on Dr.

A.2.1 MACHINE UNLEARNING WITHOUT MODEL EDITING

Machine unlearning has gained importance in recent years owing to data privacy and security concerns
Bourtoule et al. (2021); Nguyen et al. (2022). A wide variety of works exist to address this problem.
Several works aim to forget data points, even in the adaptive setting, while maintaining the accuracy
of the model, such as Sekhari et al. (2021); Gupta et al. (2021); Izzo et al. (2021); Golatkar et al.
(2020). The work in Sekhari et al. (2021) also provides bounds on the number of samples that a
model can be allowed to forget before accuracy degradation. Machine unlearning is also a significant
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area of research in the space of large language models, as noted in Kurmanji et al. (2024); Eldan &
Russinovich (2023), and generative models Gandikota et al. (2023).

Another aspect of machine unlearning is selective forgetting, wherein classes, groups, or sets of
samples are forgotten from the network, as described in Wang et al. (2023) and the references therein.
This connects machine unlearning to the continual learning setting as well, as described in Wang
et al. (2024) and the references cited there. There are a variety of approaches to selective or classwise
forgetting, many of which require retraining or fine-tuning on subsets of the data. Fine-tuning, which
includes methods such as Golatkar et al. (2020); Warnecke et al. (2021), requires retraining the model
on Dr, assuming that after sufficient iterations, the accuracy on Df would be degraded. Other works,
such as Graves et al. (2021); Thudi et al. (2022) use gradient ascent on the loss function with Df ,
thereby destroying the accuracy of the model on Df .

A.2.2 MACHINE UNLEARNING WITH MODEL EDITING

Recent works have demonstrated the promise of model unlearning by editing models. In Jia et al.
(2023); Sahoo et al. (2024), tools for unstructured pruning are leveraged to analyze machine unlearning
on sparse models, and the impact of model sparsity on such tasks. More recently, works such as Shah
et al. (2024); Kodge et al.; Wang et al. (2022) directly uses structured pruning for model unlearning,
by identifying components responsible for classwise predictions and removing them.

A.3 STRUCTURED PRUNING

Structured pruning is a popular technique for improving real-world performance of models - in terms
of metrics such as inference time, power consumption, and throughput - without requiring additional
specialized hardware or software Hoefler et al. (2021); Blalock et al. (2020). Unlike unstructured
pruning (see Frankle & Carbin (2018); Frankle et al. (2021) and the references therein for a more
detailed discussion), wherein individual weights are removed, structured pruning directly reduces
the number of matrix-matrix multiplications, thereby improving performance Hoefler et al. (2021).
Early work on structured pruning involved pruning neurons in feedforward networks, such as LeCun
et al. (1989); Hassibi & Stork (1992). More recent work typically utilizes derivatives of the loss
function, such as Molchanov et al. (2019a;b); Shen et al. (2022); Li et al. (2020), which use gradients,
or Hessian Liu et al. (2021a); Yu et al. (2022); Wang et al. (2020a). More recently, Lin et al. (2022)
proposes estimating class-conditional gradient based saliency scores for identifying filters responsible
for class-wise or group-wise predictions, with a view toward fair pruning.

A.3.1 STRUCTURED PRUNING IN THE DATA-FREE REGIME

The space of pruning without access to the training data or loss function remains an under-researched
area. There are a variety of methods that do not use training data to generate saliency scores for filters,
such as Yu et al. (2018), which uses an L1 reconstruction error bound, Lin et al. (2020) which uses
the rank of feature maps, ,Li et al. (2017) which uses weight norms, and Joo et al. (2021) which uses
linear combinations of filters to replace redundant filters. These methods do not directly apply them
to pruning in the data-free regime. In this work, we assume access to the training data distributions,
with which we derive derivative-free meausres of importance of filters based on correlations between
the input contributions they generate.

B ADDITIONAL EXPERIMENTS

B.1 SYNTHETIC DATASETS

B.1.1 CIFAR5M

For experiments with the CIFAR10 dataset, we use CIFAR5M, a dataset containing 6 million
synthetic CIFAR-10-like images sampled from a Diffusion model and labelled by a Big-Transfer
model(Nakkiran et al., 2021), which we randomly sample 10,000 samples from each of the 10 classes
to create our dataset. This dataset has an FID(Heusel et al., 2017) of 15.95 with respect to the CIFAR10
training set. This dataset is obtained from https://github.com/preetum/cifar5m.
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Dataset Model Architecture Original σ +Noising +BNFix
Loss Acc.(%) Loss Acc.(%) Loss Acc.(%)

CIFAR-10

ResNet-50 0.21 94.99
0.010 2.2 32.31 0.5 87.16
0.012 4.96 10.67 1.12 72.91
0.014 20.49 9.89 1.87 37.07

VGG19 0.31 93.50
0.010 6.04 18.75 0.5 86.33
0.012 15.11 11.62 1.23 59.52
0.014 69.69 10.05 2.01 26.20

CIFAR-100

ResNet-50 0.9 78.85
0.010 3.00 30.31 1.61 64.06
0.012 4.52 2.84 2.42 51.14
0.014 5.31 0.97 3.36 31.35

VGG19 1.46 72.02
0.010 1.62 62.74 1.55 66.02
0.012 2.27 48.94 1.62 62.71
0.014 3.75 13.58 1.80 58.21

ImageNet ResNet-50 0.96 76.15 0.010 4.38 20.56 1.73 63.63

Table 3: Effect of BNFix on noising a network. σ represents the variance of the noise added to the
network

B.1.2 CIFAR100-DDPM

For experiements with the CIFAR100 dataset, we use CIFAR100-DDPM(Gowal et al., 2024),
which we randomly downsample to contain 1,000 samples from each of the 100 classes. This
dataset has an FID of 4.74 with respect to the CIFAR100 training set. We randomly sam-
ple 1,000 samples from each of the 100 classes to create our dataset. This dataset is ob-
tained from https://github.com/google-deepmind/deepmind-research/tree/
master/adversarial_robustness/iclrw2021doing.

B.2 BATCHNORM NOISING

To illustrate the effect of BNFix, we will first consider an artificial editing task we call model noising.
Although not a practical procedure, it serves to illustrate the effect of BNFix. The model is “edited”
by adding gaussian noise to all of the learned parameters of the network. We add a zero mean random
value to every learned parameter(including biases) of the model and apply BNFix for 5 iterations
over the synthetic set. Table 3 showcases the performance of the model before and after noising in
terms of the accuracy of the model and the value of the crossentropy loss averaged over the test set.
Noising causes a dramatic fall in accuracy and increase in loss but BNFix is able to recover from
around 10% to 60% of the validation accuracy across models and datasets.

B.3 EFFECT OF NUMBER OF SAMPLES FOR BNFIX

To understand the number of samples required for BNFix, we use random pruning to prune a ResNet50
model trained on the CIFAR10 dataset to achieve 2x FLOP reduction. We then apply BNFix using
the synthetic set. In Figure 3, we showcase the effect of the size of the synthetic set use and show a
95% confidence interval over 4 runs with different random subsets. We see that after around 1500
samples the gains due to adding additional samples diminish.

B.4 TRAINING PROCEDURE

Pretraining procedure: For CIFAR10 and CIFAR100, we train models using SGD Optimizer with
a momentum factor of 0.9 and weight decay of 5 × 10−4 for 200 epochs using Cosine Annealing
step sizes with an initial learning rate of 0.1.

ImageNet post training: For ImageNet, we use off-the-shelf pretrained models from Torchvi-
sion(Paszke et al., 2019). We train the model for 3 epochs after each iteration of CoBRA-P with
learning rates of 0.1, 0.01, 0.001. After the pruning ends, we finally prune the network for 200 with a
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Figure 3: BNFix applied to a ResNet-50 model trained on CIFAR10 pruned using random channel
pruning to achieve 2x FLOP sparsity.

Figure 4: BNFix applied to a ResNet-50 model trained on CIFAR10 pruned using different pruning
strategies to achieve 3x FLOP sparsity. For random pruning, we display the mean and 95% confidence
interval computed over 4 runs.

batch size of 512. We use the SGD Optimizer with a momentum factor of 0.9 and weight decay of
1× 10−4 and Cosine Annealed step sizes with an initial learning rate of 0.1.

L2 Post training procedure: For the synthetic training experiments mentioned in Section 7, we
first prune the model using L2 norm as the grouped saliency to a similar sparsity as CoBRA-P. We
then train the model using 50000 samples from the synthetic dataset for 100 epochs with a batch
size of 128 using SGD optimizer with momentum factor of 0.9 with inital learning rate of 0.01 and a
MultiStepLR learning rate scheduler with milestones at 60 and 80 epochs.

B.5 BNFIX AND PRUNING

We use pruning algorithms like L1, L2, and Random pruning on CIFAR10 trained ResNet-50 models
to obtain models with 3x FLOP reduction. We then apply BNFix with 5000 synthetic samples for
20 iterations. Figure 4 shows the effectiveness of BNFix on these models, recovering upto 65%
validation accuracy for this model.
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B.6 ADDITIONAL PRUNING EXPERIMENTS

Dataset Model Algorithm Acc.(%) RF RP

CIFAR-100 VGG19

Unpruned 72.02 1x 1x
DFPC 70.10 1.26x 1.50x
L2 56.46 1.50x 2.40x

L2 w/ ST 72.42 1.50x 2.40x
CoBRA-P 70.26 1.51x 2.31x

CIFAR10

ResNet-101

Unpruned 95.09 1x 1x
DFPC 89.80 1.53x 1.84x

L2 w/ ST 90.49 4.20 5.29x
CoBRA-P 91.20 4.21x 4.79x

VGG19

Unpruned 93.50 1x 1x
DFPC 90.25 1.46x 2.07x

L2 w/ ST 89.23 2.39x 9.19x
CoBRA-P 91.80 2.39x 5.52x

Table 4: Experiments of CoBRA-P on CIFAR100 compared with baselines. RF=Reduction in FLOPs.
RP=Reduction in Parameters. ST=Synthetic training, training using synthetic samples.

B.7 ADDITIONAL FORGETTING EXPERIMENTS

We report additional experiments on class unlearning on different architectures. For VGG-19
networks, we remove the HiFi channels for the forget class of the last 12 convolution layers.

Model Algorithm Forget Acc.(%) Remain Acc. params. removed

VGG19

- 93.50 93.50 -
CoBRA-U(0.001)(no BNFix) 0.86 77.85 0.79M
CoBRA-U(0.001) 45.87 91.31 0.79M
CoBRA-U(p=0.2) 5.63 84.34 3.18M

Table 5: Class forgetting on CIFAR10 for VGG19. CoBRA-U(p) indicates the hyperparameter for
Algorithm 3.

B.8 CLASS UNLEARNING FOR VISION TRANSFORMERS

In this subsection, we describe how CoBRA-U can be applied to Vision Transformers to perform
gradient free class unlearning without training data or access to the loss function. We focus on the
SwinTransformer(Liu et al., 2021b) architecture and prune linear layers in the network. We use the
distributional measure described in 4 to measure the importance of weights in linear layers of the
network for the forget class. We use this measure in the form of an unstructured saliency to prune
the weights of linear layers which include the WQ,WK ,WV and MLP layers in the network. For
sequence models like transformers, we compute the expectation described in equation 3 over all
elements in the sequence.

We report class forgetting results on the SwinTransformer(Liu et al., 2021b) architecture trained on
CIFAR-10. We train the model on the CIFAR10 dataset for 300 epochs from scratch3 to achieve a
validation accuracy of 92.31%. We apply CoBRA-U on the linear layers in a vision transformer.

3https://github.com/jordandeklerk/SwinViT
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Class Forget Acc. Remain Acc.

Best 7.80% 48.29%
Average 40.52% 60.50%
Worst 90.40% 90.74%

Table 6: Training free class forgetting on CIFAR10 for SwinTransformer using CoBRA-U. Metrics
are reported for the best, worst, and average over all 10 classes.

B.9 VARIANTS OF BNFIX

Based on our analysis in Theorem 1, we develop two additional algorithms. Algorithm 4 is a variant
of BNFix where the stored statistics of only channels whose coefficients in equation 6 are greater
than or equal to one are updated. This ensures that only large terms of the bound are reduced by the
update.

Algorithm 4: BNFix-Scale

Input :Batch Norm Layer l with m channels, dataset D = {Xi}Ni=1
for c ∈ [m] do

µ
(p)
c ← 1

N

∑N
b=1 Y

l
c (Xb);

σ2(p)
c ←

∑N
b=1

(Y l
c (Xb)−µ(p)

c )2

N−1 ;

ac =
(σ

(p)
i )2+(µi−µ(p)

i )2)

σ2
i

;
if ac ≥ 1 then

µl
c ← 1

N

∑N
b=1 Y

l
c (Xb);

σ2l
c ←

∑N
b=1

(Y l
c (Xb)−µl

c)
2

N−1 ;

We compare the performance of these variants as a substitution for retraining for CoBRA-P for a
VGG model pretrained on CIFAR10.

B.10 HYPERPARAMETERS FOR EXPERIMENTS

We randomly sample 2000 data points from distributional access for computing HiFi channels and for
BNFix. For CoBRA-P, we typically set p = 0.05. We perform BNFix for 10 epochs as a substitution
for retraining. We use 2000 samples from a synthetic dataset for BNFix. For ImageNet, we use 20000
samples from the unlabelled imagenet test set.

B.11 DETAILED COBRA ALGORITHMS

In this section we provide details of CoBRA-P and CoBRA-U.

Algorithm Acc. RF RP

- 93.50 1x 1x
No BNFix 63.75 2.42x 4.72x

BNFix-Scale 89.10 1.97x 4.18x
BNFix 92.47 1.91x 3.98x

Table 7: Performance of variants of BNFix as a substitution for retraining for CoBRA-P on a VGG19
model trained on CIFAR10.
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Algorithm 5: CoBRA-P

Input: Model, keepRatio p, Samples D = {(Xi, yi)}Ni=1
Output: Edited model
Function Prune(Model, p, D):

// Find the set of all coupled channels
DFCs← FindCoupledChannels(Model);
for CC ∈ DFCs do

HiFiChannels← ComputeHiFiSet(CC,p,D);
EditableChannels← [CCC

in ]\HiFiChannels;
for l ∈CC do

for i ∈EditableChannels do
// Prune the input channel in each layer of the DFC
PruneInputChannel(l, i);

Compute δ(l)⋆ based on equation 8 using D;
for i ∈HiFiChannels do

InputChannel(l, i)← δ(l)⋆· InputChannel(l, i);
// Run Algorithm 2 for all BatchNorm layers in the model
for lbn ∈ FindBNLayers(Model) do

BNFix(lbn,D);
Result: Model

Algorithm 6: CoBRA-U
Input: Model, keepRatio p, Forget Samples Df , Remain samples Dr

Output: Edited model
Function Unlearn(Model, p, Df , Dr):

// Find the set of all coupled channels
DFCs← FindCoupledChannels(Model);
for CC ∈ DFCs do

for l ∈CC do
HiFiChannels← ComputeHiFiSet(l,p,Df );
EditableChannels←HiFiChannels;
for i ∈EditableChannels do

// Prune the input channel in each layer of the DFC
PruneInputChannel(l, i);

Compute δ(l)⋆ based on equation 8 using Dr;
for i ∈HiFiChannels do

InputChannel(l, i)← δ(l)⋆· InputChannel(l, i);
// Run Algorithm 2 for all BatchNorm layers in the model
for lbn ∈ FindBNLayers(Model) do

BNFix(lbn,Dr);
Result: Model

B.12 VALIDATING HIFI HYPOTHESIS

In this section, we present the plots for the fidelity score computed as per 7.

C ADDITIONAL DETAILS ABOUT BATCHNORM

C.1 BATCHNORM2D

For multi-channel data like images, BatchNorm is modified “to satisfy the convolution property”(Ioffe
& Szegedy, 2015). Let Φl(x) denote the input to the lth layer of a neural network with L layers
on input x. Let the lth layer be a Convolution layer with m ouput channels, for a single multi
channel sample x, let Y l(x) ∈ Rm×d be the flattened representation of the output which is computed
according to equation 1. The output of the BatchNorm layer(called BatchNorm2D in the multi-
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Figure 5: Comparison of distributional similarity between input contributions and output feature
map.
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channel case), V (X) = BN l+1
γ,β (X) ∈ Rm×d, is given by

Vc(X) = γcZc(X) + βc1 where Zc(X) =
Y l
c (X)− µc1

σc
∀c ∈ [m] (9)

Where 1 is a vector of ones, µc = 1
N

∑N
i=1

Y l
c (xi)

⊤1

d ≈ EX [
Y l
c (X)⊤1

d ] and σ2
c ≈ VarX(

Y l
c (X)⊤1

d )
are stored data statistics and γ ∈ Rm and β ∈ Rm are the learned scale and shift parameters that
determine the first two moments of the output of the layer, i.e., for the random variable V̂ (X) =
1⊤Vc(X)/d, the moments are EX [V̂ (X)] = βc and VarX(V̂ (X)) = γ2

c .

C.2 BATCHNORM DURING TRAINING

We describe the behavior of BatchNorm1D during training, which is similar to that of BatchNorm2D.
For an input batch of size B, let the output of the linear layer, the lth layer in the network, be
ϕl(X) ∈ RB×d. Then, the output is given by,

Yc(xi) = γcZc(xi) + βc where Zc(xi) =
ϕl(xi)− 1

B

∑B
b=1 ϕ

l
c(xb)√

1
B

∑B
j=1

(
ϕl
c(xj)− 1

B

∑B
b=1 ϕ

l
c(xb)

)2 (10)

The estimate over the whole training set from equation 2 is now replaced with batch estimates.
Observe that Z are being normalized and, in an average sense, represent zero mean unit variance
random variables. To compute the stored statistics to use during inference, at every forward pass
during training, a running estimate of the mean and variance are stored in the layer. This running
estimate is used in equation 2.

D PROOFS

In this section, we provide proofs for the main theoretical results proposed in this work. Specifically,
we propos

D.1 PROOF OF LEMMA 1

Lemma 1 (Loss of a well trained model expressed with BatchNorm). Consider a model that satisfies
assumptions 5. We can express an upper bound on the expected loss during inference in terms of the
statistics of the output of the BatchNorm layer V (X) ∈ Rm.

|E[L(V (X))]− L(β)| ≤ K

2
||γ||2 (5)

Proof. From fact 1,

L(Y (X)) = L(β +GZ) = L(β) +∇L(β)⊤GZ +
1

2
Z(X)⊤GH(β,GZ(X))GZ(X)

The proof follows from the assumptions on the Hessian. Comments: |E(X)| ≤ E(|X|).

D.2 PROOF OF THEOREM 1

Theorem 1. Let the lthlayer of a network be a BatchNorm layer as described in 2 with stored data
statistics µc and σ2

c . Editing components of preceeding layers causes a change in the distribution
of the intermediate representation to some Y (p)(X), with modified moments µ(p) and (σ(p))2. The

output of BatchNorm after editing is then, V(p) = GZ(p) + β where Z(p) =
Y (p)
c (X)−µc

σc
. Then,

|E[L(V(p)(X))]− L(β)| ≤ K

2

 d∑
i=1

γ2
i

(σ
(p)
i

σi

)2

+

(
µ
(p)
i − µi

σi

)2
 (6)
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Proof. Let V(p) be the output at the batchnorm layer for the edited model with E(V(p)) =

µ(p), E((V
(p)
i )2) =

(
µ
(p)
i

)2
+
(
σ
(p)
i

)2
,∀i ∈ [d].

Define Ui =
V

(p)
i −µi

σi
. Consider V̂(p) = GU + β

|E(L(V̂(p)))− L(β)| ≤ ∇L(β)⊤U + E
1

2
∥H(β,GU)∥2∥GU∥22 (11)

≤
d∑

i=1

giγi
µ
(p)
i − µi

σi
+

K

2

 d∑
i=1

γ2
i

(σ
(p)
i

σi

)2

+

(
(µ

(p)
i − µi)

σi

)2


(12)

where gi = ∇iL. Applying assumption 5 finishes the proof.

D.3 PROOF OF THEOREM 2

Theorem 2. Let sl ∈ {0, 1}Cin = [1K ;0Cin−K ], where 1K is a vector of K ones, and 0Cin−K is a
vector of Cin −K zeros; we ignore the subscripts for brevity in the sequel. Define δc ∈ RCin such
that δci = 0 when si = 0. We solve Ŵ l+1

ci = δ̂l+1
ci W l+1

ci , where δ
l+1

ci = [δ̂l+1
ci ;0Cin−K ] that satisfies

δ̂l+1
c = argmin

δc∈RK

REl
c([δ, 0]) = P−1c pc and

REl
c(s

l)− REl
c(δ

l+1

Cin
)

REl
c(s

l)
≤ 1− ∥1− δ

l+1

ci ∥2

κ(Ql+1
c )(Cin −K)

(8)

where δ⋆c is a vector containing the optimal values of δci, Qc,ij = E
[
(W l+1

cj )⊤Φj(X)⊤Φi(X)W l+1
ci

]
,

Pc,ij = Qc,ij and pc,i = E
[
(Y l+1

c )⊤Φl
i(X)W l+1

ci

]
when si, sj = 1, and κ(Qc,ij) denotes the

condition number of Qc,ij .

Proof. First, note that

REl+1
c ([δ;0Cin−K ]) = E[∥Y l+1

c (X)−
∑

i:si=0

δiΦ
l
i(X)W l+1

ci ∥
2]

= E[∥
∑
i

δiΦ
l
i(X)W l+1

ci −
∑

i:si=0

δiΦ
l
i(X)W l+1

ci ∥
2]

= (1− [δ;0Cin−K ])⊤Q(1− [δ;0Cin−K ]).

We can rewrite this as

argmin
δ

REl+1
c ([δ;0Cin−K ]) = argmin

δ
δ⊤Pcδ − 2p⊤c δ = P−1c pc.

To measure the error, note that

REl+1
c (sl) = (1− sl)⊤Q(1− sl).

Thus, we have

REl
c(s

l)− REl
c(δ

l+1

c )

REl
c(s

l)
= 1−

REl
c(δ

l+1

Cin
)

REl
c(s

l)
= 1− (1− δ

l+1

c )⊤Q(1− δ
l+1

c )

(1− sl)⊤Q(1− sl)

≤ 1− λmin(Q)∥1− δ
l+1

c ∥2

λmax(Q)(Cin −K)
= 1− ∥1− δ

l+1

c ∥2

κ(Q)(Cin −K)
.
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E RECONSTRUCTION ERROR AND HIFI COMPONENTS

Reconstruction Error and the Fidelity Score A useful way to identify HiFi components is
by measuring the expected reconstruction error, as fidelity implies reconstructability. We define
reconstion error as follows. First, let s ∈ {0, 1}Cin satisfy si = 1 if i ∈ keep and 0 otherwise, and
let Ŷ l(X) =

∑
i siA

l
i(X). The expected local reconstruction error at layer l between Y l(X) and

Ŷ l(X), as well the reconstruction error of a single output channel, are

REl(s) = EX

[
∥Y l(X)− Ŷ l(X; s)∥2

]
REl

c(s) = EX

[
∥Y l

c (X)− Ŷ l
c (X; s)∥2

]
and REl(s) =

∑
c

REl
c(s). (13)

Next, we consider the reconstruction error after a 1D BatchnNorm layer, assuming that the stored
statistics are not updated after editing.

REl+1
c (s) =

1

2
EX

[(
Vc(X)− V̂c(X; s)

)2]
=

γ2
c

2

(
1 +

σ̂c
2

σ2
c

− (µ̂c − µc)
2

σ2
c

− 2
σ̂

σc
ρc(s)

)
(14)

where Vc(X), V̂c(X), µc, σc, µ̂c, and σ̂c are defined as in equation 2 .
When we adjust the batchnorm statistics„ the reconstruction error is given by,

REl+1
c (s) = γ2

c (1− ρc(s)) (RE-BN)

This adjustment shows that the reconstruction error is a function of the correlation between the input
contributions and the output. This motivates us to define FS(i) using the centered distributions. In
Section 5, we rigorously analyze the effect of adjusting the BatchNorm statistics on the loss of the
network.

Deriving BNFix From Reconstruction Error Consider the output of the BatchNorm layer
before and after pruning where the stored statistics are changed after pruning. Let V (X) =

BNγ,β(Y (X), µ, σ) and V̂ (X; s, µ′, σ′) = BNγ,β(Ŷ (X), µ′, σ′), where E[Yc(X)] = µc,
Var(Yc(X)) = σ2

c , E[Ŷc(X; s)] = µ̂c and Var(Ŷc(X; s)) = σ̂c
2. The reconstruction error for

output channel c is given by,

REl+1
c (s) =

1

2
EX

[(
Vc(X)− V̂c(X; s, µ′, σ′)

)2]
=

γ2
c

2

(
1 +

σ̂c
2

σ′2c
− (µ̂c − µ′c)

2

σ′2c
− 2

σ̂

σ′c
ρc(s)

)
(15)

where ρc(s) =
Cov(Yc(X),Ŷc(X;s))

σc

√
Var(Ŷc(X;s))

. When µ′ = µ̂ and σ′ = σ̂, the reconstruction error is given by,

REl+1
c (s) = γ2

c (1− ρc(s)) (RE-BN)

Reconstruction Error for Structured Pruning Solving equation Prune without access to the
training data or loss function can now be formulated as minimizing the reconstruction error between
the edited feature map and the original. Thus, we formulate the problem of structured pruning with a
fixed budget as follows. For a layer with Cin filters, and a sparsity budget of B filters, we write

s∗ = argmin
s∈{0,1}Cin

(1− s)TQc(1− s) s.t.
∑
i

si ≤ B (16)

where Qc is a symmetric matrix with elements Qcij = W⊤icEX

[
Φi(X)⊤Φj(X)

]
Wjc.

The optimization problem in 16 is a binary optimization problem and thus NP-Hard , and can be
reduced to a graph problem like maximum independent set by considering that Q represents the
adjacency matrix of a graph. Solving equation 16 provides an independent set of size B. Based on
this observation, we use a simple heuristic, analogous to the degree of each vertex, to find solutions
to equation 16. Consider minimizing the reconstruction error for a single output channel, say c. With
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our graph analogy, we remove vertices with the lowest degree, corresponding to channels with the
lowest row sums of the matrix Qc. The row sum corresponding to each channel, Rci is

Rci =
∑
j

Qcij =
∑
j

W⊤icEX

[
Φi(X)⊤Φj(X)

]
Wjc = W⊤icEX

[
Φi(X)⊤Yc(X)

]
(RowSum)

Based on equation RE-BN, we normalize the input contribution and the output to zero mean random
variables due to the presence of BatchNorm layers. This algorithm is stated formally in Algorithm 1.

Reconstruction Error for Classwise Unlearning We aim to use the HiFi hypothesis to unlearn
a class from a well-trained model, by removing a small, fixed number of filters responsible for
predictions of that class. We formulate the problem of classwise unlearning via model editing using
the Reconstruction Error to guide the edit. Our goal is to maximize the reconstruction error on the
forget class drawn from distribution Df while minimizing the reconstruction error on the remaining
classes, which we denote by Dr. Similar to equation 16, we write

argmax
s∈{0,1}Cin

(1− s)T
(
Qf

c − αQr
c

)
(1− s) s.t.

∑
i

si ≥ B (Forget)

where Qf
c is a symmetric matrix with elements Qf

cij = W⊤icEX∼Df

[
Φi(X)⊤Φj(X)

]
Wjc, Qr

c

Qr
cij = W⊤icEX∼Dr

[
Φi(X)⊤Φj(X)

]
Wjc, and α is a hyperparameter that penalizes the reconstruc-

tion error on Dr. Our experiments show that typically, setting α = 0 suffices, particularly for wide
networks such as ResNet50 and VGG19 trained on CIFAR10.
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